CONSTRUCTION OF SLIDING
WINDOW PROTOCOLS

*

ES *
A. Udaya Shankar and Simon S. Lam
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-86-09 March 1986

*Department of Computer Science, University of Maryland, College Park, Maryland 20742. Work sup-
ported by National Science foundation under Grant No. ECS 85-02113.

=M\Nork supported by National Science Foundation under Grant No. ECS 83-04734.

Table of Contents

. INTRODUCTION

1.1 Summary of results

1.2 Summary of our protocol model and construction method
1.3 Related work

1.4 Organization of this report

. NECCESSARY CONDITIONS FOR CORRECT DATA TRANSFER AND
RESULTING TIME BOUNDS

2.1 Neccessary conditions
2.2 Lower bound on data transfer times
2.3 Upper bound on data transfer times

. REAL-TIME PROTOCOL SYSTEM MODEL AND SAFETY IN-
FERENCE RULE

3.1 Timers and time constraints
3.2 Protocol system model
3.3 Safety inference rule

. PROTOCOL CONSTRUCTION BY STEPWISE REFINEMENT
4.1 Initial image protocol

4.2 Desired safety properties

4.3 Refinement of A, and Rec_ D

4.4 Refinement of A, and Rec_ ACK

4.5 Refinement of AG—S and the AcceptData event

4.6 An implementable local time constraint that enforces E1

4.7 An implementable local time constraint that enforces E2

4.8 The final protocol assuming the enforcement of E4 and E5

. COMPLETING THE CONSTRUCTION: THREE WAYS TO ENFORCE
E, AND E,

5.1 Protocol implementation which tightly enforces E 4 and E5

5.2 Protocol implementation which loosely enforces E 4 and tightly enforces E5
5.3 Protocol implementation which loosely enforces E 4 and E5

. LIVENESS PROPERTIES OF THE PROTOCOLS

6.1 Inference rules

6.2 Liveness verification of the protocols

. PROTOCOLS WITH REAL-TIME PROGRESS

7.1 Modified protocol implementation

7.2 Real-time progress verification

REFERENCES
Appendix A
Appendix B
Appendix C

W -1 Ut W N

@ 00

10

10
12
14
15
17
20
22
23
24
26
28
29
31

31
33
34
35

36
38

41

42
44

45
53
58
61

Abstract

The sliding window is one of the most intricate and powerful mechanisms in communica-
tion network protocols. It is implemented with cyclic sequence numbers and provides the func-
tions of error control, sequence control and flow control in high-level protocols (e.g., the DoD
standard, TCP, and the international standard, X.25) as well as in low-level protocols (e.g., the
international standard, HDLC). In this paper, we show how to construct sliding window
protocols using modulo-N sequence numbers for any N>2, and construct three sliding window
protocols with different performance characteristics. In each case, the communication channels
are assumed to lose, reorder and duplicate messages in transit. The first two sliding window
protocols that we construct are novel. The third sliding window protocol corresponds to existing
protocols such as Arpanet’s TCP and the original Stenning’s protocol; we obtain the minimum
value of N needed in such protocols. The construction is done by stepwise refinement, using im-
age protocols in the method of projections. The construction is driven by the safety properties
desired of the protocols. These safety properties are verified during the construction. The con-
structed protocols are also verified to have desired liveness and real-time progress properties.

1. INTRODUCTION

A fundamental problem in communication protocols is that of achieving reliable data
transfer over unreliable channels with the use of cyclic sequence numbers for identifying blocks of
data [12, 7, 3, 17]. Consider the protocol system in Figure 1 consisting of protocol entities P1

and P, connected by channels C, and C,, where the channels can lose, reorder, and duplicate
messages in transit. There is a source at P, that produces new data blocks, and a destination at
P, that consumes data blocks. The protocol must ensure that data blocks are passed to the des-

tination in a timely manner and in the same order as they were produced. The protocol uses

modulo-N sequence numbers to identify both the data blocks and acknowledgements to the data
blocks, where N>2.

An informal description of the sliding window protocol follows. At any time, let data
block 0, data block 1,, data block s-1, denote the sequence of data blocks that have been
produced by the source at P,. Of these, data blocks O to a-1 have been sent and acknowledged,

while data blocks a to s-1 are outstanding, i.e, sent but unacknowledged. (See Figure 2.) P, can

have at most SW data blocks outstanding; i.e. sa<<SW. The numbers a, a+1, ..., a+SW-1 con-
stitute the send window; SW is its size. At any time at sz data blocks O to r-1 have been

received and forwarded to the destination in sequence. Data block r has not yet been received,
while data blocks r+1 to r+RW-1 may have been received out-of-sequence and are temporarily

buffered. (See Figure 2.) The numbers r to 1+RW-1 constitute the receive window; RW is its
size.

Pl sends data block n accompanied by sequence number n mod N. A new data block can

be sent whenever s-a<!SW holds; when it is sent, s is incremented by 1.

Outstanding data
blocks can be retransmitted at any time.

Such retransmissions are scheduled accord::.g to
policies that are determined by the channel delay and error characteristics. The send winciow is

not affected by either the transmission of a new data block or by the retransmissions of out-
standing data blocks. When P2 receives a data block with sequence number n mod N, if there is

a number i in the receive window such that i mod N = n mod N, then the data block is con-
sidered to be data block 1. If r mod N = n mod N then buffered data blocks which =are in-
sequence are passed to the destination and the receive window moves up. P2 sends acknowledge-

ment messages containing n mod N, where n is the current value of r. When P1 receives the se-

quence number n mod N, if there is a number i in the range a+1 to s such that i mod N =

n mod N, then data blocks a to i-1 are considered acknowledged and the bottom of the send win-
dow (indicated by a in Figure 2) is moved up to equal i.

We shall refer to the value n above as an unbounded sequence number, in contrast to the
cyclic sequence number n mod N. For data transfer to be in the correct order, it is necessary
and sufficient that when a cyclic sequence number is received at an entity, the entity must cor-
rectly interpret the value of the corresponding unbounded sequence number (which is not avail-
able in the message); i.e., 1 must equal n above. Because cyclic sequence numbers have a
bounded domain {0,1,...,N-1}, correct interpretation occurs if and only if the send window, the
receive window, and the unbounded sequence numbers in the channels stay within certain bounds

of each other at all times. (A precise definition of correct interpretation and a derivation of
these bounds may be found in Sections 4.2, 4.3 and 4.4.)

Because the channels can duplicate and reorder messages in transit, the bounds on the un-
bounded sequence numbers in the channels can be enforced only if messages do not stay in-
definitely in the channels. Therefore, let MaxDelay; denote the maximum lifetime of messages in
channel Ci’ for i = 1 and 2. If this maximum message lifetime is not a physical characteristic of

the channels, then it must be explicitly enforced by the channel implementations; i.e., each mes-
sage must have an age field and the intermediate network nodes that implement the channels
must delete messages that are too old [12, 15, 16, 17]. The particular value of the age field
should obviously depend on the network delay characteristics. For example, in the Arpanet’s

Transmission Control Protocol (TCP) [12], each message can be assigned a maximum lifetime of
up to 256 seconds.

1.1 Summary of results

We constructed a sliding window protocol by stepwise refinement. We found that to ach-
jeve correct interpretation of sequence numbers, and hence data transfer in the correct order, it
is sufficient if the following three conditions hold before P, sends data block n for the first
time:

(a) Data block n-N+RW has been acknowledged.

(b) At least MaxDelay, seconds have elapsed since data block n-N-+RW was last sent.

(c) At least MaxDelay, seconds have elapsed since data block n-N+1 was acknowledged.

(Our construction and verification method is briefly summarized below.)

The above three conditions are also neccessary if P2 is allowed to have zero reaction time.

The reaction time of an entity is the time it takes to receive a message, perform associated inter-
nal processing including interaction with the source or destination, and send a response message;

We found that no other restrictions need be enforced by the protocol system to ensure cor-
rect interpretation of sequence numbers. In particular, the constructed protocol system allows
Pl to retransmit any outstanding data block at any time, and allows P2 to send its ack-

nowledgement sequence number message at any time. Thus, any retransmission policy that op-
timizes the protocol’s performance can be used.

Three protocol implementations

Recall that SW is the size of the send window at P. Condition (a) is easily satisfied by
having SW < N-RW.

Conditions (b) and (c) are time constraints which P, must enforce through the use of
timers. We found three different methods of enforcing these conditions.

The first implementation enforces conditions (b) and (c) tightly. To enforce condition (b)
tightly, P, needs to measure the time elapsed since data block n was last sent, for ssN+RW < n

< s-1. This can be done with a circular array of N-RW timers, each of capacity MaxDelay,.
(There is no need to measure the elapsed times once they exceed MaxDelay,.) To enforce con-
dition (c) tightly, P, needs to measure the time elapsed since data block n was acknowledged, for
s-N+1 < n < a-1. This can be done with a circular array of N-1 timers, each of capacity

MaxDelay,. Thus, with 2N-RW-1 timers, P, can enforce conditions (b) and (c) tightly, up to the
accuracy of the timers.

The second implementation uses a single circular array of N-1 timers, each of capacity
max(MaxDelay ,, MaxDelay,). It enforces condition (b) loosely and condition (c) tightly. The

timers measure the time elapsed since data block n was acknowledeged, for s-N+1 < n < a-1.
Condition (c) can be tightly enforced, as in the first implementation. Condition (b) can also be
enforced because data block n is not sent after it is acknowledged. However, the enforcement is

not tight because the last send of a data block usually does not coincide with its acknowledge-
ment.

The first two implementations may not be feasible when N is large (e.g. N=232 for TCP).
The third implementation uses a single timer, and enforces both conditions (b) and (c) loosely.
The timer is used to enforce a minimum time interval § between sending new data blocks. In
fact, this is the implementation used in TCP [12] and in the original Stenning’s protocol [17] (see
below). In order for this single time constraint to enforce conditions (b) and (c), it is neccessary
and sufficient that the following 6 formula holds:

1\/IaxDelay1 1\'IaxDela.y2
6 > max (TRwsw NRWa)

Note that the send window size SW must now be strictly less than N-RW.

Liveness verification

We verified that these protocols are live: i.e., once data block n becomes outstanding, then
it is acknowledged within a finite time, provided that P, does not continuosly avoid retransmit-

ting data block n, C; does not continuously lose messages containing data block n, and C, does
not continuously lose acknowledgements of data block n.

Real-time progress verification

A real-time progress property certifying progress within a bounded response time T is more
realistic than the liveness property described above. This is because, in practice, if progress is
not achieved within a bounded time T, then P, aborts or resets the connection with P,

Let Delay, (< MaxDelay,) be the delay that a message is ezpected to encounter in channel
C The message is said to be overdelayed if it is not received within Delay time of its send.
Defme the round trip delay as the sum of Delayl, Delayz, and the maximum reaction time of P

We verified the following worst-case progress property: once data block n becomes the next
data block to be acknowledged, then it is acknowledged within time T = (m X round trip
delay), provided P, retransmits data block n at least once every round trip delay seconds, and

the channels do not overdelay a particular message more than m times for some m>1.

Performance of the protocol implementations

We examined the performance of the three protocol implementations under the assumption
that the entities have zero reaction times. Given this assumption, the performance is governed
entirely by the following factors: the maximum message lifetimes, via conditions (b) and (c); the

channel errors and delays experienced by the messages; the values of SW and RW; and the
retransmission policies utilized by Pl and P2.

Let the acknowledgement time of data block n denote the elapsed time from the beginning
(i.e. first transmission of data block 0) to the moment when data block n is acknowledged at P,.

Acknowledgement times are our measure of performance.

We obtain tight lower and upper
bounds for the acknowledgement t1

mes in each of the three protocol implementations. The lower
bounds are realized in the best-case scenario of negligible channel delays. The upper bounds are
realized under the worst-case progress assumption described above.

The best-case performance of the first protocol implementation is optimal because 1t en-
forces the conditions (b) and (c) tightly, and because these conditions are neccessary. Because
there is no restriction on the retransmission policies at P, and P, this protocol implementation
can also achieve optimal performance in the average case.

The second protocol implementation achieves the same performance as the first in the best

and worst cases, but not in the average. Recall that this protocol implementation enforces con-
dition (b) loosely and condition (c) tightly.

The third protocol implementation, the one used in TCP and in the original Stenning’s
protocol, is worse than the first two protocol implementations in the best case, worst case, and
average case. Recall that it uses only 1 timer and enforces conditions (b) and (c) loosely.

1.2 Summary of our protocol model and construction method

We use the distributed system model and inference rules developed in [14, 15]. Each
process, i.e. entity or channel, in the protocol system has a set of state variables and a set of
events. Fach event is specified by a predicate that relates the values of the system state vari-
ables immediately before the event occurrence to their values immediately after the event occur-
rence. The predicate embodies specifications of both the event’s enabling condition and action.
The model includes timer variables to record the elapse of time, and time events to age the timer
variables. The time events of different processes are uncoupled and their rates of occurence lie
within specified error bounds. The combination of the event-driven structure, the state vari-
ables, and the predicate specification of events gives rise to fairly simple inference rules for safety

and liveness. Real-time properties can be stated and verified as safety properties.
Construction method

The protocol system Is constructed in successive steps. At each step of the construction,
we have a partially completed version of the final protocol system, which is referred to as an
image protocol system [9, 13], and a set of desired safety properties which are only partially
satisfied by the image protocol system. More precisely, each desired safety property is preserved
by only a subset of the events of the image protocol at that step.

We start the construction with a very simple image protocol that merely formalizes the
English description given in paragraphs 2 and 3 of the introduction, and a set of desired safety

properties that define correct data transfer and correct interpretation of received sequence num-
bers.

At each step of the construction (see Section 4 for details), we examine a desired safety
property with respect to an event that does not preserve the property, and modify the events
and the set of safety properties. Each new event is obtained by a refinement of some existing
event. This ensures that, for any event, any safety property which was preserved by the event
prior to the modification continues to be preserved by that event. The construction terminates
when all the desired safety properties are verified, i.e. preserved by all the events.

FEvents,
rather than processes, are the units of composition in our construction.

1.3 Related work

To our knowledge, this is the first verified construction of sliding window protocols using
modulo-N sequence numbers where N is arbitrary. It demonstrates that the use of cyclic se-

quence numbers and measures of real time actually simplify the understanding, verification, and
ultimately the construction of communication protocols.

Our first two protocol implementations, using 2N-RW-1 timers and N-1 timers respec-

tively, appear to be unique. In [14, 15|, we presented these protocols for the special case of
N==2, and verified their safety, liveness and real-time properties.

Our third protocol implementation corresponds closely to the original Stenning’s protocol
n [17], and to the Arpanet’s TCP [12]. All three protocols utilize modulo-N sequence numbers,
a receive window of size RW, and a send window of size SW, where 1 < SW < N-RW-1.
Stenning’s protocol and TCP do not explicitly use a timer to enforce a minimum time interval §
between successive sends of new data blocks. However, they assume that such a § exists due to
hardware restrictions at the entities. We will now compare the values of N used in Stenning’s
protocol and in TCP with the optimal values given by the 6 formula.

Comparison with the original Stenning’s protocol

The formal specification of Stenning’s protocol utilizes unbounded sequence numbers and
requires the following transmission policies: whenever P, retransmits a data block, it also

retransmits all succeeding outstanding data blocks in sequence; whenever P2 receives a data

block, it must send an acknowledgement before receiving the next data block. Using this
specification, Stenning verified certain safety properties of the unbounded sequence numbers sent
into the channels. From these safety properties, he informally demonstrated that if channel Ci

retains only the last M messages sent by Pi’ then the unbounded sequence numbers can be
replaced by cyclic sequence numbers provided the cycle period N > SW+max(M+RW, SW).

We can relate Stenning’s protocol to our protocol by setting MaxDelayl = MaxDelay2 ==
M 6. Substituting this in the § formula, we see that it is sufficient, and neccessary, to use N >
SW+RW-+M. Furthermore, unlike in Stenning’s protocol, any retransmission policy at Pl and
P2 can be used in our protocol.

Comparison with TCP

TCP utilizes a 32-bit sequence number for every data byte. Each packet has an age field
which can be set to any value up to 256 seconds. If we let N = 232, 1VIr:xxDelay1 = MaxDelay2

— 9256 seconds, and RW+SW < 924 (which is a safe assumption), we obtain cS_>_2'4
microseconds. In other words, if Pl is sending packets containing 1 Kbyte data segments, then

successive packets should be sent separated by at least 64 microseconds. Clearly, there is no
danger of this condition being violated by existing Arpanet hardware. However, we note that
the TCP manual [12] does not impose any such lower bound on the time between sending new
data blocks. (The manual does impose a lower bound of 1 microsecond in another context,
namely, choosing an initial sequence number in connection establishment.)

