- THE DERIVATION OF
SYSTOLIC IMPLEMENTATIONS
OF PROGRAMS

Chua-Huang Huang and Christian Lengauer

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

TR-86-10 April 1986
Revised, January 1987

Abstract

We present a mathematically rigorous and, at the same time, convenient method for systolic design and
derive systolic designs for two matrix computation problems. Each design is synthesized from a simple
program and a proposed layout of processors. The synthesis derives a systolic parallel execution, channel
connections for the proposed processor layout, and an arrangement of data streams such that the systolic
execution can begin. Our choices of designs are governed by formal theorems. The synthesis method is
implementable and is particularly effective if implemented with graphics capability. Our implementation
on the Symbolics 3600 displays the resulting designs and simulated executions graphically on the screen.

The method’s centerpiece, a transformation of sequential program computations into systolic parallel
ones, has been mechanically proved correct.

This research was partially supported by Grant No. 26-7603-35 from the Lockheed Missiles & Space
Corporation and by Grant No. DCR-8610427 of the National Science Foundation.

Table of Contents
1. Introduction
2. The Method: Programs, Traces, and Trace Transformations
2.1. Programs
2.2. Traces
2.3. Trace Transformations
3. The Transformation Strategy
4. Matrix Computations
4.1. Programs
4.2. Systolic Designs
4.3. The Graphics System
5. Theorems for Linear Systolic Designs
6. Examples
6.1. Matrix Multiplication
6.1.1. The First Design
6.1.2. The Second Design
6.1.3. The Third Design
6.2. LU-Decomposition
7. Evaluation
8. Related Research
References
Appendix: Proofs

TN IS I BTSN VLI SR S S

B B B B b b e el et et el
& h Ur LD OO =1 D WO

1. Introduction

The development of programs need not immediately address implementation concerns. Instead, one

can proceed in stages.

{1) One can first derive a program. A program is an abstract solution that conforms with the
problem specification and is implementable in some way. The purpose of a program is not to

address every implementation issue. When developing prograins, we are concerned with issues
of correctness.

(2) Then one can derive an execution or a trace. A trace represents a more concrete solution than
a program. The purpose of a trace is to resolve issues of execution that the program leaves
open. When developing traces, we are concerned with issues of efficiency.

(3) Finally, one might outline a computer architecture. An architecture is a partial description of

some hardware configuration. In developing architectures, we are, again, concerned with

issues of efficiency. In addition, we have to settle a question of consistency: our hardware solu-
tion, the architecture, must be able to execute our software solution, the trace.

This division of concerns can be of great help in program development. In the best of all worlds, where
there is a proven, mechanical way to obtain efficient, complicated executions from simple programs, the
programmer derives his understanding of the software solution mostly from the program and is hardly
ever concerned with executions. In fact, he or she might even get help in constructing a suitable computer
architecture without delving into the intricacies of program execution. Our work aims at such a world.

Currently, we are restricting ourselves to quite specific programming problems: in our previous work sort-

ing problems and in this paper matrix computation problems.

The concept of execution that we are concentrating on is sequencing. Our programs leave the ques-
tion of sequencing open; they may result in simple, i.e., sequential or in complicated, i.e., parallel execu-
tions. OQur derivation of executions from programs is mechanical. A program is first translated into a
sequential execution which is then transformed into a shorter parallel execution, if possible. All our trace

transformations follow the same formally defined transformation strategy.

We will present two matrix computation programs: matrix multiplication and LU-decomposition, and
will automatically derive parallel executions for them. We will then proceed to propose systolic designs
that can perform these parallel executions. A systolic design is a network of processors that are connected
in simple patterns and perform simple operations under global synchronization [10]. The description of a
systolic design will comprise a processor layout, channel connections between the processors, and the
layout and direction of data travelling through the network. We will only have to propose the layout of
the processors. If the layout is suitable for our execution, the rest can be synthesized automatically. After
scrutiny of the resulting design, we may want to improve it by altering either the processor layout or the
program. In one of our examples, matrix multiplication, we will make one adjustment to the processor

layout and one adjustment to the program. Our search for alternative designs is guided by a number of

theorems about our design method.

2. The Method: Programs, Traces, and Trace Transformations

2.1. Programs
Programs are expressed in a refinement language with the following features:

The definition of a refinement consists of a refinement name with an optional list of formal
parameters, separated by a colon from a refinement body. An entry condition involving the formal

parameters may be added in curly brackets. (See an example below.} The following are the only three
choices of refinement body.

e The null statement, skip, does nothing.

o 'The basic statement is a statement that is not refined any further. It is denoted by a name and a list

of parameters. The basic statement is of an imperative nature, i.e., its implementation requires up-
dates.

e The composition 50,51 of refinements S0 and SI applies S1 to the results of S0. Each of S0 and 51
can be a refinement call (i.e., a refinement name, maybe, with an actual parameter list), a basic state-

ment, or the null statement. Sequences of compositions S50;51;...;Sn are also permitted. Refinement
calls may be recursive.

For example, a program that applies some basic statement, stat, n times is:
{n==0} S(n): skip
{n>0} S(n): stat; S(n-1)
Several definitions of the same reflinement, usually prefixed with different entry conditions, may be
provided. They represent a case analysis. We have here provided two definitions of refinement S. As a
short-hand, we shall omit an entry condition that requires a specific value for a parameter and shall,
instead, specify that value at the appropriate place in the parameter list:

5(0): skip
{n>0} S(n): stat; S(n-1)
There may be a variety of basic statements. The language of sorting networks has one basic statement:

the comparator module [9]. The most frequently used basic statement of the language of matrix com-

putations is the inner product step [10].

2.2. Traces

Following the conventional implementation of composition as sequential execution, a sequential ex-
ecution is obtained from a refinement by replacing every semicolon with a right-pointing arrow. That is,
program S50;51 has trace 50+51.* This implementation of composition is always safe, but it may be overly
restrictive. We can transform it into different executions with the same effect. Such transformations can

relax sequencing and incorporate parallelism into executions. We denote parallel execution by angle brack-

1‘We also eliminate all null statements. In other words, program skip has the empty trace.

B8O

ets. Thus, we will, in certain cases, execute program 50,51 by trace <S0 S1>. We call <S0 S1> a parallel

command.

We denote the length of a trace S by |S| and define it as follows:
stat| =, . 1 for every basic statement stat
|S0+>S51] = det |S0] + |S1]

[<S0 S1>| =, . max(]S0|,|S1])

The length of a trace serves as an estimate of the trace’s execution time. Our estimate is rather crude. For

more accurate estimates, the previous definitions can be adjusted accordingly.

We want to define a transformation strategy formally as a function that operates on a data struc-
ture. Therefore, we need to be more specific about the representation of traces. We represent a trace by a
list. The atoms of the list are the basic statements in the trace. Alternating list levels represent sequen-
tial and parallel execution, respectively. The top level represents sequential execution. Our notation fol-
lows LISP. For example, trace S0+S1 is represented as (S0 SI), and trace <S0 S1> as ((S0 S1)). Nil
denotes the empty list. We also adopt the LISP list operations: cons, car, and cdr.

2.8. Trace Transformations

Our intent is to shorten the length of a trace by a sequence of transformations. Each transformation

must preserve the trace’s effect. Trace transformations are justified by semantic relations that program

components may or may not satisfy:

(1) A program component S that is ¢dempotent can be executed once or any mumber of times
consecutively with identical effect. Thus, $»S in a trace may be transformed to S, and vice
versa. The idempotence of S is declared as: idem S.

2} A program component S that is neutral has no effect other than that it may take time to
prog

execute. Thus, S may be omitted from or added to a trace. Neutrality implies idempotence.
The neutrality of S is declared as: ntr S.

(3) Two program components S0 and S1 that are commutative can be executed in any order with

identical effect. Thus, S0~S51 in a trace may be transformed to S1+50. The commutativity of
S0 and 51 is declared as: S0 com S1.

(4) Two program components SO and SI that are sndependent can be executed in parallel and in
sequence with identical effect. Thus S0+51 in a trace may be transformed to <50 S1>. In-

dependence implies commutativity. The independence of S0 and 51 is declared as: 50 ind
S1.

Semantic relations are made explicit by declarations that accompany the refinement program. The format

of a semantic declaration is:
enabling predicate = semaniic relaiton

The enabling predicate is a condition on the parameters of the program components that are semantically

related. Just like the correctness of refinements, the correctness of semantic declarations can be proved
formally [15].

Since transformations exploit semantic relations, we need recognizer functions for semantic relations
if we want to define a transformation strategy. We postulate the existence of functions idem(S), ntr(S),
com(S50,51), and ind(S0,51) that recognize the idempotence, neutrality, commutativity, and independence

of basic statements. We shall apply these functions to the atoms of our list representation of traces.

