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PREFACE

Scheduling theory which concerns the optimal allocation of resources
to contending activities or computations is an area which has seen tremendous
growth over the past decades. Much of the emphasis in this area centers
around efficient algorithms for finding such optimum schedules. In situations
where the nature of the computations and the resources are known apriori, the
resulting scheduling problems display a decidedly combinatorial nature, which
attracted several researchers from the active field of combinatorial optimiza-
tion. However, scheduling theory also abounds in problems, which like a num-
ber of problems from combinatorial optimization, have defied repeated attacks
aimed at synthesizing good algorithms. In such situations, computational com-
plexity theory and more specifically, the theory of NP-completeness, has come
to our rescue by giving us formal techniques through which we can establish
that in all probability, we cannot hope to ever find efficient algorithms for
many of these scheduling problems.

Within combinatorial optimization, scheduling theory stands out with
respect to the number of individual problems whose complexity has been
resolved, through an application of algorithmic techniques together with the
theory of NP-completeness. In a sense, there is a combinatorial explosion, not
only in the time and space requirements of certain scheduling problems, but
also in the number of different problems from this area which have been clas-
sified into being polynomially solvable or NP-hard. Yet, despite this wealth of
knowledge, this area is lacking in unifying principles or theories which capture
the similarity in complexity characteristics of several of the seemingly different
subproblems of the scheduling problem. In fact, the large volume of results in
this area seem to reinforce the view that many of the well solvable sub-
problems from scheduling have associated polynomial time algorithms for
quite different reasons, while their generalizations are known to be NP-hard.
This is in contrast with other areas from combinatorial optimization, whose
complexity, as well as the behavior at optimality of the solutions of these
problems, have deep unifying characterizations.
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This was the starting point of my investigation into the scheduling
area, and I was really intrigued by the lack of such unifying characterizations
despite the large number of individual complexity results. In particular, T was
interested in scheduling problems which allow task systems with non-trivial
precedence relationships. These precedence relationships account for inter-
relationships between the (computational) tasks, induced by data and control
dependencies. Moreover, motivated by the current developments in the parallel
computation field which have gained impetus from recent technological ad-
vances including VLSI, I was especially considering scenarios in which these
precedence-constrained tasks are to be executed in parallel on multipipeline
and multiprocessor systems, which might even have many different types of
specialized processors in them.

In the context of such scheduling problems, I have been able to show
in this dissertation that many of the apparently unrelated results in this area
are really variants of a single class of problems, with common properties which
determine their complexity. In particular, I have been able to derive a single
intrinsically ordered convergence property under which scheduling problems
are polynomial, and which is at the heart of the results of several investigators
in this field.

An extremely interesting aspect of intrinsically ordered convergence is
that it draws upon our ability to characterize conditions under which
schedules remain optimum. This approach towards studying and characteriz-
ing the solution domain of an optimization problem is characteristic of the
philosophy of combinatorial optimization. These results pertaining to the be-
havior of schedules at optimality are presented in Chapters 3 and 4, and are
developed within the context of a hypergraph theoretic formulation of the
scheduling problem; in this formulation, a schedule is an appropriately con-
strained sequence of edges of the hypergraph defined by the task set and
therefore, each edge in such a sequence is a snapshot of all the tasks with iden-
tical start and finish times in the schedule. The complexity related issues are
brought into play in Chapter 5, and combined with the results from Chapter 4
which gives us the central IO convergence property. The above mentioned
unifving framework is completed in Chapter 6, and a detailed implementation
of an algorithm which produces optimum schedules from IO convergent in-
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stances is described in Chapter 7. Since this work draws heavily, both in
philosophical and concrete terms, from the fields of combinatorial optimization
and complexity theory, I have included a fairly detailed introduction to many
of the results from these two fields in Chapter 1, especially as they relate to
our problem on hand. Also, since the precedence constrained problem with its
many versions and parameters can be quite specialized at times, I have decided
to include a detailed description of the basic problem and its hypergraph
theoretic version, respectively in Chapters 1 and 2.

Many individuals have contributed, both professionally and per-
sonally, towards the successful completion of my research effort. I am most
grateful to Donald Fussell, for his advice, constant encouragement and sup-
port. He was an invaluable source of inspiration and guidance as my disser-
tation supervisor, which helped in making my pursuit of a Ph.D. an extremely
enjoyable experience indeed. I am equally thankful to Ashley Welch for his
help, for guiding me into the problem area, and for jointly supervising my dis-
sertation. James Bitner spent an extraordinary amount of time with me
during my years as a doctoral student while I grappled with a variety of topics
ranging {rom combinatorial optimization and combinatories to complexity, in
addition to evincing an active interest in my own research; for this [ am ex-
tremely thankful. I am also indebted to James Browne, who constantly helped
me in evaluating my work and in placing it in the proper perspective. In ad-
dition to the above mentioned individuals, Bruce Buckman and Miroslaw
Malek also served on my dissertation supervisory committee, and I wish to
thank them for their time. It has also been a rare pleasure to study under
Norman Martin, whose keen insight into logic, recursive function theory, and
metatheory, and his philosophical orientation, have helped me in many ways.
Zvi Kedem and Rao Kosaraju also deserve my gratitude for their many helpful
remarks and criticisms.

Besides these individuals who contributed directly towards my disser-
tation, I am also thankful to several workers and authors whose work has
helped and influenced me in several ways. In this respect, my initiation into
this dissertation area started with Michael Gary and David Johnsons’ lucid
treatment of the basic theory of NP-completeness in their book: 'Computers
and Intractability - A guide to the Theory of NP-completeness’. Also, their
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ground breaking research into scheduling problems has formed the basis of my
own research to a significant extent. Christos Papadimitriou, Kenneth
Steiglitz, and Eugene Lawler, whose books and results blend ideas from com-
binatorial optimization, and algorithms and complexity, in many beautiful
ways, also stand out in this respect. B. J. Lageweg, Jan Karel Lenstra and
Alexander Rinnooy Kan, who through their work in combinatorial optimiza-
tion - especially in scheduling theory - have also been a source of inspiration to
me. My task of keeping abreast of the ocean of results in scheduling was
greatly simplified, thanks to their novel and integrated approach towards com-
piling them. Finally, there are several other individuals whose work from the
scheduling and closely related areas has influenced me in several ways, and
without attempting to be complete, I would like to mention some of them:
John Bruno, Edward Coffman, Ronald Graham, T.C.Hu, Clyde Monma, Sar-
taj Sahni, Ravi Sethi, and Jeffrey Uliman.

I would also like to thank my family and especially my parents for
the many sacrifices that they have made, and for their untiring emphasis on
my educational advancement, without which this work would not have been
possible. Finally, I am thank{ul to my many friends, who through their unfail-
ing support, understanding, and candid criticism, have helped me in striving
towards a deeper understanding of a wide range of issues.

A significant part of this research was supported by the Office of
Naval Research under contract NO014-83-K-0730.
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Chapter 1

Introduction

1.1 Foundations

The field of combinatorial optimization has grown tremendously,
especially in the last twenty years. Generally speaking, combinatorial op-
timization refers to problems which can be formulated as linear programs or
tnteger linear programs. In the latter case, we are quite often interested in
specialized problems which have ’additional structure’, over and above that
captured by a general integer linear programming formulation. These specially
structured problems include such well known optimization problems as finding
shortest paths, minimum spanning irees, mazimum flows, mazimum
matchings, and shortest tours (the travelling salesman problem) in directed
and undirected graphs. These graphs are often referred to as networks and as
a consequence, the above mentioned optimization problems are quite often col-
lectively referred to as network opiimization problems, due to the obvious

way in which they are formulated in terms of networks.

Many of the results in combinatorial optimization concern efficient
algorithms for solving these problems. These algorithms are efficient in the
sense that they run in time proportional to a polynomial function of the
problem size (more precisely the input length); this widely understood and ac-
cepted characterization of efficiency is attributed to be originally due to

Cobham [7] and Edmonds [19]. There are several good books which treat al-



gorithms for network optimization and related problems through a graph
theoretic  approach [31], [10], [22], [67], [88]. Also, Lawler [61] and
Papadimitriou and Steiglitz [74] elucidate algorithms for solving many of the
network optimization problems in the fascinating setting of matroids and
polytopes. Klee's comprehensive survey [54] is another source of references to
many of the original papers on network optimization. In Tarjan’s extremely
readable treatment [89], the best known algorithms for solving the shortest
path, the minimum spanning tree, the maximum flow and the maximum
matching problem are presented and analyzed. Tarjan [89] pays close atten-
tion to data structures and their role in the performance of the various al-
gorithms. In addition, he introduces a new and promising way of analyzing al-
gorithms based on the principle of amortization, and applies this idea

repeatedly in several different contexts.

In addition to network optimization, combinatorial optimization also
includes two other important areas namely scheduling and discrete locaiion;
areas which are also significant from a practical standpoint. The first of these
two areas namely scheduling has attracted a lot of attention from researchers
motivated by practical as well as theoretical interests. In fact, this field has
been the focus of a lot of activity over the past several years as reflected in

Johnson’s comments from [49], which we now quote:

Scheduling theory has turned out to be one of the most fertile ter-
ritories for exploring the boundary between the NP-hard and the
polynomial time solvable and the outpouring of results has continued
unabated... .

Starting with Conway, Maxwell and Miller's book on the subject of
scheduling [13], there have been a number of excellent books and papers which
describe and survey algorithms and related complexity results for a variety of

scheduling problems [5], [14], [24], [38], [49], [65]. Coming to the discrete loca-



tion problem, Krarup and Pruzan [55] provide a good introduction to many of

the results in this area.

However, efficient algorithms are not always known for combinatorial
optimization problems. In fact several important problems such as the travell-
ing salesman problem and the general scheduling problem have resisted
repeated attacks by researchers, in the sense that we do not know of any poly-
nomial time algorithms for solving these problems. An obvious question that
arises in this regard asks as to whether this failure reflects an intrinsic dif-
ficulty in these problems which precludes the possibility of their being
polynomially solvable or alternately, whether it merely reflects our inability in

finding efficient algorithms for solving these problems.

Questions such as these have been raised in the past in more general
contexts and have also been successfully resolved. For instance, following
Turing’s pioneering work [91] it is now well known that there are a number of
problems for which it can be shown conclusively that there is no algorithm or
effective procedure - polynomial time or otherwise - for resolving them; these
constitute the well known class of wundecidable problems [3], [15], [16], [79].
Clearly, if a problem is shown to be undecidable, we can conclude that it is
not possible to solve it computationally or equivalently, that it is computation-

ally intractable.

At a more reasonable level, even problems which can be resolved
computationally - which constitute the class of decidable problems - can prove
to be computationally intractable. For example, if the running time (measured
in terms of the number of steps) of an algorithm grows as an exponential funec-

tion of the size of the input (say 3" steps for an input of n bits), then even for



reasonably small inputs (let us suppose that n takes on a value of 53), the al-
gorithm will run for extraordinarily large amounts of time (for 2 x 10° cen-
turies even on a computer with an instruction execution time of 1
nanosecond). In this case, the problem with which we are faced is that if the
number of steps needed to resolve a given problem grows rapidly enough, then
even for reasonably small input sizes, this number (of steps) can be so large
that even though it is finite, we cannot ever hope to run the corresponding al-

gorithm to completion.

In contrast to these extremely computationally intensive algorithms,
those algorithms whose running time and space requirements are bound above
by a polynomial function of the input length are extremely desirable since
these functions grow much more slowly and as such, we can hope to use the
corresponding algorithms even for reasonably large sized inputs. This is in fact
the motivation behind equating the polynomial time solvability of a problem
with its fractability; a convention which we will also adopt in the sequel.
Early examples of decidable but provably ¢niractable problems (in the sense of
having at least exponential lower bounds on their time and space complexity)

can be found in [25], [64], and [69].

However, the types of problems with which we are faced, in com-
binatorial optimization and other areas as well, seem to be in a sense 'easier’
than these decidable but intractable problems. As evidence, we cite the fact
that the ’decidable but provably intractable’ problems which we discussed in
the previous paragraph remain intractable even if we attempt to solve them
on a nondeterministic turing machine (or computer); the converse is true of a
number of problems from combinatorial optimization or at least of their

decision versions in that they (these decision problems) can be resolved non-
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deterministically in polynomial time. Therefore, all the problems which have
been shown in the past to be computationally intractable are either decidable
and nondeterministically intractable, or are undecidable problems. In contrast,
several apparently intractable problems from combinatorial optimization as
well as from other areas, are both decidable and can be resolved in polynomial
time on a nondeterministic turing machine. Thus, the techniques that have
been developed thus far for establishing the intractability of problems such as
those in [25] for example, are not powerful enough to establish strong lower
bounds on the worst case time complexity of these problems which can be
solved in polynomial time nondeterministically, but which nevertheless seem to
be deterministically intractable; further evidence towards the inadequacy of
known proof techniques in establishing intractability results can be found in

[12], [45], [46], and [83].

While efforts to develop stronger techniques for proving intractability
results are ongoing, researchers have been trying in parallel to study inter-
relationships between the intrinsic difficulty of various combinatorial optimiza-
tion, as well as other problems. These interrelationships not only help us in
understanding the way in which various problems are related in their dif-
ficulty but can also provide the algorithm designer with valuable information
which can be used towards the more positive goal of solving these problems as
well. A standard technique used to study such interrelationships between any
two problems has involved reducing one of the problems to another through a
constructively specified transformation which maps instances of one problem
into corresponding instances of the other. The basic principle behind this idea
of reducing one problem to another, which has its roots in recursion theory,
has been recognized and applied in the past in the context of combinatorial

optimization problems. For example, Dantzig [16] showed that a number of



combinatorial optimization problems can be cast as integer linear program-
ming problems with zero-one solutions. These reductions were however under-
taken with a more positive goal in mind since they prove to be useful espe-
cially when the structure of the second problem (the one in the range of the
reduction) is better understood, as a consequence of which good (but not

necessarily polynomial time) algorithms are known for solving it.

Let us digress briefly from our discussion of computational intrac-
tability and consider an example situation where these reductions have played
such a positive role by helping in understanding and solving an optimization
problem. In their work, Grotschel and Padberg [41, 42] and others have
studied the polytopes associated with certain linear programming formulations
of the travelling salesman problem. Since linear and integer linear programs
have been studied extensively, many interesting and powerful techniques are
known for solving them. As a consequence, there is reason to hope (which in
fact proved to be the case) that these linear programming versions of the
travelling salesman problem will prove to be amenable to efficient solution
methods. In addition, such reductions yield interesting characterizations of the
travelling salesman problem through polytopes, which sheds considerable light

on its intrinsic structure [6, 41, 42].

A problem with the above mentioned approach to solving the travell-
ing salesman problem is that solving its linear programming version does not
always yield a solution to the underlying travelling salesman problem. This is
because a solution to these linear programs - in fact, a 'basic feasible solution’
or equivalently, a 'vertex’ of the corresponding polytope - does not always cor-
respond to a ’'valid tour’ in its equivalent travelling salesman problem.

However, this kind of a problem is not uncommon and in fact, a variant is en-
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countered in the context of solving integer linear programs by first reducing
them to equivalent linear programs through ’relaxation’, and then by solving
the resulting linear programming problems; the relaration of an integer linear
program is the corresponding linear program derived by dropping the integer
constraints on the solutions. Gomory [40] solved this problem through the well
known ecutting plane method which involves computing additional inequalities
or constraints which represent the cutting planes. These additional constraints
eliminate non-integer solutions of the (relaxed) linear programs while preserv-

ing the feasible integer solutions [74].

This basic principle has been used to devise techniques for computing
such cuts or valid inequalities in several situations for the travelling salesman
problem [6, 71]. Then, solving the linear programming formulations of the
travelling salesman problem in conjunction with these cuts, is guaranteed to
vield a correct and optimum solution to the latter problem. This shows us that
reductions have been used effectively towards the positive goal of solving an
optimization problem (the travelling salesman problem in our case) by reduc-
ing it to another problem (linear programming), especially when good tech-

niques are know for solving the latter problem.

Let us now return to the issue of studying the interrelationship be-
tween the intrinsic difficulty or intractability of various problems through
reductions. It was Cook who laid the foundation towards understanding these
relationships through the theory of NP-completeness in his classic paper [11].
In this paper, he delineated the class NP of decision problems which can be
resolved in polynomial time on a nondeterministic turing machine. But more
importantly, through the notion of polynomial teme reducibriiives, he showed

that the satisfiability problem is in a sense the hardest problem in NP. He



also suggested that this property of being the hardest problem in NP is shared
by other problems (in NP) which have since been collectively referred to as the
class of NP-complete problems. As a consequence of his results, we now know
that if any NP-complete problem is intractable, then they all are; in the same
vein, if a single NP-complete problem can be solved in polynomial time, then
so can any problem from INP. Cook’s original ideas have proved to be ex-
tremely powerful since they allow us to unify several individual questions
regarding the complexity of a number of problems into a single question con-

cerning the intractability of the class of NP-complete problems.

Subsequently, Karp showed in his influential paper [50] that the deci-
sion problem versions of many of the combinatorial optimization problems in-
cluding the travelling salesman problem, are all NP-complete. Since then, the
number of NP-completeness results has grown rapidly, especially since the
publication of Garey and Johnson’s remarkable exposition of this theory [35].
Even though the question as to whether the NP-completeness of a problem im-
plies its inherent computational intractability remains one of the deepest and
most important open questions, the NP-completeness or the NP-hardness of a
problem (a problem is NP-hard if an NP-complete problem can be reduced or
transformed to it in polynomial time; it need not necessarily be in NP), and its
being computationally intractable, are widely accepted as being synonymous
and as such, we will also refer to NP-complete or NP-hard problems as being

computationally intractable in what follows.



1.2 The Precedence Constrained Scheduling Problem

So far, we have been looking at various types of well known com-
binatorial optimization problems. We have also looked at the developments in
complexity theory and its implications to the question of whether or not we
can solve these optimization problems efficiently. Part of this discussion in-
volved formalizing the intuitive notion of the efficiency of an algorithm by
equating it with polynomial time bounds on its running time. We will now
outline several known complexity results from the fertile area of precedence
constrained scheduling. To do this, we have to first introduce this scheduling
problem formally. Having outlined these complexity results from scheduling
theory, we will then be able to use them in the next section (Section 1.3) to es-
tablish the main motivating them of this dissertation and highlight our ap-

proach towards tackling the many problems which arise out of this theme.

An instance of the precedence constrained scheduling problem has a
precedence graph which is a directed acyclic graph P= (A, a). Each element
a; in the vertex set A for 1 < ¢ < n is interpreted as a (computational) task.
The edge set o represents interdependence of tasks; if edge {ai, aj.) is in o, then
task a, has to be completed before task a; can be started. In this manner, a
precedence graph P represents an entire task system with several interrelated

tasks.

This task system is to be executed on a multiprocessor system with
many processors and resources. In particular, there can be many distinguish-
able types of specialized processors with different characteristics. For purposes
of our present discussion, let us consider processors as just being another
(special) type of resource. Then, a multiprocessor system has a number of dif-

ferent types of resources, say m types. Some of these types can represent dif-
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ferent types of processors and the remaining types can be non-processor type
resources such as memory, and so on. We denote the number of units of the
vth type resource in the system by B, > 0for1 < v < m. Therefore, the
bound on the total resource availability in the system is specified through the

bound vector B={B,, ..., B_ }.

We also have a way of specifying the resource requirements of each
element or task through the class function C, which maps the task set A into
the m-tuples of non-negative reals. So, for any task a. s
Cla;) =(Cyys s €, ) represents its resource requirements where C; is the
amount of the vth resource that is needed by task a, during its execution. We
also have a task lengtih Ii > 0 associated with each task a;. This length I
represents the duration for which task a, will use the resources needed by it,

from its start to its completion.

The precedence graph and class function of an example instance are
both indicated in Figure 1.1. There are nine elements (or tasks) in this ex-
ample task system, and the edge set represents the precedence relationships
between the elements. There are two types of resources in the multiprocessor
system on which this task system is to be scheduled equivalently, m is two.
There is exactly one unit of each of these (two types) of resources and there-
fore, the bound vector B={(1,1) for this instance; also, all the task lengths

are unity.

Given such an instance, we are interested in schedules, where 2a
schedule is a specification of a start teme s, and a finish time [, for each task
or element a where fg. > s, > 0; the task a, is to be started at time S5 and is

to be completed by time f. We are only interested in non-preemptive
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a; C(U/}

g, <1,0>
Y92 | <r10>
93 | <,0>
s | <r,0>
U5 <o,/ >
% | <o/ >
97 | <r,0>
98 | <1,0>
e | <1,0>

Figure 1-1: The precedence graph and class function of
an example instance.

schedules in which tasks are processed continuously from start to finish, that
is they are not interrupted for any non-zero interval of time once they are
started. In such schedules, any element or task a, is active in the (half-open)
interval of time [s,, f,) and also, I, = (f, — s.).

We also want to make sure that our schedules respect the precedence
and resource constraints. The precedence constraints represented by the edge
set o of the precedence graph P, require that in any schedule, if (az., aj.) € a
for any two tasks a, and a, in A, then element or task a. must finish before
element a, can start or equivalently, s, > fz.. The resource constraints require
that the total number of resources of the various types which are needed by
the tasks that are being processed at any given instant of time in the schedule,
do not exceed the total (available) amount of resources as specified in the

bound vector B. To formulate this constraint more precisely, let t represent
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the set of all elements which are active (being processed) at some instant of
time ¢ in a given schedule. Then the resource constraints require that for all ¢
> 0 and each v where 1 < v < m,
> ¢, < B,
Y - v
a, €t
Schedules which respect the precedence and resource comnstraints will be
referred to as walid schedules and in what follows, when we refer to a

schedule, we actually mean a valid schedule.

In particular, we are interested in optimum schedules which are
schedules with minimum makespan, where the makespan of a schedule is the
maximum over all the finishing times, of all the tasks or elements in it. Intui-
tively speaking, optimum schedules are those in which all the tasks are com-
pleted as quickly as possible. A schedule for the example instance of Figure 1-1
is shown in Figure 1-2. In this schedule, element a, is active during the inter-
val of time [0,1), element ay during the interval [8,9) and so on. Also, its
makespan is nine and it is easy to see that it is optimum for the given in-

stance.

a | g | a3 | a4 s | g5 | 0r | Gy | Og

o / 2 3 4 5 6 7 E) 9
i The  Various { Fime) Steps of the Schedule

Figure 1-2: A schedule for the instance of Figure 1-1 where each
vertical line indicates the start or the
finish time of a task.

A special class of problem instances which have attracted con-

siderable interest in the past in the context of finding optimum schedules is
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one in which the multiprocessor system being modelled has a single processor-
type resource. Thus, in our terminology, this class would correspond to the
restricted case where m is always unity, and for any instance from this class,
we have B1 units of these processors in the system. Also, since these resources
represent identical processors, it is assumed in each of these cases that any ele-
ment or task a, needs exactly one of these B1 processors for lz. units of time

from start to finish.

It was shown by Ullman in [92] that even for this special class of in-
stances, the problem of finding schedules with minimum makespan is NP-hard

if we were to allow instances with:

1. arbitrary precedence graphs, two processors (Bl=2), and the task
lengths 1. are either 1 or 2 or,

2. arbitrary precedence graphs, variable number of processors (B, is

1
an integer greater than zero} and all the task lengths equal unity.

Motivated by result (1), further restrictions were placed on the problem in-
stances being considered, with the aim of finding polynomially solvable classes
of instances or subdomains. In this connection, a commonly placed restriction
requires that all the task lengths be equal; it is easy to see that there is no loss
of generality in extending this restriction to require that all the task lengths
equal unity. Problem instances which satisfy this constraint are often referred
to as equal execution time systems. In what follows, we will be considering
only such task systems and will use I to denote this (common) task length at-
tribute. Even for this rather specialized class of equal execution time systems,
we know from result (2) above that finding optimum schedules remains an
NP-hard problem if multiprocessors with an arbitrary number of processors
are considered or equivalently, if instances in which B1 is allowed to assume

arbitrary positive integer values are admitted.
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However, with additional restrictions on the allowed instances, several
polynomially solvable subproblems of the scheduling problem have been dis-
covered starting with Hu's classical result [48], as shown in Table 1-1. Note
that all the results in Table 1-1 deal with subdomains in which the instances
have a single (identical) processor-type resource (m==1), and each task requires
exactly one unit of this resource (C(a; = (1) for any element a, in an instance
from this subdomain). The label g, in this (and other) table(s) will be used
subsequently to refer back to the result listed in the corresponding row. Also,
in each case, 'complexity’ refers to the bound on the running time of the algo-
rithm including the best known techniques for the various preprocessing steps,
as reported in the original paper cited in the column entitled ’appeared in’.
The entries in the remaining columns reflect the constraints on the instances

in the corresponding subdomains.

Domain Appeared Number of Precedence Complexity
in Processors Graphs (Time)
B, [48] >1 in-trees (or O (n)
out-trees)
. . 2.61

A, [23] two arbitrary O(min(|a| - n,n""")
2 -
+n=?)

[9] O(min(|e| - n,n?51)+

le|+n - alpha(n))
[29] O (la]+n.alpha(n))

B4 [75] >1 interval orders O (n+lel|)

Table 1-1: Polynomially solvable subdomains of the makespan
minimization version of the scheduling problem.
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Subdomain B, in this table requires special mention since it has been
the focus of attention of three different research efforts, starting with that of
Fujii et al. [23]. Since then, Coffman and Graham [9] and more recently
Gabow [29] have designed algorithms with improved efficiency as indicated in
Table 1-1. The Coffman-Graham algorithm is based on a lexicographic num-
bering scheme which works on a transitively closed or reduced graph.
Sethi [82] has shown that this lexicographic numbering can be done in time
O (Ja| + n- alpha (n)) where alpha is the very slow-growing inverse of the
Ackerman’s function [90]. Finally, the alpha (n) factor in the running time of
Gabow’s algorithm has since been shown to be unnecessary, following a result

from [32].

Subsequently, Goyal [39] considered the closely related problem of
multiprocessor systems with many different types of specialized (processor-
type) resources or in other words, m is allowed to be greater than one for
these instances. However, multiprocessors with only one unit of each of the m
types of resources were considered, and since these resources were processors,
it is once again assumed that each task requires exactly one unit of one of
these resource types (or for each a there exists a unique ¢’ such that Cw,
equals unity and C; equals zero whenever v 3£ ¢/). For instances which satisfy
these restrictions, Goyal was able to provide a linear time algorithm for find-
ing schedules with minimum makespan, if in addition, the precedence graphs

of these instances are cyclic forests; let B, denote this subdomain of instances.
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1.2.1 Schedules with Minimum Tardiness

Another variant of the scheduling problem has also been studied
which involves determining schedules for precedence constrained tasks, which
are once again specified as precedence graphs. However, in addition to the
class function and length attributes which were associated with the tasks in
the previous case, each task a, also has a deadline d. associated with it. Once
again, the resource availability or the resource constraints are specified
through the bound vector B. However, in this case, we would like to finish
each task not only before the tasks which it precedes, but also as close as pos-

sible to the explicitly specified deadline which is associated with it.