Comparison with other protocol verifications

Later investigations [6, 10] of Stenning’s protocol have considered safety and liveness
properties, but not real-time progress properties. However, they have invariably considered un-
bounded sequence numbers, as well as the simplified situation where SW=RW==1. The safety
property proofs for this relatively simple case do not generalize to arbitrary values of N, SW and
RW. However, it is interesting to note that the liveness proofs and the real-time progress proofs
for the situation SW=RW=1 [15] do extend to the case of arbitrary N, SW and RW examined

in this paper. Note that when SW=1, the options for retransmission policies are quite limited
because at most one data block can be outstanding.

A version of TCP with unbounded sequence numbers and arbitrary RW has been verified
using a theorem-prover in [5].

Other related work involves the HDLC protocol [7], which uses modulo-N sequence num-
bers (N=8 or 128), and the alternating-bit protocol [1], which uses modulo-2 sequence numbers.
Versions of HDLC using cyclic sequence numbers have been modeled and verified in [13, 2].
There are numerous verifications of the alternating-bit protocol, among them [1, 6. We point
out that both the operation and logical properties of the sliding window protocols described
herein are fundamentally different from the HDLC and alternating-bit protocols, the latter being

data link protocols which assume that channels may lose messages in transit, but may not reor-
der or duplicate them.

1.4 Organization of this report

In Section 2, we show that the three conditions specified above are neccessary for correct
data transfer if P, has zero reaction time. We also obtain lower and upper bounds on the times
at which data blocks are acknowledged, assuming that these three conditions are tightly en-
forced. In Section 3, we briefly outline our real-time protocol system model and the inference
rule for establishing safety properties. In Section 4, we constructively derive a protocol system
which is complete except for the implementation of the two time constraints represented by con-
ditions (b) and (c) above. The construction includes a verification that this protocol system ach-
{eves correct data transfer, provided that the two time constraints are enforced. In Section 5, we
complete the protocol construction by providing three protocol system implementations. The im-
plementations differ in how they enforce the two time constraints. In Section 6, we outline the

inference rule for proving liveness properties, and verify the liveness of the protocol implemen-
tations. In Section 7, we verify the worst-case progress assumption for the protocols.

2. NECCESSARY CONDITIONS FOR CORRECT DATA
TRANSFER AND RESULTING TIME BOUNDS

We show the neccessity of the conditions (a), (b) and (c) for correct data transfer. We ob-

tain lower and upper bounds on the times at which data blocks are acknowledged, provided that
P, tightly enforces these conditions.

2.1 Neccessary conditions

Forn > 0, let f denote the time when data block n is first sent by P,. Let [denote the

time when data block n is last sent by Pl' Let a, denote the time when data block n is ack-
nowleged at Pl‘

Because data block n will not be sent once it is acknowledged, we have the following:

RO For all n: a, > ln > fn

Because acknowledgements are cumulative, we have the following:

1 For all n: a < a1
Whenever data blocks m, m+1, ..., n are outstanding at Pl’ it is possible for the receive
window at P2 to correspond to the data blocks j, j+1, ..., j+RW-1, where j can be any value

from m, m+1, ..., n+1. This can happen for example, if data blocks m to j-1 have been received
in order at PZ’ and the rest have not been received.

If fn < ln—N SRW T 1\/IaxDelay1 for some n, then the following erroneous behavior can oc-
cur starting at fn: P2’s receive window corresponds to data blocks'n to n+RW-1; P2 receives

data block n immediately, passes it to the destination, and moves its receive window to data
blocks n+1 to n+RW; P2 then receives an old duplicate data block n-N+RW, which may still be

in channel Cl’ and misinterprets it as data block n+RW. Thus, it is neccessary that the follow-
ing hold: ’
Ry Foralln: f > 1 ., pw + MaxDelay,

where [, is treated as -oo for i<C0. R, corresponds to condition (b) in Section 1.1.

If fn < @ N+1 T MaxDeIay2 for some n, then the following erroneous behavior can occur:
Just prior to a, ny. P2’s receive window was data blocks n-N+1 to n-N+RW, and it had sent
an acknowledgement message containing (n-N+1) mod N. Immediately afterwards, P2 received

data block n-N+1, and sent the appropriate acknowledgement message (containing (n-N+2) mod
N) which was received immediately at P, at time a ¢ The old acknowledgement message

containing (n-N+1) mod N can still be in channel G, just after time instant f . At this mo-

ment, P, receives it and misinterprets it as an acknowledgement to data block n. Thus, it is
neccessary that the following hold:

Ry, For alln: f > a nyq t MaxDelay,

Rq corresponds to condition (c) in Section 1.1.

P1 must retransmit outstanding data blocks until they are acknowledged. This is because
it is always possible that an outstanding data block is neither in C; nor has been received at P,.
Therefore, to enforce Ry, it is neccessary that P send data block n only after data block
n-N-+RW is acknowledged. This corresponds to condition (a) in Section 1.1. Because SW is the
send window size at P, we can state this condition as the following:

R4 For all n: fn > a oW

where SW < N-RW. We will see that the value of SW has no effect on either the lower or up-
per bounds of the performance. SW does affect the average performance.

In this section, we assume that P1 has negligible reaction time, i.e., enforces R2, R3 and R4
tightly. Thus, we have the following:

R, Forall n: [, = max(e _gw» LN trwHMaxDelay,, a +1+MaxDe1ay2)

2.2 Lower bound on data transfer times

The best-case, or minimum-valued solution to R5 is obtained when a data block is sent ex-

actly once and acknowledged immediately. Assuming negligible channel delays and entity reac-
tion times, we have RO holding with equality. Combining this with RS’ we see that the lower

bound is the solution to the following equation (notice that R 4 is automatically enforced because
of Ry):

Ry o) = max(an_N JrRW—H\/I&XDelay1, a N +1—H\/Ia,xDela,y2)

We have the following theorem:

Theorem 1. The best-case {a_} satisfies the following:

n n
(a) a, = max([mijaxDelayl, LmijaxDelayz)
N-1

n .
(b) a, = Lmj X MaxDelay it | B

] XMaxDelay, > MaxDelay,

Theorem 1 can be easily proved by substituting the expressions for {an} in Rg. Notice
that case (b) in Theorem 1 includes the typical situation of MaxDelay,==MaxDelay,.

10

2.3 Upper bound on data transfer times

We shall obtain upper bounds on {an} under the assumptions of R, and the worst-case

progress assumption. The latter states that the time interval during which data block n is both

outstanding and the next to be acknowledged is upperbounded by a value of T seconds.

It can
be formally stated as follows:

R, a < max(f,a)+T

We choose this particular inequality for the worst-case progress assumption, rather than
say a - fn < T, for two reasons. First, it is relatively easy to design protocols that enforce it,
provided the channels do not consistently perform badly (see Section 7). Second, it is a realistic
assumption in that most protocols will reset if no progress is achieved within the specified time

T.

The worst-case {an} is the solution to the following equation, which is obtained by sub-
stituting R7 with equality into R5:

Ry o = max(a, _;, 6, N, gpwTMaxDelay;, a +1+MaxDelay2) +T

Notice that a__gyy drops out of Rg because of R;.

Theorem 2. Let 4; = MaxDelay, - (N-RW-1)XT, and 4, = MaxDelay,, - (N-2)XT.

(a) a = (n+1)XT if A,4,<0

(b) a, < (n+1)XT + LN RWJX(max(MaxDelayl, MaxDelay,) - (N—RW—I)XT) otherwise

(c) = (n+1)XT + |==

NRWJXAl

Theorem 2 can be easily proved by substituting the expressions for {an} in R,. Notice
that case (c) includes the typical situation of MaxDelay =MaxDelay,.

3. REAL-TIME PROTOCOL SYSTEM MODEL AND SAFETY
INFERENCE RULE

In Section 3.1, we outline our modeling of timers and time constraints. In Section 3.2, we

present the event-driven model for the protocol system. In Section 3.3, we present the inference
rules for verifying safety properties.

3.1 Timers and time constraints

We use the term local timers to refer to the timers that are implemented within individual
processes of a distributed system. In our model, a local timer is a discrete-valued state variable
that can take values from the domain {Off,0,1,2,...}. For this domain, define the successor func-
tion next as follows: next(Off)=O0If and nezi(i)=1+1 for iz£Off. To model timers with limited
counting capacity, we also allow a local timer to have a domain {Off,0,1,..., M} where M is some

11

positive integer. In this case, next(M)=Off. When a timer is aged, if the original value is ¢ then
its new value is next(t).

For each process, there is a local {ime event (corresponding to a clock tick) whose occur-
rence ages all local timers within that process. Since no other timer is affected, local timers in
this process are effectively decoupled from local timers in other processes of the distributed sys-
tem. In addition to being aged by its time event, a local timer can be reset to some value by an
event (other than the time event) of that process, thereby measuring the time elapsed (in number
of occurrences of its local time event) following the event occurrence.

In order to keep the aging rate of local timers in different processes within specified error
bounds, we include in our model a hypothetical time event, referred to as the ideal time event,
that is assumed to occur at an absolutely constant rate. For process 1, let n, denote the number

of occurrences of its local time event since system initialization, and let ¢ denote the maximum

error in the tick rate (e.g., for a crystal oscillator, €~ 107

rences of the ideal time event since initi

6). Let denote the number of occur-
alization. The n’s are auxiliary state variables that are
not implemented, and can never be reset by any event. Neither the local time event for process i

nor the ideal time event is allowed to occur if such an occurrence will violate the following
accuracy axiom of the local time event of process i

AccuraeyAXiomi(ni,n): For any earlier instant a,

| (n; - (@) - (n - n(@) | < max(1, (n-n(a)).

where n(a) refers to the value of 5 at instant a, and n refers to the current value of the state

. . dmy
variable n. This is a discrete version of the condition | 1- =" | < ¢, which is used to charac-

dn
terize the accuracy of continuous timers 8].

Implementable time constraints

Implementable time constraints are time constraints that are realizable by individual
processes without any cooperation from the rest of the distributed system. They are guaranteed

by the implementations of individual processes, and are not properties that have to be verified
by analyzing the interaction of processes.

Recall that timer variables can measure the time elapsed since a system event occurrence.
Implementable time constraints of the form "event e will occur only ¢f elapsed times satisfy cer-
tain bounds" are modeled by including timer variables in the enabling condition of event e. Im-
plementable time constraints of the form “event e must occur within certain elapsed times" are
modeled by imposing conditions, referred to as timer azioms, on the time event of the process.

In (15}, we have provided a formal definition of implementable time constraints, and shown
that such time constraints will never cause the time events to deadlock. Observe that the time
events are completely defined by the ideal and local timers, the timer axioms, and the error rates
of the local time events. Time events are not implemented.

12

Derived time constraints and ideal timers

Derived time constraints are time constraints that hold for the distributed system as a
result of individual processes enforcing implementable time constraints. They are not
guaranteed by the implementation but must be verified for the distributed system.

To facilitate such verification, we allow timers that are driven by the ideal time event.
Such timers are referred to as ideal timers. ldeal timers are not available to the implemen-
tation. Rather they are auxiliary variables used to measure the actual, or ideal, time elapsed
between event occurrences. Because ideal timers throughout the system are coupled, it is more
convenient to use ideal timers, rather than local timers, in verifying the relationships between
implementable time constraints (enforced within processes) and the resulting system-wide time
constraints. Once the desired implementable time constraints have been determined in termms of
ideal timers, we can use local timers to track the values of the ideal timers within the specified
error rates, and thereby implement the time constraints (see examples in Sections 4 and 5).

Given an ideal timer u and a local timer v, we say ((u,v) started at a) to mean that at
" some instant in the past u and v were simultaneously reset to the value a, and after that instant
there has been no reset to either w or v. If ¢ is the error rate of the local time event that drives

timer v, then the following started-at property clearly holds: ((u,v) started at a) = |u-v| <
max(1, ¢(u-a)). Recall that a timer v with domain {Off,0,1,...,M} is set to Off if its value was

M before the occurrence of the time event. For the purposes of the started-at property, this ac-
tion is treated as a reset, and not as aging.

3.2 Protocol system model

We model the distributed system of Figure 1 by a set of state variables whose values in-

dicate the system state, a set of events that cause changes to the state variable values, and a set
of initial conditions on the state variables.

State Variables

For each protocol entity Pi’ let vy be the set of state variables of Pi' v, can have auxiliary

variables needed for verification only, and timers needed to model time constraints. All local
timers in v, (if any) are driven by a local time event of count m and maximum error rate € -

With each message in channel Ci’ we associate a timer age that indicates the age of the

message (time spent in the channel). For notational convenience, we assume that age is an ideal
timer. Let the state variable z; denote the sequence of <<message,age> value pairs in Oi‘ In-

itially, z is the null sequence. The maximum message lifetime MmcDelayi constraint is modeled
by the following timer axiom:

TimerAxiomi(zi) : For every <message,age> in z;: 0 < age < MaxDelayi

The system state vector is defined by v = (vl, Vo 2, z2). The allowed initial values of v
is specified by the initial conditions on the state variables.

13

Specifying events by predicates

Each process in the distributed system has a set of events. The events of entity P, model
message Teceptions, message sends, and associated state changes to v.. The events of channel C.1

model channel errors such as loss, duplication, and reordering of messages in transit. If there are
timers in the system model, then we also have time events.

Fach event e can occur only when the state vector v has certain values. Its occurrence
causes the state vector v to assume a new value. Instead of using algorithmic code, we specify
the event by a predicate that relates the values of the state vector before and after the event
occurrence. Specifically, an event is specified by a predicate whose free variables come from v
and v", where v is understood to denote the value of the state vector immediately before the
event occurrence and v" is understood to denote the value of the state vector immediately after
the event occurrence. Such predicates are referred to as event predicates. Notice that we use
the term “variable" in the mathematical sense, and the term “state variable" in the program-

ming language sense, i.e., to denote both a location where a value may be stored, as well as the
stored value.

For example, let the state vector v:(vl, v2), where v, and vy are integer-valued state
variables. An event that increments the value of v, by the value of) provided that v, is less
than 5 is specified by the event predicate (v;<<5 and v,"=v +v,y and v2"=v2). (We use and
and or to denote logical conjunction and disjunction respectively.) An event that assigns to v,
either the value 1 or the value 2, where the choice is made nondeterministically, is specified by

the predicate ((vl"=1 or vl":—-Q) and v2“:v2). For compactness in specifying events, we

adopt the convention that any variable v" in v" that does not occur in an event predicate is not
affected by the event occurrence; i.e., the conjunct v"=v is implicit in the event predicate.
Thus, the above two examples can be written as (v1<5 and V1"=V1+V2), and as (v,"==1 or
vl"=2), respectively.

Given a predicate p with free variables from v and v", the notation e(v; v")=p declares
that e(v; v") refers to p; for example, e(vl,vz; vl",vz") = (v1<5 and V1"=v1+V2)' The ex-
pression to the right of "=" is referred to as the body of e(v; v*). The expression to the left of
the "==" is referred to as the header. For any given value of v and v*", we shall also use e(v;

v") to denote the value that the predicate evaluates to. Thus, in the above example, (1,2;3,2) is
True while both e(1,2;4,2) and (6,1;7,1) are False.

Channel events and primitives

For each channel Oi’ the channel behavior (loss, reordering, etc.) can be specified by an
event predicate to be called ChannelError(z;; zf). In addition, each channel has send and receive
primaitives. The send primitive for channel C; is defined by Sendi(zi,m;zi“) =
(ziz—_(zi,<m,0>)), i.e., append message m with an age of 0 to the tail of z,. (We will use a
comma as the concatenation operator, and use parentheses to resolve ambiguities.) The receive
primitive for channel C, is defined by Reci(zi;m,zi") = (for some t)[(<m,t>,2.,")=z], ie,

remove the message at the head of z, if zir,énull, and assign it to m irrespective of its age. (We

14

use " for all x in X" and " for some x in X" to denote universal quantification and existential

quantification, respectively, of variable x over domain X. The scope of the quantification is
enclosed by square brackets.)

Entity events

The entity events of Pi can involve, in addition to entity state vector v the channel state
variables z; and z,, but only via the send and receive primitives. When these primitives are

used in the predicate bodies of entity events, the formal message parameter m is replaced by the
actual message sent or received. For example, an event e of P1 that sends the value of x into

C,ify<s, where x and y are integer state variables in v, is specified by
el(vl,zl;vi',zi‘) = (y<5 and Send,((x), z;;2})

An event e, that receives a message consisting of an integer from 02 and accumulates it in x, is
specified by

e2(v1,z2;vi‘,zi') = (for some integer n)[Recy(z,; (n),24) and x"=x+n]

The time events are similarly specified in a straightforward manner (see the example in
Sections 4 and 5).

3.3 Safety inference rule

The set of all possible value assignments to the system state variables defines the state
space of the system. Each event specifies a set of transitions between system states, each tran-
sition corresponding to a pair of system states that satisfies the event predicate. Let the predi-
cate Initial(v) specify the initial conditions of the system; i.e. any initial system state satisfies
Initial(v). A system state that can be reached from an initial system state via a sequence of

event transitions is referred to as a reachable system state. Any realization of system behavior
is represented by some path of event transitions from an initial state.