We shall also need to establish the commutativity and independence of some atom 7 with a list [of
atoms. We use two functions:

is-com(s,l) ==, if I=nil
then true
else com(i,car(l)) A is-com(i,cdr(l))

is-ind(d,l) =g, if I==nil
then true
else ind(z,car(l)) A is-ind(7,cdr(l))

3. The Transformation Strategy

Transjorm is a function that maps traces to traces. Transform applies to sequential traces only. We

have the traces in mind that are trivially derived from refinements. Transform ravels the basic state-

ments of the sequential trace, one by one, starting with the right-most element and discarding neutral
basic statements. The result of iransform is a trace containing a sequence of parallel commands (some of
which may only contain a single basic statement). Given a sequential trace [in list representation, the
transformation strategy, transform, is formally defined as follows:

trans form(l) =, remove-all-nir(ravel-irans(l))

Function ravel-trans represents the compression of the sequential trace into a parallel trace; function
remove-all-ntr represents the elimination of neutral trace atoms. Since ravel-trans provides the input to
remove-all-nir, let us first define ravel-irans:

ravel-trans(l) =, . if I=nil

then nil
else ravel(car(l),ravel-trans(cdr(l)))
Ravel-trans recursively combines applications of function ravel. [FRavel accepts a trace atom z and 2
parallel trace [, and returns 7 ravelled into I. It is defined as:

ravel(i,l) =, if idem(s) A idem-applies(i,l)

(1) then [

else if ind-applies(i,])
(2) then merge(s,l)
(3) else commuie(s,)

Trace atom 4 is discarded if it is idempotent and there exists a parallel command of [in which 2 occurs

and all trace atoms prior to which are commutative with ¢ (case 1). The latter condition is recognized by
function idem-applies(i,]). Otherwise, function ind-applies(i,l) establishes whether 7 is independent with a
parallel command of I. If so, it is merged with the right-most parallel command which is independent of ¢
and all trace atoms prior to which are commutative with ¢ (case 2). If not, ¢ is commuted as far as pos-

sible to the right in ! and forms a single-atom parallel command (case 3).

The formal definition of function ‘dem-applies is:

tdem-applies(i,]) =g If (=nil
then false
else if iccar(l)
then true
else is-com(i,car(l)) A idem-applies(i,cdr(l))

The formal definition of function ind-applies is:

ind-applies(t,i) = o Iif I=nil
then false
else if ¢s-ind(7,car(l))
then true
else is-com(i,car(l)} A ind-applies(,cdr(l))

The function that merges ¢ with a parallel command of [is:

merge(i,l) =, . if I=nil
then cons{cons(i,nil),nil)
else if ind-applies(s,cdr(l))
then cons(car(l),merge(s,cdr(l)))
else cons(cons(i,car(l)),cdr(l))
The value of expression cons(cons(i,nil),nil) is ((1)). The value of expression cons(cons(i,car(l)),edr(l)) is

trace { with atom ¢ added to the first parallel command.

The function that commutes 7 with a parallel command of { is:

commute(s)l) =, . if l=nil
then cons(cons(i,nil),nil)
else if is-com{i,car(l})
then cons(car(l),commute(i,cdr(l)))
else cons(cons(i,nil),l)

The value of expression cons(cons(i,nil),l) is trace [with the single-atom parallel command (¢) added to

the front.

This concludes the definition of ravel-trans. The transformation strategy for sorting networks
described in [16] - let us call it here iransform-sort - is ravel-trans with a simplified ravelling function,

ravel-sort, in place of ravel:

ravel-sort(z,l) = 4ot I tdem(i) A idem-applies(s,])
then /
else if ind-applies(,l)
then merge(s,l)
else cons(cons(i,nil),l)

Let us now move on to the treatment of neutrality. We define function remove-all-nir as:

remove-all-nir(l) =, . if l=nil
then nil
else cons(remove-ntr(car(l)),remove-all-ntr(cdr(l)))

Remove-all-nlr applies remove-nir recursively to every parallel command in the argument trace.
Remove-nir accepts a parallel command and returns that command without neutral trace atoms:

remove-ntr(l) =, . if l=nil
then nil
else if nir{car(l))
then remove-ntr(cdr(l))
else cons{car(l),remove-ntr{cdr(l)))

This concludes the definition of transform. Just as for transform-sort, we have checked mechani-
cally with the Boyer-Moore theorem prover [1] that ¢ransform preserves the semantics of its argument

trace, and that its result trace does not contain any parallel command with dependent trace atoms, i.e.,

with incorrect parallelism.

The basic statement of sorting networks is the comparator module. The comparator module com-
pares two elements of the sequence to be sorted and, if necessary, exchanges them into order. Com-
parator modules are not neutral. Also distinct dependent comparator modules are not commutative.
Neutrality and commutativity that is not implied by independence are the only two properties that
trans form exploits but {ransform-sort does not exploit. Therefore, if applied to sorting networks, the
result of transjform is that of fransjform-sort: both represent the same optimal transformation strategy.
{(We have proved that mechanically, too.) For other programming languages in which two distinct de-
pendent basic statements may be commutative, like matrix computations, the transformation strategy
may not identify the commutation that yields the shortest execution. For example, in our matrix mul-

tiplication example, we will have to search for that particular commutation.

4. Matrix Computations

4.1. Programs

The central basic statement? of the language of matriz computaiions is the inner product step, writ-
ten ips{a,b,c). It involves three distinct variables a, b, and ¢ and performs the following assignment:

¢ = ¢ + a % b

We consider matrices whose non-zero values are concentrated in a "band® around the diagonal. An
inner product step ips{a,b,c) containing off-band elements a or b does not change the value of ¢, i.e., is
neutral. We exploit this neutrality. To identify off-band elements of the matrix, we must precisely
describe the width of the band of non-zero elements around the diagonal. This band width is determined
by two natural numbers: the largest distance p, of a potentially non-zero element in the upper triangle

from the diagonal, and the largest distance, g, of a potentially non-zero element in the lower triangle from

the diagonal.3

Only neutral inner product steps are idempotent. Since we exploit their neutrality, we do not exploit

their idempotence.

On 2 parallel architecture that permits the sharing of variables, two inner product steps ips(a0,b0,c0)
and ips(al,bi,c1) are independent if their target variables ¢0 and ¢1 are distinct.* But we are interested in
executions on particular, systolic architectures that do not permit the sharing of variables. Therefore, we
must use a stronger independence criterion and require that a0 and al are distinct, 50 and b1 are distinct,

and c0 and ¢ are distinct. Recall that the three variables of an individual inner product step are distinct

by assumption.

All inner product steps are commutative. This makes commutativity, per se, meaningless. We do not

exploit commutativity in trace transformations unless it is a consequence of independence.

4.2. Systolic Designs

A parallel trace specifies a partial order of basic statements without reference to a particular ar-

chitecture. We will develop systolic arrays that can execute the parallel trace. We specify a systolic array

with the help of four functions.

QWe shall define additional basic statements where necessary.

3The distance of a matrix element from the diagonal is the absolute value of the difference of its two indices.

%See the Independence Theorem of [14].

e

The first two functions are called step and place. The domain of both functions is the set of basic

statements that occur in the parallel trace. Sitep determines when basic statements are to be executed,

and place determines where basic statements are to be executed.’

Step maps basic statements to the integers. The intention is to count the parallel commands of the

parallel trace in their order of execution. Step is derived from the parallel trace. The derivation of step

must adhere to two conditions:

(S1) basic statements of the same parallel command must be mapped to the same integer,

(S2) basic statements of adjacent parallel commands must be mapped to consecutive integers.

We are free to choose an appropriate integer, fs, for the basic statements of the first parallel commnand.
If step satisfies conditions (S1) and (S2), any two basic statements in the same parallel command must

have identical step values. Step can be derived by solving a system of equations whose formulation is

guided by conditions {S1) and (S2) (see the next section).

Place maps basic statements to an integer space of some dimension d. We assume that every point of
that space is occupied by a processor. The intention is to assign basic statements to the processors.
Processors that are not assigned a statement at some step simply forward the data on their input channels
to their output channels during that step. Processors that are at no step assigned a statement need not
be implemented. Place is not derived from the parallel trace but proposed separately. Flace has to satisfy
the following condition:

(P1) basic statements of the same parallel command must be assigned distinct points.

We have a simple condition that establishes whether our proposals for place satisfy (P1) (see the next

section).

In programs, data are represented by variables. In systolic computations, data, i.e., variables travel
between processors. A variable may be accessed by one processor at one step and by another processor at
a later step. We have to specify a layout and flow of variables that provides each processor with the
expected inputs at the steps at which it is supposed to execute its basic statement. At presemt, our
method is confined to systolic arrays in which processors are only connected by unidirectional channels to
processors that occupy neighboring pcvints.ﬁ For designs with these characteristics, we can synthesize the
input pattern and flow of data from step and place. To this end, we introduce two more furyctions:
pattern and flow. The domain of both functions is the set of program variables. Flow specifies the direc-

tion of data movement, and pattern specifies the initial data layout.