To make this notion formal, let us define the tardiness of a task a,
with finishing time f; in 2 given schedule, to be the minimum of (f;— d.) and
zero. Then, the tardiness of the schedule is the maximum tardiness of all the
tasks in it, and we are seeking schedules with minimum tardiness. Intuitively,
the tardiness of a task in some schedule is a quantitative measure of the extent
to which it has been delayed beyond its deadline before it is completed. These
deadlines can be used to capture the typical constraints on the tasks from a

real-time environment, such as those discussed by Leinbaugh in [62] for ex-

ample.

Even in this case, the problem of finding schedules with minimum
tardiness is NP-hard. This follows from the results of Brucker, Garey and
Johnson [2], Ullman [92] and others [35, 49, 65]. Once again, polynomially
solvable subproblems have been discovered for unit execution time task sys-
tems as shown in Table 2. As in the case of the makespan minimization ver-
sion, multiprocessor systems with a single ’processor-type’ resource are con-

sidered in each of these cases. Also, since all these processors are considered to
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be identical, any task can be executed on any one of the processors. It is there-
fore the case that any task a, requires exactly one unit of this 'processor-type’

resource or in other words, C(a;) = (1) for any element a,.

Domain Appeared Number of Allowed Precedence Complexity

in Processors Graphs (Time)

Be 2] > 1 in-trees O (nlogn)
[68] O (n)

B [33] two arbitrary O (n® log n)

Table 1-2: Polynomially solvable subdomains of the tardiness
minimization version of the scheduling problem.

1.2.2 Scheduling Pipelined Multiprocessors

With the increasing popularity and commercial viability of pipelined
computers [53, 77], various researchers have studied the associated scheduling
problem in scalar [4, 78] and wvector [81, 84] environments of computing. To
understand this version of the scheduling problem, let us consider the pipelin-
ing concept informally in the light of the scheduling model which we have
been considering thus far. In Figure 1-3(i), we have a collection of n tasks
each of which needs the (single) processor indicated alongside for 1 units of
time for it to be completed. Each of the computation tasks a, to a_ can be

viewed as a specific representation of some computable function.

Now, consider replacing each of the computational tasks in Figure
1-3(1) by an equivalent 'composition’ of four (in general k) tasks as shown in
Figure 1-3(ii). In this manner, task a, gets sliced into the chain of four tasks
ay 15 G195 Oy 3 and a4 Also, suppose that this slicing is such that the com-
position (in the usual sense of a functional composition) of the four com-

putable functions represented by the tasks a; ; to a, , Is equivalent - once
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again in the usual sense of functional equivalence - to the original computable
function represented by task a,. In the same manner, we also replace the
processor by a four stage (in general k-stage) pipeline. The replaced or sliced
version in Figure 1-3(il) is referred to as the pipelined equivalent of the
original problem, which includes the task system and the processor shown in

Figure 1-3(i).

I e
: All these ftasks
a ® need the e // e processor
< processor
g, e
/ \,-\
Slice (7)
L —T T T T
79 G Y3 Ga ® ®

/ } 02 0/7
S
P

Correspondence between s/iced

fasks and ,irocessor stages.
i

Four stage pipelined
processor

(i7)

Figure 1-3: The process of slicing : The instance in (i) is replaced by
its pipelined equivalent in (ii) by slicing the
tasks and resources into four.
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We will now describe the way in which each of the chains of tasks in
the pipelined equivalent is to be executed on the corresponding four stage
processor. We start off by executing some eligible task, say a5 at the first
stage of the pipelined processor. As soon as it is completed, we are ready to
start task a4, this time at the second stage of the four stage processor. We
continue in this fashion where in general, we execute the ~th task from the
chain at the ~4th stage of the pipelined processor at a point in time after the
(v—1)th task in the chain has been completed at the (y— 1)th stage of the

Processor.

What is most interesting about the pipelined equivalent (shown in
Figure 1-3(ii}) of the original problem is that once task a, ; is completed at the
first stage, this stage of the processor becomes free and therefore, a different

task, say g ; Can Now be started concurrently with task a In this manner,

1,2°
we can have up to four (in general k) different tasks being processed simul-
taneously in the four stage pipelined processor. This idea can be generalized
in an obvious way when we have a system with many different types of
k-stage pipelined processor and non-processor type resources in the system.
Then, a task essentially starts at the first stage of all the resources it needs, in-

cluding processors. As it completes getting processed at a certain stage, it

moves on to the next stage of all these resources simultaneously and so on.

The motivation behind slicing up the tasks and resources in the
above described manner follows from the following reasons. Firstly, it is quite
often the case that each individual task in the pipelined equivalent - say task

a; ; in the chain of tasks corresponding to the original task a, - is much

3

simpler than the original task a,. As a consequence, the length of task a; ; is

3

much smaller than that of the original task. Actually, if we assume that over-
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heads are negligible, the length of the original task a; will be very close in
value to the sum of the lengths of all the tasks in the corresponding chain in
its pipelined equivalent. It turns our that it is reasonable to make the above
mentioned assumption in a number of realistic and practical environments.
Under these circumstances, the length of the original task a, in our example

to a

would (be almost) equal (to) the sum of the lengths of tasks aq e

For purposes of our present example, let us also suppose that the
lengths of all the tasks in the chains of the pipelined equivalent are all equal
or equivalently, the processing delays are the same at all stages of the
pipelined resources. Then, based on our explanation from the previous
paragraph, the length of each task in the chains of the pipelined equivalent in
Figure 1-3(ii) equals 1/4, where I denotes the length of a task from the original
instance from Figure 1-3(i). Also, note that the makespan of any wvalid
schedule for the n tasks in Figure 1-3(i) with single stage processors and
resources is at least n-1. In contrast, it is easy to see that by pipelining, we
can get schedules with lower makespans; for our example of Figure 1-3(ii), the
makespan can be as low as {((n—1)-1/4)+1} (or more generally,
{({(n—1)-1/k)+1} when k-stage pipelines are used). It is also easy to show
similar benefits, even when the task lengths in the chains of the pipelined
equivalent are not all equal and in addition, when we have task deadlines and
our goal is to find schedules with minimum tardiness. It is this performance
benefit which pipelined systems have to offer with relatively negligible accom-
panying control overhead which makes them practical, and which is respon-

sible for their widespread use.

Let us now extend our scheduling model to account for pipelined

multiprocessor systems as well. To do this, we simply need to add an integer
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parameter k& > 1 which we will refer to as the degree of slicing. Clearly, k
represents the number of stages into which the tasks and resources in the
original problem are sliced. Viewed in the light of this generalization, it is easy
to see that the results listed in Tables 1-1 and 1-2 correspond to the special
case of the scheduling problem in which the degree of slicing k& equals unity.
The various other components of an instance which were identified and
defined earlier on in the context of non-pipelined systems including the
precedence graph, the class function, the task length and the bound vector at-
tributes, are all defined in exactly the same manner in the case of pipelined
systems as well. In effect, to specify instances of the scheduling problem with
pipelined multiprocessors and resources, we simply take the way in which we
specified these instances in the case of non-pipelined systems in the earlier sub-
sections and add an extra parameter k to this specification to indicate the

number of stages into which the tasks and the resources are sliced.

Also, we continue to be interested only in equal execution time sys-
tems, and in determining non-preemptive schedules. As a consequence of the
latter fact, schedules are still completely determined by specifying the start
and finish times [s, f;) for each task a, in the system. However, in this inter-
val, a task will be ’switching’ from one stage of the resources it is executing
on, to the next. If this process of switching is to be explained in terms of slie-
ing, we will have to say that for any task a; the wvarious tasks a; ; for
1 < 7 < k in the corresponding chain in the pipelined equivalent are being

successively processed at various points in the interval of time {sz.i fz.).

We now need to ensure that the schedules for these pipelined systems
also obey the precedence and resource constraints. The precedence constraints

are still enforced by requiring that [, < 8 whenever {a@., a.].) € «. However,
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since tasks contend for resources only when they are active at the same stage
of the pipelined resources, we have to modify our earlier formulation of
resource constraints to account for pipelining. In other words, we only need to
make sure that the resource requirements of all the tasks in the schedule
which are being processed at the same stage and at a given instant of time, do
not exceed the total resource availability. If this has to be done, we need to
first formalize the notion of a task switching from one stage to the next, while

it is being processed on the pipelined resources.

To do this, let us for the moment concern ourselves with instances in
which the processing delay is the same at all stages of the pipelined resources.
This fact in conjunction with our present focus on equal time systems implies
that the lengths of all the tasks in the pipelined equivalent of any instance
that is of interest to us, must all be equal (to 1/k); let | denote this length of a
task from the pipelined equivalent. In the rest of this dissertation, we are go-
ing to concern ourselves with instances which satisfy the above constraint and
will refer to them as uniformly k-sliced systems. Then, a given task a; - ac-
tually task a; in its pipelined equivalent - is being processed at the first stage
in the interval of time [s,s.+{). During the second time interval
s, + 1,5, + 2 1) when task a, (or task a; in the pipelined equivalent) is being
processed at the second stage of its resources, the corresponding first stages of
all these resources are free to be assigned to a different task. Thus, for a
given task a, we can associate an active period at each stage as it is being
processed - formally, we say that task a; is active in the given schedule at the
~th  stage for positive integer ~ < k, in the interval of time
[31' +{(v—1)-L s, +~-1); in ’slicing’ terminology, task a; from the cor-
responding chain of tasks in the pipelined equivalent is being processed during

this time interval. Another way of stating this idea is to say that task a  is
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actizve in a schedule at the ~th stage at time ¢, whenever

i € [Si%—(fy—l)-[,Si%—';'l).

We are now in a position to state the resource constraints precisely.
To this end, let tA/ be the set of all tasks which are active in the given schedule
at the 4th stage, at time instant ¢. Then the resource constraints are such that
for each v and v where 1 < v < kand1 < v < m,
] Z Civ < Bv'
tia; < tfy
Once again, we say that a schedule is valid if it satisfies the
precedence and resource constraints and we continue to be interested in
schedules with minimum makespan and, when local deadlines are associated
with the tasks, in schedules with minimum tardiness; both makespan and tar-
diness are defined in exactly the same way as before. Let us now consider the
example schedule in Figure 1-4 for the example instance whose precedence
graph and class function were shown in Figure 1-1. In this instance, we have a
single two stage (k= 2) processor (instead of two single-stage processors in the
original example). Also, since we are concerned only with uniformly k-sliced
systems, the processing delay is assumed to be equal at both stages of this
pipelined processor and since all the task lengths equal unity, we have /=1/2.
Note that through pipelining, we have a schedule with improved in makespan
in Figure 1-4, when compared to its counterpart in Figure 1-2 which cor-

responds to an instance with single stage processors.

Bruno, Jones and So [4] have studied the problem of scheduling
parallel tasks systems on pipelined processors. As is the case with the earlier

results which we outlined in Tables 1-1 and 1-2, they consider multiprocessor
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Figure 1-4: A schedule for the instance of Figure 1-1
with two stage pipelined processors.

systems with a single type of identical processor-type resources (m =1 in our
formulation). Once again, since these resources are identical processors, Bruno
et al. expect the tasks to require exactly one of these processors (C(a,) =1 for
all tasks az.). They also restricted their attention to equal execution time sys-
tems and in particular, those in which the task length 1 equals the degree of
slicing k, as a consequence of which [ equals unity for any instance which was
considered in [4]. These results are listed in Table 1-3 and as we have in-
dicated in the second column of this table, in some cases, they constitute a
proper generalization of the corresponding results for multiprocessors with
non-pipelined or single-stage processors (those with &£ = 1) which we listed ear-

lier in Tables 1-1 and 1-2.

1.3 Structure in Combinatorial Optimization

As we have seen Section 1.1, combinatorial optimization problems
can vary in their complexity from being polynomially solvable to being NP-
hard. Nevertheless, one thing that is common to a number of these problems,
be theyv tractable or intractable, is that many of them are well understood in
the sense that a lot of insight has been gained into their inherent structure.

The problem of finding matchings in graphs is a notable example of such a
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Domain Generalization  Number of Precedence K Objective

of Processors Graphs Function

B, 2N > 1 in-trees (or > 1 makespan
out-trees)

By * one arbitrary 2 makespan

By By > 1 in-trees > 1 tardiness

Bio * one arbitrary 2 tardiness

Table 1-3: Polynomially solvable subdomains with

pipelined processors from [4].
problem [21]. A lot is understood about this problem and the incisive al-
gorithmic results due to Micali and Vazirani [70] and more recently, due to
Karp, Upfal and Wigderson [59] bear further testimony to this fact.
Papadimitriou and Steiglitz discuss this problem and its weighted version in
detail and the reader is referred to their book [74] if a comprehensive treat-
ment is desired. Efficient algorithms such as the Micali and Vazirani [70] or
the Karp, Upfal and Wigderson [59] results give us significant insight into the
structure of this problem, albeit indirectly; by studying these algorithms, we
can learn a lot about the nature of the information that is really essential

towards solving this problem.

There are other well understood optimization problems as well. For
example, the capabilities of the greedy algorithm and in particular, its ability
to solve problems such as the minimum spanning tree (or the equivalent max-
imum weighted forest) problem are captured remarkable well through the
matroidal formulations of Edmonds [20]. Another instance of a well under-
stood issue in combinatorial optimization is embodied in the classical duality

theorem for linear programming [30, 37, 94]. This theorem and other duality
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results for combinatorial extremum problems [17, 28, 80] help elucidate the be-
havior of the solutions of these optimization problems - in particular, at op-
timality. Therefore, insight in this case takes the shape of good characteriza-
tions of the behavior of optimum solutions, of the optimization problem in

question, through such duality results.

Even NP-hard optimization problems have good characterizations at
times. In this context, we have already seen some of the results for the well
known travelling salesman problem through polytopes and linear programming
formulations; Burkard [6] surveys these results. We will return in Section 2.1
to discuss some of the above mentioned results related to matroids and

polytopes in greater detail.

However, what is extremely surprising is that despite the large num-
ber of complexity results that are known for the scheduling problem and its
obvious importance, it is not well understood in any of the above senses. In
fact, so many individual complexity results are known for the scheduling
problem in terms of its subdomains being classified into polynomially solvable
or NP-hard categories, that a computer is used to maintain these results and
their interrelationships [66]. Despite this wealth of information, it is not really
clear as to what factors of the scheduling problem are really contributing to its
complexity and this is especially true if one considers the scheduling problems

with non-trivial precedence constraints.

For example, Brucker, Garey and Johnson [2] have shown that the
tardiness minimization problem is polynomially solvable for in-trees (row one
of Table 1-2). What is intriguing is that this problem becomes NP-hard even

if evervthing about this subdomain By is kept the same except that the
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precedence graphs are now allowed to be out-trees [2]. To cite another in-
stance, it has been shown in [36] that the precedence constrained scheduling
problem is NP-hard if the polynomially solvable subdomain discovered by
Hu [48] (row one of Table 1-1) is generalized to include precedence constraints
which are opposing forests; opposing forests are the disjoint unions of in- and
out-forests. This does not however help us understand as to why the min-
imization problem (both the makespan and tardiness versions) remains
polynomially solvable even if we have arbitrary precedence graphs with two
processors (respectively subdomain B, in row 2 of Table 1-1 and subdomain B
in row 2 of Table 1-2); in general, we do not have an explicit and fundamental
understanding of the structure and properties of subdomains such as these,
which are ensuring their polynomial solvability, and which are being lost,
thereby rendering the tardiness minimization problem for out-trees 2] or the
makespan minimization problem for opposing forests [36] NP-hard. This
situation deteriorates further if in addition, we start considering the extra

dimension spanned by pipelining.

Thus, the problem on hand is two fold in that firstly, we do not seem
to have good unifying characterizations or theories through which we can ex-
plain the polynomially solvable, nature of the many apparently unrelated sub-
domains listed in the various tables earlier on. Secondly, as we described in the
previous paragraph, we do not always have an explicit understanding of the
structure which is being lost in going from a polynomially solvable to an NP-
hard subdomain of the scheduling problem. Therefore, our interest in unifying
complexity characterizations and theories stems from the fact that such
characterizations will provide us with a unified basis or point of reference for
elucidating the intrinsic nature of these polynomially solvable subdomains.

Another equally important benefit of having such unifying complexity charac-
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terizations is that our understanding of the boundary between easy and hard
problems will also be greatly improved as a consequence; this follows since any
collection of conditions which are shared by, and determine the complexity of
the various polynomially solvable subdomains of a problem must be such that
there will be instances from the corresponding NP-hard subdomains (in fact,
there can be no finite upper bound on the size of such instances) which ex-

plicitly violate (some of) these conditions, unless P = NP of course.

In this dissertation, we remedy this situation by working towards
synthesizing such unifying conditions or characterizations of the polynomially
solvable subdomains of the precedence constrained scheduling problem. In
Chapter 2, we abstract out the essential aspects of a schedule in terms of se-
quences of edges of a hypergraph. The elements or ’'vertices’ of the hypergraph
are the tasks. Given that we are going to be dealing with uniformly k-sliced
equal time systems, each edge in the sequence - say the ¢gth - represents the
collection of all the tasks with identical start and finish times (respectively
[-(¢g—1) and [-g¢). Then, using this hypergraph theoretic formulation of
schedules, we characterize the 'output or solution domain’ of a given instance

of the scheduling problem in terms of sets of such sequences.

This formulation of schedules in terms of hypergraph edges greatly
simplifies our job of studying their behavior. In doing this (studying the be-
havior of sets of sequences that is), we are motivated by the following line of
reasoning. To start with, the properties which are used to delineate tractable
subdomains of an optimization problem are typically drawn from the input or
problem domain. In-trees, cyclic forests and other such constraints all testify
to this fact in the case of the scheduling problem. However, if we reconsider

these constraints or properties from Tables 1-1, 1-2 and 1-3, they all seem to



29

lend support to the thesis that these subdomains are perhaps tractable for in-
trinsically different reasons. As a consequence, it seems extremely unlikely that
we will have much success in synthesizing unifying complexity characteriza-
tions by perusing these properties and attributes from the input domain. This
motivated us to take a different approach towards seeking unifying conditions:
one which involves studying the output or solution domain of the scheduling

problem instead.

As a first step in this direction, we try to understand the basic fac-
tors which distinguish optimum sequences from sub-optimum ones. This
knowledge will prove to be of great value subsequently as we will see in the
next couple of paragraphs. In Chapter 2, we also integrate both the makespan
and tardiness minimization versions of the precedence constrained scheduling
problem into a single optimization problem associated with hypergraphs; in
subsequent chapters, we concern ourselves only with this single ’integrated’

problem.

In Chapters 3 and 4, we develop a very strong characterization of
minimum cost sequences through the rich class of affined sequences. Sequences
from this class have the extremely interesting property that they are always
optimum. We do this by taking a deep look at the behavior of sequences, and
especially at the effect of the precedence relationships on their cost, which
could be either the makespan or the tardiness, depending on the particular
special case of the integrated problem which we might be considering. Also, we
use a simple and yet quite powerful proof technique to establish this important
property of affined sequences, and the fundamental principles on which this
technique rests are elucidated in Chapter 4. In this chapter, we also establish

some very interesting and counterintuitive properties of affined sequences
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which play a central role in applying the above mentioned proof technique to

show that affined sequences are always optimum.

In Chapter 5, we develop our unifying complexity characterization by
building on the results of Chapters 3 and 4. This is done by formulating the
intrinsically ordered convergence property or 10 convergence, which is essen-
tially a sufficient condition for polynomial solvability of our scheduling
problem, in that if an instance of the problem satisfies it, then a corresponding
minimum cost sequence (or schedule) can be enumerated in polynomial time.
This property rests heavily on our earlier results including the important class
of affined sequences. Another interesting and useful aspect of this unifying 10
convergence property is that it has a constructive or algorithmic component,
which automatically gives us an algorithm for solving this scheduling problem,

hand in hand with the unifying framework.

Subsequently, we are in a position to show in Chapter 6 that surpris-
ingly enough, instances drawn from any of the subdomains of the scheduling
problem which were described earlier on, are all IO convergent, and as such
the polynomially solvable nature of these subdomains essentially follows as a
corollary to this single unifying fact. In Chapter 6, we will also see evidence
that IO convergence has also guided us in discovering new and useful

polynomially solvable subdomains of the scheduling problem.

In Chapter 7, we describe our algorithm for solving this optimization
problem in greater detail. This algorithm basically runs in time O (n®. logn)
and constructs optimum sequences or schedules for any IO convergent in-
stance. In specifving this algorithm, we adopt the algorithmic notation and

constructs used by Tarjan in [89] to a significant extent. Also, as in Tarjan’s
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development [89], we pay close and explicit attention to issues related to the
data structure aspects of our algorithm. Our goal is to present the algorithm
at a sufficiently general level to where it can be easily understood, and at the
same time, we include enough detail such that specific implementations can be

easily realized.



Chapter 2

On Hypergraphs and Scheduling

In this chapter, we formulate the notion of a schedule in terms of se-
quences of edges of the hypergraph H defined by the set of tasks or elements
A. In Section 2.1, we argue for our formulation over alternate choices in
terms of polytopes and matroids, and in Section 2.2, we will introduce and
describe our hypergraph theoretic formulation of schedules. In Section 2.3, we
show that the problem of finding a schedule with minimum makespan can be
reduced to that of finding one with minimum tardiness. As a consequence, we
can formulate both the makespan and tardiness minimization problems in
terms of a single optimization problem associated with hypergraphs, with an
appropriately defined cost function. In Section 2.4, we identify the significant
factors influencing the cost of a sequence or schedule. This step involves
developing the important notion of the modified cost of a sequence of edges of
H. 1In Section 2.5, we characterize the space of solutions associated with a
problem instance in terms of the feasible set S of sequences and establish a
relationship between certain of its key subsets. This relationship leads us (in
Chapter 3) to a characterization of subsets of S, all of whose member se-
quences have zero cost. In Chapter 4, we will further extend this result to 2

characterization of minimum cost sequences.

32
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2.1 A Choice of Characterizations

2.1.1 Matroids

Matroids have played a significant role in characterizing the behavior
of combinatorial algorithms in the past and as such, we wish to consider them
as a possible basis for formulating and studying the complexity of scheduling
problems. Whitney [95] introduced matroids, although his interest was in
characterizing the abstract properties of independence from linear algebra. It
was Edmonds [20] who recognized the connection between these mathematical
structures and the behavior of the greedy algorithm. A matroid essentially
consists of a finite set E of elements and a collection I of its subsets. Subsets
of E which are in I are called independent subsets of E. Then, the pair

(E, I)is a matroid if the family of subsets is such that:

1. every subset of an independent subset is independent and

2. all the maximal independent subsets in J are of the same size.

The maximal independent subsets are referred to as the bases of the matroid.

Given that numerical weights are associated with the elements of E,
the optimization problem is to find an independent subset of maximum total
weight, where the total weight of a subset of E is the sum of the weights of its
constituent elements. Edmonds [20] showed that the greedy algorithm in
which we start off with the empty subset of E and on each step, choose an ele-
ment with maximum weight such that independence is maintained, correctly
solves this optimization problem. Given that the collection I is closed under
(subset) inclusion (follows from condition 1 above), the correctness of the
greedy algorithm is essentially equivalent to condition 2. This matroidal for-

mulation throws considerable light on the mintmum spanning tree problem or
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its closely related mazimum weighted forest problem because, in applying the
greedy algorithm to solve these problems, we are actually solving the optimiza-
tion problem associated with the corresponding graphic matroid. The set E of
the graphic matroid corresponding to an instance of the minimum spanning
tree problem with graph G ={(V, E) is its edge set, and the family I is the

collection of all forests of G.

Since this early result, matroid optimization theory has become an
important field of research in its own right [61, 74]. Recent results in this area
include efficient algorithms for a generalization of the well known two matroid
tntersection problem where the elements of these matroids, in addition to
having a weight, also have one of two colors associated with them. In this case,
we are interested not only in finding a base of the matroid with maximum to-
tal weight, but also in one which has the specified number of elements of a
given color; the latter constraint is specified through the second matroid and
the desired solution is a base which is common to both matroids. Fredrickson
and Srinivas [26, 27] solve the on-line update version of this problem ef-

ficiently through the clever use of data structures.

The two matroid intersection problem is of interest to people working
in scheduling theory since it embodies a certain simple scheduling problem as
a special case. In this scheduling problem, we have a collection of n tasks and
each task has an associated deadline and release time (a time before which the
task cannot be started). The idea is to try and schedule such a task system on
a single processor and all the tasks have unit length. A subset of these tasks is
said to be feastble if they can all be sequenced on the processor within their
release time and deadline constraints. Then, the desired solution to this

scheduling problem involves finding the maximum cardinality feasible subsets
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of tasks, which are actually the bases of the simple scheduling matroid [43].
Variations of these matroids and the corresponding two matroidal intersection

problems can be found in [26], [27], [43] and [61].

An important restriction that is inherent to all of the above men-
tioned scheduling problems is that they do not allow precedence constraints in
any form, or equivalently, o is empty in all of these cases. In addition, they
also deal with systems with a single processor. If these constraints are relaxed
along these two important dimensions, that is if we consider instances with
non-trivial precedence constraints and many processors, it seems extremely un-
likely that we will find interesting and meaningful (from the viewpoint of
helping us understand the similarity in the complexity characteristics of the
apparently dissimilar polynomial subdomains of the precedence constrained
scheduling problem from the previous chapter) formulations of the scheduling
problem. The general precedence constrained scheduling problem being NP-
hard, it clearly cannot be directly formulated in terms of any of the
polynomially solvable optimization problems associated with matroids which
we described in the previous paragraphs, or their tractable generalizations.
Even if we restrict our attention to the polynomially solvable cases of our
scheduling problem and consider formulating them in terms of matroids, we
encounter difficulties in that the bases of the resulting matroidal subset sys-

tems do not always correspond to valid schedules.

Under these circumstances, solving these matroidal formulations by
finding specific types of minimum cost bases and so on, does not always vield
a valid or feasible solution to the original scheduling problem. Based on our
experience, it seems unlikely that matroids will even play an important and

meaningful role as that played by matching theory in the case of algorithms
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for solving the two processor scheduling problem due to Fujii, Kasami and
Ninomiya [23] or Vazirani and Vazirani [93]. The problem seems to be in-
herently due to the highly ’structured’ nature of matroidal problems which
seems to be destroyed when precedence constraints - especially those charac-
terized by arbitrary precedence graphs - are allowed. This motivates us to
seek alternate settings for characterizing and explaining the complexity of our
scheduling problems, and we will now consider polytopes as a possible choice

to this end.

2.1.2 Polytopes

The role of convex polytopes in characterizing the behavior of linear
programming problems in beautiful and intuitive ways is well known. The al-
gebraic representation of a convex polytope always defines the constraint
matrix of a linear program and conversely, a constraint matrix uniquely
specifies a convex polytope. There are many other interesting correspondences,
for example between basic feasible solutions of the linear program and the
vertices of the corresponding polytopes and the reader is referred to [74] for

details.