A safety property of the distributed system states relationships between values of the sys-
tem state variables. It can be represented by a predicate in the variables of the global state vec-
tor v. An example of a safety property involving two integer state variables z and y is (z < y
< =z + 1). A safety property Ao(v) holds for the system if it holds at every reachable state.

Such a property is said to be invariant. We now present the inference rule for proving in-

variance. (By convention, variables in the predicates are universally quantified over their
domains unless otherwise indicated.)

Inference Rule for Safety. If I(v) is invariant and A(v) satisfies
(i) Initial(v) = A(v)
(ii) for every event e: (I(v) and A(v) and e(v;v")) = A(v")
(iii) A(v) = Ay(v)

then we can infer that Ao(v) is invariant.

15

The validity of the rule is obvious. Part (i) ensures that A(v) holds initially, while part (ii) en-

sures that A(v) is preserved by any event occurrence. Thus A(v) is invariant. Therefore, by part
(iii), Ag(v) is invariant.

Ao(v) represents a desired safety property. I(v) can be any safety property whose in-
variance has already been verified. In particular, any timer or accuracy axiom can be a conjunct
of I(v). Because I(v) is given to be invariant, we can replace I(v) by (I(v) and I(v*)) in part (i)
of the above inference rule; this strengthening of the left hand side often helps in deriving A(v").
Generating A(v) from Ay(v), I(v), and the system specifications is a nontrivial task analogous to

generating loop invariants in program verification. In Section 4, we construct both A(v) and the
system specifications from AO(V).

For brevity, we shall refer to a predicate A(v) as simply A, and use A" to refer to A(v").

Also, we shall refer to an event e(v;v") as simply e. Thus, the predicate in part (ii) is stated as
(A and e)=A".

Safety assertions with started-at statements

In order to verify relationships between ideal timers and local timers, we will allow safety
assertions to contain started-at statements; e.g., X>y = ((u,v) started at 0). We next present

rules to be used when applying the safety inference rule to such assertions (below, u is an ideal
timer and v is a local timer).

In part (1) of the safety inference rule, we can use the rule
(u=a and v=a) = ((u,v) started at a)

In part (ii) of the safety inference rule, if the event e being considered is a system event,
then the following two rules apply:

(u"=a and v"=a) = ((u",v" started at a), and
(u"=u and v"=v and ((u,v) started at a)) = ((u",v" started at a)

The started-at property is preserved by a time event occurrence, unless one of the timers 1s
a bounded capacity timer which is aged beyond its capacity to Off by the time event occurrence.

Thus, the following rule applies in part (ii) of the safety inference rule, if the event e being con-
sidered is a time event:

((us£0ff = next(u)7Off) and (vs£O0ff = next(v)7OIf) and ((u,v) started at a))
= ((u",v") started at a)

4. PROTOCOL CONSTRUCTION BY STEPWISE REFINEMENT

In this section, we constructively derive a protocol system that guarantees correct delivery
of data, provided that P, satisfies two local time constraints. These local time contraints cor-

respond to Ry and Rg obtained in Section 2. Thus, the best case and worst case values of {a,}

obtained in Section 2 hold for this protocol system, provided it tightly enforces the given time
constraints. In Section 5, we specify three different methods by which 1:’1 can enforce these local
time constraints.

16

The protocol system is constructed in successive steps. At any point in the construction,
we have the following:

(a) An image protocol system, which corresponds to a part, or more precisely a projec-
tion (see below and [9]), of the final protocol system. An image protocol system is a

fully specified protocol system in its own right, complete with messages, state vector
v, Initial(v), and events el(v; v, ., en(v; v").

(b) A set of desired safety properties Ay, Ay, ..., A , which is partially satisfied by the
current image protocol. More precisely, let A denote the conjunction of all the Ai’s.
Then, we have the following (see safety inference rule): Initial = A; and for each A,

(A and e) = A" holds for some subset (which may be the empty or total set) of the
events.

We start the construction with a very simple image protocol that merely formalizes the
English description of the protocol given in paragraphs 2 and 3 in Section 1. The initial set of
desired safety properties consists only of statements defining correct data transfer and correct in-

terpretation of received sequence numbers. None of these properties are satisfied by the initial
image protocol.

Each step in the protocol construction is one of two types. The first type of construction
step modifies the events and set of desired properties without introducing any new state vari-
ables. Here, we choose an event e and a desired safety property A, that is not preserved by the
event; i.e., (A and e) = A" does not hold. Then we determine the precondition p(v) [4], which
if it held before the occurrence of e, is sufficient to enforce Ai after the event occurrence; i.e., (A

and p and e) = Ai“ holds. If e is an event of entity Pi and p is a condition that can be en-

forced by P;, then the event e is replaced by the new event € ew = (p and e). In addition to

preserving Ai’ this new event may preserve other desired properties in A. If (p and e) is not
implementable as an event, then p is appended to the set of desired safety properties.

The second type of construction step introduces new state variables and modifies existing
events to update these new state variables. The addition of new state variables is often needed

to prevent certain event sequences from occurring. For example, given two events € and €y of

Pl’ if we wish e, to occur within some specified time of el’s occurrence, then we need a timer
that measures the time elapsed following el’s occurrence.

In either type of step, whenever an old event €.1d is modified to a new event € ew WE insist

that € ew = €o1q MUSt hold; i.e., the effect of € ew OO the state variables that existed prior to
the modification is a special case of the effect of e 1q on those variables. € ew is referred to as a
refinement of e ;. Clearly, for any property A, and any event e, including €.1d’ if (A and e) =
Ai" held before, it continues to hold for the new image protocol. The construction termiinates
when all the desired safety properties are verified; i.e., (A and e) = A" for all events.

17

‘4.1 Initial image protocol

Let DataSet be the set of data blocks that can be sent in this protocol. P1 sends messages
of type (D,data,ns) where D identifies the type of message, data is a data block from DataSet,
and ns is a sequence number. P2 sends messages of type (ACK,nr) where nr is a sequence num-
ber. ns and nr are restricted to the values 0,1,...,N-1, where N>2.

For purposes of specifying correct interpretation of received sequence numbers, we include
in each message an auxiliary field that equals the unbounded sequence number which the cyclic
sequence number in the message is attempting to identify. Each D message now has the form
(D,data,ns,uns) where uns records the data block number of the data block in the message. Each
ACK message now has the form (ACK,nr,unr) where unr records the data block number that
was next expected at P, when the ACK message was sent. The uns and unr fields are strictly

for purposes of discussion, and are not available to the protocol entity implementions.

During the course of the protocol construction, if we generate a desired safety property

that is in fact invariant for the current image protocol (i.e. preserved by all the events), then we
shall label the assertion as B, 1==0,1,..., rather than as A,.

Give integers i and j, the notation [i..j] denotes the sequence (i, i+1, ..., j) if i<j, and the
null sequence if i>]j. The Pascal-like notation S : array|0..s-1] of T defines S to be the variable
sequence (S[0], S[1], .., S[s-1]), where each S[i] is a value from T, and s is the length of the se-
quence. The notation S[i..j] denotes the subsequence (S[i], S[i+1], ..., S[j]) if i<j, and the null

sequence if i>j. The shorthand notation S[i..j]=t, where t is a value in T, denotes (for every n
in [i..j))[S[n]==t].

We use P and © to denote modulo-N addition and subtraction respectively.

Finally, for brevity in stating an event predicate, we use the following guarded command
[4] notation el(v;v")—»ez(v;v ") to mean that the action in e, is done only if e, is enabled. For-

mally, el(v;v")——>e2(v;v") expands to the following:
e (v;v" J=reg(Viv ") and (not e,(v;v w)=s(for every v* in the body of ey)[v"==v])
Entity P,
At Pl’ define the following auxiliary variables:

Source : array[0..s-1] of DataSet; {Source is an auxiliary history variable that records the se-
quence of data blocks accepted by P, from its local source. s indicates

the length of Source. Initially, s==0 and Source is the null sequence.}
a : 0..00; {Auxiliary variable indicating the number of data blocks that have been acknowledged;
i.e., Sourcel0..a-1] are acknowledged and Sourcela..s-1] are unack-

nowledged. a is initialized to O and is always less than or equal to s.}

and the following implemented variables:

18

vs : 0..N-1; {Initialized to O and always equals s mod N}

va : 0..N-1; {Initialized to O and always equals a mod N}

Unacknowledged data blocks are saved in buffers local to P,. Therefore, even though

Source, a, s are auxiliary variables, the implementation has access to the value s-a and the data
blocks Source[a+i] for any i in [0..s-a-1].

We now specify the events of Pl' Acceptance of a new data block from the local source is
formally modeled by the following internal event:

AcceptData(v;v}) = Source[s|" in DataSet

{accept data}
and s"=s+1 and vs"=vsP1

{update state}

Notice that this event does not incorporate the send window size SW. SW will be introduced
when it is needed in the construction (Section 4.8).

Transmission of a D message containing an unacknowledged data block is modeled by the
following send event:

" Send_D (vy, 245 V] 2])

= (for some i in [0..s-2-1])[Send, ((D,Source[a-+i],vachi,a+i),z;; z})]

Note that this event allows P1 to send any unacknowledged data block at any time.

Reception of an ACK message is modeled by the following receive event (note that this
event does not use the unr field in the ACK message):
Rec__ACK (v, 2y VY, z})
= (for some nr in [0..N-1])(for some integer unr)
[Rec,, (295 (ACK,nr,unr), 23)
and (for some i in [1..s-a])[va@Pi=nr — (va"=vaPi and a"=a+i)|]
Note that we do not distinguish between those unacknowledged messages which have not yet

been sent and those that have already been sent. This causes no problems because we allow P1
to send any unacknowldeged message at any time.

Entity P2

At P2, define the following auxiliary variables:

Sink : array|0..00] of DataSet U {empty}; {Sink is an auxiliary history variable that records the
data blocks which were received by P2 and not discarded. Initially,
Sink[0..co]=empty}

r : 0..c0; {Sink[0..1-1] is the sequence of data blocks that have been passed on to the destination,
and r is the number of such data blocks. Sink[r..r+RW-1] correspond
to buffers within P2 used for storing data blocks received out-of-
sequence. Initially, r=0}

19

and the following implemented variable:

vr : 0..N-1; {Initialized to O and always equals r mod N}
We now specify the events of PZ' Reception of a D message is modeled by the following
receive event (note that this event does not use the uns field in the D message):

Rec_D (vy, zy; vy zi‘)

= (for some data in DataSet)(for some ns in [0..N-1])(for some integer uns)
[Recl(zl; (D,data,ns,uns), z'l') and

(for some 1 in [0.RW-1])

[(vrDi=ns {if ns falls in the receive window}
and Sink[r-+i]=empty) {and the corresponding buffer is empty}
— (Sink[r+i]" = data {then sink the received data}
and (i=0 — SinkData(r,vr; r" vl {if received data is next expected

then pass data blocks to destination}

where

SinkData(r,vr; r",vr")
= (for some k in [1.RW])

[Sink[r+k]|=empty {Sink[r+k] is the first empty buffer}
and (for all j in [1..k-1])[Sink[r+]]74empty]
and r*=r1+k and vr"=vrk| {pass buffered data in Sink[r..r+k-1] to destination}

It is necessary that RW>1, otherwise every received data block will be discarded.

Transmission of an ACK message is modeled by the following send event:
Send _ACK(vg, Zg; V3, 25)
= SendQ((ACK,vr,r), Zy; zg)

In this initial image protocol, P, can send an ACK message at any time.

Other events

For i = 1 and 2, the channel events of C; are specified by a predicate ChannelError(zi; zi")

that allows all possible losses, duplications and reorderings of < message,age> pairs in the chan-
nel. The timer axiom for C; is TimerAxiom,(z;) = (for all <m,t> in z)[0 <t < MaxDelay;].

The ideal time event is specified by
n"=n+1 and zl“znext(zl) and z2“=next(z2)
and TimerAxiom (z,") and TimeAxiomy(z,")

Since there are no local timer variables in this initial image protocol, we have no local time
events.

20

4.2 Desired safety properties

We now formally specify the desired safety properties of correct data transfer and correct
interpretation of received sequence numbers. These properties are not satisfied by the current

image protocol. We also specify some trivial but related safety properties that are satisfied by
the current image protocol.

Correct data transfer

Correct data transfer is formally specified by requiring the following to be invariant:

A, (for all n in [0..r-1])[Sink[n] = Source[n]]
Al 0<a <r<s

A, states that data is delivered to the destination at P, in the same order as it was accepted
from the source at Pl' A1 states that data is acknowledged at Pl only after it has been delivered

to the destination at P2, which in turn happens only after it was accepted from the source at Pl‘
(See Figure 2.)

We also expect that the out-of-sequence data blocks buffered at P2 have been identified
correctly; otherwise A0 will be violated when these blocks are passed to the destination. For-
mally, we desire the following to be invariant:

A, (for all nin [r+1.r+RW-1])[Sink[n|7~empty = Sink[n]=Source[n]]

Because P2 does not accept data blocks outside its receive window, and because Source[s-1]

is the highest numbered data block in Source, AO_2 implies the following (the notation AO—Z
denotes (A, and A; and A,)):

A, (for all n in [min(s, r+RW)..c0)[Sink[n] = empty]
Correct interpretation of received D messages

The Rec__ D event correctly interprets the sequence number ns in a received (D,data,ns,uns)
message if it does the following: if uns is within the receive window [r..r+RW-1] then r+i (in the
Rec__ D event) should equal uns; if uns is outside the receive window then the Rec__D event
should ignore the data block. Because of channel errors, any D message in C1 can be received by

Pz‘ Thus, a necessary and sufficient condition for correct interpretation of D messages is that
the following should be invariant:

A, (D,datansuns)inz; =

((uns in [r..r+RW-1] = (for exactly one i in [0..RW-1])[vrébi=ns and uns==r-+i})
and (uns not in [r.r+RW-1] = (for all i in [0..RW-1])[vr@Pizns]))

Correct interpretation of received ACK messages

The Rec_ACK event correctly interprets the sequence number nr in a received
(ACK,nr,unr) message if it does the following: if unr is in [a-+1..s] (i.e., acknowledges data that
is currently unacknowledged) then Rec_ ACK should update a to equal unr; if unr is mot in

21

[a+1..s] then the ACK message should be ignored. Because any ACK message in 02 can be

received by Pl’ a necessary and sufficient condition for correct interpretation of ACK messages
is that the following should be invariant:

Ay (ACK,nr,unr) in zy =
((unr in [a+1..s] = (for exactly one in [1..s-a])[vacPi=nr and unr=a+i])

and (unr not in [a+1..s] = (for all 1 in [1..s-a])[vaPiz#nr]))

Some desired safety properties that trivially hold

Because P, does not buffer insequence data blocks, it is obvious that the following is in-
variant (the proof is trivial and is given below):

B, Sink[r]=empty
Proof of invariance of BO'

We shall establish the invariance of By by proving that the following hold (recall the safety in-
ference rule): Initial=B, and (B, and e)=B" for every event e. Each of these statements has

the form C=D. Its proof will be presented as a sequence of steps, each consisting of a statement
L at the left and a list of statements RI,RQ, .y R ab the right. L derives (in the predicate

calculus augmented with axioms for the data types) from (R, and ... and R). Each R; is im-
1

plied either by an L derived in an earlier step, or by C. The conjunction of the L’s imply D.

Finally, we say that event e does not affect D if e implies that v"==v for every variable v in D.
Clearly, if e does not affect D then (e and D)=D" holds.

Initial Conditions:

(a) By (r=0, Sink[0..RW-1]==empty)
Consider Rec__D:

(a) nssévr = (r"=rt and Sink[r]=Sink[r]") = B," (Rec__D, B)
(b) ns==vr = (r*>r and Sink[r"]"==empty) = Bj (Rec_D)
(c) Bg (a, b)

Any event other than Rec__ D does not affect By
End of proof of By,

The following invariant states that the modulo-N counters correctly track the correspond-
ing unbounded counts:

B1 vs—s mod N and va=a mod N and vr=r mod N

Proof of invariance of Bl'

Each conjunct of B, individually satisfies the safety inference rule. We will give details only for
the conjunct vs=s mod N.

Initial Conditions:
(a) vs=s mod N
AcceptData:

(a) vs"=s" mod N (s"=s+1, vs"=vsP1, vs=s mod N)

(ve==s=0)

22

Any event other than AcceptData does not affect vs==s mod N.
End of proof of B1

4.3 Refinement of A4 and Rec_ D

We now consider additional properties of D messages in Cl‘ First, note that the following
invariant is obviously satisfied by the current image protocol (formal proof of invariance is in
Appendix A):

B, (D,data,ns,uns)in z; = (uns in [0..s-1] and data=Source[uns] and ns=uns mod N)

Second, note that in order for A4 to hold, it is necessary that

B, 1<RW<N

3

Otherwise, for a (D,data,ns,uns) message with uns=r, we will have two values, 0 and N, in
[0.RW-1] such that vigPO=vrbN=ns. No verification is needed for B3 because RW and N are
constants.