511} general, we must distinguish multiple occurrences of identical basic statements - by some sort of counter, say. However, we
omit this trivial complication here. Our programming examples lead to traces whose basic statements are all distinct.

brwo points @G"'“pd—i} and (q(}""’qd~i> of the d-dimensional integer space are neighbors if Oglpiwqilg}., where 0<<i<d.

Flow maps program variables to the same d-dimensional integer space as place. The intention is to
indicate, for every processor in the network, which of its neighbors receive its output values at the next
execution step, i.e., to which of its neighbors it must be connected by an outgoing channel. Flow is syn-

thesized from step and place as follows: if variable v is accessed by distinct basic statements s0 and s,
flow(v) =, (place(s1)-place(s0))/(step(s1)-step(s0))
For variables v that are accessed by only one basic statement, we must provide the definition of flow

explicitly. Flow is only well-defined if its images do not depend on the particular choice of pairs s0 and
sl.

FPatiern maps program variables to the same space as place. The intention is to lay out the input
data for the various processors in an initial pattern such that the systolic execution can begin. {Flow
describes the propagation of the data towards and through the network as the execution proceeds.) With
constant fs being the arbitrary step value that we choose for the first parallel command, patiern is syn-
thesized from step, place, and flow as follows: if variable v is accessed by basic statement s,

pattern(v) =, . place(s)-(step(s)-fs)* flow(v)
FPattern is only well-defined if its images do not depend on the particular choice of basic statement s.
With patiern specifying the initial data layout, we can derive the data layout for successive steps of the

systolic execution: the data layout after k steps is given by pattern(v)+k* flow(v).

4.3. The Graphics System

We have implemented the transformation strategy and the computation of the previous functions in
a graphics system on the Symbolics 3600. Our system can display two-dimensional processor layouts and

simulate sequences of execution steps on them. At any fixed step, it displays the data layout and flow

and indicates the active processors.

The three central commands of the graphics system are add-processor, add-design, and
display-design. Add-processor adds the specification of a processing element, which consists of the name
of the basic statement the processor is supposed to apply, its number of arguments, and the identifiers of
its input and output variables. Add-design asks for a design name and the four components that are
necessary to synthesize a design: a program refinement, semantic declarations, a step, and a place func-
tion. At present, we require the explicit specification of step, even though it could be synthesized from the
parallel trace (see the following section). Display-design takes a design name and a refinement call. It
displays the data layout for the submitted call on the submitted processor layout and simulates the sys-
tolic execution. The simulation can be controlled to advance or to back up a number of steps. At each
step, the active processors are highlighted. The simulation of a systolic execution is particularly helpful

for systolic arrays with complex data flow [8].

The figures in this paper are hard-copies of images produced by our system.

5. Theorems for Linear Systolic Designs

A number of researchers have analyzed systolic designs with notions of linear algebra [17, 18, 20, 21].
We shall do something similar here. In this section, we investigate a specific class of systolic designs:

linear systolic designs. We defer the proofs of theorems to the appendix.

A systolic design is linear if it is specified by linear step and place functions. Linear systolic designs
are particularly interesting because their data movement proceeds at a fixed rate in straight lines. We
limit our theoretical discussion to programs' with only one type of basic statement.’ Let us denote the

basic statement by 6(x0’m1""’zr~1)‘ Also, we use s[z)/z] to denote the substitution of «for argument ,

in basic statement 8($0’m1""’zr-1>'

Formally, a systolic design is linear, if step and place are described by the following linear equations:

(E1) step(s(xo,xl,...,xr_l)) = g o Tyt 1%t 1 T T

(E2) place(s(zo,zl,...,xr_l)) = (a1’0m0+a1’1m1+...+a1’r_1:cr_1+a1’r, rees ad’0m0+ad’1x1+...+ad’r_1mr_1+ad’r)
where the range of place is the d-dimensional integer space. In a non-linear systolic design, equations (E1)
and (E2) would be of a higher degree. We shall explain the derivation of step and discuss theorems about

place, flow, and pattern that provide guidance in the choice of a place function.

Consider a non-empty parallel trace. The images of its individual basic statements under sZep, as
defined in (E1), constitute a set of linear formulas. Take the image of the first basic statement in the
parallel trace and equate it with a chosen number. Impose conditions (S1) and (S2) to derive equations for

the other basic statements. The result is a set of linear equations in the variables o 5, @ 5 and

v Qg
oy whose solution determines step. However, the equations do not guarantee the existence of a unique

solution. For example, if the parallel trace consists of only one statement, there are infinitely many solu-

tions for siep, all of which satisfy conditions (1) and (S2). Tt is also possible that no solution exists at all.

While conditions (S1) and (S2) are, generally, sufficient to synthesize step, condition (P1) is not suf-
ficient to synthesize place. We must propose place independently and test whether it satisfies (P 1). The

following theorem provides such a test.

Theorem 1: Let step be a linear step function for parallel trace ¢ that satisfies (S1) and (S2). Let place

be a linear place function for {. Place satisfies (P1) if the following equations have the zero vectoxr as the

unique solution:

TThis restriction is not as severe as it may seem. While mabrix multiplication only requires single-type basic statements, we will
be able to apply our theorems also to LU-decomposition, which uses basic statements of several types.

10

+ L ===
%o 0¥ % ¥ty %, =0

-+ +...F o=
O 0¥ty ¥y Tty Y, =0

~4 +,..+ ps
Ol ¥g Uy % =0

where r is the number of arguments of basic statement s. In particular, if place maps to r—1 dimensions,

i.e., d==r-1, place satisfies {P1} if the coefficient determinant of this previous system of equations is not

Zero.

Given a linear step function satisfying (S1) and (S2) and a linear place function satisfying (P1), we
can compute flow and pattern. The computation of flow and pattern must be well-defined, that is, their
result must not depend on the choice of basic statements. Matrix computation programs use subscripted
variables. In our programming language, the variable subscripts appear as arguments of the program’s
basic statements. If the variable subscripts are determined by r~1 arguments of the r-argument statement,
then the flow of the variable derived from step and place is well-defined. This property is stated in
Theorem 2. In our programming example, matrix multiplication, matrix elements accessed by a basic

statement are determined each by two of the statement’s three arguments (Section 4).

Theorem 2: Let step be a linear step function for parallel trace ¢ that satisfies (S1) and (S2). Let place
be a linear place function for ¢ that satisfies (P1). If the subscripts of variable v are determined by all but

one of the r arguments of the basic statement, then flow is well-defined for variable v,

Given a parallel trace ¢ which satisfies conditions (S1), (S2), and (P1), no two basic statements in ¢
can be identical. If a variable’s subscripts are determined by all r, not just r—1, arguments of a basic
statement, this variable can be accessed by at most one basic statement. Therefore, we cannot derive its
flow function but have to provide it explicitly. In general, while the processor layout for a program with

r-argument basic statements requires dimension r-1, the data layout requires dimension r. An example is

matrix-vector multiplication [10].

Given a step function satisfying (S1) and (S2), a place function satisfying (P1), and a well-defined
flow function, the derived pattern function is well-defined. This property is stated by Theorem 3.

Theorem 3: Let step be a linear step function for parallel trace ¢ that satisfies (S1) and (S2). Let place
be a linear place function for ¢ that satisfies (P1). Let flow, derived from step and place, be well-defined.

Then pattern, derived from step, place, and flow, is well-defined.

11

6. Examples

The following subsections describe two matrix computation problems: matrix multiplication and LU-

decomposition. The treatment of both examples follows the same path: the problem is stated, a refine-

ment program that is a solution is presented, semantic relations are added, and a sequential trace is
derived from the refinement. Then, transform is applied to exploit the semantic relations, a parallel trace
is obtained, and a systolic design that can execute the paralle] trace is defined. For matrix multiplication,
we shall derive three alternative designs. The systolic implementations we present are well-known. Our

point is that they can be obtained as result of a synthesis method that considers matters of execution

after the derivation of a correct program.

6.1. Matrix Multiplication

The problem is to multiply two distinct nXn matrices A and B and assign the product to a third
nXn matrix C, such that
n-1
¢y = > (@, * b,) for 0<i<n-1and 0<;<n~1
k=0

In the solution to this problem, the inner product step takes the form ips(as.k ’bkj ,cs.j). If we fix
variables A, B, and C, we can express the inner product step solely in terms of the matrix indices 7, 7, and

k. We shall use the notation (¢:5:k).

With inner product steps, the {ollowing program is the standard solution to matrix multiplication; it

is assumed that matrix C is initially everywhere zero:

for ¢ from 0 to n~1 do
for j from 0 to n—-1 do
for k from O to n~1 do (i:5:k)

Translated to our programming language, this program becomes:

matriz-matriz(n): product{n-1,n-1)
product(0,m): row(0,m,m)

{0<i} product(i,m): product{i-1,m); row(i,m,m)
row(z,0,m): inner-product{i,0,m)

{0<g} row(i,gm): row(z,j~1,m); inner-product(s,j,m)
inner-product(,5,0): {(3:5:0}

{0<k} inner-product(i,jk): inner-product(s,5,k-1}; (4:5:k)

This rather complex syntax has the advantage that each composition of two basic statements is
represented explicitly by a semicolon. This will simplify the translation of the program into a sequential

execution.