Another instance in combinatorial optimization where polytopes have
played an interesting role, is in characterizing the behavior of the widely used
class of local search algorithms [74]. In this connection, if we consider the
very general class of discrete linear subset problems as an example, it has been
shown that the solutions of this problem which have to be searched by any lo-
cal search algorithm relative to some given solution if global optimality is to
be guaranteed, is exactly the set of neighbors of the given solution point on
the corresponding polytope [74]. Papadimitriou and Steiglitz [73] have studied

the complexity of searching this set of neighbors on the polytopes defined by
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the travelling salesman problem. Owing to their work, it is now well known
that indeed, the travelling salesman problem is extremely hard to solve since it
follows from their results in [73] that there is no local search algorithm for

solving this problem which even has polynomial time complexity per iteration
unless P=NP!

Clearly, linear programs and integer linear programs and their cor-
responding polytopes are powerful enough to express and capture the behavior
of combinatorial optimizations problems even when they are NP-hard. For ex-
ample, there are several obvious ways of formulating the general scheduling
problem in terms of integer linear programs. In the same vein, any discrete
linear subset problem, which might even be NP-hard (the NP-hard travelling
salesman problem is a discrete linear subset problem), can be reduced to linear
programming. However, as an aside, before we get too excited about reducing
a potentially NP-hard discrete linear subset problem to linear programming,
we have the following sobering result due to Karp and Papadimitriou [52]: if
the original discrete linear subset problem is NP-hard, then there is no
polynomially concise characterization of the rows of the constraint matrix A of
the linear program to which it (the discrete linear subset problem) is reduced,

unless NP = co-NP; an extremely unlikely possibility indeed.

Thus, although (integer) linear programs and their polytopes have a
lot to offer, let us reconsider our goals for a minute. We are attempting to
take an existing set of polynomially solvable subdomains of the precedence
constrained problem and seek out unifying complexity determining charac-
teristics. To do this, we do feel the need for working at a higher level of
abstraction relative to the scheduling problem itself in order to isolate and

focus on the really essential components and attributes of the problem on



38

hand. However, an important issue which we need to resolve in this connection
is to determine as to how much more abstract a level it is at which we are go-
ing to be working. Clearly, integer linear programs seem to be powerful

enough and therefore abstract enough to this end.

But one has to also consider the possibility that they might be too
abstract from the viewpoint of our present goals. For, while we seek to explore
and thereby synthesize relationships between the polynomially solvable sub-
domains by working at an abstract level, we also have to retain some of the
invaluable intuition that has already been gained through existing results. This
is especially important if we have to build inductively upon existing knowledge
about the complexity of the scheduling problem. We support our arguments
by quoting Hilbert and Cohn-Vossen [44] from their beautiful work on
geometry:

In mathematics, as in any scientific research, we find two ten-
dencies present. On the one hand, the tendency towards abstraction
seeks to crystallize the logical relations inherent in the maze of
material that is being studied, and to correlate the material in a sys-
tematic and orderly manner. On the other hand, the tendency
towards intutttve understanding fosters a more immediate grasp of

the objects one studies; a live rapport with them, so to speak, which
stresses the concrete meaning of these relations.

As to geometry, in particular, the abstract tendency has here led
to the magnificent systematic theories of Algebraic Geometry...
Notwithstanding this, it is still true today as it ever was that
inturtive understanding plays a major role in geometry. And such
concrete intuition is of great value not only to the research worker,
but also for anyone who wishes to study and appreciate the results of
research in geometry.

We feel that these observations are extremely apt in our present con-
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text and are by no means restricted in their scope to the field of geometry.
More specifically, (integer) linear programs tend to be too abstract for our
present purposes in the sense that a lot of valuable semantic information from
the original scheduling problem is lost in the process of formulating it in these
terms. As we saw above, this semantic information is important not only from
our point of view during the actual research phase, but it also makes our
results much more intuitive. Therefore, we choose to formulate the scheduling
problem in the setting of hypergraph theory which is less ’structured’ and
therefore less restrictive when compared to matroidal theories. In contrast, hy-
pergraphs offer a less abstract and more intuitive vehicle for formulating the

scheduling problem when compared to polytopes or their algebraic equivalents.

2.2 Formulating Schedules through Hypergraphs

Let us now address the issue of casting the precedence constrained
scheduling problem in terms of hypergraphs. To start with, given the
precedence graph P= (A, o), the hypergraph H associated with A is a collec-
tion of all non-empty subsets of A. A non-empty subset Ep of A (in H) is
referred to as the pth edge of H. Matroids are essentially a special class of hy-
pergraphs or subset systems which satisfy the two axioms which we stated ear-
lier on in section 2.1.1. For the example instance of Figure 1-1, the correspond-

ing hypergraph H has 511 edges four of which are shown in Figure 2-1.

For a given instance, we can specify a schedule by choosing the ap-
propriate edges from the associated hypergraph H and composing them to
form a sequence. Such a sequence is shown in Figure 2-2 for the example in-
stance of Figure 2-1. Note that each step in the original schedule illustrated in
Figure 1-2 (for this instance) corresponds to an edge in the sequence of edges

in Figure 2-2. In this manner, each edge essentially represents a snapshot of all
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the tasks which are scheduled to to be active during the appropriate time in-
terval; for example, the elements in the second edge in the example sequence
are exactly those tasks which are active during the second time step of the

schedule, and so on.

Gg
£z
£z Eq

Figure 2-1: Four of the 511 edges from the hypergraph H associated
with the instance of Figure 1-1.

Therefore, to construct a schedule, we consider sequences S of some L
edges {E', E’z, ..., E%} from hypergraph H of the corresponding instance.
We say that an edge E; (from H) is in sequence S whenever it is part of the
sequence. Also, an element a, is said to be coniained tn an edge E’q (in some
sequence S) provided ¢, € E;‘ Given edges E‘; and E;, in sequence S, we say
that edge E; occurs before (after) after E’q, whenever ¢ < ¢'(¢ > ¢'). By
interpreting the edges in these sequences as being in one-to-one correspondence
with the steps of a schedule, we can replace the problem of dealing with
schedules with that of finding optimum sequences. The resulting problem as-
sociated with hypergraph sequences is much more convenient from the view-
point of our further development, but before we move on to these issues, we
first need to constrain sequences to account for such things as precedence con-

straints, resource constraints and pipelining.
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Figure 2-2: The schedule of Figure 1-2 represented as a sequence
of edges of the corresponding hypergraph.

First, let us consider dealing with the issue of pipelining, that is with
instances in which the degree of slicing & is allowed to be greater than unity.
To do this, let us recall the example schedule from Figure 1-4 for the instance
from Figure 1-1 with two stage processor-type resources (k== 2). To represent
this example schedule in terms of hypergraph edges, we have to construct se-
quences in such a way that each element is contained in two different edges as
shown in Figure 2-3; element a, is contained in the first and the second edges
of this sequence to reflect the fact that it is being processed respectively at the
first stage of the resources it needs during the interval of time [0,0.5) and at
the second stage during the interval of time [0.5,1) in the corresponding
schedule.

/ /

/

/ /

Og
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Figure 2-3: Representing the schedule of Figure 1-4 in terms
of a sequence of hypergraph edges.
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More generally, to formulate schedules for arbitrary k-sliced systems
in terms of hypergraphs, we need to consider sequences in which each element
is contained in k distinct edges. More precisely, we say that the nth copy of an
element a, is in edge E; of a sequence S if and only if there exists exactly
(n— 1) edges, each of which contain element a,, and which occur before edge
E; in sequence S. Also, element a, occurs n times in sequence S provided its
nth copy is in some edge of sequence S, whereas its (5 + 1)th copy is not. Then,
the types of sequences which we will use to replace schedules are weak
k-matchings, which are defined to be sequences in which every element a, oc-
curs exactly &k times for some positive integer k. For the sake of convenience,
we will refer to the 1st and kth copies of an element in a sequence as its first

and last copies respectively.

We can continue to view the member elements of each edge of a
weak k-matching as a snapshot of all the tasks which are being processed at
the various stages of the resources they need. In particular, since we are con-
cerned only with instances which are uniformly k-sliced, it is easy to see that
there is no loss in generality if we restrict our attention to schedules were all
the start and finish times - even the points in time at which the tasks switch
from one stage of the pipelined resources to the next - are all multiples of [
(recall that {=1/k). As a consequence, in all our weak k-matchings,the gth
edge corresponds to the interval of time [{-(¢—1),[:¢) in the corresponding
schedule. Therefore, if the gth copy of an element a, is in edge E’g, then in
scheduling terminology, it is to be processed at the nth stage of the resources it

needs starting at time /- (¢— 1) and ending at time [ - q.

However, weak k-matchings need not always correspond to valid

schedules since they need not obey the equivalent of resource or precedence
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constraints which schedules need to conform to. Recall that the precedence
and resource constraints are specified through the bound vector B, and the
edge set o« of the precedence graph. Let us first consider the issue of enforcing
the resource constraints. To do this, we now define the cumulative weight of

an edge E:} in some sequence S with respect to positive integers v and 5 to be

Zé~i6i C,, where an ¢ € 1 if and only if the gth copy of element a; is in edge
E; in sequence S. Stated in terms of schedules and pipelined resources, the
cumulative weight of the gth edge in some sequence for a given v and 5 essen-
tially gives the total number of units of the type-v resources which are needed
by all the tasks that are active during the interval of time [I-(¢g—1),[-¢) at

the pth stage of the resources they need.

Then, in order to encode resource constraints, we simply have to
restrict our attention to bound preserving sequences which are defined as fol-
lows. A sequence S is bound preserving with respect to a m-tuple
B =(B,,..., B, ) of positive rationals provided that for each edge E; in it, its
(this edge’s) cumulative weight with respect to each v and 5 is bound above by
B, where 1 < v < m and g < k. Tt is not difficult to see that bound
preserving sequences always obey the resource constraints if the m-tuple B in
the above definition is interpreted to be the bound vector which, is a specifica-

tion of the resource availability.

Similarly, in order to ensure that sequences also respect precedence
constraints which are specified in terms of the edge set « of the problem in-
stance, we restrict our attention to order preserving sequences which satisfy
the property that for any ¢ where 1 < ¢ < n, if the first copy of element a, is

in edge E;, then the last copy of each element a, in sequence S is in some
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edge E;, with ¢’ < ¢ whenever (a}, a;) € o where oT is the transitive
closure of @. Note that both the sequences of Figures 2-2 and 2-3 are order as

well as bound preserving.

So far, we have identified and incorporated all the really essential
constraints from the domain of schedules into the domain of sequences. Recall
however from Chapter 1 that we are particularly interested in the special class
of non-preemptive schedule. Therefore, in order to replace schedules with se-
quences, we need to identify sequences which correspond not just to valid
schedules, but those which represent non-preemptive schedules as well. This
can be accomplished quite easily by requiring that our sequences be proper; a
sequence S is proper provided for all 4, if the nth copy of an element a, is in its
gth edge, then its (element a.’s) (n— 1)th copy is in its (¢— 1)th edge when-
ever n > 1. Intuitively, proper sequences are those in which all the & copies of
a given element occur in consecutive edges, to denote that the task which cor-
responds to the element in question is to be processed continuously from start
to finish in the corresponding schedule. Therefore, the types of sequences
which correspond to valid and non-preemptive schedules are interesting se-
quences which are: (7) weak k-matchings, (92) bound preserving,
(vii) order preserving and, (tv) proper. In the sequel, we will simply refer
to interesting sequences as sequences, and whenever a sequence is not interest-

ing, we will state this explicitly.
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2.3 On Reducing Makespan Minimization to Tardiness Min-

imization

In this section, we will integrate both the makespan as well as the
tardiness minimization versions of the precedence constrained scheduling
problem into a single optimization problem cast in terms of hypergraph se-
quences. As a first step in this direction, we will reduce the problem of finding
schedules with minimum makespan to that of finding schedules with minimum
tardiness. To accomplish this reduction, let us start off by recalling that an in-
stance of the makespan minimization problem is specified in terms of: (7] =a
precedence graph P, (i7) a class function C, (i7¢) a task length 1, (iv) a
bound vector B and, (v) a degree of slicing k. The only difference between
an instance of this problem and one of tardiness minimization is that in the
latter, in addition to these five components, we also have a cost-determining
function f which associates a deadline with each element a, € A. Then, given
an instance of the scheduling problem with makespan as the objective func-
tion, consider transforming it, as shown in Figure 2-4, by adding a untform
cost-determining function f_ to it; the cost-determining function f_ is uniform
provided fu(az.)=fu(aj)=0 for all elements a; and a; from A. Then, the
resulting transformed instance has all the six attributes of an instance of the

tardiness minimization problem.

Let us now consider the problem of determining a schedule with min-
imum tardiness for this transformed instance (Figure 2-4). An interesting
thing about the instances created by this transformation is that the tardiness
of the resulting schedules always equals [- L, where the schedule is L steps
long and the function f assigns a value of zero to all the elements a.
Moreover, it is easy to see that in this case, the elements in the last step of
these schedules always determine their tardiness which in turn equals their

makespan.
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Figure 2-4: Reducing the makespan minimization problem to the
tardiness minimization problem.

To illustrate these points, let us consider transforming the instance
from Figure 1-1 by adding the cost-determining function shown in Figure
2-5 (i) to it. Also, let us reconsider the schedule from Figure 1-2; this schedule
which was meant for the original instance from Figure 1-1 is also valid for the
transformed instance. The tardiness in this schedule of each element from the

transformed instance is shown in Figure 2-5 (ii).

From this example, all our earlier claims about the tardiness of the
schedule for the transformed instance are easily verified including the fact that
element ag in the last step has a tardiness of nine, which in turn equals its (the
schedule’s) makespan. It then follows from these observations that any min-
imum tardiness schedule for the transformed instance also has minimum
makespan and as such, solving the tardiness minimization problem for the
transformed instance tantamounts to solving the original makespan minimiza-

tion problem.
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Figure 2-5: (i). Transforming the instance of Figure 1-1 by adding
the function f, to it and (ii.) the tardiness

of these elements in the schedule
of Figure 1-2.
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In this manner, these reductions or transformations allow us to cast
the makespan minimization problem as a special case of the tardiness min-
imization problem with an initial 'pre-processing’ step which involves adding
an appropriate (uniform for example) cost-determining function as shown in
Figure 2-4; a task which can be accomplished in time O (n). This in turn al-
lows us to cast both the tardiness and the makespan minimization versions of
the scheduling problem as a single optimization problem in terms of sequences
of hypergraph edges. An instance of this optimization problem associated
with hypergraphs is represented by a six tuple ( P, C,1, B, k, f) with the same
components as an instance of the tardiness minimization problem. Given an
instance of this problem, our goal is to find minimum cost sequences, where
the cost of an element a;, with its last copy in edge E; in sequence S is
({-g— fla;)) whenever [- ¢ > f(a,), and is zero otherwise, and the cost of a se-

quence is the maximum over all the costs of all the elements in it.

This allows us in the sequel to concern ourselves with only one type
of optimization problem and cost which are associated with a sequence S, with
the implicit understanding that if the sequence corresponds to an instance of
the makespan minimization problem, we are actually referring to its trans-
formed version. Also, in what follows, we will deal with sequences directly
without always specifying the associated instance (of the optimization problem
associated with hypergraphs) in an explicit fashion, although it is always un-
derstood that there is some underlying instance. In the same way, we will be
referring to two sequences as being eguivalent whenever they have the same
associated instance for which they are defined, although such an instance
might not always be explicitly described. We will see in the next two chapters
that this approach of studying sequences without explicit reference to their as-

sociated instances helps us in focusing on the ’solution or output domain’ of
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the problem directly, which in turn will prove to be of great value in under-

standing their behavior at optimality.

2.4 Factors Affecting the Feasibility of Sequences with Zero
Cost

As a first step towards characterizing the behavior of minimum cost
sequences or equivalently, the behavior of sequences at optimality, let us start
understanding the issues which influence and thereby play a role in determin-
ing their cost. Since the cost of a sequence can assume any non-negative value,
this problem can be quite complicated in general. In the interest of simplifying
our task somewhat, let us start out by studying only specialized types of se-
quences and in particular, those with zero cost. In other words, we will first
focus our attention on a special case of the problem on hand by characterizing
the behavior and attributes of sequences with zero cost. Then, we can sub-
sequently work towards extending these specialized characterizations of zero-
cost sequences to encompass arbitrary optimum sequences which need not

necessarily have an associated cost of zero.

2.4.1 The Role of the Bound Vector

The bound vector B clearly influences the cost of a sequence since it
plays a role in determining as to how many elements can be packed into any
of its edges. To illustrate this point in greater detail, consider the instance
with the precedence graph and cost-determining function indicated in Figure
2-6. For this instance, let m=1, B, =2, C ;=1 for 1 < ¢ < 9 and
l=4k=1. The interesting aspect of this instance is that the cost of any as-
sociated sequence is dependent only on the bound preserving constraint which
in turn draws upon the values in the bound vector; this follows from the fact
the cost of any sequence for this instance is at least two, even if we were to

consider a sequence by ignoring all the precedence relationships or constraints.
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Figure 2-6: The precedence graph and the cost-determining function

of an instance which shows the effect of the
saturation indices on cost.

In order to quantitatively capture this influence of the bound vector
on the cost of a sequence, we will distinguish different 'types’ of elements
where elements a, and a; are of the same type if and only if C(a;) = C(a].)
and == represents vector equality. In this manner, the set of elements A is
partitioned in M equivalence classes IT, ..., I, where elements a, and a,
belong to the same class I, for some z if and only if they are of the same
type. Basically, the elements of a given type correspond to tasks with iden-
tical resource requirements. In the example instance of Figure 1-1, elements
{a, 0,050, a, 0504},

the same type, whereas elements {a5 aﬁ} from class IT, are of a different type.

all of which belong to the same class say II;, are all of

Using this, we quantify the maximum number of nth (for
1 < 5 < k) copies of type-z elements that can be 'packed’ into in any edge
E; in a sequence S through the saturation index sz of class I, (with respect

to bound vector B) as follows:
1 ;mz < m{LBv/CivJ P4y S Ha:}‘
Note that for the example sequence of Figure 2-3, SI and SI, both equal

unity and consequently, no edge in this sequence contains more than one copy

of an element of either type.
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2.4.2 Predecessor-Successor Interactions and Cost

Let us now move on to understanding and formulating the effect of
the precedence relationships or constraints on the costs of sequences. To do
this, let us start with the example instance whose precedence graph and cost-
determining function are shown in Figure 2-7. In addition, for this instance,
let m=1, B = <2>, C(g,)=(1) for 1< ¢ < 8§, and I=k=1. Two
equivalent sequences for this instance S, and Sy, with respective costs of 1 and
0 are illustrated in Figure 2-8. Sequence 5, has unit cost since element a,
with f(as) =2 is in its third edge; intuitively, it is completed at a point in

time (third time unit) which is later than its deadline (two) by one unit of

time.
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o |Fla)|3 2 3 3 2 3 4 4
Tz
O

Figure 2-7: The precedence graph and the cost-determining
function of an instance.

We can view these two sequences S1 and 52 as being related through
a series of swaps as shown in Figure 2-8. In this example, elements a; and ay
are swapped in sequence S5 respectively with elements a; and a, to get se-
quence S, with lower (in fact, optimum) cost. Also, note that only element ag
is contributing to the cost of sequence 5. Therefore, if the cost of sequence S,
is to be lowered, any equivalent sequence which we might consider must have
element a; in its first or second edge. Now, if we try to improve the cost of

sequence S, by moving or swapping element a; by itself, it becomes clear



o2

Unit Cos?

/—v-\ =
R
S, /

swap

(i) \H/

Sz

Zero Cost
(ii)
Figure 2-8: Two equivalent sequences for the instance from
Figure 2-7 with a cost of :
(i) one and (ii) Zero.
rather quickly that this approach is bound to fail. This is because element a,
is in its second edge and therefore, moving element ag to either the first or the

second edge without simultaneously moving element ay will yield a sequence

which is not order preserving.

So, while element ag is indeed directly contributing to the cost of se-
quence S, element a, is also contributing to the same end, albeit indirectly.
Thus, even though the direct influence of element a;, on the cost of sequence
Sl, owing to the value assigned to it by the cost-determining function, is not
significant, the value which this (cost-determining) function assigns to element

as does affect element a, as well; this inherited constraint forces element a; to

1
be included in the first edge of any sequence which is equivalent to sequence

Sl’ and which has a cost of zero.
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This type of influence which an element has on the cost of a se-
quence, not due to its own constraints but due to those inherited through in-
teractions determined by the precedence graph, represent another important
factor which needs to be captured. Of course, in a general scenario, these
precedence relationship based interactions between elements combine with the
constraints drawn from the bound vectors (which we captured in the previous
section through saturation indices) to play a joint role in influencing the costs

of the corresponding sequences.

In order to capture the combined effect of the above mentioned two
factors, which are rooted respectively in the bound vector and the precedence
graph, we need to introduce the following additional definitions. An element a,
is a predecessor (successor) of element a, in precedence graph P if and only if
(a;, a].) e of ({ a, a;) € o™ ). Immediate predecessors (successors) are
defined in a similar manner with o™ replaced by the transitive reduction a.
The distance between elements a, and a, (in P==(A,a)) whenever ¢ 5% j is

the number of elements in the longest sequence a’l, a;, a;.,, a, such that

7
z2+1

defined when no such sequence exists between elements a; and a for ¢ £ j,

{a;,al) <a;.,,aj), and (a’,a’ ;) for 1 < 2z < ¢/ are all in a. It is not
and equals zero by definition when ¢=j. The level of an element a, with at
least one successor in precedence graph P is the maximum of all the defined
distances between element a, and all the sink elements and the sink elements
(those with no successors in P) are all at level zero by definition. The height A
of a precedence graph P is the maximum over all the levels of all the elements

az.EA.

Let us now return to our original goal of capturing the effect of

predecessor-successor interactions on the cost of a sequence, especially as they
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combine with the constraints drawn from the bound vector. To do this, we in-
troduce the modified cost-determining function f' which is defined recur-

sively as follows:

1. f'(a;)= f(a;) whenever element a. is a sink element in P.

2. f'(a,) of an element a; at level x > 0 is the minimum of f(q;) and

L < o ldve p, (4" =1 {In(i-d",2)/ST,) + k—1}}}
where n(¢,d’,z) equals the number of successors of element a, in precedence
graph P which belong to class I7 , and whose modified cost-determining funec-
tion values are bound above by d/, and a d’ € D, if and only if there exists a
successor d, of element a, in P such that f’(aj) = d'. Also, for the sake of

convenience let

-

fle)=, <7< mia 3’ D, {d'—1-A(,d"x.k)}}

where

A (i,d"z,k) = {[n(i,d"z)/SL] + k — 1}.

The modified cost-determining function simultaneously accounts for
the effect which the cost-determining function values (deadlines) and the
bound preserving {or resource) constraints of the successors of a given element
have on its own urgency, which is reflected in its modified cost-determining
function value. In summary, the saturation index and the modified cost-
determining function play an obvious role in influencing the cost of a sequence
and indeed, as we will see in the next couple of chapters, they play a surpris-
ingly dominant role in helping us characterize the behavior of sequences at op-

timality.
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2.5 On Characterizing the Feasible Set of Sequences and Some

Properties

Before progressing further, let us recall that our present approach in-
volves concentrating on the solution or output domain of the optimization
problem on hand, rather than its input domain. To this end, let us formulate
the solution domain associated with a given instance in terms of the feasible
set S, which is defined as the set of all equivalent sequences for the given in-
stance. By doing this, we can start establishing properties of sequences in the
light of this characterization of the solution domain. Specifically, what we are
interested in accomplishing of course is to delineate non-trivial properties of
subsets of S; especially those subsets which include the minimum cost se-
quences. Now, in keeping with our strategy of focussing our attention initially
on the behavior of sequences with zero cost, we will first look at Sﬁ which is
the (possibly empty) subset of feasible set S which includes exactly the zero-

cost sequences.

As seen in the previous section, the modified cost-determining func-
tion gives us a much better estimate of the urgency, and hence the potential of
each element a, in determining whether or not an associated sequence S has
zero cost. Moreover, the modified cost-determining function is directly related
to the modified cost of a sequence S which is defined as the maximum of all
the modified costs of its constituent elements, and the modz fied cost of an ele-
ment a, with its last copy in edge E; in sequence S equals (I-¢— f'(a,))
whenever (I-g— f'(a)) is greater than zero, and is zero otherwise. Then,
since the modified cost-determining function of an element captures the ur-
gency of an element better than the cost-determining function does, we will

start our investigation into the behavior of zero-cost sequences by characteriz-

ing ng, the subset of 8§ all of whose member sequences have a modified cost of
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zero. Then, for any given feasible set S, if we can appropriately relate its two

important subsets SQ and S;ns we can hope to extend the characterization of

S;ﬂ which has the sequences with zero modified cost as its members, to a

characterization of sequences with zero cost through the set SQ.

Not coincidentally, a rather strong relationship exists between these
two important subsets of a feasible set S. In order to establish this fact, we
first need to show that the following relationship exists between the modified

costs of elements which are in a predecessor-successor relationship.

Lemma 2.1: In any sequence S, ¢ f there exists an element a, such
that f'(a,) < l-gand fla;) = l-q where the last copy of element a. in se-
quence S 1s in edge E;, then there exists a successor element a, of a; with

its last copy in edge E;, such that f’(aj) < l-q'.

Proof: If no such element a, exists in any sequence, we are done
trivially. On the other hand, let us suppose that such an element a, exists in
some sequence S. Then, since

f(ai) > f’(ag),
it follows that there exists some § € D, and z without loss of generality for

which n(7,6,2) > 0 and also,
fHa)={6—1-A (1,6,z,k)}.

Since sequence S is a weak k-matching and order preserving, it fol-
lows that all the k copies of each of these n(¢,§,x) successors of element a, from
class IT_, whose modified cost-determining functions are bound above by §, are

in edges which occur after edge E’g in sequence S. Since sequence S is also
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bound preserving, it is easy to see that the last copy of at least one of these

successors, say that of element a, must be in edge E;, where
g’ > {&(5,6,x,k)+ g} .
Therefore, multiplying both sides by I, we have
l-q" > 1-{&(6zk)+ q}
> 1A (G 6.k) + [ {a,)

oA 8,x,k)+ {6— 1A (4,6,2,k)}
6

J'(ay)

J

v VvV Vv

completing the proof. [

Based on this relationship, we can further show that given any se-
quence S, its cost and modified cost are strongly coupled in the following fash-

ion:

Lemma 2.2: In any sequence S, 1f element a;, 18 such that
f'(a;) < l-q where the last copy of element a, 18 in edge E’q, then there ex-

1sts an element a, tn sequence S with its last copy in edge E;, such that

f(aj) < l-q.