Given 1<RW<XN and i in [0. RW-1], we have (vrDi=ns & i=nsSvr). Thus, the Rec_ D
event can be refined to the following:

Rec___D(vQ,zl;vé‘,zi'

= (for some data in DataSet)(for some ns in [0..N-1])(for some integer uns)
[Rec, (z4; (D,data,ns,uns), z}) and

(0<ns&vr<RW-1 and Sink[r+ns©&vr|=empty)
— (Sink[r4+ns©&vr]|"=data and (ns=vr — SinkData(r,vr; r*,vr"))))|

Third, because P1 can send any outstanding data block at any time, we expect that Ol can

contain (D,data,ns,uns) messages where data is any block from Sourcefa..s-1]. In addition to
these D messages, we expect that C1 can contain older D messages with earlier data blocks that

are currently not outstanding. Let Source[11] denote the earliest such data block, and let us as-
sume that C, may contain a (D,data,ns,uns) message for any uns in [ll..s—l}. (See Figure 3.)
The following lemma implies that correct interpretation, i.e. A4, holds if s-1 does not exceed
r+N-1 and if [; does not lag behind r-N+RW.

Lemma 1. Given 1<RW<N and ns==uns mod N, the following hold:
(a) uns in [r+RW..r+N-1] = RW<ns©&vr<N-1
(b) uns in [r.r+RW-1] = (0<ns©vr<RW-1 and uns=r+nsSvr)
(c) uns in [-N4+RW.r-1] = RW<nsSvr<N-1

(d) uns=r-N+RW-1 = (0<ns&vr<RW-1 and unsz#r+nsOvr=r1+RW-1)

23

(e) uns=r-+N = (0<ns©&vr<RW-1 and unss£r-+ns&Svr=r)

Proof of Lemma 1.

(2) uns in [r+RW.r+N-1] = uns-r in [RW..N-1] = ns©vr = uns-T = nsOVr in
[RW..N-1]

(b) uns in [r.r+RW-1] = uns-r in [0.RW-1] = ns©vr = uns-r = nsCVr in [0. RW-1]
and uns = r+ns&vr.

(c) uns in [-N+RW..r-1] = uns-r in [[N+RW..-1]. Since 0 < RW < N, [N+RW.-1] ©
[[N+1..-1] and ns©vr = uns-r+N. Hence, nsSvr is in [RW..N-1].

(d) uns=—r-N4+RW-1 = uns-r=-N+RW-1 = nsOvr = RW-L Thus, ns©vr < RW and
r + nsEvr = r+RW-1 £ uns.

(e) uns=r+N = uns-r=N = n1sSvr = 0 < RW and r+nsOvr = r4uns.

End of proof of Lemma 1

Thus, correct interpretation of received D messages is guaranteed if the following is in-
variant:

Ag (D,data,ns,uns) in z; = uns in [r-N+RW..r+N-1]

4.4 Refinement of A5 and Rec_ ACK

We now consider additional properties of ACK messages in C,- First, note that the follow-

ing invariant is obviously satisfied by the current image protocol (formal proof of invariance in
Appendix A):

B, (ACK,nr,unr) in z, = (unr in [0..r] and nr=unr mod N)

Second, note that in order for A, to hold, it is necessary that following is invariant:

A, sa <N

7

Otherwise, for an (ACK,nr,unr) message with unr=a, we will have N in [l..s-a] such that
valPN==nr.

Given s-a<N-1 and i in [1..s-a], we have s-a=vsCOva, and (va@@i=nr & i=nrGva). Thus,
the Rec_ ACK event can be refined to the following:
Rec_ ACK(v,, Zo; V7 z})
= (for some nr in [0..N-1])(for some integer unr)
[Recy(2o; (ACK,nr,unr), z3)

and (1<nrOva<vsSva — (va"=nr and a=a-+nrEOva))|

24

Third, we expect 02 to contain (ACK,nr,unr) messages that carry new information to Pl’
i.e., with unr in [a+1..r]. We also expect C, to contain older ACK messages with unr<a. Let L,
denote the lowest value of unr in 02, and let us assume that C2 may contain an (ACK,nr,unr)

message for any unr in [12..r]. (See Figure 3.) The following lemma implies that correct inter-
pretation, i.e. Ag, holds if r does not exceed s and if lo does not lag behind s-N-+1.

Lemma 2. Given 0<a<s<a+N-1 and nr==unr mod N, the following hold:

(a) unr in [a+1.s] = (nr&va in [1..vsSva] and unr=a-+nrSva)
(b) unr in [s-N+1..a] = nr&Sva not in [1..vsSva)

(c) (unr==s-N and vs##va) = (nrOva in [1..vsSva] and unrs#a+nrSva =s)

Proof of Lemma 2.

(a) unr in [a+1..s] = (unr-a) in [1..s-a] = unr-a = nrcva

(b) unr==a = unr-a = nr&va==0 which is not in [1..vs©&va]. unr in [s-N+1..a-1] = (unr-
a) in [s-a-N+1..-1]. Since s-a<N-1, we have [s-a-N+1..-1] C [-N+1..-1]. Hence,
nr&va = unr-a+N. Hence, nr&va in [s-a+1..N-1] = [vs&Sva + 1..N-1].

(¢) unr=s-N = unr-a=s-a-N = nr&va = vs©va = s-a. Thus a+nr&va = s £ unr,
but nr&Sva in [1..vsSval since vsSva £ 0.

End of proof of Lemma 2

Thus, correct interpretation of received ACK messages is guaranteed if ((ACK,nr,unr) in Z,

=+ unr in [s-N+1..s]) is invariant. Combining this with A1==>r§s, we have that the following
should be invariant:

Ag (ACK,nrunr) in zy = unr in [s-N+1..1]

4.5 Refinement of A, . and the AcceptData event

Observe that A0_3 can be violated only if received messages are interpreted incorrectly. In
Section 4.3, we have shown that conditions B, ; and Ag imply A, i.e., ensure correct interpreta-
tion of D messages. In Section 4.4, we have shown that conditions A, o imply Ag, ie., ensure

correct interpretation of ACK messages. Therefore, the protocol construction problem reduces
to finding ways to ensure that Ag o are invariant (B2_3 have already been proved to be

invariant). For each event e(v;v") of the current image protocol, we next determine what con-
ditions must hold before the event occurrence, in order that Ay o holds after the event occur-

rence. In each case, we assume that A0-8 holds before the event occurrence.

First, consider the Rec_ D event. The occurrence of this event can increase the value of
state variable 1; i.e., if r" denotes the value of the state variable after the event occurrence, and

25

¢ denotes the value before the event occurrence, then r*>r. This does not affect A, A8 holds
after the event occurence if it held prior to the event occurrence. In order that A6 hold after the
event occurrence, it is necessary that ((D,data,ns,uns) in 7, = uns>1"-N-+RW) hold before the
event occurrence. Note that r" can be any value in [r..s], and any D message in z;, can be
received at any time. Therefore, it is necessary that ((D,data,ns,uns) in z; = uns>s-N+RW) be
invariant. Also, observe that A1,7 = 1+N-1>s-1 (the notation A1,7 denotes A, and A.). Com-
bining the above with A6 and BQ, we can state that the following should be invariant.

Ag (D,data,ns,uns) in z; = uns in [s-N+RW..s-1]

Because A9 71 implies AG’ we will no longer consider AS‘

Next, we consider the Send D event. This event introduces into C; a (D,data,ns,uns)
message, where uns can be any value in [a..s-1]. While this does not violate A; or Ag, it can
violate Ag. In order for A9 to hold after the send, it is necessary that a>s-N-+-RW must hold

before the send. Because the send can occur whenever s>a, and a>>s-N+RW holds whenever
s=a, we require that the following be invariant.

A 22 s-N+RW

Because RW>1 and A10 imply A7, we will no longer consider A..

Send ACK and Rec_ ACK do not violate Ag 4.

Finally, consider the AcceptData event. In order that Ag ;o hold after the event occur-
rence, it is necessary that the following hold prior to the event occurrence:
E, sa < N-RW-1
E, (D,data,ns,uns)in z; = uns>s-N+RW-1
E, (ACK,nr,unr) in z, =+ unr=>s-N+2

- O

EO’ E1 and E2 are obtained from AlO’ Ag and A8 respectively, by replacing s with s+1.

Observe that EO can be incorporated into the enabling condition of the AcceptData event,

because s-a is available to the implementation of Pl' In fact, because Ay = s-a==vsfova, we
can refine the AcceptData event to the following:
AcceptData(vl;vi')

= vsOva < N-RW-1 — (Source[s]" in DataSet and s"=s+1 and vs"=vsP1)

Unlike condition E, the conditions E; and E, cannot be included in the enabling condition
of AcceptData. This is because the implementation at P, does not have access to the messages
‘0 the channels. In Sections 4.6 and 4.7, we show how E; and E, can be implemented by exploit-
ing the bounded message lifetime property of the channels.

The discussion above is formalized in the following lemma (formal proof in Appendix A):

26

Lemma 3.

(a) A

0-3.8-10 hold initially

(b) (for every event e other than AcceptData)[(Aoa&g_lO and B, , and ¢) = A"-3,8~10]

(¢) (A0-3,8-10 and B , and AcceptData) =+ (Ajj ; and A ;")
(d) (E, and Ag and AcceptData) = Ag"

(¢) (E; and Ag and AcceptData) = Ag"

Observe that if RW=N, then A1 10 implies that AcceptData is never enabled. To avoid
this safe but dead protocol, we must restrict RW to satisfy the following:

B, 1<RW<N1

In fact, if RW==N and C, has D messages containing Source[n] with n=r, then the following
incorrect behavior can occur: P, receives Source[n], places it in Sink[n], and advances r to n-+1;
P, then receives a duplicate Source[n] and places it in Sink{n+N]!

4.6 An implementable local time constraint that enforces E,

In this section, we derive a time constraint that P, can implement which guarantees that
E1 holds prior to accepting a new data block. The derived time constraint will be expressed in

terms of ideal timers. In Section 5, we present three different local timer implementations of this
time constraint.

For any uns in [0..s-N+RW], there are exactly two ways in which P, can be sure that C;

does not contain a (D,data,ns,uns) message: either a (D,data,ns,uns) message has never been
sent, or more than MaxDelay, time units has elapsed since a (D,data,ns,uns) message was last

sent. With this motivation, we define the following array of auxiliary ideal timers at Plz

DTimeG : array[0..00] of (Off,0,1,...); {DTimeG[n| indicates the ideal time elapsed since

Source[n] was last sent. DTimeG[n}]=Off if Source[n] has never been
sent. Initially, DTimeG/0..c0]==0ff}

DTimeG is reset in the Send _D event, which is now refined to the following:
Send _D (vy;z,;v1,21)

= (for some i in [0..s-a-1])
{Sendl((D,Source[a+i],va@i,a«{—i), zl;zi') and DTimeG [a+i]"=0]

DTimeG is aged by the ideal time event, which now has DTimeG"=next(DTimeG) as a
conjunct.

27

The following invariant property is obviously satisfied by the current image protocol
(formal proof in Appendix A):

By <(D,data,ns,uns), age> in z, = age>DTimeG[n]>0

It is obvious from By and the timer axiom of C; that E; holds if the following local time
constraint holds:

E; (forallnin [0..5-N+RW])[DTimeG [n]>MaxDelay, or DTimeGn}=0ff]

(In fact, because of A&3’10, we can prove that DTimeG[0..s-N+RW]>MaxDelay; should hold;
however, we shall see that E, is sufficient for our purposes.)

To directly enforce Eg, P, would need an unbounded number of local timers, one to track
each ideal timer in DTimeG[0..s-1]. We now consider ways to enforce Eg by using a bounded
number of local timers. Assume that E3 has held prior to every past occurrence of AcceptData.
In particular, if s, denotes the current value of state variable s, then (for all n in
[O..so—l—N+RW])[DTimeG[n]>MaXDelay1 or DTimeG[n]==O0ff] held just prior to the last occur-
rence of AcceptData. We also know that no data block in Source[0..s;-N+RW-1] was sent after

that instant, because aZsO~1+1-N+RW held at that instant. Thus, we expect that the follow-
ing is invariant:

Ay, (forallnin [0..-N+RW-1])[DTimeG[n] >MaxDelay, or DTimeG|n]=0ff]

Thus, to enforce E, it is sufficient to enforce the following local time constraint:
E, s>N-RW= (DTimeG[s-N+RW]>MaxDelay, or DTimeGs-N-+RW|=O0fT)

The above discussion is formalized in the following lemma (formal proof in Appendix A):

Lemma 4.

(a) Ay, holds initially
(b) (for every event e other than AcceptDa,t:au)[(ALlO’11 and e) = AJ]

(c) (Ag,ll and By and AcceptData and E,) = (A}, and E,)

To enforce E, it is sufficient if P tracks the ideal timers in DTimeG[s-N+RW..s-1]. This
can be done with a bounded number of local timers, each of bounded counter capacity. For in-
stance, P1 can use a circular array of N-RW local timers; local timer n mod N-RW can track
DTimeG[n], for n in [max(0, s-N+RW)..s-1]. Each local timer can be reset to Off once it in-
dicates that the corresponding ideal timer has exceeded MaxDelayl. (See Section 5 for formal
specifications of different implementations.)

28

4.7 An implementable local time constraint that enforces E,

We now consider how P, can ensure that condition E, holds before accepting a new data
block. For any unr in [0..s-N+1], there are exactly two ways in which we can be sure that G,

does not contain an (ACK,nr,unr) message: either (ACK nr,unr) has never been sent, or more
than MaxDelay, time units has elapsed since (ACK,nr,unr) was last sent. Unlike the previous

case which involved D messages, P, does not have access to the time elapsed since (ACK,nr,unr)
was last sent. This is because ACK messages are sent by P2 and not by Pl' However, Pl can
obtain a lower bound on this elapsed time because of the following considerations: P2 does not
send an (ACK,nr,unr) message with unr=n once r exceeds n; also, from A1 we see that a exceeds

n only after r exceeds n. Thus, the time elapsed since a exceeded n is a lower bound on the ages
of all (ACK,nr,n) in C2. Furthermore, this elapsed time can be measured by Pl‘ E2 holds when-
ever more than MaxDelay2 time has elapsed since a exceeded s-N+1.

With this motivation, define the following array of auxiliary ideal timers at P2:

RTimeG : array[0..00] of (Off,0,1,...); {RTimeG[n| indicates the ideal time elapsed since r first
exceeded n. Initially, RTimeG[0..c0|=0ff}

RTimeG is reset in the SinkData predicate of the Rec_ D event. The SinkData predicate
is now refined to the following:

SinkData(v;v5)

= (for some k in [1.RW])[Sink[r+k]=empty

and (for all j in [1..k-1])[Sink[r+j]7#empty and RTimeG[r+j]"=0]
and r"=r+k and vr"=vrpk|

RTimeG is aged by the ideal time event which now has RTimeG"=next(RTimeG) as a
conjunct.

The following invariant properties are obviously satisfied by the current image protocol
(formal proof in Appendix A):

B, RTimeG[0] = RTimeGl[1] > ... > RTimeG[r-1] > 0
B8 <(ACK,nr,unr), age>> in z, =
((unr<r = age>RTimeG[unr]) and (unr>1 = age<RTimeG[unr-1}))

Next, define the following array of auxiliary ideal timers at Plz

ATimeG : array[0..c0] of (Off,0,1,...); {ATimeG[n] indicates the ideal time elapsed since a first
exceeded n. Initially, ATimeG[0..00]=0ff}

ATimeG is reset in the Rec_ ACK event which is now as follows:

Rec_ ACK(v,,24;v},2)

= (for some nr in [0..N-1])(for some integer unr)

29

{Rec2(z2;(ACK,nr,unr),za)

and (1 < nrva < vsova — (va"=nr and a" = a + nr&va
and (for all i in [0..nrOva-1])[ATimeG[a+i]"=0]))]

ATimeG is aged by the ideal time event which now has ATimeG"=next(ATimeG) as a
conjunct.

The following invariant property is obviously satisfied by the current image protocol
(formal proof in Appendix A):

B, ATimeG[0] > ATimeG[1] > ... > ATimeGla-1] > 0

Because a exceeds n only after r exceeds n, we expect the following to be invariant:

Ay (foralln in [0..a-1])[ATimeG[n] < RTimeG/n]]

From B7_9, the timer axiom for 02, and A12’ we see that E2 is implied by the following
local time constraint:

E, s>N1= ATimeG[s-N+1]>MaxDelay,

Because each ATimeG[n] is reset only once, if E; has held for all previous AcceptData
event occurrences, then it is obvious that the following is invariant:

Als (for all n in [0..s-N])[ATimeG[n] > MaxDelay,]
The above discussion is formalized in the following lemma (formal proof in Appendix A):

Lemma 5.