The declarations of neutrality and independence for inner product step {7:5:k) are:

12

1 p<k-iV q,<i=kV pp<skV gp<k-j = ntr (2:7:k)

(2) (5554, v Jo75,) A (5751, V ko# k) A (5755, vV ko%k‘l) = (io:jozko) ind (ilzj'lzkl)
where p 4 and ¢ 4 are the band widths of the upper and the lower triangle of matrix A, and Py and qp are
the band widths of the upper and the lower triangle of matrix B. The upper and the lower triangle of
result matrix € have band widths PP 4 *Pp and 974,40 The enabling predicate of the neutrality
declaration identifies inner product steps that access off-band elements of matrices A or B; the enabling

predicate of the independence declaration identifies inner product steps that do not access common vari-
ables.

To demonstrate the incremental nature of our method, we develop three different designs for matrix
multiplication.
6.1.1. The First Design

We obtain a sequential trace by replacing ";" with "»". For example, the sequential trace for the

multiplication of two 4X 4 matrices (matriz-matriz(4)) expands to:

(0:0:0)+(0:0:1)-2(0:0:2)+(0:0:3)~>
(0:1:0)-(0:1:1)-(0:1:2)-(0:1:3)~
(0:2:0)-2(0:2:1)-2(0:2:2)+(0:2:3)~»
(0:3:0)2(0:3:1)-(0:3:2)+(0:3:3)~
(1:0:0)+(1:0:1)+(1:0:2)+(1:0:8)~
(1:1:0)-(L:1:)-(1:1:2)+(1:1:8)~»
(1:2:0)-(1:2:1)-(1:2:2)+(1:2:3)~»
(1:3:0)-(1:3:1)-(1:3:2)»(1:8:3)~»
(2:0:0)-(2:0:1)-(2:0:2)-(2:0:8)~
(2:1:0)»(2:1:1)-»(2:1:2)+(2:1:3) >
(2:2:0)+(2:2:1)-(2:2:2)+(2:2:3)»
(2:3:0)+(2:3:1)+(2:3:2)»(2:3:3)~»
(3:0:0)»(3:0:1)+(3:0:2)»(3:0:3)~+
(3:1:0)-(3:1:1)-(3:1:2)2(3:1:3)~
(8:2:0)+(3:2:1)+(3:2:2)+(3:2:3)»
(3:3:032(3:3:1)+(3:3:2)»(3:3:3)

The parallel trace is obtained by letting transform exploit the previous declarations of neutrality and
independence on this sequential trace. The ten commands of the parallel trace with neutral atoms collect

the inner process steps of the previous sequential trace by columns:

i3

<{0:0:0)>

» <(0:0:1) (0:1:0) (1:0:03>
+ <(0:0:2) (0:1:1) (0:2:0) (1:0:1) (1:1:0) (2:0:0)>
+ <(0:0:3) (0:1:2) (0:2:1) (0:3:0) (1:0:2) (1:1:1) (1:2:0) (2:0:1) (2:1:0) (3:0:0)>
+ <(0:1:8) (0:2:2) (0:3:1) (1:0:3) (1:1:2) (1:2:1)

(1:3:0) (2:0:2) (2:1:1) (2:2:0) (3:0:1) (3:41:0)>
+ <(0:2:3) (0:3:2) (1:1:3) (1:2:2) (1:3:1) (2:0:8)

(2:1:2) (2:2:1) (2:3:0) (8:0:2) (8:1:1) (83:2:0)>
+ <(0:3:3) (1:2:3) (1:3:2) (2:1:3) (2:2:2) (2:3:1) (3:0:3) (3:1:2) (3:2:1) (8:3:0)>
+ <(1:3:3) (2:2:3) (2:3:2) (3:1:3) (3:2:2) (3:3:1)>
» <(2:3:3) (3:2:3) (3:3:2)>
+ <{(3:3:3)>

As band width, let us assume p,=¢ A::pB:qB=1. Elimination of all neutral atoms yields the target

trace

<{0:0:0)>
+ <{(0:0:1) (0:1:0) (1:0:0)>
» <{0:1:1) (1:0:1) (1:1:0)>
» <(0:2:1) (1:1:1) (2:0:1)>
» <(1:1:2) (1:2:1) (2:11:1)>
> <(1:2:2) (2:1:2) (2:2:1)>
> <(1:3:2) (2:2:2) (3:1:2)>
+ <(2:2:3) (2:3:2) (3:2:2)>
+» <(2:3:3) (8:2:3) (3:3:2)>
+ <(8:3:3)>

This trace has length 10. For nXn input matrices, the length of the parallel trace is 3n-2. The length of
the trace is independent of the band width, but the band width influences the width of the trace, i.e., the

degree of concurrency.

The step function is derived from the parallel trace. Let the step function be a linear function:
step((i:7:k)) = og¥ita xjrakkta,
Recall that we are allowed to choose the step value of the first parallel command. We choose the value to
make the constant term, ag, 0. In this case, the step value of the first parallel command is 0. Applying
the step function to the basic statements in the first two parallel commands of the above parallel trace,
we obtain the following equations:
step((0:0:0)) = «a, = 0
step((0:0:1)) o ta,
step((0:1:0)) = a +a, =
(

3
step((1:0:0)) = o ta, =

“+ Y o

I

S BV

The solution to these equations is ay=0a,=a,=1 and o,=0. The solution is consistent for the equations

obtained by applying the step function to the rest of the basic statements. Therefore, the derived step

function is:

step((i:g:k)) = i+5+k

14

The place function cannot be derived from the parallel trace but must be proposed separately. It
seems promising to lay the processors out in a plane, i.e., in our method on the two-dimensional integer
lattice. Our first idea is to assign each basic statement to the point whose coordinates match the indices
of the statement’s target variable. This decision is rather arbitrary. At this stage, we do not have any
information that might guide us in the choice of a processor layout. As we shall see later, other layouts

are possible. Inner product step (7:5:k) has target variable ¢ We propose:
place((i:5:k)) =, (%.9)
The dimension of place is two which is one less than the number of the arguments in (s:5:k). By Theorem

1, place satisfies condition (P1), because the determinant constructed from the coefficients of step and

place 1s not zero:
1 1 1]
1 0 0)=1
0 1 0

where the first row, (1 1 1), is constructed from step, the second row, (1 0 0), from the first dimension of

place, and the third row, (0 1 0}, from the second dimension of place.

Variable a_ , appears in basic statements (7:7:k) and (7:7+1:k), and these two statements are executed

in consecutive steps. Therefore, we can derive the flow of a .
,

flow(az.’k) = (place({i:5+1:k))-place((i:5:k)))/(step((2:5+1:k))~step((i:5:k)))
= (0,1)

Similarly, we derive the flows of bkj and ¢

flow(bk,j) = (place((i+1:5:k))~place((i:5:k)))/ (step((i+1:7:k))~step((i:5:k)))
= (1,0)

flow(cz.)j) = (place((i:5:k+1))-place({i:5:k)))/ (step((z:5:k+1))~step((i:5:k)))
= (0,0)

Variables Y stay stationary during the computation. By Theorem 2, flow is well-defined.

With functions step, place, and flow, we derive the initial data layout as follows:

pattern(ai}k) = place((i:j:k))—step((i:j:k))*flow(ai!k)
= (i,-i~k)

pattern(bk}j) = place((i:j:k))—step((i:j:k))*ﬂow(bk)j)
= (—j—kyj)

pattern(cz.,j) == pZace((i:j:k))~step((z':j:}c))*flow(cg.}j.)
= (4.4)

By Theorem 3, pattern is well-defined.

The network of processors and the initial data layout, as produced by our graphics system, is

15

depicted in Figure 1. Each dot represents an inner product step processor. Arrows represent the propaga-
tion of data. A variable name labelling an arrow indicates the location of that variable. If the arrow

points to a processor, this variable is input to that processor at the current step of the systolic execution.

The processor layout of this design mirrors matrix C. The number of processors depends on the size
of the input. For matrices of large size, this design may require a large number of processors. We can

improve this situation by proposing a different place function.

8.1.2. The Second Design

Let us assume that we will keep the band widths of the input matrices constant. That is, when in-
creasing the size of the input, we never widen the matrices’ bands. Under this assumption, we can derive
for the same matrix multiplication program another design whose number of processors is constant. We
must simply find a place function whose coordinates depend only on the band widths of the input
matrices but not on their size. The band widths of the input matrices are determined by the differences of
i and k and of 7 and k (see the enabling condition of our neutrality declaration). We choose our coor-
dinates from these differences:

place((i:5:k)) =4 (i=k,5-k)

Again, other choices are possible. By Theorem 1, this place function also satisfies (P1}):

1 1 1
1 0 -1:=3
0 1 -1

With the new proposed function, we derive the following flow and patiern:

flow(aé.,k) = (0,1)
flo*w(bk’j) = (1,0
flo'w(ci}j) = (-1,-1)
pattern(a%k} = (i-k,~1~2k)
pattern(bk}j) = (-j~2k,j-k)
pattern(cilj) == (21+5,1+2y)

Flow and pattern are, again, well-defined.