Proof: Consider a sequence S without loss of generality and the
largest ¢ where 1 < ¢ < L such that edge E’; has the last copy of an element
a, for which f'(a,;) is always strictly less than [- g, for if no such sequence ex-
ists, we are done since the lemma is then trivially true. Now, if the lemma is
false, there exists such a sequence S and moreover, this sequence must be such

that f(a].} of any element a; for 1 < 7 < n is never less than [ ¢', where the
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last copy of element a, in sequence S is in edge E’;,. Then element a, is such

that

f(ag) Xi-q

or equivalently,

But since
7
f (a,') <l-q
by hypothesis, it follows from Lemma 2.1 that element a, has a successor a,,
with its last copy in edge E;,, such that f'(a;,) < [-g¢" which contradicts the

maximality of ¢. O

This Lemma essentially confirms that if a given sequence S has a

modified cost greater than zero, then so is its cost. This property is sufficient

for us to relate the two subsets Sﬁ and ng as follows:
Corollary 2.1: In any feastble sel S, SQ == ng,

Proof: That ng C 8, is easily verified since f(a,) < fla,) for all

elements a, is any sequence S. That S@ - ng follows from the contrapositive

of Lemma 2.2, completing the proof. O

In the next chapter, we will start off by developing a characterization
of the subset ng of a feasible set S. We will then use Corollary 2.1 (in
Theorem 3.1) to establish that this characterization also extends to include the

corresponding subset S@.



Chapter 3

On Projections and Affined Sequences

In this chapter, we will identify a class of sequences which have the
special property that they have zero cost whenever an equivalent zero-cost se-
quence exists for the corresponding instance. To do this, we introduce some
additional machinery in Section 3.1 in the form of the 'projection’ operation
on sequences. This operation allows us to study the essential parts of a given
sequence which in turn leads us to identifying the important class of ’affined’
sequences in Section 3.2. Subsequently, in Section 3.3, we use affined se-
quences to characterize a non-trivial subset of the feasible set S all of whose
members satisfy the above mentioned ’special’ property; equivalently, we use
affined sequences to characterize the subset S@ of the feasible set S. In Chap-
ter 4, we will show that affined sequences actually provide us with a powerful
characterization, not just of sequences with zero cost, but of minimum cost se-
quences as well. In doing so, we rely very heavily on some extremely interest-
ing properties of affined sequences which follow from their inherent structure.
In fact, we will see in the rest of this dissertation that this class of affined se-
quences plays an extremely central role in capturing the essence of the be-

havior of sequences at optimality.

59
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3.1 Selecting Elements Through Projections

Given a sequence S, the question we are faced with in order to deter-
mine as to whether or not it or an equivalent sequence has a cost of zero, is

the following:

e What conditions must its member elements satisfy so that we can
argue that if the cost of sequence S is greater than zero, then in

fact, there is no equivalent sequence that has zero cost?

For, if these conditions are well-defined to where a given element in the se-
quence either satisfies them or fails to do so, and if they are general enough,
they can be used to delineate classes of sequences and thereby used to charac-
terize subsets of SQ - this being our current goal. By posing the above ques-
tion, we have essentially shifted the emphasis of our search for characteristics
which capture the behavior of sequences with zero cost from the general level
of looking at sequences, to focussing directly on its constituent elements in-

stead.

To answer the above question, let us suppose for the sake of ar-
gument that a given sequence say 5, has greater than zero cost; also, let se-
quence 52 be an equivalent sequence with zero cost. Then, we can define a
series of pairwise 'swaps’ between elements of 5, and thereby arrive at se-
quence S, with zero (or more generally improved) cost. This has already been
illustrated in the example of Figure 2-8 in which we successively swap ele-
ments a; with aq and a, with ag (a two swap sequence) in sequence Sl which
has unit cost, to get sequence 52 with zero cost. So, given a sequence S, the
question posed in the previous paragraph can be refined and restated by using

this notion of a series of element-swaps as follows:

e What conditions must its constituent elements satisfy in order to



61

rule out the possibility of a series of swaps which yield an equiv-

alent sequence with zero (or more generally improved) cost?

In order to address the issue of whether or nor an element in a given
sequence can be a part of a series of swaps with a concomitant cost improve-
ment, we need to look closely at the way in which its (the sequence’s) con-
stituent elements are interacting. More importantly, we need a mechanism
through which we can isolate and study specific groups of elements in the se-
quence ; especially those elements from a given sequence which are significant
from the viewpoint of influencing its cost behavior, since not all the elements

in a sequence play a significant role in influencing its cost.

In this connection, recall from Chapter 2 that an element’s type
(which in turn determines a saturation index) and the value assigned to this
element by the modified cost-determining function, both play a role in its in-
fluence on the cost of a corresponding sequence. We will now draw upon this
information to formulate the 'projection’ operation on sequences; this opera-
tion will subsequently allow us to identify and select only those elements which
impact upon the cost of a sequence. A projected sequence
S= (E ’1’, E’Q’, vees E}’J) derived or projected from sequence S = <E,1’ Elz’ ooy E}J)
with respect to d’ and z is defined such that an element a, is in edge E’é if
and only if the first copy of element a, is in edge E; of sequence S, it is of the
zth type (€ 17), and f'(a,) is no greater than d’.

The projection operation helps us in selecting elements from se-
quences which satisfy certain special properties as shown in Figure 3-1.
Specifically, given a d' and z, projections allow us to select those elements

from and edge E; of a sequence S which lie in the intersection of the two sub-
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Figure 3-1: The elements selected by the projection operation.
sets of E:}; one subset which has exactly the elements from I, and another
which has exactly those elements whose modified cost-determining functions
are bound above by d’. Let us now use these projections to establish the fol-

lowing obvious but useful property of sequences:

Lemma 3.1: In any sequence S’={E'I’,E’2’, ey B} progjected from

sequence S with respect to some d' and z, |E g[ is always bound above by SI .

Proof: Immediate from the definition of S/ and the fact that se-

quence S is interesting and hence bound preserving. O

This notion of projecting or selecting equivalence classes from se-
quences of sets is a natural extension of the set theoretic projection operation
and similar generalizations of this operation have been used in the past, for ex-

ample by Codd [8] in formulating the powerful and extremely effective
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relattonal algebra. Finally, in our definition of projected sequences, it is not
absolutely essential that we project only the first copies of the elements from
the original sequence but nevertheless, we will continue to maintain this con-
straint since it helps us in simplifying some of the technical aspects of our fur-

ther development.

3.2 Affined Sequences

Having defined projected sequences, let us now return to our original
goal of using this operation to distinguish different types of edges and ele-
ments in them. An edge E;’ in a sequence S’, projected with respect to some d'
and z from sequence S, is saturated (unsaturated) whenever |E ;’I is equal to
(less than) SI_, the saturation index of class I7 . An edge Eg is a premary tail
in a projected sequence S if and only if edge E;’ is unsaturated and every edge
E;’, with ¢’ < ¢ is saturated. Also, edge E;’, is in the primary saturation
subsequence of some projected sequence S provided edge E‘;’ is its primary tail

and ¢/ < q.

Having identified these edges which constitute the saturated sub-
sequence of a sequence, we are now in a position to build on this idea to
delineate the elements which play a role in influencing its cost. An element a,
(of type-z with fla)=d') is distinguished in sequence § provided its first
copy is in edge E'q and edge E‘;’ is mot in the primary saturation subsequence
in the sequence S projected with respect to d’ and z. As it turns out - a fact
which will be verified in the next section - only distinguished elements need to
be considered further in the sense of satisfying additional conditions which as-
sure us that they cannot be a part of a series of swaps, as shown in Figure 2-8
for example, with an accompanying cost improvement. We will also see in the

course of proving Theorem 3.1 that non-distinguished elements are already
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constrained enough in this sense as a comsequence of Lemmsa 3.1 and their
membership in the primary saturation subsequence of the corresponding

projected sequence s.

Interestingly enough, even in the case of distinguished elements in a
given sequence, it is sufficient if they satisfy a single condition in order to
claim that they cannot be a part of a series of swaps with an accompanying
cost improvement or equivalently, to assert that if the corresponding sequence
has greater than zero cost, then so does every sequence equivalent to it. In or-
der to precisely formulate this condition or constraint which distinguished ele-
ments need to satisfy, we need to identify the critical distance (Figure 3-2) of
an element a, with respect to d’, and z as being equal to A(7,d',z,k). Also,
the distance between elements a, and a, in sequence S is |¢— ¢'| where the
first copies of elements ¢, and a; are respectively in edges E; and E;,, as

shown in Figure 3-3.

Set of all type x (€ 7Tx)
Successors of aj = F;

aj n(idx)=[F[)F/

Set of all successors of a;
with modified cost determining

critical distance of g with functions Ffound above by d-~
respect to d’and x - nlid X}/, o,
STy

Figure 3-2: The critical distance of element a, with

respect to d' and =.



Distance between elements
a; and a; in sequence S is

£z Es

Figure 3-3: The distance between elements a, and a; in sequence S.

Then, the types of sequences in which distinguished elements satisfy
the desired constraint which ensures that they cannot be a part of a series of
swaps leading to an equivalent sequence with improved cost, will be referred to
as affined sequences; we say that a sequence S is affined if and only if every
distinguished element a, has a predecessor element a, such that the distance
between elements a, and a, in sequence S is bound above by the critical dis-
tance of element a; with respect to d' and z, where a, is a type-z element and
f’(ai)_—:d'. This class of affined sequences lies at the very core of our
problem on hand, and all our results will be built around this important class.
They have the special property that in them, distinguished elements exhibit an
affinity (hence the name affined) to their predecessors by trailing them by no
more than a certain bounded distance - the critical distance of the predecessor.
Because of this affinity, the modified costs of distinguished elements in an af-
fined sequence are related to that of their predecessors in a very interesting

way indeed, as stated below in Lemma 3.2.

Lemma 3.2: In any affined sequence S, 1 f a distinguished element
a; s such that I-q > J'(a,) where the last copy of element a, is in edge E;,
then there exists a predecessor element a, of a; with its last copy in edge E;,

such that l-q" > f' (aj.}.
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Proof: Since from the hypothesis of this lemma, we have an element
a, with its last copy in edge E; such that
f, (ai) < [- G,
and since from the definition of the modified cost-determining function, we
know that for any predecessor element a;: of a,
f! (ai‘ )< f! (a,') — 1 A()6,2,k)
where a, is a type-z element with f’(az.) = 6§, we can deduce that

f’(aﬁ.,) < l-g—1-A(16x,k).

Now, since element a, with its last copy in edge E'q is distinguished
and since sequence S is affined, it must have a predecessor element a, with its
last copy in edge E;, such that

(q - qi) S JAY (j?éya:’k)-
Also, since element a, is a predecessor of element a, we know that
f’(aj.) < l-g—1-A(58zk)

and therefore,
fay) < l-g—1-(¢—¢')

< l-q'

completing the proof. O

3.3 Affined Sequences and their Cost

Given a feasible set 8, let Sa be its subset which contains exactly all
the affined sequences in 8. Then, a powerful characterization of S@ is realized
owing to the following inclusion relationship between S and S@ which is
stated below in Theorem 3.1 and is illustrated in Figure 3-4. From this inclu-
sion relationship, we know that affined sequences have the desired property in
that if they do not have zero cost, then in fact no equivalent zero-cost se-

quence exists for the corresponding instance.



Feasable
Set 8§

Figure 3-4: The relationship between subsets Sﬁ and S, ofa
feasible set S whenever S@ is non-empty.

Theorem 3.1: Given any feasible sel S, Sa - S® whenever Sg 18

non-empty.

Proof: Suppose that the theorem is false. Then, there exists an af-

fined sequence S & S(b and yet S@ is not empty. Then it follows from Corol-
lary 2.1 that S & S? and that ng is not empty, or that there exists a se-

quence S’ equivalent to sequence S in S;n. Since S & Sg%, there exists at least
one element in it say a, with its last copy in edge E; such that f'(a,) is
strictly less than [-¢. Among all such elements in sequence §, pick an element
a, with its last copy in edge E;, such that any element @ with its last copy
in any edge E; for ¢” < ¢’ is such that f’(aj,) is not less than [-p. That is,
g’ is the smallest index of an edge in sequence § which contains the last copy
of an element - a, in this case - such that f'(aj) is less than {- ¢/. Without loss
of generality, let a; be a type-z element with f’(aj.)::: 6. Now if element a, is
distinguished, we are done since from the affined nature of sequence S and

Lemma 3.2 we know that element a, has a predecessor element @ with its last
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copy in edge E;,, with ¢” < ¢’ such that f’(aj,) is less than /- ¢"”, which con-

tradicts the minimality of ¢'.

On the other hand if element a; is not distinguished, consider se-
quence S projected from sequence S with respect to § and z. Clearly, S has a
primary saturation subsequence of v > 1 edges (E{ ... Ei’{) Since sequence S
is a weak k-matching and therefore proper, the first copy of element a, must
be in E’r where r=(¢'—k+1)and 1 < r < ». Now, since element a; with
its first copy in edge E’r has a modified cost which is greater than zero, it fol-
lows that the first copy of any element a in any equivalent sequence S’ with
zero modified cost, must be in some edge E;, where 7' is less than r, whenever

f’(a]‘,) is no greater than f’(aj).

Now, if v=1 we are done since no sequence S’ can have an edge E_
with ! < 1. On the other hand, if v > 1, since each of the first (v—1)
edges in the primary saturated subsequence of sequence S is saturated, there
are at least r = {(y— 1) SI_+ 1} type-z elements in sequence S (or in any se-
quence equivalent to it) whose modified cost-determining functions are bound
above by 6. Therefore, if there is a sequence S’ with zero modified cost, then
the first copy of each of these r elements must be in some edge edge E;, for
r! < r. Then, sequence S’ projected from sequence S’ with respect to 6 and
z has at least one edge E;’, with more than SI_ elements which contradicts

Lemma 3.1 completing the proof. [

This completes our current goal for, given any feasible set S, we have
a characterization of its subset S(b whenever this subset is non-empty through
the above property of the set of affined sequences S_; the subset S is itself

characterized by means of identifying the special attributes of affined se-
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quences. Therefore, our partial characterization of SQ - as stated in Theorem
3.1 whenever this subset is not empty or equivalently when the feasible set in
question has member sequences with zero cost - is in fact accomplished
through the attributes of affined sequences. This allows to claim at this point
to have partially accomplished our current goal of characterizing the behavior
of minimum cost sequences. In the next chapter, we will extend our present
characterization to accomplish this goal in its entirety by considering the more
general case of feasible sets in which the minimum cost sequences have greater

than zero cost.



Chapter 4

On Relating Affined and Optimum Sequences

In this chapter, we provide a complete characterization of the be-
havior of sequences at optimality by building on the results of Chapter 3. To
this end, we introduce a simple yet powerful proof technique in Section 4.1;
powerful because we will see in Sections 4.2 and 4.3 that it can be used to es-
tablish the optimality of the rich class of affined sequences. In Section 4.2, we
establish the surprising fact that the affined nature of a sequence is preserved
under a certain kind of perturbation or transformation called ’shifting.” This
property of affined sequences rests heavily on the Shifting Lemma (Lemma
4.2) which gives us extremely interesting and counterintuitive insight into the
behavior of the modified cost determining function. Finally, in Section 4.3, all
our earlier results from Chapters 2, 3, and 4, including our techniques from
Section 4.1, culminate in the Characterization Theorem (Theorem 4.1) which
is perhaps our most significant result. In this theorem, we will conclusively es-
tablish the important fact that affined sequences are always optimum (in the
sense of having minimum cost). This property of affined sequences will enable
us to capture the essence of the optimal behavior of sequences associated with

a wide class of instances, in the subsequent chapters of this dissertation.



4.1 A Technique for Proving the Optimality of Affined Se-

quences

A couple of assumptions are implicit in our claim made in connection
with Theorem 3.1 that the subset Sa of a feasible set S provides us with a
characterization of minimum cost sequences. Firstly, the given instance must
have a corresponding affined sequence or else S, would be empty. If this were
to be the case, that is if S, is empty for some feasible set S, the consequence
of the inclusion relationship between S, and S@ from Theorem 3.1 would be
trivial when viewed from the standpoint of characterizing the behavior of the
minimum cost sequences from S, through its affined sequences. This situation
does not however pose any problems since we will see in the next couple of
sections that instances drawn from a variety of subdomains - specifically those
from the subdomains listed in the tables of Chapter 1 and their generalizations

- all have affined sequences at optimality.

Thus, even though this question regarding the existence of affined se-
quences is not of any concern, we are still faced with the potentially problem-
atic situation that the given instance might not have any associated zero-cost
sequences. If this were to be the case, any sequence from the given feasible set,
whether it is affined or not, would have greater than zero cost. In this situa-
tion, Theorem 3.1 fails to provide us with a characterization of the behavior of
minimum cost sequences even if the problem instance were to have affined se-
quences corresponding to it, since it is not immediately clear if affined se-
quences are also optimum even when the cost of any sequence for the given in-
stance is greater than zero; in other words, we do not know if an analog of the
inclusion relationship from Theorem 3.1 holds between the affined and the
minimum cost sequences from the feasible set S in question, even when it does

not have any members with a cost of zero.
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4.1.1 The Proof Technique

Given that we wish to devise a technique through which we can build
on the partial characterization provided by Theorem 3.1, we can initially as-
sume that the inclusion relationship stated in this theorem between the subsets

S and Sy of a feasible set S is already know to us. Then, since §_ .
[54 e

== S@
whenever the feasible set S has at least one member sequence with a cost of
zero, we can claim from Theorem 3.1 that in this situation :

(*) S, € S@ =8 ...
Now, let us extend our view to the more general and interesting situation
where the feasible set § might not have any member sequences with zero cost.

In particular, let us only consider such feasible sets 8§ in which the cost of a se-

quence in S_ . is always strictly greater than zero.

This brings us to the most crucial step of our technique where given

a feasible set S, we will suppose (hypothetically for now) that a
‘corresponding’ feasible set S exists (for a related instance) in such a way that

S has member sequences with zero cost or equivalently, that §¢ is non-empty.

In the same vein, let us also suppose that feasible sets S and S are related

through a total function or mapping ' — ’ which is defined from feasible set §

to feasible set S; we will write S(€ 8) — § € (S) to denote that sequence S
is the image of sequence S under (the mapping) '— '. For our technique to
work, this mapping ' — ' has to satisfy two specific properties which we will

now proceed to describe.

The first of these two properties which this mapping has to satisfy is

that if sequence S is'in S =§¢) in feasible set S, then any sequence S of

min (



which sequence S is an image under the mapping *— ' must always be in the

subset S . of feasible set S; let (**) be used to denote this property or con-

dition which is illustrated in Figure 4-1.

Every seguence S in S
is always in 8, whenever
Sz S and 5 is in

under
mapping

Figure 4-1: Property (**) satisfied by the mapping " — .

In addition to condition (**), we require that the mapping '—’
satisfy one additional property which requires that the affined nature of a se-
quence be preserved under this mapping as shown in Figure 4-2, or equiv-

alently

(***) Ses,=5¢€8,
where = represents logical implication. This condition is really quite interest-
ing since if we consider the universe § of all sequences, which is essentially the
union of all possible feasible sets, then condition (***) essentially requires that
S, (which is the set of all possible affined sequences from §) be closed under
the mapping or transformation ' — 7, or equivalently, condition (***) requires

that a special subset Sa of the universe of all sequences § satisfy a special

closure property.



$€SG=$ §€§d

where S-= 5

under mapping —= S o

S 3

Figure 4-2: Property (***) satisfied by the mapping ' — .

At this point, we have identified all the salient components and at-
tributes which we need in order to start using our proof technique. Recall
that our intention is to use this technique to show that the subset S, of a
feasible set S is always included in Smm, thereby establishing that affined se-
quences are always optimum for the underlying instance. Now, if the feasible
set S has member sequences with zero cost, we are trivially done from con-
dition (*); a fact which we have already established in Theorem 3.1. On the
other hand, suppose that the feasible set § does not have any member se-
quences with zero cost. Now, if the desired inclusion relationship does not hold

in this case between its subsets S and §_ . , then
[+4 min

Sa g Smin‘
In such a situation, we have a feasible set § with a non-empty subset S
which has an affined sequence S' as its member and moreover, since this se-

quence does not have minimum cost,

?
ST € (Scx - Smin)'
We will now start invoking the various conditions and attributes which we

developed earlier on in this section to show that this cannot be true.

As a first step, let us consider the ’corresponding’ feasible set S -
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recall that we had hypothesized its existence earlier on - with a non-empty

subset §®. Also, feasible sets S and § are related through the mapping ' —’

and in particular, §' — §'. Then, from condition (**) which is satisfied by

the mapping ' — ' and the fact that this mapping is total, we can deduce that

sequence S ! in feasible set S is such that,

S'¢S, .. =8,

Also, from condition (***), we know that sequence S’ is affined.
Then we have a feasible set S with an affined sequence S ' as its member, and

sequence S ' does not have a cost of zero even though §@ is not empty; this
contradicts condition (*) which we have already established (Theorem 3.1) and

as a consequence, we are done.

Note however that if we have to apply the above line of argument to
extend the inclusion relationship stated in condition (*), to show that it holds
even in the more general case when the feasible set S in question does not
have any member sequences with zero cost - stated another way, if we wish to
show through the above mentioned proof technique that affined sequences are

always optimum for the given instance - the validity of this technique is con-

ditioned on the (hypothesized) existence of a corresponding feasible set S and
a mapping ' — ' which satisfies certain special attributes. As we will
demonstrate in the next couple of sections, these 'existence questions’ will not

pose any problems in our case since we will be able to show that for any

feasible set S of our optimization problem, a corresponding feasible set S, and

a mapping with the desired attributes, both exist.
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The principal advantage of this technique is that it aids us in
simplifying the general problem of characterizing the behavior of minimum
cost sequences, by allowing us to first tackle the relatively simpler and more
specific problem of characterizing the optimal behavior of sequences at a single
point in the range of the cost function. Affined sequences provided us with
this specialized characterization, as stated in Theorem 3.1 and reiterated as
condition (*) in this chapter; here, this characterization was shown to be valid
at the single point in the range of the cost function which corresponds to an
(optimum) cost of zero. Then, our technique gives us a definite series of steps
through which we can extend this specialized characterization to a more com-
plete one which encompasses all points in the range of the cost function. Es-
sentially, given condition (*), the other components and attributes of our tech-
nique such as the mapping ' —’, the properties or conditions (**) and (***)
which it satisfies and so on, collectively aid us in deducing the following:

5,C5S .

in

=85,=8,CS, ..

In this way, our technique provides us with a mechanism through
which we can reduce the general problem of showing that affined sequences
are optimum, even when the underlying problem instances do not have any as-
sociated zero-cost sequences, to the relatively simpler problem of establishing a
specialized version of this fact (which has already been established during the
first step in Theorem 3.1 and) which is valid only in the event that the in-

stances in question have associated zero-cost sequences.

While we have been describing this technique in the specific context
of the optimization problem associated with hypergraphs, it actually seems to

be applicable in the broader context of combinatorial optimization problems in
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general, beyond the specific problem with which we are concerned. In this
more general scenario, what we need to identify as a first step is an ap-
propriate property or collection of properties P (the affined property served
this purpose in our case) which characterize optimal members of the ap-
propriate feasible sets at some specific point (the point associated with zero
cost in our case), or perhaps a 'few’ points in the range of the corresponding

cost function.

Then, in order to extend this specialized characterization provided by
the collection of properties P to include all the points in the range of the cost
function in question, we need to ensure that the analog of our requirements

which include the existence of a ’corresponding’ feasible set, and a mapping

which satisfies certain special attributes (respectively the feasible set §, the

mapping — , and conditions (**) and (***) ) are satisfied.

In this connection, a point worth recognizing is that all of the above
mentioned 'requirements’ and ’attributes’ have obvious analogs in the context
of any combinatorial optimization problem. Also, it is important to note that
the line of reasoning - which, based on these requirements and attributes, will
allow us, subsequently in this chapter, to extend the partial characterization of
minimum cost sequences from Theorem 3.1 - is really quite independent of the
fact that the feasible sets with which we are concerned are in fact sets of se-
quences. As such, it (this line of reasoning) can be applied consistently even if
the feasible sets being considered are associated with some other combinatorial
optimization problem. This in turn means that our technique is applicable in
the more general context of characterizing the optimal behavior of solutions of

a a wider class of optimization problems, so long as certain basic criteria
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(which we have identified in the context of our problem) are met. Let us now
proceed on to the issue of applying this proof technique to show that affined

sequences are always optimum.

4.2 Perturbing Sequences Through Shifting

We have already seen in the previous section that in order to apply
our basic proof technique, we need to ensure that certain basic criteria are
met. To demonstrate that this is indeed true of our optimization problem, we
will now introduce a mechanism through which instances and their feasible
sets can be 'perturbed’ or transformed. Given an arbitrary feasible set S such

that any sequence in S has a cost of K > 0, we can essentially perturb the

min
corresponding instance I, where intuitively this perturbation involves keeping
everything about instance I the same except that we alter the values assigned
by the cost determining function to each of its elements a,, by shifting them
all up uniformly by X or equivalently, by adding X to each of these values. It

is easy to see that given any instance 7 and a X > 0, a corresponding per-

turbed instance 7 always exists.

In order to make this notion precise, we need to define the following.

Given an instance I with precedence graph P= (A, ¢ ), class function C and
bound vector B, we say that another instance say I with precedence graph
P=(A4,a), class function C and bound vector B is isomorphic to it if and

only if there exists a (total) function F': A — A, which is also a bijection such
that:
1. (a, a.].) € o« if and only if (F(a,), F(ag-)) € g,

2.B = B and,
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3. C(a)

2

C(F(a))).

2

<

Essentially, in a pair of instances J and T which are isomorphic to each other,
the respective precedence graphs are isomorphic in the usual graph theoretic
sense. In addition, the bound vectors of the two instances are equal and the

two class functions are related (conditions 2 and 3 above).

Then, we say that an instance 1 is tsomorphic within shifting by X

to instance I provided instances I and T are isomorphic and for every element

aieA?

J(Fla))=[(a)+X
where f and f are respectively the cost-determining functions of instances I
and 7. Viewed in the light of these definitions, perturbing an instance I by

some quantity X creates another instance / which is isomorphic within shift-

ing by X to the original instance I.

These perturbations also shift the corresponding feasible set in the

same way in that for each sequence S in the original feasible set S correspond-

ing to instance I, a sequence S always exists in feasible set 8 of instance 7

which is derived by perturbing instance / by some X > 0, in such a way that

" in se-
q

for any element a; € A: if the kth copy of element a; is in edge F
quence S, then the last copy of element Fla,) from A is in edge E; and vice-

versa as shown in Figure 4-3; if this is true of a pair of sequences S and S,

then we say that sequence S is fsomorphic within shifting by X to sequence

iy
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kth copy of
element gy

s

Ef
Seguence S . ce o
——
-

Sequence S
o

£,

kth copy of
element d; + =F (g;)

Figure 4-3: Sequence S is isomorphic within
shifting by X to sequence S.

Basically, the relationship 'isomorphic within shifting by X to’ relates
pairs of sequences which are drawn from the feasible sets of a pair of instances
which are in the same kind of relationship and in addition, elements from
these two instances which are related through the mapping F are in edges
which are the same distance (measured in terms of the number of edges) along
in the respective sequences. We will now for the sake of convenience formalize

this relationship between sequences through the binary relation 7 which, given
a pair of feasible sets S and S, is a subset of § X S; a pair (8,5 ) isin Fif

and only if sequence S from feasible set S, is isomorphic within shifting by X

to sequence S from feasible set S.
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Let us now recall that in introducing this relationship 7 which for-
mally captures the notion of pairs of instances and their sequences being re-
lated through a certain kind of perturbation of their respective cost-
determining functions, we are motivated by the need to provide a mechanism
which will allow us to use our proof technique from the previous section. This
in turn will enable us to establish the fact that affined sequences are optimum,
and that they can thereby provide us with the desired characterization of min-
imum cost sequences. In order to do this, we first need to establish that for
any feasible set, a corresponding feasible set always exists in which the op-

timum sequences are guaranteed to have a cost of zero.