(a) Afoy3 hold initially
(b) (for every event e other than Accep‘cData)[(Al,10’12_13 and B, and ¢) = A'1'2-13]
(c) (Ajg13 and B, 4 and AcceptData and E;) = (Afy i3 and E,)

Alg implies that P, can enforce E. by tracking the ideal timers in ATimeGl[s-N+1..a-1].
For example, Py can do this with a circular array of N-1 local timers where local timer

1 mod N-1 tracks ATimeGIn] for n in [max(0, s-N-+1)..a-1]. Note that each local timer can be
reset to Off once it indicates that the corresponding ideal timer has exceeded MaxDelay,. (See

Section 5 for formal specifications of different implementations.)

4.8 The final protocol assuming the enforcement of E, and E;

In Sections 4.6 and 4.7, we have shown that local time constraints E4 and E5 enforce El

and E, respectively (Lemmas 4 and 5). Combining this with Lemma 3 from Section 4.5, we see

30

that any image protocol that enforces E4 5 before accepting new data satisfies the desired safety
properties. More formally, we have the following theorem (recall that Ag_4 510 implies Ag -):

Theorem 3.

(a) (Ag.15 and By g) hold initially

(b) (for e;ery event e other than AcceptData)|(A ,, and By g and e) = (A ;5 and
B [
0-9

(c) (Ag ;5 and By g and AcceptData and E4}5) = (Af 13 and By g")

Two minor modifications that do not affect correctness

We now restrict the transmission of ACK messages by P2, and restrict the send window
size at Pl‘ These minor modifications are to make the protocol system more realistic, unlike the

earlier event modifications which were needed to preserve the invariance of the desired safety
properties Ay 4

In the current image protocol, the Send _ACK event is always enabled. We modify P2 SO

that it sends an ACK message only as a response to receiving a D message. Define the following
variable at PQ:

SendACK : boolean; {True if and only if a D message has been received after the last send of
an ACK message. Initially, Send ACK=False}

SendACK is set to True in the Rec_D event. The Send ACK event has SendACK=True as
its enabling condition, and its occurrence sets SendACK to False.

The current image protocol has send window size SW equal to N-RW. We now allow SW
to satisfy the following:

B;, 1<SW <NRW

Thus, in the AcceptData event, vs&va<N-RW-1 is now replaced by vs©&va<SW-1. With this
refinement to the AcceptData event, it is obvious that the following is invariant:

B;; sa<SW

Observe that BlO 11 implies AlO' Also, the above modifications are refinements of existing
’
events. Hence, they preserve Theorem 3.

The properties A, |5 and Bg.;p are listed in Table 1. We have grouped them according to

the variables that they deal with, rather than list them in the order in which they were intro-

duced. Also, we have omitted those properties which are implied by the properties that are
listed.

31

Lower and upper bounds on performance

We can view the values {an, L, [n>0} from Section 2 as auxiliary variables which are
updated in Rec_ ACK and Send _D respectively, by being assigned the current value of the ideal
time event count n. Because a data block can be sent as soon as it is accepted by Pl’ f, can be
_treated as the time at which Source[n] is accepted. It is then obvious that El’ E4, and E5 are

identical to R4, R2 and R3 respectively. Thus, we have the following:

Theorem 4. Any protocol implementation that tightly enforces the bounds in E4 and E5 will

achieve the best-case performance in Theorem 1 and the worst-case performance in Theorem 2.

5. COMPLETING THE CONSTRUCTION: THREE WAYS TO
ENFORCE E, AND Eq

In Section 4, we constructed a protocol system that was complete except for enforcing the
conditions E, and Eg. In this section, we complete the construction by providing three different
methods by which P, can enforce E, and E..

5.1 Protocol implementation which tightly enforces E, and E;

In Section 4.6, we outlined how P1 can enforce E4 tightly with a circular array of N-RW
local timers. In Section 4.7, we outlined how P1 can enforce E5 tightly with a circular array of

N-1 local timers. We now provide a formal specification of that implementation, and verify its
correctness. For the sake of notational convenience, we consider an implementation with two
circular arrays of N local timers, rather than one of N-RW and one of N-1. This allows us to
use the existing variables vs and va to index into the arrays, rather than having to define four

new counters (indicating s mod N-RW, a mod N-RW, s mod N-1, and a mod N-1) and incor-
porate modulo N-RW and N-1 arithmetic.

The completed protocol is presented in Tables 2-6. Tables 2 and 4 list the variables of P
and P2 respectively. Tables 3 and 5 list the events of P1 and P2 respectively. Table 6 lists the

ideal time event and the local time event for Pl‘ Unlike the entity events, time events are not
implemented.

Enforcing E4
Let MDelay, = 2 + (1+el) MaxDelay ;. Define the following array of local timers at P:
DTimer : array[0..N-1] of (Off,0,1,...,MDelay,); {For each n in [max(0, s-N+RW)..s-1], DTimer[n
mod N] will track DTimeG[n] upto MDelay . Initially, DTimer[0..N-1]==0ff}

DTimer[vséi] is reset to O whenever Source[a-+i] is sent (as shown in the Send D event in
Table 3).

There is now a local time event of P, which ages DTimer (as shown in Table 6).

32

The relationship between DTimer and DTimeG are formalized in the following invariants
(formal proof in Appendix B):

B,, (for all nin [max(0, s-N+RW)..s-1])
[(DTimer[n mod N}, DTimeG|n]) started at 0)
or (DTimer[n mod N|=Off and (DTimeG[n|>MaxDelay, or DTimeGn|=0ff))]

B,; (for all nin [s..max(s+-RW-1, N-1)})[DTimer[n mod N}=Off]

The following lemma holds because (s>N-RW and DTimer[vsc(PRW|=Off and B,,) =
(DTimeG[s-N-+RW]>MaxDelay, or DTimeGls-N+RW]=0ff):

Lemma 6. DTimer[vs®RW|=O0ff = E,

Thus, we enforce E4 by including DTimer[vsédRW|=0OIf in the enabling condition of the
AcceptData event (as shown in AcceptData event in Table 3).
Enforcing E5

Let MDeIaLy2 =2+ (1-1—61) MaxDelay2. Define the following array of local timers at PI:
ATimer : array[0..N-1] of (Off,O,l,...,MDelayz); {For each n in [max(0, s-N+1)..a-1], ATimer[n

mod NJ will track ATimeG[n] upto MDelay,. Initially, ATimer[0..N-1]=0ff}

ATimer|[vacPi] is reset to 0 whenever Sourcela+i-1] is acknowledged (as shown in the
Rec_ ACK event in Table 3).

ATimer is aged by the local time event of P, which now has ATimer"=next(ATimer) as a
conjunct (as shown in Table 6).

The relationship between ATimer and ATimeG are formalized in the following invariants
(formal proof in Appendix B):

B, (for all n in [max(0, s-N+1)..a-1])
[((ATimer[n mod N], ATimeG|n]) started at 0)
or (ATimer[n mod N|=Off and ATimeG[n]>MaxDelay,)]

B, (for all n in [a..max(s, N-1)])[ATimer[n mod N] = Off]

The following lemma holds because (s>N-1 and ATimer[vspl]=Off and B,) =
ATimeG[s-N-+1]>MaxDelay,:

Lemma 7. ATimer[vs®1]=0ff = E,

Thus, E; can be enforced by including ATimer[vséP1]==0Off in the enabling condition of the
AcceptData event (as shown in Table 3).

33

Verification and performance of the implementation

From Theorem 3, Lemmas 6 and 7, and the new AcceptData event, it is obvious that
(A0—13 and BO—IS) is invariant for this protocol implementation.

From B12 14 and AcceptData, we see that P, can tightly enforce E4 5 Thus, by Theorem
4, this protocol implemention satisfies the best-case performance of Theorem 1 and the worst-

case performance of Theorem 2. Because the implementation does not rule out any retransmis-
sion policy at P, or PQ’ it can achieve the optimal in the average case too.

5.2 Protocol implementation which loosely enforces E, and tightly
enforces E;

Because Source[n] is not sent after it is acknowledged, an alternative way to enforce E is
to enforce the following:

Eg s>N-RW = ATimeG[s-N+RW]|>MaxDelay,

Eg is analogous to ES’ and the implementation can detect it by checking for
ATimer[vs@®RW] > MDelay,. Of course, to enforce Ey, P, must still check for ATimer[vsP1]
> MDelay,. Thus, we redefine ATimer and AcceptData as follows:

ATimer : array[0..N-1] of max(MDelay,, MDelay,)

AcceptData(vl;vi')
= (vs©va < SW-1 and (ATimer[vsc(GRW|=Off or ATimer[stBRW]>MDelay1)

and (ATimer[vsép1]=OIf or ATimer[vsP1]>MDelay,))
—» (Source[s]" in DataSet and vs"=vsP1 and s"=s+1)

It is obvious that further simplification results if we consider either the case
MaxDelayIZMaxDelayQ or the case MaxDelay, <MaxDelay,. In the former case, which includes

the normal situation of MaXDelayleaxDelayz, the simplification is rather dramatic. We can
define ATimer and AcceptData as follows:

ATimer : array[0..N-1] of MDelay,

AcceptData(v;vi)

= (vs&va < SW-1 and ATimer[vsPRW|=Off
— (Source[s]" in DataSet and vs"=vs@1 and s"==s+1)

This protocol implementation is exactly as in Tables 2-6, except for the following changes:
the AcceptData event is replaced by one of the above AcceptData events; DTimer is removed
from Table 2, the Send D event in Table 3, and the local time event in Table 6.

34

Verification and performance of the implementation

The AcceptData event still enforces E4 and E5. Hence, from Theorem 3, (A,

0-13 and B
is invariant for this protocol implementation.

0—11)

The sole difference between this protocol implementation and the one above in Section 5.1
is that this protocol enforces E6 mstead of E4. This means that instead of fn > ln-N+RW -+
MaxDelay, (from Rz), we have f > a, N+rw T MaxDelay,. However, | ==a_ in the best and

worst cases. Therefore, by Theorem 4, this protocol implemention satisfies the best-case perfor-
mance of Theorem 1 and the worst-case performance of Theorem 2. The average performance of

this implementation is however worse than the average performance of the implementation in
Section 5.1, because ln< a, in the average.

5.3 Protocol implementation which loosely enforces E, and E,

Another way to enforce E4 and E5 is by restricting the rate at which P1 accepts new data

blocks from its local source. Let the time interval between successive occurences of AcceptData
be lower bounded by the constant §. Note that this time constraint can be implemented with a
single local timer at P, (below, 6/ = 2 + (1+¢,)é):

STimer : (Off,0,1,...,8,); {indicates the local time elapsed, upto 8p since the last occurrence of
AcceptData. Initially, STimer=0ff}

AcceptData(v,;v})

= (vs&va<SW-1 and STimer=0ff)
— (Source[s]" in DataSet and vs"=vs(Pl and s"=s+1)

The current protocol implementation is exactly as in Tables 2-6, except for the following
changes: STimer is added to Table 2. The AcceptData event is the one specified above. ATimer
and DTimer, and all expressions involving them, are deleted from Tables 2 and 3. Note that if §
is sufficiently small, e.g. the hardware clock period, then there is no need for P1 to explicitly im-
plement STimer.

We now determine the minimum value of § that will enforce E4 5 Define s, as the time at

which Source[n] is accepted by P,. Because successive occurrences of AcceptData are at least §
apart, we have the following:

Ry Foralln,m: s -s > (n-m)s

E, corresponds to s - [. pyw = MaxDelay;. From Rg, we have | . pw <

@ N+RW: From R, we have a . pw < S NyRwisw: Combining these with Rg, we have
s - ln-N+RW > (N-RW-SW)5. Further, note that equality is achievable in the above bound.
Thus, E 4 is enforced if and only if (N-RW-SW)5 > MaxDelayl.

Similarly, E; is enforced if and only if (N-1-SW)§ > MaxDelay,. Thus, from Theorem 3
and the new AcceptData event, we have the following:

35

Theorem 5. (A, 5 and BO—ll) is invariant for this protocol implementation if and only if the
minimum time & between accepting new data blocks satisfies the following:

MaxDelayl MaxDelay2
§ > max(

NEWSw Nisw)

Observe that SW is now constrained to be strictly less than N-RW, instead of the earlier
less than or equal to N-RW constraint. For the typical case of 1\/IaxDela,y1 == MaXDelay2 =
MaxDelay .

NSwWRwW This 6 formula has been ap-
plied to the original Stenning’s protocol and to the Arpanet’s TCP in Section 1.3.

MaxDelay, the bound in Theorem 5 simplifies to § >

Bounds on data transfer times

In this implementation, Pl having a negligible reaction time is modeled by the following
equation (instead of Ry):

RIO fn - m“ELX(an-SW’ fn—1+5)

The best case {a_} satisfies R, and f =l =a_ (which is Ry with equality). The solution
to this is s, = nX&. The worst case {a_} satisfies R, and a = max(s , a ;) + T (which is
R, with equality). The solution to this is easily checked to be ¢ == nXmax(T, §) + T. These
observations are summarized in the following:

Theorem 6. This protocol implementation achieves the following performance:
a, = nXxé in the best case

a = nXmax(T, §) + T in the worst case

Note that 6 must satisfy the bound in Theorem 5. Thus, we see that the bounds in
Theorem 6 are worse than the bounds in Theorems 1 and 2, which are achieved by the first two

implementations. This is to be expected, because we are using a single timer to achieve
2N-RW-1 time constraints.

Mau‘:Delay1 MaxDelay2
Note that if N is sufficiently large so that max(

NRWSw isw) is less than the min-
imum time in which the hardware can transmit a message, then the suboptimality of this im-
plementation is of no practical importance. Recall that the optimal bounds in Theorems 1 and 2

assume zero reaction times at the entities, which amounts to assuming that the hardware does
not restrict the performance of the entities.

6. LIVENESS PROPERTIES OF THE PROTOCOLS

For the above protocols, we would like to prove that once a data block is accepted from
the source at Py, then it will be acknowledged eventually, provided that the channels eventually

deliver messages that are transmitted repeatedly. Additional inference rules are needed to verify
such liveness properties [11, 15].

36

6.1 Inference rules

A liveness property of the protocol system states relationships that values of the system
variables eventually satisfy; e.g., the value of state variable s eventually exceeds n for any in-
teger n. A liveness property is a property of the paths in the reachability graph, unlike a safety
property which is a property of the nodes in the reachability graph (see Section 3.3). We will
verify liveness properties by specifying and verifying inductive properties of bounded-length
paths in the reachability graph [14, 15]. We assume that any implementation of the protocol

system is fair, by which we mean the following: any event that is enabled infinitely often will
eventually occur.

Given assertions A(v) and B(v), we say that A(v) leads-to B(v) if for every reachable sys-
tem state g, where A(gO)=True, the following holds: for every unbounded-length path
9919199+ 1N the reachability graph, either there is a state g, for some n>0 where B(gn)zTrue,
or the path 9009199 is unfair: i.e., there is an event e which is enabled at an infinite number

of states in the path but never occurs. If (A(v) leads-to B(v)) is true, then any fair implemen-
tation which is currently in a state that satisfies A(v) will eventually be in a state that satisfies

B(v).

For stating most liveness properties, it necessary to relate values of state variables when
A(v) holds to their values some time later when B(v) holds. For example, we will need to make
statements such as (for every integer m)[s>a=m leads-to s>a>m|. For this purpose, we need
to consider assertions whose free variables now include variables different from v. Let m denote
the set of these new variables. Then, A(v,m) leads-to B(v,m) means that A(v,m) leads-to

B(v,m) for each possible value of m. For convenience, we will assume each variable in m takes
nonnegative integer values.

The leads-to construct is similar to the "eventually" operator of temporal logic [11]. We
now list a few rather obvious properties of the leads-to relationship.

Leads-to Rule 1. If (A(v,m) = B(v,m)), then (A(v,m) leads-to B(v,m)).

Leads-to Rule 2. If (A(v,m) leads-to (B(v,m) or C(v,m)) and (C(v,m) leads-to D(v,m)), then
(A(v,m) leads-to (B(v,m)) or D(v,m))

Leads-to Rule 3. If (A(v,m) leads-to B(v,m)) and (C(v,m) leads-to D(v,m)), then ((A(v,m) or
C(v,m)) leads-to (B(v,m) or D(v,m))).

With the above rules, we can infer leads-to statements from other leads-to statements. We
next consider how leads-to properties can be inferred from the system specifications.