The network of processors and the initial data layout is depicted in Figure 2. This design is presented

in [10]. The number of processors is (pA+qA+1)*(pB+qB+1). Tt is independent of the size of the input.

After arriving at an improved processor layout, we now modify the program to improve execution

speed. We could have proceeded in the converse order.

16

8.1.8. The Third Design

Recall that any two inner product steps are commutative. In Sect. 4.1, we decided not to declare this

commutativity. A search reveals that a commutation in the definition of refinement snner-product yields

the shortest trace:

inner-product(i,5,0}: (7:5:0)
{0<k} inner-product{s,sk): (¢:5:k); inner-product(,s,k—1)
The paralle]l trace obtained for the multiplication of two 4X 4 matrices (matriz-matriz(4)) expands to:
<>
-+ <>
+ <{0:0:1)>
+ <(0:0:0) (0:1:1) (1:0:1) (1:1:2)>
+ <(0:1:0) (0:2:1) (1:0:0) (1:1:1) (1:2:2) (2:0:1) (2:1:2) (2:2:3)>
+ <(1:1:0) (1:2:1) (1:3:2) (2:1:1) (2:2:2) (2:3:3) (3:1:2) (3:2:3)>
+ <{(2:2:1) (2:3:2) (3:2:2) (3:3:3)>
+ <{3:3:2)>
-+ <>
+ <>

If we do not consider band width, i.e., do not exploit neutrality, this trace has the same length as pre-
vious trace: 10 or, in general, 3n—2. But, contrary to the previous trace, a consideration of band width
can shorten this trace: the leading and trailing empty parallel commands result from the elimination of
neutral basic statements. Not counting the empty parallel commands, this trace has length 6 or, in
general, n+min(p ,,9,)+min(g,,p;). Hence, for constant band width and large n, we achieve a speed-up by
a factor of 3. The effect of the commutation in inner-product is that, in the execution, k is counted down,
not up. Therefore, the derived step function contains a subtraction rather than an addition of k:

step((i:5:k}) = i+j-k
The step value of the first (non-empty) parallel command is -1 or, in general, ~min(p 49g)- We keep the
place function of the second design:

place((i:5:k)) =, . (i-k,5-k)
Again, we derive well-defined flow and pattern functions:

flow(ai,k} = {0,1)

flo-w(bk’j) = (1,0)

flow(cg.’j) = (1,1)

pattern(az.)k) = (i~k,~i-min(p ,,q5))

pattem(bk}j) = (~7-min(p ,,q5),5-k)

pattern(c%j} = ("jwmin{pA,qB),—i—min(pA,qB)}

Note that pattern depends on the band width because the value of the first step does.

The network of processors and the initial data layout (at the first inner product step) is depicted in

Figure 3. This design is also presented in [24].

6.2. LU-Decomposition

The problem is to decompose an n X n matrix A into two other nXn matrices I and U, such that
n~1
a;; = > (U u) for 0<i<n-1and 0<;<n-1
k=0

That is, matrix A is the product of matrices L and U. The result matrices are of the following form: the

elements of the upper triangle of L and the lower triangle of U (excluding the diagonals) are 0, and the

elements of the diagonal of L are 1.

For the refinement of this problem, we shall use several different basic statements. One basic state-

ment produces the diagonal elements of matrix U:

~1
U.. = g4,.
5,4 1,4

We denote this basic statement by invr(z). Another basic statement produces the upper-triangle elements

of matrix U:

We denote this basic statement by up(s,7). Our program shall only apply it with arguments ¢ and 5 such
that 1< 3. A third basic statement produces the lower-triangle elements of matrix L:

== aL Lk UL
7 2% 5J

We denote this basic statement by lo(f,7). Our program shall only apply it with arguments ¢ and 3 such
that 7<Ci. Finally, there is the inner product step, ips(lz. g ’a;'j)’ which we denote, in short, by (3:5:k)

as in the previous section.

With these basic statements, the following program performs LU-decomposition; matrices L and U

are assumed to be initially everywhere zero:

for ¢ from 0 to n~1 do
for j from O to n-1 do
for k from 0 to min(7,j) do
if i=1 A i=k
then invr(s)
else if 1<(j A =k
then up(z,j)
else if j<i A 5=k
then lo{7,7)
else ({:5:k)

Translated to our programming language, this program becomes:

lu-decom(n}: decom(n—1,n-1)

18

decorn{0,m): row(0,m)

{0<i} decom{s,m): decom(i~1,m); row(i,m)
row(?,0}): inner-product(4,0,0)

{0y} rowld,g): row(i,j~1); inner-product(?,j,min(s,3))
inner-product(t,5,0): select(t,7,0)

{0<k} inner-product(s,sk): inner-product(i,f,k-1); seleci(s,s,k)

{i==j A i=Fk} select(i,7,k): invr(?)

{i<j A =k} seleci(z,5,k): up(4,s)

{7<i A =k} select(s,5,k): lo(7,7)

{15tk A j54k} select(7,7,k): (2:7:k)

We now enumerate the declarations of idempotence, neutrality, commutativity, and independence of
the four basic statements. Even though numerous, the sixteen declarations are derived as straight-
forwardly as the two declarations for the single basic statements of the matrix multiplication program.
When we introduced statement ips, we decided not to consider its idempotence or commutativity. We
must now consider the idempotence or commutativity of invr, up, and lo. Invr, up, and lo are always
idempotent. They are also, just as ips, always commutative with themselves and, just as for ips, we are

not interested in this commutativity. All other commutativity of invr, up, and lo is implied by indepen-

dence:

(1) idem invr(s)

(2) idem up(s,3)

(3) idem lo(¢,5)

(4) p<y-i = ntrup(s,j)

(5) g<i-5 = ntrlo(s,s)

(6) p<j~kVg<i-k = ntr(igk)

(7) 1751, = invr(iy) ind invr(4))

(8) 744, Vig#s, = invr(d))ind up(7;,J;)

(9) i7%5, = invr(sy) ind lo(¢ ,5)
(10) (ig7%i, V ig7%a)) A (ig7#ky v dgs%s,) = invr(dy) ind (4):7,:k,)
(11) 4750, V gp5%s, = up(iy,g,) ind up(i,,7,)
(12) (751, V 5g7%0y) A (g%, V 5p#d) = upliydy) ind Io(7))
(13) (igr%i, V 5745y A (ig2ky V g7%5) = up(ig,ap) ind (¢:0:k,)

(14) 5,555, = lo(ig,) ind lo(7,,7,)

19

(15) (ig5i, V 5g740y) A (g%, V g2k A (g%s, V qp#ky) = To(iggp) ind (435K

(16) (igriy V dgi) A (g7, V kgky) A (g0, V kohy) = (ko) ind (45 cky)

where p 4 and ¢ , are the band widths of the upper and the lower triangles of matrix A, respectively.

Actually, in the case of LU-decomposition, none of the idempotences will be exploited by transform.

Again, we derive a sequential trace by replacing *;" with "=*. For example, the sequential trace for

the LU-decomposition of a 4 X4 matrix (lu-decom(4)) expands to:

invr (0)-up(0, 1)+up(0,2)+up(0,3)~
10(1,0)»(1:1:0)»invr (1)~

10(2,0)

(1:2:0)-»up(1,2)~»
(1:3:0)~»up(1,3)~
»(2:1:0)~»10(2,1)~+
(2:2:0)+(2:2:1)=1invr(2)~+
(2:3:0)»(2:3:1)~»up(2,3)~
10(3,0)»(3:1:0)»10(3,1)~
(3:2:0)+(3:2:1)»10(3,2)~
(8:83:0)+(8:3:1)+(3:3:2)»invr(3)

The parallel trace is obtained by letting ¢ransform exploit the previous declarations of neutrality and

independence on this sequential trace. The ten commands of the parallel trace with neutral atoms collect

the inner process steps of the previous sequential trace by columns:

<invr(0)>
<up{(0,1
<up{0,2)
<up(0,3)
<up(1,2)
<up(1,3
<invr(2)
<up(2.3)
<(3:3:2)>
<invr(3)>

A I A R

1o(1,0)>
(1:1:0)
invr (1)
(1:3:0)
(2:2:1)
(2:3:1)
10(3,2)

lo(2,0)>

(1:2:0) (2:1:0) 10(3,0)>
lo(2,1) (2:2:0) (3:1:0)>
(2:3:0) 10(3,1) (3:2:0)>
(8:2:1) (3:3:0)>
(3:3:1)>