In this connection, it is easy and important to recognize that our per-
turbation method is such that there is exactly one sequence S in any feasible

set S which is isomorphic within shifting by X to a sequence S in feasible set

S, and for any X > 0. Also, any sequence S in feasible set S has exactly one

sequence in feasible set S of which it (sequence S) is 'isomorphic within shift-

ing by X to’. As a consequence of this fact, the relation Fis: (i). a total funec-
tion and, (4i). a bijection from feasible set § to feasible set S. This allows us

to write 7(S) =S in the usual notation to indicate that sequence S is the im-
age of sequence S under the mapping 7. These points are illustrated in Figure

4-4.

Given these two facts about the function 7 it is easy to see that for
any pair of feasible sets S and S :
Fact 1: Given any sequence S with a cost of K from feasible set S,

there exists a sequence S in feasible set S such that F(S)=25.



83

__ ——the relationship— _
R

T

———1S0mOorphic — — — . _

Ly V7Y 5 7 Y R
———shifting —————
Ty X — - T T —
i et
Feasible Set S Fegsible Sef s
of Instonce I of instance T

Figure 4-4: The relationship ’isomorphic within shifting by
X to’ captured by the mapping %

Moreover, the cost of sequence S is exactly X less that that of se-

quence Sfor0 < X < K,

as shown in Figure 4-5.

& Cost of Seguence
Seguence S S /s X less thon
] \ the cost of
/ \ Sequence S

Shift by X -——=

Feasible Set § Feasibie Serf S

Figure 4-5: The effect of perturbation on cost.

In particular, Fact 1 tells us that given the feasible set S of instance /

in which the minimum cost sequences have a cost of K > 0, the correspond-

ing feasible set S with an underlying instance [, which in turn is isomorphic
within shifting by K of instance I (clearly, such an instance always exists), will

alwavs have zero-cost member sequences. What this means of course is that
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the first requirement of our proof technique is met, and in the rest of this

chapter, we will be focussing our attention only on such feasible sets S - those
whose member sequences are isomorphic within shifting by K to the sequences

in the given feasible set S whose minimum cost sequences have a cost of K.

Let us now address the next requirement of our proof technique

namely, that of the existence of an appropriate mapping between feasible sets

S and S and which satisfies the analogs of conditions (**) and (***). It turns
out that the mapping ¥ meets all of these requirements rather well. To see

that this function satisfies condition (**), we need to recollect that it is a
bijection and that it is also total from S to S; this in conjunction with Fact 1

collectively imply that any minimum cost sequence in feasible set S must al-
ways be the image under the mapping or perturbation 7 of a minimum cost
sequence {rom feasible set S; this is equivalent to saying that the function 7

satisfies an analog of condition (**) from the previous section.

So far, we have been able to show that for any feasible set S, a cor-

responding set S and a mapping 7 exist in such a manner as to satisfy all but
one of the requirements of our proof technique from the previous section; in
particular, we have not seen as yet that this mapping 7 satisfies condition
(***) as well. Therefore, there is one more crucial issue yet to be resolved
since we need to verify that the mapping 7 also satisfies condition (***). Recall
that this condition requires that the affined nature of sequences be preserved
under the perturbation which the mapping 7 represents. That is, given an af-

fined sequence from a feasible set S, we need to show that its image under 7 in

the corresponding feasible set S is also affined. While this is in fact true of
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the mapping 7 it is not as obvious, as "vas for example the fact that condition
(**) is satisfied by it; actually, this is quite a counterintuitive fact and we will
now proceed to establish it in the next section. In doing so, we will draw upon
some extremely useful and interesting properties of affined sequences (to be es-
tablished in Lemmas 4.1 and 4.2 in the next section) which will bear further
testimony to the fact that they are indeed, a highly structured class of se-

quences.

4.3 Properties Preserved Under Shifting

In order to establish these properties of affined sequences, we will
now introduce some additional notation, primarily to facilitate our present dis-
cussion. Firstly, given a pair of elements a, and a, from the set of elements A,

which in turn is a part of instance I, we will denote their images under F in

the set of elements A from instance I by a,, and aj., respectively. Also, the

class IT_ of elements from the set A, and the class Ey in the set of elements A
which has ezactly the images under F' of all the elements from class 17 , will be

referred to as corresponding classes. We will generally use a 'bar’ symbol to

identify objects associated with an instance 7 and it is usually obvious as to
what these objects represent; for example, 7 and T ' respectively denote the

cost-determining and modified cost-determining functions of instance T. Also,
let hg denote the height of the precedence graph P corresponding to a se-

quence S and we will use d" to denote d’+ X in what follows.

The first property which we will be establishing is the following con-

ditional result which shows that any pair of elements a; and @,, from instances

J and T have an equal number of successor elements which satisfy a given type
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and modified cost-determining function constraints, as shown in Figure 4-6,

or:

Lemma 4.1: If sequence S is isomorphic within shifting by X to

sequence S and i f 7’('&1. ) =/f"(a,) + X for all elements a_ at a level no greater
than » for 0 < X < h,, then for any d’ and z and for any pair of elements
a; and a at level X+ 1, n(4,d',z) equals n(5',d",y).

Proof: Suppose that the lemma is not true. Then, a pair of se-

quences S and S with elements a, and i at level (\+1) > 1 in the respec-

tive precedence graphs, a 6, and a x exist such that
n(i,6x)=w % R(j6+ X)) =a

where HX and b—¢ are corresponding classes. Therefore, non-negative integers w
and @ are such that either w > @ or w < &. Also, it must be the case that
every element a, at a level no greater than ) in precedence graph P is such

that

Now, suppose that w is greater than ©. Given that sequence S is

isomorphic within shifting by X to sequence S, it follows that instance I and T
are isomorphic to each other; from this fact, we can deduce that for every
type-x successor element which element a, has, its (the type-x successor
element’s) unique image under F is a type-y element and moreover, this ele-
ment must be a successor of element a].,; This property in conjunction with
the fact that w > & collectively imply that there exists at least one successor

o' of element a, in class ﬁ\v and at some level X < X such that
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and,

f(F(d) > 6+ X.
This contradicts the hypothesis that for all elements a, at levels no greater

than X,

Now, if w is less than &, a similar argument can be used since in this
case, we can show that element a, must have a successor element a’ at some
level ' < X such that,

f'(d) > ¢
and,

fIF(d) < s§+X
completing the proof. [

We will now use this result from Lemma 4.1 to establish the follow-
ing extremely useful and interesting property of the modified cost-determining
function; this property will play a central role in showing that the affined na-
ture of a sequence is preserved under the special type of perturbation which

we introduced earlier on in this chapter. Informally, this property states that
if sequence S is isomorphic within shifting by X to sequence S, then the
modified cost-determining function of (the instance I associated with) se-

quence S is perturbed in exactly the same way and more importantly, by the
same amount X, by which the original cost-determining function was per-

turbed, as shown in Figure 4-7.
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Successors of elemen?

a; (5 Wwith
modified cost defermining
function bound above by

ad'(d’+Xx)

nli,d x)=F(i{d"*x}y)
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for all g; af - —_ -
/{/ g (G;') from 7y (7,)

\
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!

any levél <
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The relationship between n(i,d ’,z) and

',d "y) stated in Lemma 4.1.

Figure 4-6:
e ',d

For any element ¢

a;

5

I1f F(E = flo)+x
S— then F'(G')=F'(a;) + x

£

Figure 4-7: 'The property of sequences asserted in the Shifting Lemma.

More precisely, let us say that a sequence § is isomorphic within

shifting by X up to modi fication to a sequence .S whenever the corresponding

instances [ and I are isomorphic and for all elements a, in A,

Tia,) = f'(a)+ X.

13

Then, surprisingly enough,
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Lemma 4.2 (The Shifting Lemma): If sequence S is isomorphic
within shifling by X to sequence S, then it 1s also isomorphic within shifi-

ing by X up to modi fication to sequence S.

Proof: ~We prove this Lemma by induction on the levels of

precedence graph P.

For the base case, we simply need to recognize that

M@;)=f"a)+X
for all elements a; at level zero (the sink elements) in the precedence graph P

since
f’(ai) = f(ai)
for these sink elements, and since we also know from the hypothesis of the

lemma that sequence § is isomorphic within shifting by X to sequence S,

which implies that
T(ay) = f(a,) + X.

Let us now hypothesize that

Ti(a;) = /'a) + X

for any element a; at a level no greater than X\, where 0 < X < h_.

For the induction step, we will now show that

T!(ag )= [fa;)+X
for any element a, at level X+ 1 in the precedence graph P. To see this, let us

without loss of generality consider any element a, at level X+ 1. Also, let
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SHa)={6—1-A(i6x.k)} =6,
that is the expression
{d"—1-A(,d"z,k)}

takes on a minimum for some d'=46 and z=1y. Also, the corresponding

function J * for the instance ] assigns a value to element a,, as follows:

T*(a,)={s —-B@'5 pk)}=e'

for some § € Ei’ and class ﬁw in the set of elements A.

We will first show that the function f * is such that,

6'=6+X.
Suppose that this is not the case. Then, since & and €' are rationals, either
e’ < e+ X,
or
e' > 6+ X.
If
o' < e+ X,
then

(6 —1- A6 k) < {6—1-A565xk)}+X

and therefore,

{6 —X—1-A@E"5 0k} < {6—1-2a(6xk)}

Now, from Lemma 4.1 and the induction hypothesis, we know that
n(i,d"z)="n(i'd"y)

for any element a. at level X+ 1, and for any d' and z; as usual, classes IT_

and }Z—y are corresponding classes. From this fact and the definition of the

function A, we can immediately deduce that for any & > 0,
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A (4,80 ¥ k) = A5 k)
where 5’=;S~—-X, and class HX, from the set of elements A and class —ﬁ?ﬁ from

the set of elements A are corresponding classes. Then, this fact in conjunction

with our earlier deduction that

(6 =X —1-B@"6 $,k)} < {6—1-A(3,6,x,k)}
collectively imply that there exists a §' € Di and a class Hx’ where either

6§ 54 6', or x £ !, or both, such that
{6/=1-A@s' Xk} < {6—1-A@6xk)}=86

which contradicts the minimality of 6.

A similar argument can be used to establish that 6’ cannot be
greater than 6 + X and therefore, given that 6 and 6’ are rationals, we con-

clude that

T*(@)=/*(a)+ X.

Now, from the definition of the modified cost-determining function,

we know that
Tl(ag )= min{] (&i i (a; )}

Then, from our earlier deductions and the fact that sequence S is isomorphic

within shifting by X to sequence S we have:

7(&3 ) =mun{f(a)+X, f*(a)+ X},
and since
f"(a@f) = mz’n{f{ai), I* (ag.) 1

we have



completing the proof. [J

We are now in a position to use these two lemmas to show that af-
fined sequences are very robust indeed, in that the method of perturbing se-
quences which we introduced earlier on does not destroy their essential struc-

ture or,

Lemma 4.3: A sequence S which is isomorphic within shi fting by

X to an affined sequence S, is also affined.

Proof: We will first show that if any element a, is not distinguished
in sequence S, then element a;, is not distinguished in sequence S and vice-

versa. Since sequence S is isomorphic within shifting by X to sequence S, if

any element a, has its first copy in edge E; in S, then element @, has its first

copy in edge E’q in sequence S. Let element a, be a type-r element and let
f’(ai) == § without loss of generality. Now, if element a, is not distinguished

in sequence S, then it occurs in the primary saturation subsequence of S

projected with respect to § and z from sequence S.

Suppose that element @, is distinguished in sequence S. Then, it

cannot be in the primary saturation subsequence in sequence S* projected

with respect to § and y from sequence S, where ?’(&g. ) =5 ; also, from the

Shifting Lemma, § =6+ X. Then, if element a, is distinguished and if ele-

ment ¢, is not, it follows from the definition of a projected sequence that at
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least one of the elements a, in an edge in the primary saturated subsequence in

S is such that element aj, is not in any edge of S$*. Then, since a, € 11, im-

plies that a]., € ﬁy, it must be the case that

or

7’(&1‘,) = f(aj) + X!
for some X' > X which contradicts Lemma 4.2. We can use a similar ar-

gument to show that if any element a; is not distinguished in sequence S,
then element a, is not distinguished in sequence S and hence conclude that if

element a, is distinguished in sequence S, it follows that element g, is distin-

guished in sequence S and vice-versa.

Now, consider any distinguished type-z element @, with T’(ZL@- =5,

and with its first copy in edge E; in sequence S. From the previous
paragraph, we know that the type-z element o, with f'(a;) =14, and with its
first copy in edge E; in sequence S, is also distinguished. Also, from the af-
finedness of sequence S, it follows that element a, has a predecessor element a,

with its first copy in edge E;, such that
7AN (j,ﬁ,x,k’) 2 qg-— q’°

Then, from Lemmas 4.1 and 4.2, we know that the critical distance of element
Zz,j; with respect to 5 and Y,
A58 k) = A(4,6,2,k)
> q—q.

where element sz., is the image of element a, under the mapping F.
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Also, from the isomorphism of instances I and I, we know that ele-

ment c'zj., has its first copy in edge Eq, in sequence S, and that element aj., is a

predecessor of element 4 in precedence graph P; from Lemma 4.2, we know

that

[@;)=6 =5+ X.

So, element 4y has a predecessor element sz, such that the distance between

these two elements in sequence S is bound above by the critical distance A of

element ZL]., with respect to § and y and hence, sequence S is affined. [

4.4 On Affined and Optimum Sequences

Since Lemma 4.3 tells us that the mapping ¥ satisfies condition (***)
as well, we have satisfied all the requirements of our proof technique. This al-
lows us to claim that affined sequences are always optimum; in other words,
they characterize the behavior of minimum cost sequences at all points in the
range of the cost function of our optimization problem, and not just when the
given instance has associated zero-cost sequences. We are therefore in a posi-
tion to completely characterize the behavior of minimum cost sequences in
terms of affined sequences and thereby extend the partial characterization of
minimum cost sequences provided by Theorem 3.1. This characterization of
minimum cost sequences, provided by the inclusion relationship between the
subset of affined sequences and the minimum cost sequences in a feasible set S
shown in Figure 4-8, is stated in the following central theorem. This theorem
basically follows from the fact that affined sequences are always optimum - 2
fact which we are already aware of - but we include its proof here merely for

the sake of completeness.
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feasible set S

Figure 4-8: The relationship between S, and S, .in 10

in
an arbitrary feasible set S.

Theorem 4.1 (The Characterization Theorem): For any feasible set

S, s CS§

a — Tmin”°

Proof: The proof is essentially an application of our technique from

Section 4.1. Suppose that this theorem is false. Then, the sequences in S, in

must have a cost K’ > 0 or else we will be contradicting Theorem 3.1. Also,

there must exists a sequence S in Sa such that S € § Now, consider a se-

men’

quence T'€ S_ . which is equivalent to sequence S, and let K and K' be the

mn

costs associated with sequences S and T respectively where 0 < K' < K.
Now, consider sequence S (T) which is isomorphic within shifting by X to se-

quence S (7) such that:

/ (@2'1) = f(a’@‘) + ff'(ﬁ (FJ-/) =g (%‘) + K ,)

(where g is the cost-determining function of the instance associated with se-
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quence T and the bj are its constituent elements). Then, sequences S and T

have costs of K —K' > 0 and zero respectively. With this, we have shown

that 2 sequence S exists which, from Lemma 4.3 is affined, and for which }gﬁl

is non-empty (because T e —6) and yet S & -S.Q) which contradicts Theorem
3.1 completing the proof. [J

The essence of our proof technique was originally used implicitly by
Brucker, Garey and Johnson [2] in the context of finding minimum tardiness
schedules for the restricted case of in-tree precedence graphs with a single
type of single-stage resource (shown in the first row of Table 1-2). Besides our
characterization of minimum cost sequences and other results, one of our main
contributions has been in systematizing and generalizing this technique. We
have also demonstrated the utility and scope of this technique by applying it
in the context of the rich class of affined sequences; through this, we have
been able to obtain a characterization of minimum cost sequences through the
affined property. Finally, we are optimistic that this technique will be effec-
tive in providing similar characterizations of a wider class of scheduling

problems and other types of combinatorial optimization problems as well.



Chapter 5

Obstructions and Permutation Lists

While we have been studying the behavior of sequences at optimality
in the last few chapters, we have not addressed the issue, of the complexity of
constructive methods for enumerating sequences from an instance of the op-
timization problem associated with hypergraphs. This approach (of ignoring
the complexity of the enumeration question) was deliberate since we wished to
study sequences independent of any explicit links to specific instances, or to al-
gorithms for enumerating them. We now address this problem of enumerating
sequences algorithmically in Section 5.1. First, we will describe an algorithm
for enumerating sequences from instances of the optimization problem as-
sociated with hypergraphs. This algorithm plays a significant role in Section
5.2, where we identify a central condition which ensures polynomial solvability
of our optimization problem. This condition or property will be used in Chap-
ter 6 to accomplish our single most important goal; there, we will build a
unifying framework around the subdomains from the tables of Chapter 1, and
in some cases, their generalizations as well. To this end, in Section 5.3, we
will establish some properties of sequences enumerated by our particular al-

gorithmic method (from Section 5.1).

97
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5.1 A Constructive Method for Generating Sequences

In this section, we will describe an algorithm for constructing se-
quences. In doing this, we are motivated by the fact that this algorithm can
be used to formulate conditions which separate the tractable subdomains of
the optimization problem associated with hypergraphs from the intractable
ones; in order to better understand as to how an algorithm can play a role in
such conditions, consider Figure 5-1 where he have shown the domain D of all
instances of some optimization problem. Also, let us suppose that there is a
constructively described algorithm A for solving this optimization problem,
and which in addition has the following two special properties. Firstly, it al-
ways terminates in time proportional to a polynomial function of the input
length for any instance from the input domain D. Secondly, it always solves

the optimization problem for only a subset S’ of the input domain.

The (input) domain
of instonces of some
opfimization problem

The domain of
instances for

which ‘the
algorithm A

solves the
optimization
problem’

P-rre ser of an
instances for which
this optimization
problem can be solved
in polynomial Fime

Figure 5-1: Identifyving subdomains of an optimization problem

through an algorithm A.

Let us for the sake of our present discussion, suppose that this op-

timization problem is NP-hard in general. Then, consider the subdomain D'
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which is delineated in terms of algorithm A to be: exactly that subset of the
tnput domain for which algorithm A solves the optimization problem. Given
algorithm A and the second property which it satisfies, it is easy to see that
this domain D' is well defined. Also, it follows from the first property of this
algorithm that the optimization problem is polynomially solvable for instances
from D'. The obvious advantage of formulating complexity determining con-
ditions in this fashion by basing them on an algorithm such as A, for separat-
ing polynomially solvable subdomains of an NP-hard input domain, is that in
addition to identifying a polynomially solvable subdomain of the optimization
problem being considered (D' in the above example), we would also have
described an algorithm at the same time for solving the corresponding sub-
problem. We will see in this chapter and in Chapter 6 that this principle can
in fact be used quite effectively in our present context so much so that the
consequences have far reaching implications towards understanding the com-

plexity of the optimization problem associated with hypergraphs.

5.1.1 The Generalized Schedule Construction Method

We will now describe a method of constructing sequences from in-
stances of the optimization problem associated with hypergraphs. A list L
which is a permutation {a’l, a'2, ..,,a’n} of the elements in A plays an impor-
tant role in formulating this method. Element a’z. occurs before (after) ele-
ment a’j in list L if and only if ¢ < 7 (¢ > 7). In this manner, any list L to-
tally orders the corresponding set of elements A; we will refer to this as the
list order induced by L. Two lists for the instance of Figure 2-1 are illustrated

in Figures 5-2 (i) and (ii) respectively.

We will refer to a list L together with the class and cost-determining

functions, and the degree of slicing k, and the various other attributes of the
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/02,03,0,,6'4,05;05;07:05/ sequence
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{ So
Figure 5-2: Alternate lists for the instance of Figure 2-1.
corresponding instance as the representation with list L (of that instance).
Then, given a representation of an instance with list L, our method for con-
structing a sequence involves repeatedly 'scanning’ list L. On the g¢th scan, we
construct edge E; of the sequence (for ¢ > 1) by selecting its constituent ele-
ments. We will say that scan ¢’ is earlier than scan ¢ whenever ¢/ < q.
Then, an element a'i (from list L) is a candidate for inclusion on the gth scan

(in edge E; that is) if and only if:
1. every predecessor of element a’e., whenever it exists, is a member of

at least k distinct edges constructed on earlier scans and,

2. there are no more than k£ — 1 distinct edges which have been con-
structed on earlier scans, and which contain element a'z..
Condition 1 ensures that the sequence constructed by our method is order
preserving, while condition 2 constrains these sequences to be weak

k-matchings.

We will now use these lists and the priority ordering which they in-
duce on a set of elements, to guide our sequence construction method. For ex-
ample, suppose that two elements a’z. and a’j., where ¢ is less than 4, are both

eligible (candidates) for inclusion in some edge E; as we are constructing the
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sequence. But now, if the bound preserving property prevents us from includ-
ing both of them in this edge - in other words, we are forced to choose be-
tween these two elements - then we will resolve this conflict by choosing the
element with the higher property, that is one which occurs earlier in the per-

mutation (element d’; in this case).

To do this, we will now add an extra condition which will determine
whether or not a candidate for inclusion is actually selected on the gth scan to
be included in edge E; and define a function @ (g,7) which represents the
number of distinct edges which contain element a’i and which have been con-
structed on scans earlier than ¢; also, @ (1,7) is by definition zero for all 1.
Then, an element a’z. is selected for incluston on the gth scan if and only if for
each v where 1 < v < m,

2 O
is bound above by Bv, where a 7 € j ijf Eaflld only if element a;. does not ocecur
after element a. in list L and in addition, @ (g, ¢) = @ (g, 7). This condition in-
fluences the process of selecting from among all the contending elements which
are candidates for inclusion on a given scan say ¢, since it simultaneously en-
codes the bound preserving requirement and the priority (order) induced by
list L into our constructive method. In the interests of a simple and clear ex-
position, we have decided to define the conditions under which an element is a
candidate or is selected for inclusion in a somewhat informal manner; there are
obvious ways in which these notions can be stated more rigorously through

recursion.

To see the manner in which these lists influence and determine the

relative priorities of the elements of an instance, let us consider the example
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lists L and L' in Figures 5-2 (i) and (ii) respectively. By altering the relative
positions of elements a, and ag (or a; and q,) in lists L and L', their relative
positions in the constructed sequences respectively illustrated in Figure 2-8 (i)
and (ii) are affected accordingly; note that even though these sequences were
introduced earlier on in Chapter 2 without reference to any associated lists, it
is easy to verify that they were in fact derived by applying our constructive
method to the two lists in Figure 5-2. Specifically, in the former case, element

aq (a,) is given priority over element a, (a) if list L is used and these priorities

3
are reversed in the case of the sequence of Figure 2-8 (ii) which is constructed
from list L'. Note that it follows in an obvious way from the conditions which
an element has to satisfy if it has to be a candidate for inclusion on a given
scan and moreover, if it has to be selected for inclusion, that the resulting se-
quences are always interesting. Also, this procedure for constructing sequences

terminates when there are no remaining candidates for inclusion in the cor-

responding list L.

extract

. generate
list
seguences
represent—
ations
instances representations seguences

with /lists

Figure 5-3: The two steps of the generalized sequence
construction method.

Using this method, we will now specify a complete algorithm which

will accept an instance of our optimization problem as its input and produce a
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sequence as its output. Our algorithm or effective method for constructing se-
quences from instances, which will be referred to as the Generalized Sequence
Construction (GSC) Method, is a two step process as illustrated in Figure 5-3

which involves:

1. extracting a representation with a list L from the given instance

and,

2. applying the criteria described above for selecting the candidates
for inclusion, to generate or construct a sequence from this (list)

representation.

The generalized sequence construction method is a straightforward
generalization of the well-known list scheduling method [14]; basically, we
have extended list scheduling from [14] to where it can now accommodate
many different types of resources as well as pipelining. The original list
scheduling method was aimed at constructing sequences (schedules) from in-
stances which only have a single type (m=1) of single-stage (k==1)

resources.

5.2 A Sufficient Condition for the Optimization Problem to be
Tractable

Let us now return to the issue of identifying unifying properties or
conditions which determine the complexity of the optimization problem on
hand, and in particular such properties which ensure that optimum sequences
can be enumerated in polvnomial time for instances satisfying these properties.
As noted in Section 5.1, it will be especially advantageous if these unifying
properties or conditions are based on constructive methods for enumerating se-

quences. For then, we would have produced an efficient algorithm for solving
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the optimization problem hand in hand with providing a unifying complexity

characterization through these properties.

It turns out that the GSC method by itself, without further refine-
ment, is inadequate to provide such a unifying complexity characterization.
To see this, we need to return to an earlier observation from Section 5.1 where
we introduced the mechanism for identifying polynomially solvable sub-
domains based on constructively specified techniques or algorithms. In par-
ticular, recall that we expected the algorithm A to ’solve’ the optimization
problem, and moreover, it must do so in polynomial time for a subset D' of
the input domain D. The GSC method fails to meet this requirement since it
is not guaranteed to solve the optimization problem associated with hyper-

graphs for any non-trivial subdomain unless it is additionally constrained.

The problem lies in the first step of the GSC method (shown in
Figure 5-3) which involves extracting ’a’ (any) representation with (any) list L
from the input instance. This allows us too much freedom during the first
step, especially since not all of the n! list representations associated with a
given instance are guaranteed to produce optimum sequences; it is quite easy
to find instances and list representations in such a way that the sequences con-
structed from them by subsequently applying step 2 of the GSC method, are
not optimum. So, since the GSC method is not even guaranteed to always
solve the optimization problem and therefore, it cannot yet play a role such as
that played by the example algorithm A earlier on, in helping us identify com-

plexity determining conditions.

To remedy this situation, let us start off by constraining the GSC

method to where the resulting algorithm at least solves the optimization
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problem. That is, given any input instance, our refined version of the GSC
method should produce a corresponding minimum cost sequence as output.
Naturally, we will focus our efforts on the first step of the GSC method since
it is the source of our present problem. More specifically, we will modify this
step by requiring that for any given input instance, the first step of our
'refined” method will produce a list representation in such a way that the se-
quence produced by a subsequent application of its second step - which is the
same as the second step of the GSC method - is guaranteed to be optimum.
By refining the GSC method in this fashion, we then have a new method for
constructing sequences as shown in Figure 5-4, for solving the optimization
problem associated with hypergraphs. Henceforth, we will refer to this as the

augmented generalized sequence construction (AGSC) method.

extroct
//st
represent -
glions

generare
sequences

/nstances representations with [ists sequences
which genergles opfimum
=2Eguences

Figure 5-4: Refining the GSC method to ensure that the resulting method
always solves the optimization problem.