Inference Rule for leads-to. If I(v) is invariant and assertions A(v,m) and B(v,m) satisfy:

(i) for some event e:

(I(v) and A(v,m) and not B(v,m)) = (for some v")[e,(v;v") and B(v" ,m)

37

(ii) for every event e in the system:
(I(v) and A(v,m) and not B(v,m) and e(v;v")) = (A(v",m) or B(v",m))

then we can infer A(v,m) leads-to B(v,m) via €.

The validity of this rule is obvious. Because I(v) is invariant, every reachable state

satisfies I(v). Thus, part (i) of the rule ensures that event e, is enabled at every reachable state
g where A(g,m)=True and B(g,m)=False; the occurrence of e takes the system to a state h
where B(h,m)=True. Part (ii) ensures that for every event, if the event is enabled then its oc-
currence takes the system to a state h where either A(h,m)=True or B(h,m)=True. Thus, in
any fair implementation, the system will eventually reach a state where B(v,m) holds. Notice
that A(v,m) leads-to B(v,m) via e is a special case of A(v,m) leads-to B(v,m): for every fair
unbounded-length path ¢4,9;,99,- starting from a state g, where (A(go,m) and not
B(go,m))::True, there is a state g for some n>>1 such that B(gn,m)zTrue and (A(gj,m) and
not B(gj,m))zFalse for every j<{n.

As in the case of the inference rule for safety, we can replace I(v) by (I(v) and I(v")) in
parts (i) and (ii). All the leads-to rules stated earlier can be applied to leads-to-via statements.

Our next inference rule allows us to apply mathematical induction to leads-to statements.
Recall that m = (ml, My, - ml) for some [>1, where each m, can range over the set of non-

negative integers. Each permutation (m; , m, , ..., m,) of the variables in m defines a unique
2 l
lexicographic ordering of the values of m: Specifically, if a = (al, 3y, o) al) and b = (b1 b
ey bl) are two different values of m, then a<(b if, for some 1<k<l, a; =b, for all 1<j<k and
] J
a, <b. .
'« 'k

Induction Rule for leads-to. Given assertions A(v), B(v), D(v,m), and a lexicographic order-
ing (i.e., some permutation of the variables in m) such that:

(A(v) and D(v,m)) leads-to (B(v) or (A(v) and (for some n)[D(v,n) and n>ml]))
then we can infer (A(v) and D(v,0)) leads-to (B(v) or (for some n)[D(v,n) and n>m])

The first leads-to statement in the induction rule is referred to as an inductive leads-to

statement. The induction rule merely applies mathmematical induction to inductive leads-to
statements.

In practice, it is quite convenient and sufficient to assume that D(v,m) has the following
monotonicity property: if D holds for some value of m, then it holds for all lower values of m
(e.g. D(v,m) = s>m). Then, the above induction rule reduces to the following special case:

Special case of Induction Rule. Given assertions A(v), B(v), D(v,m), and a lexicographic or-
dering (i.e., some permutation of the variables in m) such that:

38

(i) D(v,m) = (for every n)[n<<m = D(v,n)]

(i) (A(v) and D(v,m)) leads-to (B(v) or (A(v) and (for some n)[D(v,n) and n>m]))
then we can infer (A(v) and D(v,0)) leads-to (B(v) or D(v,m))

6.2 Liveness verification of the protocols

We will verify that the protocols satisfy the following liveness property: For any integer n,
if a=n and s>a, then eventually Source[n| will be acknowledged and a will exceed n, provided
P, does not continuosly avoid retransmitting Source[n] while it is outstanding, C, does not con-

tinuously lose (D,data,ns,uns) messages for any uns in [n..s-1], and C, does not continuously lose

(ACK,nr,unr) for any unr in [n+1..s]. By induction, this liveness property implies that every
outstanding data block is acknowledged eventually. For each of the three protocol implemen-
tations, this also implies that P, will eventually be ready to accept Source[n+1]. (In fact, in

each of the implementations, P, will be ready within a bounded time.)

To formally state this liveness property, we define the following auxiliary variables:

DCount : array [0..00] of integers; {For the duration that Source[n] is outstanding, DCount[n]
indicates the number of occurrences of Send _ D since its last occurrence
in which Source[n] was sent. Initially, DCount[0..c0]=0}

LCount,: array [0.co] of integers; {For the duration that Source[n] is outstanding at P,
LCount, [n] indicates the number of times that (D,Source[n],n mod N,n)

has been lost in C1 since its last reception at PQ. Initially,
LCount,[0..c0] = 0}

LCount,: array [0..00] of integers; {For the duration that Source[n-1] is outstanding at P,
LCountQ[n] indicates the number of times that (ACK,n mod N,n) has
been lost in C,. Note that Source[n-1] is no longer outstanding as soon
as (ACK,n mod N,n) is received at P,. Initially, LCountz[O..oo] == 0}

Let LC,[n] denote (LCount,[n]+LCount,;[n+1]+...+LCount,[s-1]), and let LC,[n] denote
(LCount,[n+1]+LCount,[n+2]+...+LCount,[s]). The desired liveness property can be stated by

Ly s>a=n leads-to (s=>a>n or DCount[n]>m or LC,[n]>m, or LCy[n]>m,)

We first prove that Source[n] will be received at P, unless either P, stops retransmitting

Source[n], or C; continuously loses (D,Source[n],n mod N,n) messages. This property is formally
stated as follows:

L, s>r=a=n leads-to (s=>r>a=n or DCount|n]>m or LCount,[n]>m,)

39

Proof of L1

In the proof, <n> denotes (D,Source[n},n mod N,n). The following leads-to-via state-

ments satisfy the inference rule for leads-to:
(i) M leads-to (M, or M, or M) via Send D, where

M, = (s>r1=2a=n and LCount,[n]>m, and DCount[n]>m)

M, = (s>r>a=n)

M, = (s>r=a=n and LCount,[n]>m and DCount[n]>m+1)

M, = (s>r=a=n and LCount, [n]>m,; and <n>> in z,)

For part (i) of the inference rule, we have: My = (Send _D and (M," or M;"))

For part (ii) of the inference rule, we have the following:
(M, and Send _D) = (M," or M,*)

(M, and A" and Rec_ ACK) = M,"

(M, and Rec_D and A ") = (M,;" or My")
(M, and e) = M;" for every other event e
Property (i) follows from leads-to inference rule; let A=M, and B=(M, or M, or M,).

(A1 is invariant property from Table 1)

(i) Mg leads-to (M, or M,) via loss event of C,, where
M, = (s>r=a=n and LCount, [n]>m +1)
For part (i) of the inference rule, we have: Mg = (Losing <n> in C; and M")

For part (ii) of the inference rule, we have the following:
(Mg and A" and Rec_ ACK) = M,"

(M; and Rec_D and A,") = (M;" or M,*)

(M, and Loss event of C,) = (Mg" or M,")

(M, and e) = Mg" for every other event e

Property (ii) follows by letting A=M, and B=(M, or M4) in inference rule.
Applying leads-to rule 2 to (i) and (ii), we have (let My, (M, or M,), My, M, be A, B, C, and D
respectively):
(iii) M, leads-to (M, or M, or (M; or M ")
which can be rewritten as
(iv) (s>r=a=n and DCount[n|>m, and LCount, [n]>m,)

leads-to (s>1>a==n or (s>1=a=n and

(LCount,[n]>m +1 or (LCount,[n]>m; and DCount{n]>my+1))))

We can infer L1 from (iv) by applying the leads-to induction rule: Use the lexicographic ordering
due to the permutation m:—:(ml,mo), let D(v,m) = (LCountl[n]Zml and DCount[n}ZmO), let
A(v).—:=_(s_>__r>azn), and let B(v)=(s>r==a=n).

End of proof of Ly

We next prove that once P2 has received Source[n], then P1 eventually receives an ack-
nowledgement (ACK,nr,unr) where n<unr<s, unless either G, continuously loses such

(ACK,nr,unr) messages for any unr in [n+1.s], or O continuously loses (D,Source[uns],ns,uns)

40

messages for any uns in [n..s-1] (this can cause P, to not send ACK messages repeatedly). This
property is formally stated as follows:

L, s>r>a=n leads-to (s>r>a>n or LC,[n]>m, or LCy[n]>m,)
Proof of L,

In the proof, <uns> denotes (D,Source[uns],ns,uns) and <unr> denotes (ACK,nr,unr).

The following leads-to-via statements satisfy the inference rule for leads-to:
(i) M, leads-to (M, or M, or M,) via Send D, where

M, = (s=r>a=n and LC,[n]>m, and LCy[n]>m,)

M, = (s>r>a>n)

M, = (s=r>a=n and LC,[n]>m; and LC,[n]>m,

and (for some uns in [n..s-1])[<uns> in z,])

M, = (s=>r>a=n and LC,[n]>m, and SendACK=T'rue)

For part (i) of the inference rule, we have: M = (Send _D and M,")

For part (ii) of the inference rule, we have the following:

(M, and Send _ D) = M,*

(M, and A" and Rec_ ACK) = (M;" or M, ")

(M, and Rec_ D and Aty = M,"

(M, and e) = My" for every other event e

Property (i) follows by letting A=M, and B=(M, or M, or M,) in inference rule.

(i) M, leads-to (M, or M; or M,) via Loss event of C,, where
M, = (s=r>a=n and LC,[n]>m,+1 and LCy>m,)
For part (i) of the inference rule, we have: M, =+ (Losing <uns> in C, and M,")
For part (ii) of the inference rule, we have the following:
(M, and A" and Rec_ ACK) = (M," or M, ")
(M, and Rec_D and A,") = M,"
(M, and Loss event of C,) = (My" or M,")
(M, and e) = M," for every other event e

Property (ii) follows by letting A=M, and B=(M, or M; or M o) in inference rule.

(iii) M, leads-to (M, or M) via Send _ ACK, where
M, (s>r>a=n and LC,[n]>m, and (for some unr in [n+1..s])[<unr> in z,))
For part (i) of the inference rule, we have: Mg = (Send__ ACK and Mg")
For part (ii) of the inference rule, we have the following:
(Mg and A" and Rec_ ACK) = (M3" or M, ")
(M, and Send__ACK) = M;"
(M; and e) = Mz" for every other event e

Property (iii) follows by letting A=Mj and B=(M, or M) in inference rule.

(iv) Mg leads-to (M, or M) via Loss event of C,, where

41

M, = (s>r>a=n and LC2[n]Zm2+1)

For part (i) of the inference rule, we have: M, = (Losing <unr> in C, and Mg")
For part (ii) of the inference rule, we have the following:

(M; and A" and Rec_ ACK) = (M;" or M,")

(M, and Loss event of Cy) = (My" or Mg")

(M, and e) = Mg" for every other event e

Property (iv) follows by letting A=M, and B=(M, or M) in inference rule.

Note that (M leads-to M, or M) via Rec__ ACK) also holds.

Applying the leads-to rule 2 to (i) and (ii), we get (M, leads-to (M, or M, or M,). Applying
the leads-to rule 2 to this and (iii), we get (M, leads-to (M, or M, or M;)). Applying the leads-
to rule 2 to this and (iv), we get (M leads-to (M; or M or M), which can be written as

(v) (s>r>a=n and LO,[n]>m, and LC,[n]>m,) leads-to

(s>r>a>n or (s=r>a=n and
(LC;[n]Zm +1 and LC,[n]>m,) or LC,[n]|>my+1))

We can infer L, from (v) by using the leads-to induction rule: Use the permutation m=(m,,m,)
and let D(v,m) = (LC,[n|>m, and LC,[n]>m,), let A(v) = (s>1>a>n), and let B(v) =

(s>r>a=n).
End of proof of L,

The two liveness properties L1 and L2 together imply L.

Proof of L
By leads-to rules 1 and 3, we can or both sides of L, by (s>r>a==n) to obtain

(i) (s>r>a and s>a==n) leads-to
(s>r>a=n or DCount[n|>m; or LCount,[n]>m,)

Applying leads-to rule 2 to (i) and Ly, we obtain

(ii) (s>r>aand s>a==n) leads-to
(s>r>a>n or LC,[n]>q, or LC,[n]>q, or DCount>m or LCount,[n]>m,)

Property (ii) implies L because (LCount;l[n]_>_m1=>LCl[n]_>_m1) and s>r>a is invariant (from
safety property Al)'
End of proof of L,

7. PROTOCOLS WITH REAL-TIME PROGRESS

We now modify the above protocols so that unacknowledged data blocks are acknowledged
within a bounded response time T, provided that the channels do not consistently perform badly.
Such a real-time progress property is more realistic than the liveness property proved above in
Section 6. In practice, if progress i1s not achieved within time T, then Pl aborts the connection

with P2.

42

Let Delayi (< Ma,xDelayi) be the delay that a message is expected to encounter in channel
Ci' We say that a message m in Ci is overdelayed if it is not received within Delayi time of its
send. (Delay, < MaxDelay, for a realistic channel.) Note that if Delay,=MaxDelay, then over-
delaying message m corresponds to losing m and any of its duplicates.

Entity P2 will now send an ACK message within a specified MaxResponseTime of receiving
a D message.

Define RoundTripDelay == (Dela“y1 + Dela,y2 + MaxResponseTime). For any n, whenever
s>a==n holds, then entity F’1 will do a test transmission of Source[n] once every RTripDelay lo-
cal time units, where RTripDelay = (1+€1) X RoundTripDelay. By thus separating successive
test transmissions, we make sure that different tests do not fail due to the same channel failure.

We will prove that the following worst-case progress property holds for any n>0 and for
any MaxFailCount > 0: s>a>n holds within T (= MaxFailCount X RTripDelay) seconds of
s>a=mn first holding, provided that [the number of times that C, has overdelayed a D message

containing Source[n]] + [the number of times that C, has overdelayed an ACK message ack-
nowledging Source[n]] does not exceed MaxFailCount.

To formally state this property, we define the following auxiliary variables:

OutTimer : (Off,0,1,...); {Auxiliary local timer that indicates the local time elapsed since s>a=n
became true. OutTimer==0Off if s==a. Initially, OutTimer=O0ff}

SCount, : array[0..00] of integers; {SCount, [n] indicates the number of times that C; overdelays

a test message (D,data,ns,n) while s>a==n holds. Initially, SCountl[O..oo]=0}

SCount, : array|[0..00] of integers; {SCount,[n] indicates the number of times that C, overdelays
an (ACK,nr,n) message while s>n>>a holds. Initially, SCount,[0..c0]=0}

Let SCy[a+1] denote SCount,[a+1] + SCountyla+2] + ... + SCounty[r]. The worst-case
progress property can be formally stated as follows:
D, OutTimer > MaxFailCount XRTripDelay = SCount; [a] + SCy[a+1] > MaxFailCount

We will establish the invariance of DO‘ Note that D is a safety property, and not liveness

property requiring the leads-to operator. (The worst-case progress property can also be stated
formally in terms of the leads-to operator.)

7.1 Modified protocol implementation

We now modify the protocol implementations of Section 5 so that they enforce the required
real-time behavior. Auxiliary variables needed to verify DO are also specified.

43

There is now a local time event of accurracy ¢, at Pz. Let MResponseTime
(1—62)XMaxResponseTime - 1. Include the following at P,

SendACKTimer : (Off,0,1,.... MResponseTime); {Local timer that indicates the elapsed time fol-

lowing the earliest reception of a D message for which an ACK response
has not yet been sent. SendACKTimer=Off when there is no such D
message. Initially, Send ACKTimer=0ff}

SendACKTimerG : (Off,0,1,...); {Auxiliary ideal timer which tracks Send ACKTimer. Initially,
Send ACKTimerG==0ff}

Both SendACKTimer and Send ACKTimerG are reset to Off in the Send _ ACK event, and

reset to 0, if it was Off, in the Rec_D event. SendACKTimer is constrained by the timer
axiom: SendACKTimers£0Off = Send ACKTimer < MResponseTime

We have the following modifications at Pl‘

TestTimer : (Off,0,1,...,RTripDelay); {Local timer. If s>a=n and no test transmission of
Source[n] has yet occurred, then TestTimer indicates the local time
elapsed since s>a=n became true. If s>a=n and at least one test
transmission of Source[n] has occurred, then TestTimer indicates the lo-
cal time elapsed following the last test transmission of Source[n]. If
s=—a then TestTimer=0ff. Initially, TestTimer=0Off}

TestTimerG : (Off,0,1,...); {Auxiliary ideal timer which tracks TestTimer.