As band width, let us assume p ,=2 and ¢,==2. After removal of the neutral atoms, we obtain the final
A A

parallel trace:

<invr{0)>
<up(0,1)
<up(0,2)
<invr{i)
<up(1,2)
<up(1,3)
<invr(2)
<up(2,3)
<(3:3:2)>
<invr(3)>

I R B 2R

1o0(1,0)>
(1:1:0)
(1:2:0)
io(2,1)
(2:2:1)
(2:3:1)
10(3,2)

10(2:0)>
(2:1:0)>
(2:2:0)>
10(3,13>
(38:2:1)>
(3:3:1)>

We derive the step function as in the first design of matrix multiplication. This time we formulate

step for all three basic statements:

20

step(invr{i)) = a, ¥i+a

0,0 0,1
step(up(s,7)) = @ gkt kgra
step(lo(z,7)) == a2,0*z'+a2’l*j+a2,2
step((i:7:k)) = g gRiray ko, ko

Choosing 0 as the first step value and substituting basic statements of the parallel trace, we obtain the

following linear equations:

step(invr(0)) = @y = O
step(invr(l)) = ooty = 3
step(up(0,1)) = aprag, =1
step(up(0,2)) = 20y ray, = 2
step(up(1,2)) = o) gt2a; ity = 4
step(lo(1,0)) = Aoty , = 1
step(lo(2,0)) = 20y gta,, = 2
step(lo(2,1)) = 20 grey tay, = 4
step((1:1:0)) = Qgotoy tez s = 2
step((1:2:0)) = ayot2ay tay . = 3
step((2:1:0)) = 204 gtag tag, = 3
step((2:2:1)) = 20, +2q, to, Fa,, == 5

3,0 ““317 %39 Y33
Solving these equations establishes the following step function:
step(invr{z,7)) = 31
step(up(i,j)) = 2i+J

step(lo(7,7)) = +25
step((i:7:k)) = i+5+k

The solution is consistent for the equations obtained by applying the step function to the rest of the basic

statements. We observe that step(invr(z)), step(up(7,7)), and step(lo(z,7)) follow from step((i:7:k)):

step(invr(z,7)) = step((7:5:k)) for i=j and 1=k
step(up(z,5)) = step((i:5:k)) for 1<(j and i=k
step(lo(z,7)) = step({<:5:k)) for <{ and j=k

That is, we have formulated sfep collectively for refinement select - rather than individually for the four

statements select applies.

If step can be formulated this way, we can also define place in terms of just one statement.® In the

choice of a place function, we draw from our experience with the previous example:
place(select(i:gk)) = . (i-k,j-k)

Formulated for our four basic statements individually, this becomes:

SActuaHy, we could even have proposed the program without a refinement of select, i.e., with select as the single basic statement.

But that would suggest that all processors have the capacity of executing everyone of the four operations ips, invr, up, and lo, which
is an unnecessary complication, in this case.

21

place(invr(s)) = (O,Q).
place(up(i,7)) = (0,577
place(lo(i,)) — (i~30)
place(i:g:k)) = (i—k,5k)

We apply Theorem 1 again to test the consistency of step and place:

11 1
1 0 -1 =3
g 1 -1

The technique of reducing the different types of basic statement of a program into a single type not

only enhances the significance of our theorems but also reduces the problem of proposing processor

layouts substantially. For another example of its use, see [8].

Tor the derivation of flow, we may choose any pair of applications of refinement select. We choose a

pair of inner product steps. Variable [, appears in inner product steps (i:5:k) and (i:j+1:k), and these
two statements are executed in consecutive steps. Therefore, we can derive the flow of li &

flow(lz.’k) = (place((*i:ﬁ1:k))—-place(('i:j:k)))/(step((i:j+1:k))—step((z':j:k)))
= (071)

Variable u, ; appears in both (3:5:k) and (¢+1:5:k). The flow of U is derived as:

flow(uk)j) e (place((i+1:j:k))—-place((i:j:k)))/(step((i+1:j:k))—step((i:j:k)))
= (1,0)

Variable a, ; appears in basic statements (¢:5:k) and (s:5:k+1), and these two statements are executed in

consecutive steps. Therefore, we can derive the flow of a, .
2

flow(ag.}j) == (place((z’:j:k+1))-—place((i:j:k)))/(step((i:j:k+1))—step((i:j:k)))
= (-1,-1)

By Theorem 2, flow is well-defined.

With functions siep, place, and flow, we derive the initial data layout:

pattern(a‘.)j) == place((i:j:k))-—stcp((z':j:k))*flow(ag.aj)

= (2i+5,i+27)
pattern(uk,j) == place((i:j:k))—-step((i:j:k))*ﬁow(uklj)
= (-5-2k,J-F)
pattern(l.) = place((3:5:k))-step((i:5:k))* flow(l,)
T = (i-k,-i~2k) '

By Theorem 3, pattern is well-defined.

The network of processors and the initial data layout is depicted in Figure 4. The invr processor is
represented by 2 square, up processors are represented by right-pointing triangles, and lo processors are

represented by up-pointing triangles. As before, inner product step processors are represented by dots.

22

Variable values Uy leaving the network to the right, and li % leaving the network to the top are the

output of the computation.

This systolic design is inefficient in several respects. Firstly, output data leave the network several
steps after they have been produced: once produced by invr and up, Uy is not altered by lo and the inner
product steps which receive it; similarly, once produced by lo, l‘.)k is not altered. One improvement is to
"tap® invr, up, and lo processors with extra channels that extract their outputs from the network im-
mediately. Secondly, negations of upper-triangle elements of U are performed individually by each inner
product step. To save the unnecessary operations, we could add temporary variables to the program. Ac-

cording changes result in the classical systolic design for LU-decomposition [10].

7. Evaluation

Let us review how we develop systolic executions and designs. We provide a program (in form of a
refinement) and a processor layout (in form of a place function). Given to us are properties of the pro-
gramming language (in form of semantic relations) and restrictions on the architecture (implicit in the
requirements on siep, place, flow, and pattern). From this information, we synthesize, via a sequential
execution, a parallel execution of the program and, via a step function, the data layout and movement {in
form of a flow function and a pattern function). We could also exchange what we propose and derive.

For example, if we proposed the data movement, we could synthesize the data layout and the processor

layout.

Our work is distinguished by the combination of three factors. Embedding systolic design into a
general view of programming enables us to separate distinct concerns properly. The explicit formulation
of a parallel execution provides a precise link between the two components proposed by the human in a
systolic design: the program and the processor layout. Our insistence on formal rigor at every stage ex-
pedites the automation of a large part of the development. Theorems ald the human in his part of the
development. The systolic design at which we arrive can be informally (graphically) conveyed to the

human, but it also has a precise mathematical description.

These benefits are demonstrated by our graphics implementation. As a consequence of the isolation
of different development stages (program, execution, architecture} in our method, we can quickly and

easily change different parameters, one at a time, and obtain a clear display of the effect on the systolic

design.
The pairing of a program with a processor layout makes the evaluation of a design particularly con-

venient: the program determines the execution speed (as the length of the parallel trace} and the processor

layout determines the size of the design (as the number of processors). The density of the data layout is

23

determined only by the pair but not by either component alone. For example, our first and second
designs of matrix multiplication are based on the same program but the densities of their data layouts

differ. Similarly, our second and third designs have the same processor layout, but the densities of their

data layouts differ.

At present, we use lransform as a heuristic. Our initial definition of it removed neutral elements
first, not last. In some cases, this version of iransform leads to faster executions. We still abandoned it,
because it also leads to more complicated step functions, and simplicity is important to us. Transform is

just another variable in our method. So far, our specific transformation strategy has served us remarkably

well.

We are not very satisfied with the way in which we identified the commutation in the definition of
inner-product that led to our third design for matrix multiplication. We also attempted commutations in
the other refinements, product and row, but they lead to executions that are never shorter and sometimes
longer. All we can provide at this time is an implemented system that lets us conduct these searches
conveniently. The fact that all statements of the matrix multiplication program are commutative is dis-

couraging. It provides us with no information of what execution to pick.

To reach the first step of our parallel systolic execution, several steps of "soaking up® data may have
to be taken. Similarly, after the last step of our execution, data remaining in the network may have to be
ndrained". After arriving at a particular design, we can compute the lengths of the soaking and draining

phases from step and place. Soaking and draining influences the performance of the design.

Our method is particularly suitable for a search of different systolic designs for some fixed problem.
An impressive example is our treatment of the Algebraic Path Problem [8]. The Algebraic Path Problem
subsumes many matrix computation problems, among them matrix inversion, transitive closure, and
shortest paths. Its solutions are complicated systolic designs with seven different types of operations and
different data items being reflected in different directions up to four times on their path through the
processor array [22]. For variables whose flow is mot constant over the entire execution, the well-
definedness of flow and pattern is violated. However, we can cope with such cases in an incremental fash-
jon. We can extend the parallel execution with statements that copy variables (whose direction of flow
changes) to new variables (at the points of change). The flow of each of the resulting variables is then

constant. We have obtained an algorithm by which the parallel execution can be successively enhanced

with such reflection operations [8].