However, even the AGSC method does not quite meet all the require-
ments which our hypothetical algorithm A satisfied. The problem with the
GSC method was that we could not be assured of its ability to 'solve’ our op-
timization problem. In contrast, the relatively refined AGSC method can al-

wavs solve this optimization problem. But notice from Figure 5-4 that the
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AGSC method is powerful enough to solve our optimization problem for any
instance from its input domain. This in turn means that the scope of this
AGSC method extends to the entire input domain of the optimization problem
associated with hypergraphs. Now, since the general problem of finding op-
timum sequences is known to be NP-hard if we consider solving it for the en-
tire input domain, we can conclude that there cannot be a polynomial time
implementation of the AGSC method (unless P = NP) and therefore, it can-
not be used in the manner in which algorithm A was used to separate a
polynomially solvable subdomain of our example optimization problem with

input domain D.

Given this shortcoming of the AGSC method, let us consider our op-
tions and especially, the possibility of refining it even further. In doing this,
we are guided by the first of the two 'properties’ which algorithms A satisfied
: it always terminates in polynomial time. Specifically, it is this property
which our AGSC method is violating, and which we need to enforce before we

progress further.

Before we do this, let us first recognize the fact that if the time com-
plexity of the AGSC method is to be kept low, we can once again restrict our
attention to its first step. This is evident from the fact that its second step
(shown in Figure 5-4) is always polynomially solvable and therefore, any dif-
ficulty in solving the problem through the AGSC method can be potentially
encountered only during its first step. Equivalently, if the AGSC method is to
run in polynomial time, the process of finding lists which are guaranteed to
produce minimum cost sequences by subsequently applying step 2 of the

AGSC method, must be 'easy’ for the instances in question.
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Clearly , if the first step of the refined version of the AGSC method
runs in polynomial time for a given subdomain, we must be in a position to
isolate such lists for a given instance from this subdomain which are
guaranteed to produce optimum sequences, in an efficient manner. Then,
what we really need to do is to identify what we can call intractability
obstructions, which are conditions which constrain the search space of the first
step of the AGSC method - if unconstrained, this search space potentially has
all the n! list representations of the instance - in such a way that a number of
lists which generate suboptimal sequences can be ruled out, thereby converging

upon one which does produce an optimum sequence.

Generally speaking, an intractability obstruction is a condition (or
conditions), possibly formulated in terms of an algorithm for solving the op-
timization problem in question, in such a way that this optimization problem
can be solved efficiently for instances which satisfy this obstruction. Actually,
this notion of an intractability obstruction is rooted in that of an obstruction
which Lenstra introduced in [63]. In Lenstra’s formulation, an obstruction is a
forbidden structure, such as the two well-known subgraphs K373 and K which
were discovered by Kuratowski [58], and whose presence (up to
homeomorphism) obstructs or rules out the possibility of the desired solution -
graph planarity being the desired solution in this case. The important thing
about obstructions such as these is that while they do signify deep and insight~
ful work into the problem on hand, it is quite often the case that they cannot
be easily related to complexity issues, or incorporated into a computational

framework for solving this problem.

Therefore, while obstructions (in the Lenstra sense) can provide us

with insight into the existence of good algorithms, the problem of {inding ex-
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plicit links between such obstructions and good algorithms is not always
straightforward, and as such tends to be quite a challenging and fascinating
endeavor in its own right. The problem of efficiently detecting graph
planarity, and finding such an embedding whenever possible, serves to il-
lustrate this point well. For this problem, Hopcroft and Tarjan [47] have dis-
covered an extremely efficient algorithm which does not use Kuratowski’s
obstructions. Instead, it relies on a certain technique for decomposing the
graph into paths, combined with efficient backtracking methods. The reason
behind not using conditions such as K?}’3 or K, in this algorithm stems from
the fact that these obstructions do not seem to lend themselves to efficient al-
gorithmic implementation and moreover, they do not address the issue of con-
structively finding embeddings, even after we determine that the given graph
is planar. This has motivated us to integrate the complexity issue explicitly
into the notion of obstructions. As we will see in the sequel, by basing the for-
mulation of intractability obstructions on algorithms, we will not only have an
explicit characterization and thereby direct insight into the complexity
(tractability) of the optimization problem on hand, but we would also have

synthesized an algorithm at the same time for solving this problem.

Let us now proceed to identify such an intractability obstruction in
the context of our problem, by defining a non-decreasing ordered list L as one
in which f/(d) < f’(a’j) whenever element o', occurs before element a'j. in
list L. Also, a representation with a non-decreasing ordered list L for a given
instance is defined accordingly. Owur interest in such representations stems
from the fact that a non-decreasing ordered list representation can always be
constructed in polynomial time for a given instance; first by computing the
modified cost determining function f' and subsequently sorting and construct-

ing the list based on the values assigned by f' to the various elements, to get
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the desired non-decreasing order. In this manner, non-decreasing ordered lists
provide us with an easily computable representation of instances since we can

claim that for any instance:

Proposition 5.1: A representation with a non-decreasing ordered

list L can be enumerated in polynomaial time.

These non-decreasing ordered lists play an important role in for-
mulating our intractability obstruction. To see this, let us denote the (unique)
sequence, constructed by applying the procedure which constitutes the second
step of the AGSC (or for that matter, the GSC) method to a representation
with list L, by SL' We will say that sequence SL is generated from the
representation with list L. Now, suppose that there is a collection of instances
in the input domain for which any non-decreasing ordered representation is
guaranteed to produce an optimum sequence. Better yet, let us also suppose
that the sequences generated from these representations are affined. Finally,
let us change the first step of the AGSC method, as shown in Figure 5-5, by
replacing it with a step which produces a non-decreasing ordered list represen-

tation of the input instance.

Then, it is easy to see that the resulting method (Figure 5-5) solves
the optimization problem for the above mentioned subdomain of instances -
those for which non-decreasing ordered list representations generate affined se-
quences. An interesting point to note is that the condition: ’all non-decreasing
ordered representations generate affined sequences’ , is formulated with the al-
gorithm from Figure 5-5 as its basis. Finally, since both the steps of this algo-
rithm can in fact be implemented to run in polynomial time (as we will see in

Chapter 7), the optimization problem is actually polynomially solvable for the
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Figure 5-5: Refining the AGSC method to run
in polynomial time.

set of instances which satisfy this condition. In essence, this condition is ac-

tually an intractability obstruction which satisfies all our requirements.

From the above discussion, we can conclude that to formulate our in-
tractability obstruction, we need to draw upon our knowledge of affined se-
quences and of non-decreasing ordered lists. This obstruction which has to be
satisfied by instances of the optimization problem associated with hypergraphs

is stated as follows:

Intrinsically Ordered (10) Convergence: Every representation

with a mnon-decreasing ordered list L (for the corresponding

instance) generates an affined sequence.
Then, from the characterization theorem, the conditional truth (to be verified
in Chapter 7) of Proposition 5.1, and the fact that the process of enumerating
a sequence from a representation with list L is always polynomial (an obvious

fact which will also be verified in Chapter 7), we have:

Theorem 5.1: If an instance of the optimizaliion problem
(assoctated with hypergraphs) is IO convergent, then an optimum sequence

can be enumerated for 1t in polynomial time.
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While most of our development so far in this chapter has been quite
straightforward, it turns out that intrinsically ordered convergence, which we
can verify from Theorem 5.1 to be an intractability obstruction, has some very
intriguing consequences. We will see this in the next chapter where we show
that instances drawn from any of the subdomains listed in Chapter 1 and in
fact, from a few other more general subdomains as well, all satisfy this unify-
ing property. In this manner, this property, through Theorem 5.1, forms a
basis for a unified explanation of the like complexity characteristics of these
seemingly different subdomains. We would also like to point out in passing
that our approach towards identifying intractability obstructions draws upon
the behavior of sequences, which are objects in the output domain of the op-
timization problem. This is in contrast with conventional approaches where
such obstructions are typically formulated based on properties drawn from the
input domain; in-trees, interval orders or cyclic forests from Chapter 1 are all

examples of the latter approach.

5.3 Some Properties of Generated Sequences

We will now establish some properties of sequences generated from
non-decreasing ordered lists which will prove to be useful later on. In es-
tablishing these results, we will consider instances which have the following
special types of class functions. We say that the class function C is perfect if
and only if for any pair of elements a, and a, in A, if an integer v’ exists such
that C, , and ij’ are both greater than zero, then for any v where
1 < v < m C equals C'jy., An instance is perfect whenever the correspond-
ing class function is and in an analogous manner, we have per fect sequences as
well. Basically, the set of elements in a perfect instance is partitioned in such a
way that the elements in one of its classes say IT_, do not require any resources

which are needed by the elements from a different class say Hy and vice-versa.
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Our interest in perfect instances and sequences follows from the fact that those
drawn from any of the subdomains listed in Chapter 1, are all perfect. In
what follows, we will be focussing our attention on perfect instances and se-
quences only, and unless otherwise specified, any instance or sequence which

we will be looking at is assumed to be perfect.

The first property of generated sequences which we are interested in
establishing relates the position of the first copy of an element in a generated
sequence S, , to the 'state’ of the list when it was selected for 'primary’ inclu-
sion; an element a, is a candidate (selected) for primary inclusion on the gth
scan if and only if it is a candidate (selected) for inclusion on this scan, and in
addition, it must not have been selected for inclusion on any earlier scan. Also,
the state of a list on some scan say ¢ is determined by the set of all elements
which are candidates for primary inclusion on this scan, and by the relative

positions of these elements in the list.

Lemma 5.1: In any sequence SL generated from a representation
with list L, a type-z element a; has its first copy in edge E; 1f and only 1 f:

1. 1t was a candidate for primary inclusion on the gth scan and

2. there were less than SI, type-z elements which were also
candidates for primary inclusion on the qth scan and which
occurred before element a, tn L.

That this property is true follows trivially from the greedy nature of our se-
quence construction method, the definitions of an element being a candidate
and being selected for primary inclusion, and the fact that the instance is per-

fect.
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In what follows, let SV always denote a sequence generated from a
representation with a non-decreasing ordered list ». In the next two lemmas,
we will establish certain relationships between distinguished elements in such
sequences and the state of the list when these elements were selected for
primary inclusion. The first of these two relationships can be formally stated

as follows:

Lemma 5.2: If edge E‘; in any sequence S’U, projected with respect
to some d' and x from some sequence S , 1s unsaturated, then the first copy
of any lype-z element a, with fia) < d' is in edge E’q if and only 1f it

was a candidate for primary inclusion on the gth scan.

Proof: 1t is straightforward to verify the 'only if’ part since the set
of elements with their first copies in any edge E; in a sequence S; is always a
subset of the set of elements which were candidates for primary inclusion on
the gth scan. So we will move on to establishing the 'if’ part of this lemma.
Suppose that it is not true. Then, it follows that there is a sequence é’y
projected from sequence S with respect to some d' and z without loss of
generality, and 2 type-z element a, with f’{ai) bound above by d' in such 2
way that element a. was a candidate for primary inclusion on the gth scan and
vet, it was not selected for primary inclusion. Among all such elements, let
element a,, occur earliest in the corresponding list L; that is, any type-z ele-
ment d, with f’(aj) bound above by d’, which occurred before element a;, in
list L, and which was a candidate for primary inclusion on the gth scan, was

also selected for inclusion.

Now, since edge Eg is unsaturated or equivalently, since |E ;’1 is less

than S'z, it follows that there were less than S]m type-z elements with
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modified cost-determining functions bound above by d’, and which were
selected for primary inclusion on the gth scan. Therefore, there were less than
SI, such elements which occurred before element ay in list L. Then, since ele-
ment a;, is the earliest type-r element with f’(ai,) < d' which was a can-
didate for primary inclusion on the gth scan, and which was not selected for
inclusion, and since list L is a non-decreasing order from the hypothesis of the
lemma, we can conclude that there were less than SIm type-x elements which
were candidates for primary inclusion on the ¢th scan and which occurred be-
fore element a, in this list; yet, it was not selected for inclusion on the gth

scan which contradicts Lemma 5.1 completing the proof. [J

The above lemma essentially gives us a means for working backwards
from a given sequence S, and deducing a relationship between certain of its
distinguished elements which were candidates for inclusion on a given scan
during the process of constructing sequence Sy, and whether or not they were
actually selected for primary inclusion on this scan. Using this property, we
can now show that in any sequence Su, certain distinguished elements always
have immediate predecessors in such a way that the distance between these

two elements (the predecessor-successor pair) is always k, or more precisely:

Lemma 5.3: Any element a, in edge E'é for ¢ > 1 in a projected

7

sequence év has an immediate predecessor with its last copy in edge E(q_ 1)

1

in sequence S, whenever edge E(q_ 1

) 18 unsaturated.

A

Proof: 1If the lemma is false, there exists a sequence SV projected
from some sequence SV with respect to d’ and z, with an element a, in edge
Eg for ¢ > 1. Also, the corresponding edge E?q—— 1) is unsaturated and no im-
mediate predecessor element a, of element a; has its last copy in edge E’q_ X
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Since a; € E;’, its first copy in sequence S, must be in edge E’; and so, we
can deduce from Lemma 5.1 that element a, must have been a candidate for
primary inclusion on the gth scan. From this, it follows that if element a, has
no immediate predecessor with its last copy in edge Ezq-l) and if it was a
candidate for primary inclusion on the gth scan, either it has no predecessors
in the corresponding precedence graph or the last copy of any of its predeces-
sor element a; must be in some edge E;, for ¢’ < (¢—1). Then, the type-z
element a; with f'(a;) bound above by d’, was a candidate for primary inclu-
sion on the (¢— 1)th scan, edge E?g-—l) is unsaturated, and yet it was not
selected for primary inclusion on the (g— 1)th scan which contradicts Lemma

5.2 0

The interesting thing about these specialized, and sometimes tedious
to establish properties is that they depend heavily upon two aspects of our
constructive method; the first of which we will refer to as the greedy nature of
each scan of a list. Recall that the greedy algorithm solves the combinatorial
optimization problem associated with a matroid M = ( E, I) [20]. Specifically,
on each step, it chooses an element with the largest (smallest in the case of a
minimization problem) weight from the corresponding set E; this element is an
edge with maximum weight when M is a graphic matroid in which case, we
are solving the MWF (or an edge with minimum weight in the case of the
MST) problem. The element so chosen in then added to the solution
provided, upon doing this, the partially constructed solution remains feasible;
in the case of the MWEF (or MST) problem, the solution remains feasible if the
edge being added does not form a cycle with the partially constructed sub-

graph.

Then, the analogy between this method and each scan of the second
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step of our procedure for generating sequences from lists is obvious since on
each scan, we try to include as many elements as possible by choosing the
‘candidate’ elements; we are greedy in the sense that we choose the elements
with the with lower list indices which are our analogs of the 'weights’ from the
matroidal optimization problem, where 7 is the list index of element a’i.
There are however important differences between the two algorithms, for ex-
ample in the way that the cost of the solutions - which are minimum cost
bases in the case of the greedy algorithm, and minimum cost sequences in our
case - are formulated as a function of the weights in the respective cases. The
second important aspect upon which our results of this section rest, is the non-

decreasing ordered nature of the lists.



Chapter 6

Unifying the Polynomially Solvable Subdomains

In the previous chapters, we studied the behavior of sequences at op-
timality which culminated in the Characterization Theorem. We were also
able to provide a complete characterization of a class of polynomially solvable
instances through the IO convergence property. We now move on to showing
the somewhat surprising result that this property is in fact shared by instances
drawn from any of the subdomains identified in Chapter 1, as well as from
other subdomains which we will introduce in this chapter. In Section 6.1, we
will establish some important properties of distinguished elements which will
prove to be of value in the subsequent sections of this chapter. In Section 6.2,
we introduce the domain 81 of instances and show that any instance from this
subdomain is IO convergent. We then show that subdomains By By Bes and
8, (of Chapter 1) are all properly included in subdomain A1 - therefore, in-
stances from any of these subdomains are also IO convergent. In Section 6.2,
we continue to do this for the remaining subdomains from the first chapter.
Once again, in the context of subdomain Bg, We do this by showing that it is
included in a more general subdomain Bio which we introduce here; any in-
stance from g, satisfies our unifying property. In this manner, we show that
the complexity of many of these seemingly different subdomains follows even-

tually from the intrinsically ordered convergence property.
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6.1 Saturated and Unsaturated Subsequences

In order to show that an instance is IO convergent, we need to first
establish that the sequences generated by their non-decreasing ordered
representations are always affined. Recall that in an affined sequence, any dis-
tinguished type-z element a, with f/(a,)=d', must have a predecessor ele-
ment such that the distance between this predecessor-successor pair is no
greater than a special quantity : the critical distance of the predecessor ele-
ment with respect to z and d’. Because of this, the problem of showing that
only affined sequences are generated by our constructive method (Figure 5-5)
from non-decreasing ordered (list) representations of instances drawn from the
various subdomains of interest to us, translates to one of establishing the
above mentioned bound on the distances between distinguished elements and

their predecessors in the sequences which are generated from these instances.

But, in order to do this, it is very helpful if we recognize that distin-
guished elements fall into two broad categories; those which are members of
saturated subsequences, and those which are members of wunsaturated
subsequences in the corresponding projected sequences. To identify these two

categories of distinguished elements, let us consider a sequence S and some se-

gquence SV projected from it with respect to d' and z. A continuous sub-

#
(p+1

sequence of sequence SV if and only if:

sequence {Ez,E ) ...,E‘Z} is said to be a saturated (unsaturated) sub-

1. every edge E;’, for p < g’ < ¢ is saturated (unsaturated),

- o #
2. edges E{p—-l) and E(p_g

(unsaturated) and unsaturated (saturated, unless p=1 in which

) exist, and are respectively saturated

12

case edge E(p_g)

need not exist) respectively and,
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3. unless edge Eg is the last edge in sequence S’U, that is unless ¢= L,

it is unsaturated (saturated)

Basically, saturated (unsaturated) subsequences represent a continuous se-
quence of saturated (unsaturated) edges (Condition 1), with special types of
edges at their end points (Conditions 2 and 3 above) as illustrated in Figures

6-1 (7} and (7¢).

Soturated
Edges
Unsoturated ! Unsalurated
E " _ EI/ _ E;D / I \
(p-2) . “lp-1) . Con be
Soturated Saturated or
Unsaturoted if
Subsequence Eq”is the lost
edge in the
sequence.
Unsaturoted
Saturoted Edges
f
2 & @ Q O <@ /%// [ ] e @
H Safumfea’
(p-2) /p~/} , § £q" 3
Unsaturaied
Svbseguence

Figure 6-1: The edges of a (¢) saturated and (¢7) unsaturated
subsequence of a projected sequence.

Note that primary saturated subsequences (of Chapter 2) do not
qualify to be saturated subsequences in the above sense owing to the require-
ment on edge E?P"") in Condition 2. Then, since distinguished elements are

those which do not belong to an edge in the primary saturated subsequence,
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they are guaranteed to be always in an edge in a saturated subsequence or in
an unsaturated subsequence of the corresponding projected sequence. Also,
owing to our present interest in the IO convergence property and thereby in
the behavior of distinguished elements - especially in those which occur in af-
fined sequences - we wish to consider their behavior in these two types of sub-
sequences separately. In particular, it is easy to see that any distinguished ele-
ment in an edge of an unsaturated subsequence of any sequence, projected
from one which is generated by our constructive method from Figure 5-5,
automatically satisfies the distance bounds on these distinguished elements in
an affined sequence, owing to Lemma 5.3; therefore, we need not concern our-
selves with such distinguished elements anymore. We will see this fact being
used repeatedly in the rest of this chapter. Also, this allows us to concern our-
selves only with distinguished elements which occur in edges of the saturated

subsequences.

To start with, we will establish a couple of very interesting properties
of these distinguished elements which occur in edges in the saturated sub-
sequences of the corresponding projected sequences. Consider a saturated sub-
sequence {E Z, Eg} of a sequence S’V and an element q, in some edge EZ, of
this subsequence. In the first of these properties, we are interested in certain
special kinds of predecessors which elements such as a. might have. More
precisely, given an element a, in an edge of a saturated subsequence, we iden-
tify its predecessor element a, to be the earliest predecessor relative to this
saturated subsequence {Eg, ...,E;’} if and only if the last copy of element a,
is in edge E;; for (p—2) < p’ < (¢g—1), and the last copy of any other
predecessor element @i of element a, is not in any edge E;,, for
(p—2) < p” < p’. Then, the first of our properties tells us that such an
earliest predecessor element a, always exists for element a,. This property is

actually quite straightforward to establish as follows:
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Lemma 6.1: Let {E;; ,E;’} be a saturated subseguence of
sequence S”V progected from S, with respect to d' and x. Then, any element a,
in edge Eg; tn sequence S’y Jor p < ¢’ < g has an earliest predecessor a;

relative to this saturated subsequence.

Proof: That such an element a, has at least one predecessor with its
last copy in some edge E;, for (p—2) < p < (¢d—1) is immediate from
Lemma 5.2. Otherwise, element a, would have been a candidate for primary
inclusion on the (p — 2)th scan and even though edge E%’p_g) is unsaturated, it
was not selected for primary inclusion on this scan - a contradiction. That
one of these predecessors has to be the earliest relative to subsequence
{EZ, cees E'q’} follows from the definition of the earliest predecessor relative to

a given subsequence and the fact that sequence Su has a finite number of

edges. [

The next property of the elements in a saturated subsequence is
much more interesting. To state this property, once again consider an element
a, in some edge E’q’, which is in a saturated subsequence {Eg, ...,E:I’} of se-
quence S’U, which in turn is projected with respect to some d' and z. Then, let
us suppose that there is some element a; which is a predecessor of any element
in an edge of this saturated subsequence {Eg, E"q’} Then, the following
relationship stated in Lemma 6.2 exists between the critical distance of ele-
ment a, with respect to & and z, and the distance between elements a, and a

is sequence SV.

Lemma 6.2: Any element a; in a saturated subsequence
{E g? E’q’} of sequence ,§u projected from some sequence S with respect to

d and x, has a predecessor a, such that the distance between eclements a, and
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a, in sequence S 1s bound above by the critical distance of element a, with
respect to d' and z whenever:
7

1. the last copy of element a, 1s tn edge E(p—z) in sequence .§'V and,

2. every element in the saturated subsequence is its successor.

Proof: From the definition of a saturated subsequence, it follows
that for (p—1) < ¢’ < g,
|E",| = SI
q T
and

|[Ef=¢e < SI .
q x

Consider an element a, which satisfies the hypothesis of the lemma.
Then, element a, is such that it has
n(jd'\z)=(g—p+1)-SI_+e
type-x successors whose modified cost-determining functions are bound above
by d. Then, the critical distance of element a; with respect to d' and =z, say
CD is such that
CD > [n(j,d’,x)/SIx'] +k—1
=[(¢g—p)+1+(¢/SI )] +k—1.
Then, if ¢ > 0, we have
CD, =qg+k+1-p
and, if e=0,

CD =g+ k—p.

Now, since S is proper, it follows that the first copy of element a; is
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in edge E;, of sequence S where p'=p—(k+1). Then, the distance §; be-
tween any element a. in an edge of the saturated subsequence {Eg, ,..,E;'},
and element as in sequence Su , is such that when e > 0,
6 X g+k+1—p=CD,
and when e =0,
& < g+k—p=CD,

and hence the result. I

In unifying the polynomially solvable subdomains in the next two sec-
tions, when we show that instances from these subdomains are always IO con-
vergent, we will be actually be working withing the framework of the general
optimization problem associated with hypergraphs where arbitrary cost deter-
mining functions are allowed; these subdomains of this general optimization
problem therefore correspond to the tardiness minimization version of the
scheduling problem. Also, we have already shown in Chapter 2 that the
makespan minimization version of the scheduling problem can be reduced to
its tardiness minimization version. As we pointed out earlier on, this allows us
to view the makespan minimization version of the scheduling problem as a
special case of its tardiness minimization version and consequently, as a special
case of our optimization problem associated with hypergraphs. As a result,
when we are dealing with subdomains for which the original results were
oriented towards the makespan minimization version of the scheduling
problem, as is the case with Hu’s [48] subdomain g, for example, we will be ac-
tually referring to the subdomains which correspond to the ’'reduced’ or

‘transformed’ versions from the original scheduling problem.
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6.2 Unification Results

In this section, we start unifying the polynomially solvable sub-
domains through 10 convergence. To start with, we introduce the new sub-
domain g,;. Our motives behind doing this and its relationship to the sub-
domains from Chapter 1 will become clear as we progress further. The
precedence graphs of instances from By, are restricted to be in-forests where a
precedence graph P= (A, o) is an inforest if and only if every element a; in
the set of elements A has no more than one immediate successor. In addition,
for an instance to be in the subdomain §,,, we require certain special relation-
ships to hold between the class function, the manner in which it partitions the
set A into classes, and the interactions of the member elements of this instance

through the precedence graph.

In order to formulate these relationships in a more precise manner,
we define the type (interaction) graph, which is a directed graph § = (V, §) as-
sociated with the precedence graph P= (A, o). Intuitively, each vertex v, € V
of the type graph is associated with one of the classes of elements I, in the set
of elements A. An edge (Ux, vy) is in the edge set £ if and only if there is at

least one pair of elements a; and a in A such that:

1. elements a, and a,are respectively type-z and type-y elements and,

2. element a, is an immediate predecessor of element a,.

An example instance and its type graph are shown in Figures 6-2 and
6-3, respectively. In the type graph of Figure 6-3, vertex vy, which cor-
responds to class I, of the set A (indicated parenthetically in the figure) has

an edge directed towards vertex v, which corresponds to class 17, since: (7).
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elements a, and ag are respectively type-1 and type-2 elements and (¢7). since
element ¢, is an immediate predecessor of element a, in the precedence graph

of this instance (Figure 6-2).

Uz
g 2
bound vecror B- < 2,2,1~>
aj Cro) E/;%e:f
a, </,0,0~> /
Oz </7,0,0 > /
O3 <0,!1,0 -~ z
o <7,0,0 ~> /
as <0,0, />
ae <0,0,1 >

Figure 6-2: The relevant components of an instance including
a classification of the elements
into varicus 'types’.

Using tvpe graphs, we are now in a position to identify the sub-
t=d o o b o
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2 (7]

Figure 6-3: The type graph of the instance from Figure 6-2.

domain #;, of instances. In addition to having in-tree (or in-forest) precedence
graphs, the type graphs of these instances have to be conservative, where an
instance of the optimization problem associated with hypergraphs is said to
have a conservative type graph provided for any y where 1 < y < M,
> SI. < SI.
r - Yy
z: (vx,vy) € ¢
Conservative type graphs require a special relationship to hold between the

saturation indices of the elements which are interacting through the relations
derived from the corresponding precedence graph. It is easy to see that the in-
stance indicated in Figure 6-2 is not conservative since SI; =1, and since it is
less than S7;=2, even though edge (v, v;) is defined in the corresponding
type graph. We will now prove the following result for instances from this sub-

domain.

Theorem 6.1: Any instance from subdomain A1 of the optimiza-

tion problem associated with hypergraphs is IO convergent.