Initially,
TestTimerG=0ff}

TestCount : integer; {Indicates the number of test transmissions of Source[a] that have already
occurred. Initially, TestCount==0}

A test transmission of Source[a] is done whenever s>a and TestTimer=RTripDelay; the
test transmission increments TestCount by 1 and resets TestTimer to O. P1 enforces the follow-

ing timer axiom: TestTimers£Off = TestTimer < RTripDelay

In order to distinguish between different test transmissions of a data block Source[n], we
need the following:

tn : integer; {tn is an auxiliary field present in each D message. tn equals the (updated) value of
TestCount if the D message was sent in a test transmission. tn=0 if and only
if the D message was sent in a non test transmission}

In order to update SCount, and SCount,, we define the following auxiliary variables:

TnRecd : array[0..c0] of integer sequence; {TnRecd[uns] indicates the tn values in the
(D,data,ns,uns,tn) messages received at P, Initially, TnRecd[0..co]=null}

ACKSent : array|0..00] of integer sequence; {ACKSent[unr] is a sequence of ideal time values; for

44

each transmission of an (ACK,nr,unr) message, there is an entry indicating the
ideal time elapsed since its transmission. Initially, ACKSent[0..co]=null}

The events of the modified protocol are given in Tables 7, 8, and 9. Each event is a refine-
ment of some event in Tables 2-6; Send _Test D is a refinement of the former Send _D. Thus,
the safety properties of Table 1 continue to hold for this modified protocol.

7.2 Real-time progress verification

We first observe that the following property, which involves P1 alone, is invariant (proof is
trivial):
D, s>a= (OutTimer = TestCount X RTripDelay + TestTimer
and ((TestTimer, TestTimerG) started at 0))

Suppose that s>a=n holds. Just before a test transmission, we expect TestCount <
SCountl[n] + 802[n+1] to hold. Therefore, just after the test transmission, we have TestCount

< SCount, [n] + SCy[n+1] + 1. Consider the following evolution for the test:

(a) The test message (or any duplicate of it) is received at P2 before TestTimerG exceeds
Delayl.

(b) The responding ACK message, which acknowledges Source[n], is sent by P, before
TestTimerG exceeds Delay, + MaxResponseTime.

(c) The ACK message is received at P, (and Source[n] is acknowledged) before
TestTimerG exceeds RoundTripDelay.

In this case, TestCount < SCount,[n] + SC,[n+1] + 1 holds during the entire course of the test.
Any deviation from the above course causes TestCount < SCount, [n] + SCy[n+1] to hold when
TestTimerG exceeds RoundTripDelay. If event(a) does not occur then C; has overdelayed

Source[n]. If event(a) occurs then event(b) will occur because of the timer axiom constraint; if
event(c) does not occur then G, has overdelayed an acknowledgement to Source[n]. Thus, the
following is invariant (formal proof in Appendix C):

D, TestCount>1 = (Dy ; or Dy 4 0or D, 5 or D, ,)

where

D, ; TestTimerG in [0..Delay,] and TestCount not in TnRecd|al
and TestCount < SCount, [a] + SCy[a+1] + 1

D, , (for some rectime in [0..Delay,])

[TestTimerG in [rectime..rectime+MaxResponseTime]

and r>a and SendACK=True and SendACKTimerG > TestTimerG - rectime
and ((SendACKTimerG, Send ACKTimer) started at 0)
and TestCount < SCount,[a] + SCyla-+1] + 1]

D, 4 (for some sendtime in [0..Delay +MaxResponseTime)

45

[TestTimerG in [sendtime. sendtime+Delay,)]

and (for some n in [a+1..1])[(TestTimerG - sendtime) in ACKSent|n]]
and TestCount < SCount, [a] + SCy[a+1] + 1]

D, 4 TestTimerG > min(Delayl, DelayQ) +1
and TestCount < SCount, [a] + SCyla-+1]

D, is implied by (D, and D,) as follows: D, implies that (TestCount < SCount,[a] +
SC2[3+1] 4+ 1) is invariant. (D1 and timer axiom for TestTimer) implies the invariance of (for
all m>0)[OutTimer > mXRTripDelay =+ TestCount > m]. The above two imply D,

REFERENCES

[1] Bartlett, K. A. et al, "A note on reliable full-duplex transmission over half-duplex
links," Commun. of the ACM, May 1980.

(2] Brand, D. and W. H. Joyner, wVerification of HDLC," IEEE Trans. Commun., Vol.
30, 5, May 1982.

[3] CCITT, Draft revised CCITT reccommendation X.25, February 1980.

[4] Dijkstra, E. W., A Discipline of Programming, Prentice-Hall, Englewood Cliffs,
N.J., 1976.

(5] DiVito, B. L., "Mechanical verification of a data transport protocol," Proc. ACM
SIGCOMM °83, Austin, Texas, pp. 30-37, March 1983.

[6] Hailpern, B. T. and S. S. Owicki, "Modular verification of computer communication
protocols,* IEEE Trans. on Commun., COM-31, 1, January 1983.

[7] International Standards Organization, "Data Communication—High-level Data Link
Control Procedures—Frame Structure," Ref. No. ISO 3309, Second Edition, 1979.

"Data Communications—HDLC Procedures—Elements of Procedures," Ref. No. ISO
4335, First Edition, 1979. International Standards Organization, Geneva, Switzer-
land.

[8] Lamport, L, "Time, Clocks, and the Ordering of Events in a Distributed System,*
Comm. ACM, Vol. 21, No. 7, July 1978, pp. 558-565.

[9] Lam, S. S. and A. U. Shankar, "Protocol Verification via Projections," IEEE Trans.
on Sofiware Eng., Vol. SE-10, No. 4, July 1984, pp. 325-342.

[10] Misra, J. and K. M. Chandy, "Proofs of Networks of Processes," IEEE Trans. Soft.
Eng., Vol. SE-7, No. 4, July 1981.

46

[11] Owicki, S. and L. Lamport, "Proving Liveness Properties of Concurrent Programs,"
ACM TOPLAS, Vol. 4, No. 3, July 1982, pp. 455-495.

[12] Postel, J. (ed.), "DOD Standard Transmission Control Protocol," Defense Advanced
Research Projects Agency, Information Processing Techniques Office, RFC 761, IEN

129, January 1980; in ACM Computer Communication Review, Vol. 10, No. 4, Oc-
tober 1980, pp. 52-132.

[13] Shankar, A. U. and S. S. Lam, "An HDLC Protocol Specification and its Verification

Using Image Protocols," ACM Trans. on Computer Systems, Vol. 1, No. 4, Novem-
ber 1983, pp. 331-368.

[14] Shankar, A. U. and S. S. Lam, "Time-dependent communication protocols,"

Tutorial: Principles of Communication and Networking Protocols, S. S. Lam (ed.),
IEEE Computer Society, 1984.

[15] Shankar, A. U. and S. S. Lam, "Time-dependent distributed systems: proving safety,
liveness and real-time properties,” Tech. Rep. CS-TR-1586, Computer Science Dept.,

Univ. of Maryland, also TR-85-24, Computer Science Dept., Univ. of Texas, October
1985, (submitted to ACM TOPLAS).

[16] Sloan, L., "Mechanisms that Enforce Bounds on Packet Lifetimes," ACM Trans.
Comput. Syst., Vol. 1, No. 4, Nov. 1983, pp. 311-330.

[17] Stenning, N. V., "A data transfer protocol," Computer Networks, Vol. 1, pp. 99-110,
September 1976.

47

Figure 1. The protocol system.

a s-1 a+SW-1
012 ... (acknowledged) | (outstanding) | ! data blocks
at P1
(Source)
+— send window —
T T+RW-1
012 ... (passed to destination) | 1 data blocks
at P2
(8ink)
+receive window-~+
Figure 2. The send and receive windows.
l1 a s-1 a+Sw-1
012 | | | !
Source
12 T T+RW-1
012 . | ! |

Sink

Figure 3. An illustration of ll, the smallest uns value in Cl’ and 12, the

smallest unr value in CQ.

48

Table 1: Safety properties of the protocol

{Properties relating Source, Sink, s, a, r, vs, va, vr, N, SW, RW}

A, (forallnin [0..r-1])[Sink[n]=Source|n]]
A, 0<acxr <s
B11 s < a+SW
B, 1<RW <N-1
B, 1 <SW < N-RW
A, (forallnin [r+1..r+RW-1])[Sink[n|s%£empty = Sink[n]=Source[n])
A; (for all n in [min(s, r+RW)..c0])[Sink[n]=empty]
B, Sink[r]=empty
B, vs=smod N and va==a mod N and vr==r mod N
{Properties relating D messages, Source, DTimeG, Sink, s}
B, (D,data,ns,uns)in z; = (uns in [0..s-1] and data=Source[uns| and ns=uns mod N)

o]
o

<(D,data,ns,uns), age> in z, = (age > DTimeGluns| > 0)
(D,data,ns,uns) in z; =+ uns in [s-N+RW..5-1]
13 (forallnin [0..s-N+RW-1])[DTimeG[n] > MaxDelay, |

> >
«©w

{Properties relating ACK messages, 1, s, RTimeG}
B, (ACK,nr,unr) in z, = (unr in [0..r] and nr = unr mod N)
Bg <(ACK,nr,unr), age> in z, =

((unr<r = age>RTimeG[unr]) and (unr>1 = age <RTimeGunr-1]))
A, (ACK,nr,unr) in zy = unr in [s-N+1..1]

; RTimeG[0] = RTimeG[1] > ... 2 RTimeG[r-1] > 0

{Properties relating ATimeG, a, s, RTimeG}

By ATimeG[0] > ATimeG[1] > ... > ATimeGla-1] > 0
A, (forallnin [0..2-1])[RTimeG[n] > ATimeG/n]|
A,g (forallnin [0..s-N])[ATimeG[n] > MaxDelay,]

49

Table 2: Variables of P1

Source : array [O..s—l] of DataSet; {Auxiliary variable. Initially, s=0 and Source is the null array}
a : 0..00; {Auxiliary variable initialized to 0}

vs, va : 0.N-1; {Initially, va=vs=0}

DTimeG : array|0..00] of (Off,0,1,...); {Auxiliary ideal timers. Initially, DTimeG|0..co0]=0ff}
DTimer : array[0..N-1] of (Off,0,1,...,MDelay,); {Local timers. Initially, DTimer[0..N-1]==0Off}
ATimeG : array[0..00] of (Off,0,1,...); {Auxiliary ideal timers. Initially, ATimeGl0..00]=0ff}

ATimer : array|[0..N-1] of (Off,O,l,...,MDelayz); {Local timers. Initially, ATimer[0..N-1]=0ff}

Table 3: Events of P,
1. AcceptData(Vl;Vi') ,
= (vs&va < SW-1 and DTimer[vs(RW|=OIf and ATimer[vscp1]=0ff)
— (Source[s]" in DataSet and vs"=vs(b1 and s" ==s+1)
2. Send_D(vl,zl;vi',zi')

= (for some 1 1n [0..5—&—1])[Send1((D,Source[a+i],va@i,a-ﬁ), z,;2})
and DTimer[vadi]*"=0 and DTimeG[a+i]"=0]

3. Rec_ ACK(vy,2g;v},2})
= (for some nr in [0..N-1])(for some integer unr)
[RecQ(zz;(ACK,nr,unr),zé‘)
and (1 < nr&va < vsOva — (va"=nr and a" = a + nr&va
and (for all i in [0..nrSva-1])[ATimer[vai] =0 and ATimerG[a-+i]"=0]))]

50

Table 4: Variables of P2

Sink : array[0..00] of DataSet U {empty}; {Auxiliary variable. Initially, Sink[0..co]=empty}
r: 0..00; {Auxiliary variable. Initially, r=0}

vr : 0..N-1; {Initially, vr==0}

SendACK : boolean; {Initially, Send ACK=False}

RTimeG : array[0..00] of (Off,0,1,...); {Auxiliary ideal timers. Initially, RTimeG[0..c0]=0ff}

Table 5: Events of P2

1. Send_ACK(vz,zz;vé',zé')

= Send ACK=True and Send,((ACK,vr,1), 24;23) and Send ACK"=False

2. Rec_D(vy,2;;v5,25)
= (for some data in DataSet)(for some ns in [0..N-1])(for some integer uns)
[Rec1(z1;(D,data,ns,uns),zi') and
((0<ns©vr<RW-1 and Sink{r+ns©vr|=empty)
— (Sink[r+nsOvr]"=data and (ns=vr — SinkData(v,; v}))))
and SendACK"=True|

where SinkData(v,; vj)
== (for some k in [1..RW])[Sink[r+k|=empty

and (for all j in [1..k-1])[Sink[r+]j]52empty and RTimeG|r+j]"=0]
and r"=r-+k and vr"=vrk|

51

Table 6: Time events

Ideal time event
= p"=n+1 and z'1'=next(zl) and zé‘znex‘?(zg)

and RTimeG"=next(RTimeG) and ATimeG"=next(ATimeG)
and DTimeG*=next(DTimeG)

and AccuracyAxiom,(n,,n") and TimerAxiom,(z}) and TimerAxiom(z4)

Local time event for Pl

= ny=n;+1 and DTimer"=next(DTimer) and ATimer"=next(ATimer)
and AccuracyAxioml(r)i',n)

Table 7: Events of P, in Real-time protocol
1. AcceptData(v;vy)

= (vsOva < SW-1 and DTimer[vs@®RW]=Off and ATimer[vs1}=0ff)
— (Sourcels]" in DataSet and vs"==vs(Pl and s"=s+1
and (vs=va — TestTimer"=0OutTimer"=0))

2. Send__D(vl,zl;vi',zi')
= (for some i in [O..s—a—l])[Sendl((D,Source{a—{—i],va,@i,a.;-i,o)’ zl;le')
and DTimer[va@i]"=0 and DTimeG[a+i]"=0]

3. Send_ Test_D(v,,z.;v]2})

= (vs7%va and TestTimer=RTripDelay and Sendl((D,Source[a],va,a,TestCount),zl;z'l')
and DTimer[va]"=DTimeG[a]"=TestTimer" =0)

4. Rec_ ACK(vy,2q;v],21)
= (for some nr in [0..N-1])(for some integer unr)[Recy(24;(ACK,nr,unr),z5)
and (1 < nr©va < vsGva — (va*=nr and a" = a + n1&va
and ((va"s£vs — TestTimer"=OutTimer"=0)
(va"=vs — TestTimer"=OutTimer"=0ff))
and (for all i in [0..nrSva-1])[ATimer[vapi]"=0 and ATimerG[a-+i]"=0]))]

52

Table 8: Events of P, in Real-time protocol
1. Send__ACK(vz,ZQ;vé',zg)
= Send ACK=True and SendQ((ACK,vr,r), z2;zé')

and SendACK"=False and SendACKTimer"=8end ACKTimerG"==0ff
and ACKSent[r]"=(ACKSent|r|,0)

2. Rec_D(vg,2,v525)
= (for some data in DataSet)(for some ns in [0..N-1])(for some integers uns and tn)
[Recl(zl;(D,data,ns,uns,tn),z'l')
and ((0<nsSvr<RW-1 and Sink{r+nsSvr|=empty)
— (Sink[r+ns©vr]"=data and (ns=vr — SinkData(v,;v}))))
and SendACK"=True

and (SendACKTimer7#Off — SendACKTimer"=Send ACKTimerG" =0)
and (TnRecd[uns]"==(TnRecd[uns], tn))]

Table 9: Time Events in Real-time protocol

Ideal time event
= (ideal time event predicate from Table 6)
and AccuracyAxiomy(ng,n") and Send ACKTimerG v =next(Send ACKTimerG)
and TestTimerG"==next(TestTimerG)
and ((TestTimerG=Delay, and TestCount not in TnRecd|a})
— SCount, [a]"=SCount, [a]+1)
and ACKSent"=next(ACKSent)
and ((for all n in [a+1..s])[Delay, in ACKSent[n] — SCount,y[n]"=SCount,+1]

Local time event for P1

= (local time event predicate from Table 6)
and TestTimer"=next(TestTimer) and OutTimer"=next(OutTimer)

and TestTimer" < RTripDelay)
Local time event for P,

= nz"=n2+1 and AccuracyAxiomz(n2,n) and SendACKTimer"=next(Send ACKTimer)
and SendACKTimer* < MResponseTime

53

Appendix A

Proof of invariance of B2

Initial Conditions:

(a) By ‘ (z,==null)
Channel errors, Rec_D:

(a) By (Bg, <m,t> in z} = <m,t> in z,)
Send _ D:

(a)iin [0..s-a-1] and zi‘z(zl,<(D,Source[a+i],va@i,a+i),0>) (Send _D)

(b) B2 (a’7 BQ: Bl)
AcceptData:

(a) By (By, s" ==s+41)

Other events do not affect B2.
End of proof

Proof of invariance of B4‘

Initial Conditions:

(a) By (zy==null)
Channel errors, Rec__ ACK:

(2) B} (B, <m,t> in z§ = <m,t> in z,)
Send _ACK:

(2) B} By z5=(22,<(ACK,Vr,r),O>), Bl)
Rec_D:

(a) " 2>1, 25=124 (Rec_D)

(b) By (2, By)

Other events do not affect B4.
End of proof

Proof of Lemma 3
Initial Conditions:

(a) A0-3,8—10 (a=r=s=0, Sink[0. RW-1]=empty, 2, =12,==null)
Time events do not affect AO—3,8-1O'

Channel errors: AO—3,10 not affected.