Programs lend themselves to a systolic implementation if they combine a few simple operations in a
highly repetitive way. We expect our method of systolic design to work best for problems in which the

program does not reflect aspects of the systolic architecture. That is not the case, for instance, if par-

24

ticular synchronizing or signal processing operations are required in the program as in Snepscheut’s sys-
tolic design for transitive closure [23]. However, at least in the treatment of the Algebraic Path Problem,
we were able to add operations imposed by the architecture at a later stage. Our method works the
better, the fewer types of basic operations need to be considered. Many different types of processors can

cause an explosion in the number of semantic declarations.

Many researchers have investigated methods of systolic design in recent years (see the next section).
All these methods require two kinds of input: one component that can be thought of as a program, and
one component that gives some clue about the structure of the systolic array. In our approach both these
inputs need not be cleverly chosen. Of the program, we require only that it solve the numerical problem
at hand. For the place function, we can start with a simple proposition that looks promising. After
evaluating the result of our inputs, we can make incremental variations. These variations may be ran-

dom, or they may be carefully selected. In our matrix multiplication example, we adjusted each of the

two inputs once.

8. Related Research

Chen [5, 6] chooses the inverse of our derivation. She supplies 2 "network®, which is the analogue of
our flow function, and an ®"abstract process structure™ {a set of recurrence equations), which is the
analogue of our refinement. Her informal derivation results in a "concrete structure®, which is the

analogue of our step and place functions. Chen does not spell out systolic executions, as we do with traces,

and is, in general, less formal.

Like us, Moldovan and Fortes [20] require the input of a program, but their program must be aug-

mented with ®artificial® variables [19]. This augmentation is meant to specify parallelism and cor-

responds roughly to our semantic relations - except that semantic relations are properties of the program-
ming language, not properties of individual programs. (The detection of parallelism receives more atten-
tion in another of their papers [7].) Systolic arrays are described by a space transformation which cor-
responds to our function place and a time transformation which corresponds to our function step. Mol-
dovan and Fortes require the input of both transformations, while we only require the input of place (or
even only part of place). Similarly to Chen, Moldovan and Fortes present an algorithm by which the
space transformation can be derived from a set of proposed flow vectors. Mirankler and Winkler

[18] employ the same space-time transformation as Moldovan but use a graph representation.

Chandy and Misra [4] propose an "invariant”, which corresponds to our step function, and, with
some additional assumptions, derive a systolic program from it. A program in their language, Unity [3], is
a repeating multiple assignment statement. Chandy and Misra envision Unity as a tool in which program-

ming solutions for many different architectures can be expressed with equal convenience. They equate the

Unity programs that they derive for matrix multiplication and LU-decomposition with systolic executions
and, indeed, with systolic architectures. An essential aspect of our synthesis method is that we distinguish

the three concepts of a program, a trace, and an architecture.

Lam and Mostow [11] employ an implemented method of transformation similar to ours but, again,

less precise. They do not treat the layout separately from the program but require program annotations

that give a clue about the processor layout (*in place" or "in parallel®}.

Cappello and Steiglitz [2] describe a method of systolic design by geometric transformation. They
derive a first data flow scheme from a sequential program execution. The data flow scheme is expressed
geometrically in space-time and is, usually, not well-suited for implementation. It is then improved by
geometric transformations proposed by the human. As many other approaches in VLSI theory, this one

aims at chip layout, not at programming. Our centerpiece, the parallel execution, is missing.

Leiserson’s work [12,13] is in the same spirit as ours. He proposes a number of widely applicable
transformations that address aspects of communication and timing in processor networks. The transfor-
mations alter the characteristics of processor connections after the layout of processors has been decided.
Our method helps the human in the choice of an appropriate processor layout. Leiserson’s focus is the
conversion of semisystolic into systolic architectures. Semisystolic architectures allow for broadcasting and
census, i.e., the parallel communication of data to and from all processors; systolic architectures do not.
Broadcasting and census are abstractions that can lead to simpler designs. Our solutions of matrix com-

putation problems can be easily formulated without broadcasting or census.

Systolic design spans several levels of abstraction, from a specification to a chip layout. The two ends
of this spectrum are, at present, best understood. The front end is the refinement of a specification into
an abstract program. Solutions to this end are offered by work in programming methodology. The back
end is the refinement of an abstract systolic architecture into an optimized concrete one. Solutions to this

end are offered by work in VLSI design. Our work provides a connection of both ends: it links an abstract

program with an abstract systolic architecture.

References

1. Boyer, R. S., and Moore, J 8. A Computational Logic. ACM Monograph Series, Academic Press,
1979.

2. Cappello, P. R., and Steiglitz, K. Unifying VLSI Array Design with Linear Transformations of Space-

time. In Advances in Computing Research, Vol. 2: VLSI Theory, F. P. Preparata, Ed., JAI Press Inc,,
1984, pp. 23-65.

26

3. Chandy, M. Concurrent Programming for the Masses. Proc. 4th Ann. ACM Symp. on Principles of
Distributed Computing, 1985, pp. 1-12.

4. Chandy, K. M., and Misra, J. "Systolic Algorithms as Programs®. Distributed Computing 1, 3
(1986), 177-183.

5. Chen, M. C. Synthesizing Systolic Designs. YALEU/DCS/RR-374, Department of Computer Science,
Yale University, Mar., 1985.

8. Chen, M. C. A Parallel Language and Its Compilation to Multiprocessor Machines or VLSI. Proc.
13th Ann. ACM Symp. on Principles of Programming Languages, 1986, pp. 131-139.

7. Fortes, J. A. B., and Moldovan, D.I. "Parallelism Detection and Transformation Techniques for VLSI
Algorithms". Journal of Parallel and Distributed Computing 2, 3 (Aug. 1985), 277-301.

8. Huang, C.-H., and Lengauer, C. An Incremental, Mechanical Development of Systolic Solutions to the

Algebraic Path Problem. TR-86-25, Department of Computer Sciences, The University of Texas at Aus-
tin, Dec., 1986.

9. Knuth, D. E. The Art of Computer Programming, Vol. 8: Sorting and Searching. Addison-Wesley,
1973. Sect. 5.3.4.

10. Kung, H. T., and Leiserson, C. E. Algorithms for VLSI Processor Arrays. In Introduction to VLSIT
Systems, C. Mead and L. Conway, Eds., Addison-Wesley, 1980. Sect. 8.3.

11. Lam, M. S., and Mostow, J. "A Transformational Model of VLSI Systolic Design". Computer 18, 2
(Feb. 1985), 42-52.

12. Leiserson, C. E. Systolic and Semisystolic Design (Extended Abstract). Proc. IEEE Int. Conf. on
Computer Design/VLSI in Computers (ICCD ’83), 1983, pp. 627-632.

13. Leiserson, C. E., and Saxe, J. B. "Optimizing Synchronous Systems". Journal of VLSI and Com-
puter Systems 1, 1 (1983), 41-67.

14. Lengauer, C., and Hehner, E. C. R. "A Methodology for Programming with Concurrency: An Infor-
mal Presentation®. Science of Computer Programming 2, 1 (Oct. 1982), 1-18.

15. Lengauer, C. "A Methodology for Programming with Concurrency: The Formalism". Science of
Computer Programming 2, 1 (Oct. 1982}, 19-52.

168. Lengauer, C., and Huang, C.-H. A Mechanically Certified Theorem about Optimal Concurrency of
Sorting Networks. Proc. 13th Ann. ACM Symp. on Principles of Programming Languages, 1936, pp-
307-317.

17. Li, G-H., and Wah, B. W. *The Design of Optimal Systolic Arrays". IEEE Trans. on Computers
C-84, 1 (Jan. 1985), 66-77.

18. Miranker, W. L., and Winkler, A. *Spacetime Representations of Computational Structures®.
Computing 32, 2 (1984), 93-114.

19. Moldovan, D. I. "On th Design of Algorithms for VLSI Systolic Arrays”. Froc. IEEE 71, 1 (Jan.
1083}, 113-120.

20. Moldovan, D. I, and Fortes, J. A. B. "Partitioning and Mapping Algorithms into Fixed Size Sys-
tolic Arrays®. IEEE Trans. on Computers C-85, 1 (Jan. 1986), 1-12.

21. Quinton, P. Automatic Synthesis of Systolic Arrays from Uniform Recurrent Equations. Proc. 11th
Ann. Int. Symp. on Computer Architecture, 1984, pp. 208-214.

27

22. Rote, G. "A Systolic Array Algorithm for the Algebraic Path Problem (Shortest Paths; Matrix
Inversion)®. Computing 84, 3 (1985), 191-219.