Proof: Consider any type-r element g, in some sequence S, without
loss of generality. Moreover, let element a, be a distinguished element is se-
quence S . If no such element exists, we can conclude trivially that sequence
S, is affined. Then, the edge E;’, to which element a. belongs must either be
in a saturated or in an unsaturated subsequence of the sequence §y; sequence

S, is projected from sequence 5 with respect to d" and = where f'(a)=4d"
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We will now show that in a sequence S, corresponding to any instance from
subdomain 8,,, any distinguished element a, always has a predecessor element

a with its last copy in edge E%q’——l}‘

Suppose that edge E'é, is in a saturated subsequence {E g, ...,E;’} of
sequence S, and that it has a member element ae.’ such that this is not true.
From Lemmas 5.3 and 6.1, we can conclude that any element in an edge E;,
for (p —1) < p’ < ¢ has at least one predecessor with its last copy in some
edge E; of sequence S , where (p—2) < r < ¢g. Then, from this and the
fact that every one of the Eg,, edges for (p—1) < p” < ¢’ is saturated, we
can conclude that there must be at least

é=(q¢'=p+1)-51I,
tvpe-z elements which became candidates for primary inclusion for the first
time, in the interval starting with scan (p — 1) and ending with scan (¢’ —1).
In fact, if element a'z. in edge E;’, does not have any predecessor with its last
copy in edge qu’-—l) and since it was selected for primary inclusion on the
g'th scan, we can conclude that it must have been a candidate for primary in-
clusion on the (¢’ — 1)th scan as well. Therefore, there were in fact at least
(6 + 1) elements which became candidates in the interval starting with scan
(p — 1) and ending with scan (¢’ —1). From this, it follows that there exists a
g" where (p—1) < ¢” < ¢’ such that more than SI_type-z elements - say &'
of them - with their modified cost-determining function values bound above
by d' became candidates for primary inclusion on the ¢”th scan for the first
time; in other words, every one of these §' > sz elements have immediate
predecessors with their last copies in edge Ezg"* 1)
Now, since the instances from subdomain i1 have conservative type

graphs, it follows that there can be no more than SI of these immediate
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predecessors (of the §' type-z elements which became candidates for primary
inclusion on the ¢”th scan for the first time) with their last copies in edge
Ezq”~1) in sequence S . This implies that no more than SI_ elements with
their last copies in edge Ezq”——l) are immediate predecessors of &' > SI_
type-x elements which became candidates for primary inclusion of the ¢”th
scan for the first time. From this, we conclude that at least one of these
predecessor elements with its last copy in edge Ezq"-—l) has more than one im-
mediate successor, which contradicts the fact that the precedence graph of this

instance from subdomain 81, is an in-tree.

On the other hand, if edge Eg, is in an unsaturated subsequence of
sequence S’V, then we are done since the fact that element a, has an immediate
predecessor with its last copy in edge Ezq’-—l) of sequence S follows im-

mediately from Lemma 5.3.

Therefore, we conclude that any distinguished element a, with its
first copy in edge EZ, has a predecessor a, with its last copy in edge Ezq’—l}'
Also, since sequence Sy is proper, the first copy of this element a, must be in
edge Ezq’—k) and so the distance between elements a; and a, equals k. Since
element a, has at least one type-z element ¢, as a successor for which
f'{a;)=d’, the critical distance of element a, with respect to d' and z must
be bound below by k. From this, we can conclude that sequence Sy is affined

completing the proof. [J

We will now show that a number of subdomains from Chapter 1 are
all essentially special cases of subdomain By We start off with subdomains
3. [2] and gy [4]. It is clear from the very definition of subdomain g4 (from
Table 1-3) that it is a proper subset of #,, for which the following additional

restrictions hold:
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1. m =1 (there is a single "'processor-type’ resource),

2. C(a,)=(1) for all elements a, (each task needs only one unit of

this resource) and,

3. the length attribute I equals the degree of slicing & (task lengths

equal the number of stages in the pipelines).

Also, we get subdomain Bs by restricting the instances from subdomain Bg
even further by requiring that their degree of slicing %, equal unity. Also, since
we know from our earlier comments that the makespan minimization version
of the scheduling problem can be reduced to its tardiness minimization ver-
sion, we can conclude that subdomains g, [4] and g, [48] are essentially special
cases of subdomains Bq and By, respectively. From these observations and

Theorem 6.1, we have the following result for these subdomains:

Corollary 6.1: Any instance from subdomains Bys Bys Bgs O By 18

10 convergent.

We now consider the subdomain 8, for which Goyal [39] discovered a
polynomial time algorithm for solving (the makespan minimization version of
the) the optimization problem; his goal was to extend the basic scheduling
model to include multiprocessor systems with many different types of
'specialized processors’. It turns out that even subdomain By is also a very spe-
cial case of subdomain Biis the instances from subdomain By satisfy the follow-
ing additional constraints, over and above those satisfied by instances from
811:

1. the elements B, of the bound vector are all unity that is, B, =1
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for 1 < ¢ < m (translates to the fact that there is only a single

unit of any resource),

[

. for each 1, Cz'j equals one for only a single value of 5 and is zero
everywhere else or equivalently, for each 7, there exists a unique 7’
such that Oz‘j'z 1 and Cz.].= 0 wherever 7 52 j' (each task requires

exactly one unit of one of the m resources types in the system),

3. the degree of slicing k equals one (only ’single-stage processors’ are

allowed),

In addition to these three constraints, for an instance to be in Goyal's
subdomain By its precedence graph has to be a cyclic forest. Stated in the
light of our framework, a precedence graph is a cyclic forest provided it is a
forest and in addition, if the type graph of the associated instance §=(7V,¢)
is exactly a hamiltonian cycle, or a hamiltonian path. Intuitively, all the leaf
elements - that is those at level (A — 1) in a cyclic forest, which from its defini-
tion is also an in-forest - are all of the same type, in the sense that they all
need the same type of 'processors’ from the resource set. Furthermore, the
elements at any level h—1 for 1 < 7+ < m all need the same type of
'processor’, which is different from the type of ’'processor’ needed by the
‘tasks’ at any of the higher levels, and this pattern repeats from level
h —m — 1 on, as we progress towards the roots of the precedence graph. This

idea is illustrated in Figure 6-4 below.

Since we have seen that subdomain B, is a subdomain By derived by
adding the above mentioned (four) conditions, we can deduce that it

(subdomain 54} also fits into our unifying framework and so,
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Figure 6-4: The relationship between the elements at the various
levels of a cyclic forest.

Corollary 8.2: Any instance of ,6’4 ts IO convergent.

As an aside, we would like to point out that the subdomain By, Is sig-
nificantly more general than any of those which we have shown thus far to be
properly included in it. By identifying it, we have not only progressed in the
direction of synthesizing a significant part of the intended unifying framework,
but we have also contributed along another quite independent dimension of
this problem by discovering this rich and hitherto unknown class of

polvnomially solvable instances of the optimization problem on hand.
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6.3 More Unification Results

We now move on to the subdomain B discovered by Garey and
Johnson [33]. Instances in this subdomain are allowed to have arbitrary
precedence graphs. However, they need to satisfy the following additional con-

straints, mostly on the types of 'resources’ that they are allowed to have

1. m equal 1 (a single 'processor-type’ resource),
2. the bound vector B = (2) (only two of these 'processors’),

3. the degree of slicing k=1 (these 'processors’ have a single stage)

and,

4. for any 4, C(a;)=(1) (each ’'task’ needs exactly ome of these

processors).

Once again, it turns out that instances which satisfy these constraints always
satisly our unifying IO convergence property. The special property of ele-

ments from Lemma 6.2 plays a central role in proving this result.

Theorem 6.2 Any instance from subdomain Bg of the

optimization problem associated with hypergraphs is also IO convergent.

Proof: Without loss of generality, let us consider some instance from
this subdomain and its associated sequence Sy. We now need to show that
this sequence is affined. From the definition of subdomain B We have Bl =2
and m =1 for any corresponding instance. Also, each element a; in any such
instance is such that C(a )=1. Therefore, the saturation index SI, of the

(only) class [T, of elements, is always two. Consider any distinguished element
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a, with J'(a,)=d'; since there is only a single class or type of elements, it
must be (trivially) from class I7,. Also, let the first and only (since k£ = 1)
copy of element a, in sequence S, be in edge E:}. Consider sequence S’V
projected with respect to d’ (where the type parameter is not specified since

there can only be a single element type for instances from this subdomain).

Now, if edge E;’ is in an unsaturated subsequence of sequence S‘V, it
follows from the definition of an unsaturated subsequence that edge E?q—l) is
unsaturated. We can then deduce from Lemma 5.3 that element a; has a

predecessor element a, with its last (and only) copy in edge EE in sequence

-1
S‘V. Also, element a, has at least one successor element a W;]th )its modified
cost-determining function bound above by d'; therefore, the critical distance of
element a, with respect to d’ (and the single element type of course) is bound
below by unity. Also, since k=1 the first copies of elements a, and a, are

respectively in edges E; and E‘{ and therefore, the distance between these

g—1)
elements in sequence S equals unity. This allows us to conclude that element

a, meets the requirements of a distinguished task in an affined sequence.

On the other hand, suppose that edge EZ is in a saturated sub-
sequence {E g, ces E;’} in sequence é’y. From the definition of a saturated sub-
sequence, edge E?P* 5 must be unsaturated and furthermore since B, =2 and
SI, =1, ‘E?P*‘-’)I € {0,1}. Since there is only a single element type, it follows

p—2
the original sequence S, that f’(aj) < d'. We will first show that edge

that there is no more than one element a, with its first copy in edge E; 9) in

EEP“") in fact has exactly one such element a. and in addition, that this ele-

ment a, is the predecessor of any element from any edge of the saturated sub-

sequence in question.
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To do this, let us without loss of generality consider some element a.
in edge E'q’,, of the saturated subsequence. From Lemma 6.1, element a, must
have an earliest predecessor &' relative to this saturated subsequence of se-
quence éye This in turn implies that the last (and only) copy of element o
must be in some edge E;’ for (p—2) < p' < ¢". We will first see that the

last copy of element a’ must be in edge EEP* 2y

Suppose p' is not less than (p —1). Since element o is the earliest
predecessor of element a, relative to the saturated subsequence {E g, ..‘,,E’g;}§
the last copy of any predecessor element a” of element o’ - if such an element
a” exists - must be in some edge E! for r < (p—2). Whether element a' has
a predecessor or not, the above fact implies that element ¢’ was a candidate
for primary inclusion of the (p — 2)th scan; moreover, f'(a') < d' and there is
a single element type. Despite all this and the fact that edge E(’p__Q) in se-
quence S, is unsaturated, the first copy of element o’ in sequence S, is not in
edge Ez 2) which contradicts Lemma 5.2. Therefore, p/ must equal (p — 2).

P

Then, since f'(a’) < d’, and since there can be at most one such ele-

H
(p—2
lows that this element & must in fact be the predecessor of any element in the

ment o' with its first copy in edge F ) which is an unsaturated edge, it fol-
saturated subsequence {F Z’ ...,E‘;’}; in other words, element o’ is actually the
desired element a, whose existence was in question. Then, by invoking Lemma
6.2, we conclude that the critical distance of this element a, with respect to d'
(and the single type), is no less than the distance between the distinguished
element ¢, (with its only copy in edge E;) and its predecessor element a, in se-

quence S, completing the proof. O

We can show that the same result is true of instances from sub-
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domain B, which is very similar to Bg except that we change restrictions (2)
and (3) above from requiring that the bound vector B = (2) and the degree of
slicing k equal unity, to respectively require that the bound vector B = (1) and
the degree of slicing &k equal two (two ’single-stage processors’ in the former
case are replaced by a single 'two-stage pipelined processor’ in the latter.

Then given any instance from subdomain Big We have:

Theorem 6.3: Any instance from subdomain Bio of the optimiza-

tton problem associated with hypergraphs 1s IO convergent.

Proof: The proof of this theorem is analogous to that of Theorem
6.1 and we will only outline the important points here. Once again, we con-
sider an arbitrary sequence S corresponding to an instance from subdomain
Bl()
its first copy in edge E; is such that E:]’ is in an unsaturated subsequence of

and a distinguished element a, in it with f'(a;)=d'. If element a, with
sequence SA”V projected with respect to d' (and the single type), then the ar-
gument is a trivial variant of that used in the context of this case in the proof
of Theorem 6.2. On the contrary, edge E‘; could be in a saturated sub-
sequence of sequence S’y. If this is the case, an argument similar to that used
in the proof of Theorem 6.2 shows us that there is an element a, with its first
copy in edge Ezp—3) in sequence 5 such that it is a predecessor of every ele-
ment from this (saturated) subsequence. This allows us to subsequently invoke

Lemma 6.2 to complete the proof. O

At this point, we would like to point out that the algorithms from
[4] and [33], which were designed with the intention of solving the optimiza-
tion problem for instances from the above mentioned two subdomains, found

optimum sequences (schedules) by first constructing non-decreasing ordered
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list representations and so on, much in the same manner as we do. However,
in both these cases, the optimality of the sequences so determined was not
recognized except when their (the sequences’) cost was zero. By extending this
result through the machinery developed in Chapter 4, we arrived at the
Characterization Theorem, which now allows us to immediately recognize that
these sequences which are constructed from non-decreasing ordered (list)
representations of instances from subdomains Bg and B,, are optimum, not
only when their cost is zero, but also at all other points in the range of the
cost function as well. As a consequence, we can now claim that a single pass
of our constructive method yields affined and therefore optimum sequences for

instances from these subdomains.

Since this fact was not recognized earlier on, the approach in [4] and
[33] towards finding minimum cost sequences involved using a subroutine
which constructs sequences (schedules) form non-decreasing ordered represen-
tations of the given instance; this subroutine is invoked log(n) times in a bi-
nary search mode, each time incrementing or decrementing the values assigned
by the cost determining function (deadlines in the case of the original results)
until a sequence (schedule) with zero cost (meeting all the deadlines) was
found. Then, by combining their knowledge of the analog of Theorem 3.1 for
sequences which correspond to instances from subdomains B and Bio» Garey
and Johnson [33] and Bruno, Jones and So [4] conclude that this binary search
procedure will eventually find a minimum cost sequence for an instance from
either of these subdomains. However, owing to the characterization theorem,
we now know that this binary search phase is really quite unnecessary even
when the sequences with minimum cost for the given instances have greater

than zero cost.
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Finally, we consider subdomain 8o, for which progressively faster al-
gorithms were designed by Fujii et al. [23], Coffman and Graham [9] and
Gabow [29], and subdomain Bg, both of which are subdomains of the
makespan minimization version of the scheduling problem. It is easy to see
from the tables in Chapter 1 that the constraints which the instances from
subdomains B and By obey are respectively identical to those which are
satisfied by instances from subdomains B and B0 From this and the fact that
the makespan minimization version of the scheduling problem is essentially a
special case of its tardiness minimization version, we have the following con-

sequence of Theorems 6.2 and 6.3

Corollary 6.3: Any instance from subdomains By or By ts 1O

convergent.

This leaves us with subdomain B due to Papadimitriou and
Yannakakis [75] which has not been shown to be a part of our unifying
framework thus far. Our approach in including this subdomain into our
unifyving framework is similar to that taken in the previous section in connec-
tion with subdomain B, in that we first introduce a new subdomain B1or The
only restriction which instances from this subdomain need to satisfy is that the
corresponding precedence graphs need to be interval-orders, where a partial
order P= (A, o), each of whose elements a, € A is a closed interval in the real
line, is an interval order provided an edge (a, aj) € o if and only if for any

pair of reals v and ~/, if ~ € a, and ~' e a, then v < ~+'.

Interval orders have the following interesting relationship between

the set of successors A (a ) and 4 (aj) of any pair of elements a, and a; from A,

which we now paraphrase from [75]:
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Lemma 6.3: If the precedence graph P= (A, «) is an interval or-
der, then for any pair of elements a, and a, either ﬂ(a)gﬂ(aj) or

Ala) C A(ay).

It turns our that the property stated in the above lemma has very
positive algorithmic consequences as we will now see during the process of in-
cluding subdomain B, in our unifying framework. Also, it is interesting to
note that this property of interval-ordered graphs will be used in our ar-
guments in a quite different way, when compared to the way in which it is

used in Papadimitriou and Yannakakis’s proofs from [75].

Theorem 6.4: Any instance from subdomain Bia of the optimziza-

tion problem associated with hypergraphs is IO convergent.

Proof: We need to show that any sequence SV corresponding to an
instance from subdomain Bis is affined. To do this, let us consider some
type-z element a, which is distinguished in sequence S, and with its first copy
in edge E:I without loss of generality. Also, let us suppose that f'(a,)=d’.
Once again, let é:/ represent the sequence projected with respect to d’ and =

from the original sequence S .

~

If edge E’q’ is in an unsaturated subsequence of sequence S, we can
deduce from Lemma 5.3 that element a; has a predecessor element a, with its

last copy in edge EE in sequence S . Now, since the distance between ele-

g—1)
ments a, and a, in sequence S equals k, and since the critical distance of ele-
ment a, with respect to d’ and z is at least k (since it has at least one type-z

element a; as its successor and since [a,)= d’), we are done.
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It is much more interesting to consider the case where edge E;’ is in
a saturated subsequence {E;;, ..E,Eg} of sequence S’V. Once again, we will
proceed to show that there exists an element a, with its last copy in edge
E’(p__g) such that any element in an edge of this saturated subsequence is its
successor. In particular, we will show that this desired element a, is any max-
imal element with its last copy in edge E(p__Q); element a, is a maximal ele-
ment with its last copy in edge E/ if and only if for any element Ay with

(p—2)

its last copy in edge EE A(a].,) - A(aj). From Lemma 6.3 and the tran-

p—2)
sitive nature of the subset inclusion relationship, we know that such a max-

imal element a]. exists.

Now, suppose that an element a. exists in edge EZ' in the saturated
subsequence such that it is not a successor of element a, or equivalently,
ay ¢ ﬂ(aj). From Lemma 6.1, we know that element a has an earliest
predecessor element o' in sequence S, with its last copy in some edge E; for
(p—2) £ r < pl. Clearly, r must be strictly greater that (p—2) or else,
Ald) G A(aj) which contradicts the maximality of element a; therefore, r

must be such that in fact (p—2) < r < p'.

14
(p—1)

definition. Since edge E&)_Z) is unsaturated, we can deduce from Lemma 5.3

that this element has a predecessor with its last copy in edge F

Now, consider any element a” in edge F which is saturated by

f
(p—2)
therefore from the maximality of element a it follows that a” € A(a}.).

and

Now, given that the last copy of element a’ is in some edge E'r’ where
r > (p—2), it must follow that a” ¢ A(a’) or else sequence S, would not be
order preserving. Therefore, elements a; and @' are such that A (aj) G A(d)
and A(d) Q 4 (aj) which contradicts Lemma 6.3 and so, element a, must in

fact be a successor of element a.
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Then, from Lemma 6.2, it follows that any distinguished element a,
in some edge E’é in the saturated subsequence {Eg, ...,E;’} of sequence S,
must have a predecessor element a, in such a way that the corresponding se-

quence S’V is affined. [

From this theorem, we conclude that our framework also includes
subdomain g, since it is a proper subset of Bya derived by imposing the fol-

lowing additional constraints:

1. m==1 (only a single 'processor-type resource’),

[N

. the degree of slicing k=1 (’single-stage processors’) and,

o

. C(a;)= (1) for all elements a, (each 'task’ needs any one of these
"processors’) .

Moreover, in [75], the primary goal was to solve the makespan minimization

version of the (scheduling) problem and since we have already seen that this

version is a special case of the corresponding tardiness minimization version,

and since subdomain By is a subset of Bioy We can deduce from Theorem 6.3

that:

Corollary 6.4: Any instance from subdomain fg1s IO convergent.

With this, we have accomplished most of our goals since we have dis-
covered the intrinsically ordered convergence property, from which the polyno-
mial solvability of our optimization problem, for instances from many of the
apparently unrelated subdomains which we have been considering thus far,

follows. A very intriguing aspect of this result is that these apparently dif-



141

ferent subdomains which were discovered at varying points in time by dif-
ferent groups of researchers, all share this underlying structure at a deeper
level. Specifically, through 10 convergence, we now know that instances from
any of these subdomains which seem to satisfy intrinsically different con-
straints at the outset, all have affined sequences (at optimality) and in ad-
dition, that for these instances, we can also find these sequences efficiently (in
polynomial time). In the next chapter, we will address the issue of implement-

ing these algorithms for finding such sequences in greater detail.



Chapter 7

The Algorithm and its Complexity

In this chapter, we return to the problem of constructing optimum
sequences from instances of the optimization problem associated with hyper-
graphs. Basically, the constructive method which we described in Chapter 5
consists of three major steps. The first step involves determining the modified
cost-determining function for the given instance. We can then enumerate a
non-decreasing ordered list for the instance by appropriately sorting the ele-
ments and finally, we apply our generalization of list scheduling to get the cor-
responding sequence. In Section 7.1, we describe our algorithmic notation and
related issues. In Section 7.2, we describe an algorithm for computing the
modified cost-determining function. In Section 7.2.1, we identify the data
structures which play a role in this algorithm. Subsequently, in Section 7.2.2,
we specify the algorithm using the notation from Section 7.1. In Section 7.2.3,
we analyze the time complexity of this algorithm. Finally, we outline our

generalized list scheduling method in Section 7.3.

7.1 Algorithmic Notation

To express our algorithms, we will use a programing language which
is based to a significant extent on that used by Tarjan in [89]; this language
combines Dijkstra’s guarded command language [18] and SETL [57]. All our

algorithms are of course sequential and deterministec in nature.



143

We will generally count each operation as one step (the uniform cost
measure) as opposed to charging for each operation, a time proportional to
the number of bits in the operands (the logarithmic cost measure). As we will
see, this approach helps us in getting a clearer understanding of the computa-

tionally intensive parts of the algorithm.

In keeping with standard practice, we measure the running time of
the algorithms as a function of input length. This dynamic measure of time
complexity is more relevant in our context than say, a stalic measure which is
essentially independent of the size of the inputs. Also, as usual, we ignore con-
stant factors and assume that the reader is familiar with the O (n), Q (n), © (n)
notation for expressing the appropriate asymptotic bounds on the running
times of algorithms. We will also measure the running time as a function of
the worst-case input data as opposed to different types of average-case

methods [51], [56], [76], [86].

7.1.1 Data Structures

The basic types of data or data types which we will be dealing with
include integers, reals and elements. An element a; is a representation of a
member of set A from an instance of the optimization problem, and it will be
represented by just storing the index 7. By allowing an element data type, our
algorithms can be expressed directly in terms of elements and as such, they
will be very easy to read and comprehend. In addition, we also allow lists,
sets, and maps, all of which are essentially more complex objects made up of

one of the previously described data types.

Alist L= {Hp [gs-- [} is any sequence of n arbitrary integers, reals,

elements or one of the other more complex objects such as other lists for ex-
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ample; of course, the members [[i of a given list L are all of the same type.
Typically, we will use lists when there is a specific order associated with its
elements. For example, if list L is a list of integers, they will be listed in non-
decreasing or non-increasing order, and so on. While the members of a list
can be repeated in principle, we will never have occasion to use this feature.

Also, we will use € to denote membership in a list.

We define two basic operations on lists:

e Access: Given a list L and an integer ¢, return the ¢th element [[2
of list L; if element [, is not in the list that is ¢ < 1 or 7 > n,

then access returns the value null.

e Replace: The inverse of access where given a list L, an ¢, and a
"value" (in that order), we replace the ¢th element in list L by
"value"; defined only when the data type of "value” matches that

of the elements of list L and also element [, must exist.

The size of a list L is the number of elements (n) in it. It can stay fixed
throughout each run of the computation, or it can be changed during the
course of the computation by adding new elements to it. In particular, we will
refer to the former type of lists as random access lists since there are obvious
ways of implementing them such that any member can be accessed or replaced

in time O (1).

A set §is a list of n members where no specific order is associated
with its elements. We define a single operation, set-union, denoted by the
symbol U; this operation takes time O (1). A map [ is also a specialized kind

of list which is defined relative to another list L (which is not necessarily a
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map). In this case, list L is referred to as the domain of map f. Map f has
exactly one member corresponding to each [L. in its domain. We can apply ac-
cess and replace operations to maps in much the same way as before, with the
exception that now, an element [[i. from the domain is specified as the input
parameter; the access operation in a map [ is denoted by access (f[[]) and a
replace operation can be specific likewise. In particular, we do not provide a
mechanism for accessing the members of a map (type list) directly; they are al-
ways accessed implicitly by specifying the members of the corresponding
domain. It is easy to implement maps in such a way that arbitrary members
can be accessed in time O (1) whenever they have random access lists as their

domains.

7.1.2 Notation

Assignment is denoted by ":=" and ":" is used as a statement
separator. We use a single control structure for iterations namely, the for .

rof statement which is of the form:

for iterator — statement list rof.
The statement list is executed exactly once for each value of the iterator; a
typical iterator is specified through a list L (or a set), in which case the itera-

tion proceed for each []z € L, in the order of the elements of list L.

We also have procedures which are specified as follows:
procedure name (pammeters); statements end.

When the parameters are complex objects such as lists, we assume that only a
pointer to this object is passed, and the same is true of assignment statements
as well. Also, only a constant number of parameters are always passed be-
tween procedures. Therefore, independent of the type of objects being passed
as parameters, a single procedures call or return can be executed in constant
time. This is also true of assignment statements when the arguments are lists,

sets and so on.
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Finally, variables can be declared to be local to a procedure and if
this is done, the same variable name can be used locally in many different
procedures in a consistent way. Also, new data types can be constructed from
the primitive types such as integers, elements and others. We will be some-
what informal in doing this and in particular, we will not concern ourselves
with specific mechanisms for doing this. In some cases, we will declare some of
the new data types and explain their structure and role in our implemen-
tations during the course of our explanation. In other cases where the struc-
ture and role of these new data types is obvious, we will declare them directly

in the appropriate procedures without extensive explanation.

7.2 Details of the Algorithm

7.2.1 The Data Structures

The main data structure with which we will be working is a list
called elements. Each member a;. of this list is of data type element, and cor-
responds to a member of the set A from the input instance. We assume that
some straightforward preprocessing steps are already done before we start the
main algorithm. The first of these steps involves determining the level of each
element in the precedence graph P, which is specified as part of the input.
This ’level” information is then used during the second preprocessing step to
sort elements to make sure that its members are arranged in the non-
decreasing order of levels. That is, given any two members o', and a’j. of
elements, we wish to make sure that whenever ¢ < 7, the level of element a’z.
is no greater than the level of element a’j in the corresponding precedence

graph P.

We also expect that for each member a’z. in elements, the set of all of
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its successors is know, or else it is determined as a part of our preprocessing
step. This information is stored in successors, which is a map; each of its
members is of type set of elements, and it has elements as its domain. We
also have a map f’ whose members are rational numbers. This map also has
elements as its domain and therefore, its elements are also accessed through
elements. Each member of map f' will be used to maintain the value assigned
by the modified cost-determining function to the members of elements. To
start with, for each member d'; of elements, f'[a]] (in the map [') is initial-
ized to the value assigned by the cost-determining function f(ae.), which of
course is specified as a part of the input. There are straightforward ways in
which all of the above mentioned preprocessing steps can be implemented to
run in time O (max(|e|,n)) if the precedence graph is specified in its
transitively reduced form. If not, the transitive reduction (which requires the
same time as transitive closure [1]) of the precedence graph can be found in
time O (min(|a|-n, n*®1)), either through depth-first search or by reducing it

to matrix multiplication and using an algorithm from [72].