54

(a) Agg

Send _D: AO—3,8,10 not affected.

(a) iin [0..s-a-1] and z}=(z,,<(D,data,ns,a-+i),0>)

(b) Ag

Send _ACK: A0_3’9_10 not affected.
(a) Ag

Rec__ACK: A0,2-3,9 not affected.
(a) z2=(<(ACK,nr,unr),a,ge>,z5)
(b) AS"
(¢) unr in [s-N+1..r], ar==unr mod N

(d1) unr in [s-N+1..a]

(d2) nr&va not in [1..vsSva)
(d3) a*=a

(d) d1 = Aq 10"

(el1) unr in [a+1..1]
(e2) nr&va in [1..vs&va|, unr=a+nrSva
(e3) a*==unr

(e) el = A1,10"

(1) Ay 10"

Rec__D: A, not affected.
(a) z,=(<(D,data,ns,uns),age>)
(b) Agu
(¢) data==Source[uns|, ns=uns mod N
(d) uns in [s-N+RW..s-1]
(e1) uns in [s-N+RW..r-1]
(e2) RW<ns©Ovr<N-1
(e3) Sink"==Sink, r"=r

(e) el = Ay g g"

(f1) uns in [r+1..s-1]
(f2) 0<ns&S<RW and uns=r+nsCvr

(3.1) Sink[uns]|z#empty
(£3.2) Sink[uns|=Source[uns]|, unss%r
(£3.3) Sink"==Sink, r"==r

(f3) £3.1 = Ag 5 &"

(Ag g (for i=1,2)[<m,t> in z'= <m,t> in z})

(Send __D)
(a, Ag)

(Ag, 25==(z4, <(ACK,v1,r),0>))

(Rec__ ACK)

(a, A8)

(Ag, B,)

(assumption)

(d1, ¢, A,y Lemma 2)
(d2, Rec__ ACK)

(d3, d1, Ay, Ayp)

(assum ption)

(el, ¢, A;, Ay Lemma 2)
(e2, Rec__ ACK)

(e3, €2, el, Al,lO)
(e, d, €)

(Rec_D)

(a, Ay)

(By)

(Ag)

(assum ption)

(e1, s>r (from A)) ¢, B, Lemma 1)
(e2, Rec_D)

(el, e3, A0-3,8)

(assumption)

(f1, s<r+N (from Al)’ ¢, B;, Lemma 1)
(assum ption)

(1, 12, £3.1, A,, B)

(f2, £3.2, Rec_D)

(f3.1, 133, Ay g q)

55

(f4.1) Sink[uns|=empty
(f4.2) Sink[uns]"=data=Source[uns]
(f4.3) (for ms4n)[Sink[m]=Sink[m]"] and r"=r

(f4) 14.1 = Ag 5 &"
(1= Agzg"

(g1) uns==r
(g2) ns©vr=0
(g3) Sink[r]=data=Source[r]
(g4) t* >, Sink[r"]=empty,
(for all n in [r+1..r"-1])[Sink[n]"=Sink [n]5#empty],
(for all n in [r+RW..r"-+RW-1])[Sink[n]"=empty]
(g5) r* <s

(assumption)
(f1, 12, f4.1, Rec_D, ¢)
(f1, 12, f4.1, Rec __D)

(f4.1, 14.2, 14.3, Ay 5, Ag)
(f1, £3, 4)

(assumption)

(g1, c, B))

(g1, g2, ¢, Rec_D)
(g2, g3, SinkData)

(gS) AO" (AO’ g4) g57 Az)
7 A 1]
(g) 1-3,8 (g4, 85, Al_g,g)

(g) g1 = A().g,g" (g6, &7)

(b) Ags 8" (d, e, f, g)
AcceptData: Ao o DOt affected.

(a) st=s+1, vsOva<N-RW-1, a"=a (AcceptData)

(b) Al()" (a, AIO)

(C) A1’3" (a, A1’3)

(d) Ag" (Ag, Ey)

A 1]

(e) 9 (Agy El)
End of proof
Proof of invariance of BG
Initial Conditions:

(a) Bg (z,=null)
Channel errors, Rec__D:

(2) Bg" (Bg, <m,t> in zj = <m,t> in z,)
Send __D:

(a) i in [0..s-a-1], zi'z(zl,<(D,data,ns,a+i),0>),DTimeG[a-}—i] " =0, (Send __D)

(for all n7%a+i)[DTimeG[n]=DTimeG[n}"]
(b) B(; " (a, Bs)

Ideal time event:

(a) B6 " (B
Other events do not affect BB‘
End of proof

o age"=age+1, DTimeG"=DTimeG+1)

56

Proof of Lemma 4.
Initial Conditions = s=0 = All‘

The ideal time event, Send D, and AcceptData are the only events that affect All'
Ideal time event:

(a) A" (A DTimeG"=DTimeG+1)
Send _D:
(2) Ajq" (A1,10,11’ Send D)

AcceptData and E

(a) A" (s"==s+1 (AcceptData), A, E/)
(b) (s>N-RW and DTimeG[s-N—}—RW]zMaxDelayl)

= (D,data,ns,s-N+RW) not in z
(c) (s>N-RW and DTimeG(s-N+RW|=0ff)

(Bg, timer axiom of C))

(Bg)
= (D,data,ns,s-N+RW) not in z;
() E, = (D,data,ns,s-N+RW) not in z; (b, ¢)
E

(e) 1 (d: E47 Ag)
End of proof
Proof of invariance of B, o.
Initial Conditions:

(2) B, g (r==0, z,==null)
Send__D, AcceptData, Local time event of P;: B, ¢ not affected.
Channel errors, Rec__ ACK: B7 not affected.

(a) Bg" (Bg, <m,t> in z§ = <m,t> in z,)
Ideal time event:

(a) By " (B,_g 2ge"=age+1, RTimeG"=RTimeG+1)
Send __ ACK: B, not affected.

(a) zé‘=(z2,<(ACK,vr,r),0>) (Send __ ACK)

(b) B8 " (a’: B7-8)
Rec_D:

(a) 1" >r and RTimeG[r]"=RTimeG[r+1]"= ... =RTimeG[r"-1]=0 (Rec_D)

(b) By g" (2, Byg)

End of proof

57

Proof of invariance of Bg.

Initial Conditions:

(a) By (a=0)
Rec_ACK:

(a) a">a and ATimeGla]"= ... =ATimeG[a"-1]"=0 (Rec__ ACK)

(b) Bg" (2, Bg)

{deal time event:

(a) Bg" (Bg, ATimeG "=ATimeG+1)
Other events do not affect Bg
End of proof

Proof of Lemma 5.
Initial Conditions =+ s=a==0 = Ay ;5

The ideal time event, Rec_ D, Rec_ ACK, and AcceptData are the only events that affect
A
12-13°

Ideal time event:

(a) Ajoq3" (Ajg 13 ATimeG" =ATimeG+1, RTimeG"=RTimeG+1)
Rec__D: A, 5 not affected.

(a) r* >r, RTimeG|0..r-1]*=RTimeG[0..1-1] (Rec_D)

(b) Ajp" (a, Ajg, a<r (from A,))
Rec__ ACK:

(a) a">a, ATimeG[0..a-1]"=ATimeG[0..a-1], ATimeGla..a"-1]"=0 (Rec__ ACK)

(b) a>s-N+RW (Ap)

(c) Ayg" (a, b, Agg)

(d) a“Sr (Aln)

(&) Ay (2, d, Ay By)
AcceptData and ES: A, not affected.

(2) A" (s"=s+1 (AcceptData), A, 5, Eg)

(b) s<a+N-RW-1<a+N-2 (AcceptData, A)

(c) (for 1 in [0..s-N+1])[RTimeG[n]>MaxDelay,] (b, Ao 13")

(d) E, (¢, B;_g, Timer axiom for C,)

End of proof

58

Appendix B

Proof of invariance of B12_13.
Initial Conditions:

(a) Byg 13 (s==0, DTimer[0..N-1]=0ff)

Send D, AcceptData and the time events are the only events that affect B12_13.
Observe that [max(0, s-N+RW)..max(s-RW-1, N-1)] always has N consecutive integers; if
s<N-RW then it equals [0..N-1] else it equals [s-N-++RW..s-1+RW]. Thus, the following holds:
(i) (for all nonnegative integer j)(for all n,m in [max(0, j-N+RW)..max(j+RW-1, N-1)})
[a=m & (n mod N)=(m mod N)]
Also observe that the following holds (it holds initially, and is preserved by AcceptData
and Send _D):

(ii) DTimeGls..co] = Off

Send _D:

(a) (for some i in [0..s-a-1])[DTimer[vadpi]" =DTimeG[a+i]"==0 (Send _D)
and (for all ks£1)[DTimer[vadPk|=DTimer|[vacDk]" N
and DTimeG|a+k|=DTimeG|[a+k]*]
(b) a+i in [max(0, s-N+RW)..s-1]

(A10’ i)

(c) (a+i) mod N = vapi (By)

(d) Bil2-13 ‘ (B12-13, a, b, c)
AcceptData:

(a) vs"=vsDl, s"=s+1 (AcceptData)

DTimeG[0..s-1]"=DTimeG[0..s-1], DTimer"=DTimer
(b) DTimer|vs]=0ff

. (vs=s mod N (from B,), B,;)
(¢) DTimeG|s|=0f1f

(from (ii))

(d) By, (a, b, ¢, vs=s mod N (from B,), Bl2)
(¢) DTimer[vs@RW]=Off (AcceptData)
(1) Bys (a, e, vs=s mod N (from B,), B,,)

Ideal time event: B13 not affected.

(a) By (B DTimeG*=next(DTimeG), defn. of next)

Local time event for Pl:

(a) DTimer"=next(DTimer) (local time event for P)
(b) DTimer[i]=0Off = DTimerl[i]"=0ff (defn of next)
(c) B;3" (Byg: b 2)
(d) 0<DTimer[i] <MDelay, = DTimer[i]" =DTimer[i]+1 (defn of next)

(e) DTimer[ij=MDelay, = DTimer|i]=Off (defn of next)

59

(f) DTimer[n mod N|]=MDelay, and n in [max(0, s-N+RW)..s-1] (e, By
= DTimeG[n]>MaxDelay,) (Started at property)
(g) Bi.2 (d) €, f: B12)
End of proof
Proof of invariance of B, and B, ..
Initial Conditions:
(a) Byy1s (s=a==0, ATimer[0..N-1]=0ff)

AcceptData, Rec__ACK and the time events are the only events that affect B,, and B ..

Observe that [max(0, s-N-+1)..max(s, N-1)] always consists of N consecutive integers: if
s<N-1 then the interval equals [0..N-1], else it equals [s-N-+1..s]. Thus, the following holds:

(i) (for all nonnegative j)(for all n,m in [max(0, j-N-+1)..max(j, N-1)])
[n=m + (n mod N)=(m mod N)]

Also from AlO’ we have

(ii) [max(0, s-N-+1).a-1] C [max(0, s-N+1)..max(s, N-1)]

AcceptData:
(a) vs* = vs(Pl, s" =s + 1 (AcceptData)
(b) By s (a, Byy)
(¢) ATimer[vsP1]==Off (AcceptData)
(d) ATimer[s" mod N|=0ff (a, ¢, By)
() Bi’5 (d, B15)
Rec__ACK:
(a)a < a" <s < atN-RW | (A, Rec__ACK)
(b) (for all n in [a..a"-1])[ATimer[n mod N]"=ATimeG[n}"=0]| (Rec_ACK, B,)
(c) B4 By b, 2, 1, ii)
(d) Bi'5 (B15’ a, ii)
Ideal time event: B, not affected.
(a) B4 (B ATimeG" =ATimeG+1)

Local time event of Plz

(a) ATimer"=next(ATimer) (local time event of P,)
(b) ATimer[i|=O1f = ATimer[i]*=Off (defn of next)
(C) Bil5 (B157 8,, b)
(d) 0<ATimer[i] <MDelay, = ATimer[i]*==ATimer[i}+1 (defn of next)

60

(e) ATimer[i|=MDelay, = ATimer[i]"=Off
(f) ATimer[n mod N]=MDelay, and n in [max(0, s-N-+1)..2-1]
= ATimeG[n]>MaxDelay,,
(g) Bi'4 (B14) d) €, f)
End of proof

(defn of next)
(B, Started at property)

Proof of invariance of B16'

Initial Conditions:

(a) Byg (a=0)
Channel errors, Local time event of Pl’ Send ACK, Rec__D: BIG not affected.

AcceptData, Send _D:

(a) (for all n in [0..a-1])[DTimeG]n]=DTimeG[n]"] (A4, AcceptData or Send _D)

(b) ATimeG=ATimeG" (AcceptData or Send _D)

(c) Byg" (a, b, Byg)
Rec__ACK:

(a) (for all n in [a..a"-1])[ATimeG[n]"=0] (Rec_ ACK)

(b) ATimeG[0..a-1]*=ATimeG[0..a-1] (Rec_ ACK)

(c) (for all n in [a..a*-1])[DTimeG[n]>0] m(Alz")

(d) Byg" (2, b, ¢, Byg)
Ideal time event:

(a) Big" (B16’ DTimeG"=DTimeG+1, ATimeG"=ATimeG+1)

End of proof

61

Appendix C

Proof of invariance of D2

We first observe that the following is invariant (proof is trivial):

(i) TnRecd[a] & [0.. TestCount] and TnRecd[a+1..00] & {0} and
((D,data,ns,uns,tn) in z, and tn=£0) = (uns<a and (uns=a = tn in [1..TestCount]))

The proof of Dy’s invariance now follows. The proof assumes that A, ;5 (see Table 1) is in-
variant; this holds because the real-

time protocol system is a refinement of the earlier protocol
systems.

Initial Conditions = TestCount=0 = D2

Send D, Local time events of P, and P,, channel errors do not affect D,,.

AcceptData:

(a) s>a = Dy" (D, not affected (from AcceptData))

(b) s=a = TestCount"=0 = D," (AcceptData)

(c) D" (a, b, s>a (from A,))
Send _ Test__D:

(a) TestTimerG"=0, TestCount" =TestCount+1 > 1 (Send _Test__D)

(b) TestCount=0 = TnRecd[a] C {0} (from (i))

=D, ;" = Dy" (SCount >0, a)

(c1) TestCount > 1
(¢2) TestTimer = RTripDelay
(¢3) TestTimerG > RoundTripDelay

(c4) TestCount < SCountl{a] “+ SCZ[aH—l]

(assumption)
(Send _Test__D)
(c1, 2, Dy, Started at property)

(c1, ¢3, Dy)

(c5) Dy 4" (c1, c4, a, Dy)

(c) TestCount > 1 = Dy" (c1, ¢5)

(d) Dy* (b, <)
Rec_ ACK:

(a) s"=s>a">a

(Rec_ACK, A, A;")
(b) a"=a = D"

(D, not affected (from Rec__ ACK))

(c) a*>a = TestCount"=0 = D," (Rec__ ACK)

(d) Dy" (b, <)
Rec__D:

(a) 2, = (<D,da,ta,,ns,uns,tn), age>>, z'l') (Rec__D)

(b) Dy o = Dy 4" (Rec_ D)

62

(c)r*>r
(d) D, o =+ SendACKTimerG 5 Off
= SendACKTimerG" = SendACKTimerG

(A, A", Rec_D)

(Rec_D)
= D, »" (c, Rec__D)
(¢) Dy g = Dy 5" (¢, Rec_D)
() D, , and uns=a and tn=TestCount and Send ACK Timer=0Off = D, 5" (Rec_D)
D, , and uns=a and tn=TestCount and Sen imer = " Rec_ D

g) D, and d TestC d SendACKTi Off = D, , _
(h) D, ; and not (uns=a and tn=TestCount)) = D, ," (Rec_D)
(1) D2" (b) €, f; g, h)

Send __ACK:

(a) Send ACK=True, Send ACKTimerG <MaxResponseTime, (Send _ ACK, timer axiom
2y = (24, <(ACK,vr), 0>) for Send ACKTimer, started at property)
(b) (D = Dy 3*), (Dy 3= Dy 3"), (Dy 4 = Dy 4") (Send _ ACK)

(c) Dy o =+ Dy 3" (a, Send __ ACK)

Ideal time event:

(a) (D, ; and TestTimerG#Delay,) = D,, | "
(b) (D, ; and TestTimerG=Delay,) = D, ,"

(¢) Dy o = 0 < SendACKTimerG < MaxResponseTime
= Dy "

(ideal time event)
(ideal time event)

(timer axiom
for Send ACKTimer, started at property)
(d) (Dy 5 and TestTimerGs£sendtime+Delay,) = D, ;"

(e) (Dy 5 and TestTimerG = sendtime+Delay,) = D, ,"

(f) Dy 4 = Dy 4"

(g) DQ" (a') b) <, d: €, f)
End of proof

(ideal time event)
(ideal time event)