23. van de Snepscheut, J. L. A. A Derivation of a Distributed Implementation of Warshall’s Algorithm
(JAN-113a). CS 8505, Dept. of Mathematics and Computing Science, University of Groningen, 1985.

24. Weiser, U., and Davis, A. A Wavefront Notation Tool for VLSI Array Design. In VLS Systems

and Computations, H. T. Kung, B. Sproull, and G. Steele, Eds., Computer Science Press, 1981, pp.
226-234.

28

Appendix: Proofs

‘We restate and prove Theorems 1, 2, and 3 of Section 3.

Theorem 1: Let siep be a linear step function for parallel trace ¢ that satisfies (S1) and (S2). Let place

be a linear place function for ¢. Flace satisfies {P1) if the following equations have the zero vector as the

unique solution:

-+ ==
% otot X 1% TG g Uy =0

“+ +...+F p
g olgtey Uyttt =0

-+ =
Oyt Uyt g u, =0

where r is the number of arguments of basic statement s.

Proof:
Place satisfies (P1)
= {conditions (S1), (S2) and (P1}}
for all basic statements s(z,z,,...,2,_;) and 5(Yg¥y--¥,_4) In t,

$(25,%, T,) (Ygo¥yses¥,_y) A step(s(:co,:cl,...,xr_l))=step(s(y0,y1,...,yr_l))
= place(s(zy,xy,...,7,_,))7%place(s(yy,y, -9, 1))

= {step and place are linear, and equations (E1) and (E2)}

for all basic statements s(z,z,,...,z,_,) and s(yo,yl,...,yr-l) in ¢,

(2,2 -2,)F(YgYye-Y,q)

-+ - + — + o+
N Qg %ot ¥ 1 O T P T Yot R 1 YT Y Y T,

+
= (o og* oy 1 Bt by g% gy PRI PR RS PN MR Y
+ o + +
7oy g tery Yyt F Oy Y gty e Qg aYgte ity Yy ta)

= {algebraic simplification}
for all basic statements s(:vﬁ,xl,...,a:r*l) and s(ye,yl,...,yr__l, in ¢,

8(2 % 5es® 7S (Yo Yy oY,y)

+ + ; - + +
N g 0Tt 1Tt F Qg 1 T T T oY T X 1Yyt T Y T,

+ ot + + +
= e WIR Rt TS b IASRRL P L | O‘l,r#a},oyo Ayt YTy,

V...

+ o+ +
Vo Tata, ety 8 ey shay oty ety o

= {algebraic simplification}

for all basic statements s(mg,xl,...,xr_l) and 8(yﬂ’y1""’yr~1) in t,

(22502)Y YY)
A ao,ﬁ(xo_ye}+ao,1(z1'y1)+‘"+°‘0,r~1(xr—1"yr—i)=0
= a1,0(m0‘yﬂ)+a1,1(m1_y1)+‘“+C‘1,r—1(xr—1"y el
V..
Voagg(agmygltay (emy ey (2 -y,)70

29

— {predicate calculus}
for all basic statements s(mﬁ,ml,...,:cr_l) and s(yo,yl,...,yr_l) in t,

aa,o(‘”o_yo)+a0,1($1_y1)+'"+O‘o,r-1(‘”r—1"yr~1)xo
A al,O(zO—y0)+a1,1(ml—y1)+'"+a1,r-1(xr—1_yr-1):0
A ...
A ad,e(mo'yo)+ad,1(m1'y1)+‘"+ad,r~1(‘“"r-1'y =0
= s(mo,:cl,...,mr_1)=s(y0,y1,...,yr_l)
& {algebraic simplification}
u o, U

-+ et
% %0 ¥, %1 T Yo%t 0

-+ *+ ot e
oy Qugtey pUygtetey u =0

+ +o =
ot Uty gt =0

have the zero vector as the unique solution.

(End of Proof)

Theorem 2: Let step be a linear step function for parallel trace ¢ that satisfies (S1) and (S2). Let place
be a linear place function for ¢ that satisfies (P1). If the subscripts of variable v are determined by all but

one of the r arguments of the basic statement, then flow is well-defined for variable v.

Proof: Let .sz::s(xo,...,xz.,...,:z:r_l), sx,zsz[cci’/xi], syr—sx[y’./mi}, and sy,zsx[yi’/xi]. Let the subscripts of

variable v be Tgr or Tpgr F ..., and z

oy 1 that is, the arguments of basic statement s , except the

(z+1)-st onme, T, - Then, 8,0 Spr0 Sy and s , all access variable v . Assuming
¥ ZO""’zi—1’xi+1"“’xr—1

step(sx)?éstep(sx,), and step(sy)%step(sy,), we can conclude:
flow is well-defined for variable v

gt
= {well-definedness}

1754101

(place(sz)~place(sx,))/(step(sx)wtep(sx,))-—==(place(sy)—place(sy,))/(step(sy)-step(sy,))

= {step and place are linear, and 8,5 8,00 8y and sy,have identical arguments in all positions but i}
(0‘1,5(“"6{_“3"""’d,i(zfxi’))/ aO,z‘(mi—xi})z(a1,£(yi—yz")’“"ad,i(yi”yi’))/ oy {9;79;)

= {algebraic simplification}
(0‘1,5/%,0""ad,;/o‘e,i):"'(al,s/%,f’"'7%,;/0‘0,:‘)

= {algebraic simplification}

true

(End of Proof)
Theorem 3: Let step be a linear step function for parallel trace ¢ that satisfies (S1) and (82). Let place

be a linear place function for ¢ that satisfies (P1). Let flow, derived from step and place, be well-defined.

Then pattern, derived from step, place, and flow, is well-defined.

30

Proof: If basic statements s0 and s are distinct and access variable v of identical subscripts:
pattern is well-defined for variable v

== {well-definedness}
place(s0)~(step(s0)— fs)* flow(v)=place(s1)~(step(s 1)~ fs)* flow(v)

= {algebraic simplification}
place(s0)—place(s1)=(step(s0)-step(s1))* flow(v)

= {definition of flow}

true

(End of Proof)

31

Besign: m~n—-1-1, Refinenent call: (n-w 4), Current step:]
Current parallel command: {(W-A-IPS 8 @ 8))

bss? o5 X 2 e
by o Gpo oo cg’z Cz’z %‘2 ci'z
TR TR T L L
b0 & ,o:% ° Cz’o 3
%0
'2,1 ‘:,0

':,1
.; 2 02‘ P
4o
‘2,3 5,2
‘;,s

‘one st H: Crooee meny. W
1271680 @9 HURNG

Figure 1. Matrix Multiplication — The First Design

32

Design: m-n-2-1, Refinement call: (wn-n 4), Current step: ©
)

L
Current parallel commend: ((A-H-IPS 8 8 ©))

=S
o v B2 o o 31
w02 o val v
o o BT v

<
o 4.0
bas» -+ » 8, -+ + Byqe ® ® ¥
<
o G0
- baz-b - & 51,1-5 & 2@ bo,o-.g
%.0
- @ ba,-a» - % bto-» Py ? 2
%0
h g h %
%1
3 ki
A
* * *
8,

:. Backuard one step

2 Earuard orne ctap
12716786 85:30:29 L5

M: Choose senu. 5
L HUANG USER: Ty

Figure 2. Matrix Multiplication — The Second Design

33

Besign: wm~n-9-1, Ref inenent calls (a~n 4) Current step: -1
3

'
Current parallel conmand: {((RA-H-IPS 8 8 1))

bz.s“ 01.2-» bo,‘l" ® @ ®
byg oo By g bp,0™® @ e
b b b
sy %213 0 3
[3

02 01 0001 %0

7 b 7 2t) 4
€9 G2 41 10702 &1 S0

’ 7 7 o 5 4
S S22 a1 2028 8o %ot

F 7 7 < +
%s a2 a1 e %o

: Hackuard One Step,
12716786 ©9:31:46 (5.H

Iyi

Figure 8. Matrix Multiplication — The Third Design

34

Design: lu-i, Refinement cell: {(lu 4), Current step: 8
Current parallel command: ({(INUR @))

./a3,5
&
N = e
&
e .8 of o o 3,2
&
o ¥ W &l
&
o o B2 o o 37
&
¥ 02 o v et
o o bt o
B9 &0
. ‘.('_, N o &
8
1,0
& o"’ 0‘/
,(.0,0
] & &

i bBackiusrd one step. M@ Chocee Foruard oné ste

2416760 69145165 L6.HUANG

Figure 4. LU-Decomposition

35

TSTIUD TsHuBRUL

€TZST ¥4 ‘ubangsiatd
yxed AsTusyds
A3TSI8ATUN UOTTOW oTbsuzed

soustog zs3ndwo) 3o adeq :01 (T-98-¥I IO setdod 98Iyl -

-+cow TrTew oseaTd nok ue) :3o09lgng

NOE° SYXHALN 0ZERBRIRY "800 0L
Q0T AWD° SO WYSpIenebusT URTISTIYD 1wWwoxg