We also define a map, type, whose members are integers which also
has elements as its domain. Given any member of elements say a’z.,type[a’i]
represents the 'type’ - determined by the class IT_ to which element a’z. belongs
in the corresponding set of elements A. We assume that this map is also in-
itialized during the preprocessing step; this step can be implemented in a
straightforward way to run in time O (n®m). Finally, we use a list saturation,
whose members are integers and its zth member is used to record the satura-
tion index of class I7_in the set of elements A. This part of the preprocessing
can be done in conjunction with the previous step during which the various
elements were grouped into the respective classes 1, and it is easy to see -

especially since the latter step which involves computing the saturation indices



148

adds only a constant factor to the overall time complexity of the former - that
both these steps can be completed in time O(nz-m). All these time com-
plexity figures are based on the uniform cost measure of course, where each

action is charged unit cost.

Finally, we assume that the maximum value of f(a'i) in the input in-
stance is never more than n. If some of these values are initially greater than n
for a given instance, we simply replace such values by n; it is very easy to see
that this change does not affect the solution to the problem in any way, and
on the other hand, it actually results in a much improved algorithm by aiding
us in the design of efficient data structures. We also assume that the cost-
determining function ranges only over the non-negative integers, whereas we
had originally allowed it to range over the non-negative rationals. Even this
assumption is almed at helping us realize an efficient implementation of our
algorithm, and given that our concerns are currently restricted to uniformly
k-sliced systems, it is not difficult to see that this assumption does not entail

any loss in generality.

Let us now start using these data structures towards designing an al-
gorithm which calculates the modified cost-determining function of a given in-
put instance. This calculation is done iteratively, where on the 7th iteration,
we calculate the value of f'[d']. Since we are progressing in list order, and
since the members of elements at the lower levels in the corresponding
precedence graph occur earlier on in this list, by the time we reach element a’z.,
we would have already determined the modified cost-determining function
values for all elements which occur at lower levels in the given precedence
graph. Therefore, on the 7th iteration, we merely need to count the number of

successors (through map successors) of element cz’s. - these ’counts’ are grouped
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according to the type and d' values where we continue to interpret d’ in the
same way as we did earlier on. Then, from these count values and given
saturatton from our preprocessing step as well as the degree of slicing k, we
can determine f*(a;) (see the definition of the modified cost determining func-
tion in Chapter 2 for f*) and subsequently bind f'[d'] in a straightforward

manner.

Note that an important part of this computation involves maintain-
ing a count of successor elements a’j of element o, and classifying these
‘counts’ based on their type and d’ values. To this end, we introduce an ad-
ditional list, memory which is a list of M other lists. Each member in this list
is a list in itself - in fact a random access list of (2n + 1) integer variables, and
whose list indices range from —n to +n (as opposed to from O to 2n). Basi-
cally, as shown in Figure 7-1, there are as many members in memory as there
are types of elements and in particular, its zth member list corresponds to the
zth element type. Also, each of these 2.n + 1 locations of this th member list
correspond to a d' value. Recall that we restricted the cost-determining func-
tion to range over the non-negative integers and in addition, we also expect
the maximum value which it can assign to any element to be never greater
than n. From this, it follows that for any instance, the modified cost-
determining function ranges over the integers which are bound above and
below respectively by + n and — n. This in turn allows us to use the d'th loca-
tion in the zth member list of memory for maintaining a count of all the
type-z successors of element a whose modified cost-determining function

values are no greater than d'.

Now, on the 7th iteration, we consider each element a’j in successors

ai.. From our preprocessing steps, we already know the type, say z, of element
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a'].; also, note that f’ [a’j] = d' must have been computed on a previous itera-
tion if such an element a’j exists. With this information, we can now record or
‘count’ element a;. by simply incrementing the d'th member in the zth mem-
ber list of memory. Once we finish doing this for all the elements in

i

successors [d' ], we are ready to compute f* (a,)-

To do this, we have to consider each member (list) of memory in
turn. Let us suppose that we are currently inspecting the zth member of
memory, which we will denote by auz for purposes of our present discussion.
Then, for the d'th entry in auzx, we can easily calculate

E={d'— ([auz]d']/saturation|z]]) + k — 1}
and therefore the smallest such E, say E,, computed over all values of d' in
this ath member list of memory. Then, we repeat this step for each of the A/
possible members of memory to calculate f*(a}), which is essentially the smal-
lest such E_. Having determined f*(a}), calculating f'(a’;) only involves an ad-
ditional comparison and we will be done. Let us now consider this algorithm

in greater detail.

7.2.2 The Algorithm

This implementation of the above described algorithm is essentially 2
precise specification presented in the setting of the notation from Section 7.1.
There are certain parts of this implementation which have been added here in
the interests of its efficiency, and whose role will be explained subsequently.
Basically, there is one major procedure modt fy, which we will now specify.
This procedure accesses three other procedures : update, remember, and

calculate, which we will also specify in this section.



152

procedure modify (elements, f', k, saturation, successors, type)
set of elements current successors; integer &, SI, £ and «;
for d; € elements —
current successors 1= successors [al];
Sort (current successors by f');
A. for a’j € current successors —
1. z := access (type,a'j); 6 := access(f’, a’].);
2. update (5, memory, z);
3. remember (active types, 6, D, x)
rof:
B. for z € active types —
4. active d' = access (D, z);
5. aux = access (memory, z);
6. SI := access (saturation, z);
7. for d' € actived' —
E = access (auzx,d’);
calculate (a';, d', elements, f', k, SI, E)
rof
rof
/Reinitialize relevant lists and variables/
rof
end modify;

The first part of this procedure indicated by statements 1 and 2 in
loop A essentially represents the 'counting’ process. Current successors is a set
which is used locally in this procedure and on the ¢th iteration of the out-
ermost for loop, it has all the successors of element a’z. from elements, as its
members. To start with, we sort current successors by rearranging its mem-
bers in the non-decreasing order of their modified cost-determining function
values. All these values must have been computed on an earlier iteration of the
outermost for loop. This reordering of current successors will prove to be use-
ful subsequently, in procedure update. In statement 1 loop A, we successively

i

assign for each member a@; in current successors, its type and f”[a].} values

respectively to variables z and 6. Then, in procedure update which we will
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now specify, we increment the appropriate location in memory which cor-

responds to the type and f'[d’] values of element a’].

procedure update (§, memory, z)
list of integers auz, counter; integer 6';
(i.) auz := access (memory, x); §' := access (auz, §);
(i Jif §'=0 — &' == counter [z];counter [z] := counter [z] + 1;
(i1i.) ' := &'+ 1; replace (auz, 6, 6');
(iv.) replace (memory, , auz);
end update;

Here, counter is a list of n integers which is local to update. The zth
member of this list is associated with element type z; it will be used to main-
tain a running count of the number of type-z successors of element ag whose
modified cost-determining function values are less than 6, and which were en-
countered on earlier iterations of for loop A. Then, in statement line (¥7.) of
update, we use the information from counter, in conjunction with the non-
decreasing order which the members of current successors obey, to ensure that
auz [8] (where auz is currently assigned the zth member of memory) is ap-
propriately updated. Through this, we ensure that when we execute for loop
B subsequently, the d’th location in the zth member list of memory contains
an accurate count of the number of type-z successors of element a’i whose
modified cost-determining function values are no greater than d'; recall that
this value was denoted by the function n(z,d’,z) in Chapter 2 in connection

with the definition of the modified cost-determining function.

In statement 3, as we consider each member a'j in loop A, we add its
type (say z) to active types, which is a set of integers. We also have a list D,
each of whose members is a set of integers. The zth member set of D is as-
sociated with element tvpe z, and it will be used to store the value: f’{a;.}.

RBoth these actions are executed in procedure remember which is specified



154

below. Through this procedure, we maintain a record of exactly those locations
in memory which have been updated on the current iteration of the outermost
for loop. This information will prove to be of great value subsequently since it
will help us in limiting our search, when we return to memory and compute

f*. In procedure remember, active d' is a set of integers which is local to it.

procedure remember (active types, §, D, z)
set of integers active d';
active types := active types U x;
active d' := access (D, x);
active d' == actived’ U §;
replace (D, z, active d');
end remember;

In statements 4 through 7, we scan each of the ’count’ values in list
memory and invoke procedure calculate to evaluate f*, and subsequently the
modified cost-determining function f’. In doing this, we are guided by the in-
formation we carry in aciive types and the list D. The former serves as an
iterator for the for loop B which consists of statements 4 through 7. Note that
for each member z in active types, there is at least one type-z successor of ele-
ment a’z. whose modified cost-determining function value is being determined
currently. In the same way, the information in list D guides us in the for loop
of statement 7 by ensuring that for each d' € D [z], there is at least one
type-z successor a’j of element ¢/, such that f' [a’j} = d'. Therefore, by using
this information form active types and D, we avoid unnecessarily searching all
the n® locations in memory {or each element a’i but instead, we visit only
those locations which correspond to the type and modified cost-determining
function values of at least one of the successors of a.iz.° In the next section, we
will see that this selective searching of memory will improve the worst-case
performance of our implementation, when compared to one in which all the

locations in memory are searched each time.
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procedure calculate (a'i, d’', elements, f', k, SI, E)
integer ¢ and ¢

e = {d'—([E/SIl+ k—1)};
¢ 1= access ([’ @' ); e = man (e, );
replace (f, afz., €)

end calculate;

Statements 5 and 6 are respectively accesses of the appropriate mem-
bers of memory and saturation. The information from these accesses is passed
to procedure calculate which is invoked in the for loop of statement 7. In this
loop, E is the current 'count’ from memory, which indicates the number of
type-x successors of element az. whose modified cost-determining function
values are bound above by d'. Subsequently, E is used to determine the
modified cost-determining function value of the element being currently
processed in procedure calculate; this value is returned in the map f/. It is
easy to see that upon finishing for loop B on the ¢th iteration of the out-
ermost for loop (with list elements as its iterator), we would have bound
! {a’z.]e Also, if element d', is 2 sink element (at level zero), neither loop A nor
loop B is executed and the value of f’[d’,] remains unchanged from its original
value. Finally, upon completing loop B, we reinitialize all the relevant vari-
ables and data structures such as set aciive elements, list D and so on, in
preparation for the next iteration during which we will compute f'[a 22-‘1’“ 1)].

Since it is not difficult to verify that this procedure correctly cal-
culates the modified cost-determining function which is returned in the map
f’, we will not pursue the issue of proving its correctness at this point. The
procedures which we described above are actually straightforward implemen-
tations of the recurrence relationship through which the modified cost-

determining function was defined in Chapter 2. However, an interesting and
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significant aspect of this implementation is the use of active types and D, both
of which help us in realizing an efficient implementation of this algorithm.
We will now address this issue of efficiency and analyze the time complexity of

these procedures.

7.2.3 Complexity of Procedure Modify

To analyze procedure modify, let us denote the total cost, which is
measured in terms of the number of instructions executed (under the uniform
cost measure), by some quantity say C. Let C , denote the total cost due to in-
structions other than those in loops A or B. The sorting step which precedes
the execution of for loop A dominates this cost since only a constant number
of all the other instructions which are neither in loop A nor in loop B are ex-
ecuted for each element, and since each of these instructions cost a constant

amount of time, their total cost is no greater than ¢, - n for some positive con-

1
stant ¢;. This means that the total cost due to all the instructions which are
neither in loop A nor in loop B, even when we include the ’reinitialization’
part at the end of procedure modify, is determined by the sorting step where
we rearrange the members of current successors. Finally, since this step costs

us O (nlogn) time each time it is executed, and since it can be executed no

more than n times, C, is O (n? - logn).

Let us now analyze the cost due to the instructions form loops A and
B. Let CQ and C3, respectively denote the total contributions to the final cost
due to the execution of loops A and B. Since transferring control to and from
a procedure is a constant time function even when complicated objects are
passed as parameters, and since only a constant number of steps are executed
during each invocation of procedures update or remember - a fact which fol-

lows from their non-iterative nature - we can conclude that statements 1, 2, or
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3 in procedure modify, each cost us only a constant amount of time, each
time they are executed. Therefore, C, is determined by the number of ele-
ments in the map successors which is easily seen to be bound above by n2, or

equivalently, C, is O (n?).

Coming to loop B, we see that the cost C3 is within a constant mul-
tiplicative factor of the number of times procedure calculate is invoked. This
is where the information carried in active types and D plays a role. For, with-
out this information, we would have to potentially search each of the O (n?)
locations in memory for each element a’z., whenever this element has successors
in the underlying precedence graph. If this is the case, it is easy to construct

examples where C; grows as © (723).

However, by trading off space for time through these two data struec-
tures (namely set active types and list D), we can improve C, by a factor of n.
To see this, consider the case when loop B is executed during say the ith itera-
tion of the outermost for loop when we are calculating the modified cost-
determining function value of element a’z.. In this case, owing to the infor-
mation available from active types and D, the number of times procedure cal-
culate is invoked is no more than the number of successors of element a’z. in
the precedence graph. This follows from the following two basic facts. Firstly,
in our scheme, we visit a location of memory only if it corresponds to at least
one of the successors of element a;.. Secondly, each successor of element a,’a.
contributes towards updating exactly one of the O(nﬁ) locations of this list.
Therefore, the total number of times that procedure calculate is invoked, is no

more than

o | for a given instance. From this, we can deduce that C; is also

o . s e 9
within a constant multiplicative factor of n~,
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What is important to note is that this latter situation can arise quite
often since an instance is not always guaranteed to have a corresponding se-
quence with zero cost. In fact, it is easy to find instances such that no cor-
responding sequence has a cost of zero. For example, it was seen that the in-
stance describe in Chapter 2, whose precedence graph and cost determining
function were illustrated in Figure 2-6, and for which =k =1, B =(2), and
C(az.)r-- 1 for 1 < ¢ < 12, does not have any corresponding sequence with
zero cost. So, to reiterate an earlier observation, Theorem 3.1 only provides us
with a partial characterization of the minimum cost sequences in a feasible set

S; for the special case where this minimum cost is zero.

Therefore, to accomplish our goal of characterizing minimum cost se-
quences, we need to remedy this situation by extending the somewhat special-
ized inclusion relationship between Sa and S@ which we established in
Theorem 3.1. More specifically, we would like to establish a similar relation-

ship between S _and S where §_ . is the subset of the feasible set 8 which

min
contains exactly its minimum cost sequences. Moreover, in doing this, it will
be very convenient if we can actually build on the partial characterization
provided by Theorem 3.1 to arrive at this more general and extended result.
We will now introduce a technique which allows us to do just this, and in ad-
dition we will also see that it (this technique) is likely to be powerful enough

to establish similar characterizations of the optimal behavior of the solutions

of a wider class of optimization problems beyond scheduling.
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Then, since the total cost C is simply the sum of costs o €, and Cs,
we conclude that procedure modify runs in time O (n 2. logn). If the input in-
stance is not given to us in transitively reduced form and if the elements from
the input instance are not classified into their various types, we need to factor
the complexity of the preprocessing steps intc our analysis; in this case the
overall complexity of our implementation would be

O (maz(min(|a|-n,n>51), m . n?)).

If we use the logarithmic cost measure instead of the uniform cost
measure in our analysis, parameters such as the degree of slicing k¥ and others,
will enter our complexity figures in an obvious way. In specifying the above
implementation of this algorithm, our emphasis was on the clarity of the ex-
position and as a consequence, some of the data structures and other aspects
of our design were motivated from this standpoint. As such, some of our deci-
sions might reflect features which are not absolutely essential in an implemen-
tation of an algorithm for computing the modified cost-determining function
of a given instance, and by taking advantage of this fact, it is conceivable that
alternate implementations can be realized, which have lower space require-
ments and also with time complexity figures involving smaller multiplicative

constants.

7.3 Enumerating Sequences from Lists

Having designed an algorithm for computing the modified cost-
determining function, we now move on to the next step of constructing non-
decreasing ordered list representations and sequences for the given instance.
Given elements and [/, we can construct an appropriate list representation by
reordering the members of elements to conform to the non-decreasing ordered

requirements of Chapter 5. Recall that elements will satisfy this requirement
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provided, given any two of its members a’; and a’J, if ¢ is less than j, then,
f! [a;.} is no greater than f'[a;.]. This can be accomplished easily by sorting
elements with the members of map f' as the keys - a task which can be easily
implemented to run in time O (nlogn). Since sorting is a well understood

problem, we will not go into the details of implementing this step.

The list which is output by the sorting step can then be repeatedly
scanned by our ’iterative greedy method’ which was described in Chapter 5.
We implement this step by maintaining a count for each member a;.; this
count indicates the number of predecessors which this element has. As each
one of these predecessors get selected for inclusion, this count is decremented
by one. Finally, when the last of the predecessors of element a;. is selected on
say the gth scan, the count goes down to zero. Then, it follows that element a’z.
will be a candidate for the first time on the ¢’th scan where ¢'=(¢+ k); in
other words, E;, is the earliest edge in which this element can be included.
This value of ¢’ is recorded in the map earliest. Initially, earliest [a]] is as-
signed the value zero if element a’l. has no predecessors, and it is assigned +oo

(or some value greater than n) if it does.

Then, we start off by constructing the first edge in the sequence.
This is done by picking those members of elements which have no predeces-
sors, subject to the bound preserving (or resource) constraints which are
derived from the list, saturation. We then update the count values of the suc-
cessors of these members of elements which have just been selected for inclu-
sion in the first edge. If the count of some element say a'i goes down to zero,
we update the corresponding location in earlrest to reflect the fact that this
element is a candidate for primary inclusion in any edge which occurs after

edge E’A in the sequence which we are constructing, and move on to construct



160

the second edge. We construct edges contiguously in this fashion until at
some point, the index ¢ of the next edge E; to be constructed is less than the
smallest value earliest, say ¢', (which indicates that none of the remaining un-
selected elements can be candidates for primary inclusion in the interval start-
ing with scan ¢ and ending with scan (¢’ —1). In this situation, we ’jump’
ahead and start constructing the sequence from edge E;, on, by choosing from
the elements which are candidates for primary inclusion on the ¢’th scan, sub-
ject to bound preserving constraints. This entire procedure can be imple-

mented to run in time O (n?).

Note that the sequences (schedules) produced by the above described
method represent only a partial specification of the entire sequence when k is
greater than unity, since we only select and include the first copies of the
various elements. In some situations, we even 'jump’ ahead and skip con-
structing certain intermediate edges which do not have the first copy of any of
the members of elements. Since all of our sequences are proper (corresponding
to non-preemptive schedules), this approach does not pose any problems since
under these circumstances, a partial specification of the sequence also tan-
tamounts to a complete specification, albeit implicitly. A more important
aspect of this approach towards constructing sequences partially is that

through it, we circumvent a serious complexity related problem.

This problem arises because the degree of slicing &k is a parameter
which is quite independent of n (which denotes the number of elements in the
input instance). Therefore, in a given subdomain, k can grow much faster than
n: for example, it could be proportional to 2" for the instances from a given
subdomain. As a consequence, the size of a complete specification of the se-

quence, and consequently the time required to produce it might well grow at a
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much faster rate than any polynomial function of n. Therefore, if k grows as
an exponential (or faster growing) function of n, then the size of the complete
sequence would also grow as an exponential (or faster growing) function in n.
Note that in any case, the size of a complete specification of the output is at
least proportional to oF' where k' is the number of bits in the binary encoding
of k, since the degree of slicing k typically undergoes a logarithmic encoding
when it is specified as an input. In this situation, if we assume that a standard
binary encoding scheme is used for specifying the input, and if k' is Q (p(n))
for some polynomial function p(n) of n, it follows trivially that specifying the
output completely would require time Q(Qii"p“t"Sizex) (or more generally,
9 (kii"p“t“%'zd) if a k-ary encoding scheme is used). This problem of being
faced with the potential exponential explosion in the running time is avoided
by specifying the sequence partially - as we have outlined in the previous
paragraphs - by only constructing the edges which contain the first copies of

the various elements.



Chapter 8

Concluding Remarks

Even though much is known about the complexity of various types of
scheduling problems, most of this knowledge takes the form of disparate and
often incomparable collections of properties which 'map’ out the boundary be-
tween the polynomially solvable and the NP-hard. This is in stark contrast
with other well known classical areas in combinatorial optimization, such as
matching theory for example, which are often characterized by deep and
unifying theories; despite its obvious importance, this is unfortunately not true
of scheduling theory. In this dissertation, we remedy this situation by studying
the factors which really influence the complexity of a number of known
polynomially solvable subdomains of the important class of precedence con-
strained scheduling problems. We show that surprisingly enough, the factors
which determine the complexity of this problem in many cases - even though
they may seem to be quite different at the outset, especially in light of many
of the existing results in this field - are really influenced and determined by
the single unifying intrinsically ordered convergence property (which we for-

mulated in Chapter 5).

Rather than looking at the influence of the 'natural parameters’ of
the scheduling problem on its complexity (which seems to indicate that there
are intrinsic differences among the reasons at to why individual subdomains of

the scheduling problem are polynomially solvable), we look into the factors in-
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fluencing the optimal behavior of schedules. This approach revealed that at a
deeper level, instances from many of the seemingly different subdomains of the
scheduling problem in fact share a striking characteristic; they all have the

same 'type’ of schedules at optimality.

To establish this fact, we formulated the precedence constrained
scheduling problem in the setting of hypergraphs, where a schedule is essen-
tially an appropriately constrained sequence of hypergraph edges. In other
words, each edge of the sequence corresponds to a step of the schedule. In this
setting, we are able to characterize the above mentioned 'types’ of schedules
which are common to instances from the various subdomains of the scheduling
problem in terms of affined sequences (of hypergraph edges). We do this in
Chapters 3 and 4 where we also established several interesting properties of af-

fined sequences.

We build on the optimality and the structure of affined sequences in
Chapter 5 by incorporating them into the formulation of IO convergence. This
property is essentially a sufficient condition for the polynomial solvability of
the precedence constrained scheduling problem. It embodies a set of conditions
which ensure that if an instance satisfies this property, then it is not only the
case that it (the instance) has associated affined sequences, but it is also
guaranteed that we will be able to construct these (affined) sequences in poly-
nomial time. In Chapter 6, we complete our unifying framework by showing
that indeed, the apparently unrelated conditions which seem to be determining
the polynomial nature of many of the subdomains of the precedence con-
strained scheduling problem which are of interest to us, are all really specific

variants of 10 convergence.
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Another interesting aspect of intrinsically ordered convergence is that
it has an in-built constructive or algorithmic component. The practical im-
plication of this aspect of our unifying property is that if the instances are
drawn from a subdomain which satisfies it, we not only know that the op-
timization problem is polynomially solvable for this instance but in addition,
our constructive component immediately gives us an algorithm for doing this.
We outline an efficient implementation of this algorithm in some detail in

Chapter 7.

If we digress for a moment from polynomially solvable scheduling
problems and consider their NP-hard counterparts instead, it turns out that
IO convergence gives us some pretty interesting insight in this case as well.
Specifically, it is the case that there is no finite upper bound on the size of in-
stances from many of the known NP-hard subdomains [5, 38] which violate
this property. So, in addition to giving us insight into the polynomial nature
of certain scheduling problems, intrinsically ordered convergence also gives us
a definitive and unified basis for understanding the structure that is being
lost, as we go from the polynomially solvable to the NP-hard; the former type

of scheduling problem is IO convergent whereas the latter explicitly violates it.

While our results give us a unified view of the factors which influence
the complexity of many well known precedence constrained scheduling
problems, they also yield several interesting open questions. An obvious ques-
tion that arises in this respect is the following: is it easy to test if a given in-
stance is IO convergent ? This question is important because, while we know
that we have an efficient algorithm for determining optimum schedules for the
class of instances satisfying our unifying property, the utility of this algorithm

in the context of a given instance depends on whether we can efficiently ascer-
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tain if it (the instance) actually falls into this class. This problem of testing
whether a given instance is IO convergent, is an open question, and based on
our experience, we conjecture that it is an (NP-)hard problem. Even if this
were to be the case, IO convergence can still guide us towards discovering new
and useful polynomially solvable subdomains, which are more general in many
senses than the ones that were hitherto known. Note that this happened in our

own results in the context of subdomains B,, and B,, (Chapter 6).

At another level, we can consider extending our unifying scheme to
include other subdomains of the scheduling problem as well; the subdomain of
opposing forests for which a polynomial time algorithm was discovered by
Garey, Johnson, Tarjan and Yannakakis [36] is a notable example of a case
that does not currently fit into our framework. This seems to be an important
direction to pursue in order to resolve the long standing open question - which
has interesting theoretical as well as immensely practical ramifications - about
the complexity of scheduling arbitrary precedence constrained task systems on
a constant number (say three) of processors [35, 36]. Many related and similar
open questions arise, which include extending our unifying framework to in-
clude more general scheduling models which allow specific release-times to be
associated with the tasks [34], or even those which allow multiple release-time

deadline intervals [85, 87].

Another direction that has not been explored much involves the
‘pipelined generalization’ of the basic scheduling problem. Pipelined systems
are interesting and important since they are practical and are also widely used.
It has been our experience that this generalization adds significantly to the
complexity of the basic scheduling problem and gives rise to useful, intriguing,

and non-trivial algorithmic, combinatorial and complexity results. For ex-
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ample, we have shown that [60] the tardiness minimization problem goes from
being polynomially solvable to NP-hard if we take the subdomain By, and
rather than having instances with single stage processors, we now have in-tree
task systems to be scheduled on just two identical (multistage) pipelined

processors, with a polynomial number of stages each.

Another important and challenging problem area that is worth ex-
ploring is that of finding fast parallel algorithms, especially for the domain of
instances which are IO convergent; this issue includes such questions as the
membership of this domain in R-NC or even in NC. A solution to a very spe-
cialized version of this question was provided by Vagzirani and Vazirani in
[93] where they show that the subdomain Bo is in R-NC, although their
results do not draw upon our unifying property but rely on novel algebraic

techniques instead.

Finally, we wish to point out that given the explosive growth in ac-
tivity and in the number of results, both in combinatorial optimization and
complexity theory, we were confronted with the problem of having to be selec-
tive in choosing the papers which we could directly cite in this dissertation.
Primarily, we chose such papers which were significant from a historical
perspective within the context of our exposition, and which were most relevant
to the scheduling problem. In the process, we could not directly include many

recent and beautiful results from both of the above mentioned fields.

However, we have tried to rectify this situation by citing several sur-
vey papers and books which collectively give a more complete picture of the
activity in combinatorial optimization and computational complexity theory.

Also, the recent book entitled 'Combinatorial Optimization - Annotated
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Bibliographies’ [71] is an excellent addition to this list. It includes broad
coverage of a range of recent developments in several exciting areas, some of
which are: polyhedral combinatorics, duality for integer optimization,

probabilistic analysis and randomized algorithms, and several current topics

from computational complexity.
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