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1. Introduction

Vector addition systems (VASs) were introduced in [8], and were later shown by Hack [2] to be
equivalent to Petri nets. The boundedness problem for VASs has been studied in [9, 11}, where
exponential-space upper and lower bounds were shown. (See also [12].) Crespi-Reghizzi and Mandrioli
1] introduced a subclass of VASs called conflict-free VASs. Landweber and Robertson [10] subsequently

showed an upper bound of exponential time for the boundedness problem for conflict-free Petri nets.

Since the definitions given in [1, 10] are somewhat different from one another, and since translations
between the two do not seem to preserve sharp complexity bounds, we introduce the notion of conflict-
free vector replacement systems (VRSs; see [7]). Our definition is general enough to include both previous
definitions as special cases (although conflict-free Petri nets have a somewhat more succinct
representation), yet it is also restrictive enough to allow us to prove the boundedness problem PTIME-
complete for all three definitions. In particular, we give a time O(n1'5) algorithm for deciding
boundedness for conflict-free VRSs (or VASs). In terms of the Petri net model, the time complexity is
0(112), an improvement over the result of Landweber and Robertson. (For our complexity measures, n is
the total number of bits used in encoding the problem.) Now most problems concerning VRSs or
equivalent formalisms have been shown to be intractable (see, e.g., [3, 4, 6, 9, 12]); therefore, since our

algorithm has 2 time complexity of such a small-order polynomial, it may have real-world applications.
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2. Definitions

Let Z (N} denote the set of integers (nonnegative integers, respectively), and let VA (Nk) be the set of
vectors of k integers {nonnegative integers), and Zkxm (kam) be the set of kXm matrices of integers
{nonnegative integers). For a vector v € Zk, let v(i}, 1 <i <k, denote the ith component of v, and for a
matrix V& kam, let V(i,j), 1 <i<k, 1 €£j<m, denote the element in the i row and jth column of
V. For a given value of k, let 0 in Z* denote the vector of k zeros (i.e., 0(i)=0 for i=1,... k). Now given

. k
vectors u,v, and w in Z° we say:

e v=w iff v(i}==w(i} for i=1,... k;
o v > w iff v(i) > w(i) for i=1,...k;
e v>w iff v > w and v 5% w;

s u==v+w iff u{i)=v(i)+w(i) for i=1,... k.

A kXm wvector replacement system (VRS), is a triple (VO,U,V), where VOENk, UEkam, and
Ve kam, such that for any 1,j, 1 <1<k, 1 <j<m, U4j+V(ij) = 0. Yo is known as the start vector,
" U is known as the check matriz, and V is known as the addition mairiz. A column u, of U is called a
check vector, and a column \f of V is called an addition rule. For any x € Nk, we say addition rule Vi is
enabled at x iff x > u,. The reachability set of the VRS (VO,U,V), denoted by R(VO,U,V), is the set of all
vectors gz, such that e A A A for some n > 0, where each Vs (1 <£j<n)is a column of V, and
for each 1 <j<n, \f is enabled at v +v,+ - - - TV Let o==<w,,..,w, > be a sequence of vectors in
NE I W=V and for every r, 1 <1 < t, there is a j such that Wr:Wr_l—f—Vj and Wy > u;, then we say
<Wgpeo, W, > 15 & path in (V{},U,V). If there exist r and s, 1 <r<{s <t, such that w < w_ (Wr<WS), then
we say that r=<w ..., w > is a loop {positive loop), and that m is enabled at Wi

A VRS (VO,U,V) is said to be con flict-free iff {1) no number in U is greater than 1; (2) no number in
V is less than -1; (3) no row in V has more than one -1; and (4) if V(i,j)==-1, then U(i,j) = 1, and all
other elements in row i of U are 0. (VO,U,V) is said to be bounded iff for each row i, there is a constant ¢

such that if v€R(v,,UV), then v(i)<c. The boundedness problem for VRSs is the problem of
determining whether a given VRS is bounded.

For a given kXm addition matrix V, the minimal check matriz is a kXm matrix U in which
U(i,j)=1 if V(i,j}=-1, and U(1,j)=0 otherwise. It is easy to see that the set of kX m conflict-free VRSs
with minimal check matrices is equivalent to the set of kXm conflict-free VASs (see [1]). Furthermore,
there is an obvious translation from a conflict-free Petri net (see [10]) with k places and m transitions to a
kX m conflict-free VRS whose addition rules and check vectors have no elements larger than 1. Thus, our
definition is general enough to include both previous definitions. In addition, we are able to show that

our PTIME lower bound holds even when the VRSs simultanecusly satisfy all three definitions. However,






when we translate a conflict-free Petri net to its equivalent VRS, an increase in the size of the problem
description may be incurred. In particular, for a kXm VRS with m <k, m is clearly O(n0'5), where n is
the size of the problem description. On the other hand, if n’ is the size of the description of the
equivalent Petri net, we can only conclude that m is O{n'). Thus, the complexity measures for the

algorithm operating on the two respective formalisms differ slightly.

3. The Upper Bound

In this section, we present an O(nl's) algorithm to determine boundedness for conflict-free VRSs.
Karp and Miller [8] showed that a VRS is unbounded iff it can execute a positive loop. Our algorithm,
therefore, looks for a positive loop that can be executed by the VRS. Before a positive loop can be
executed, it must be enabled. Lemma 3.1 below gives an algorithm for finding a path that we will later

show enables some postive loop if one exists.

Lemma 3.1: For any kXm conflict-free VRS V:(VO,U,V) that is described by n bits, we can construct
in time O(n1'5) a path o in which no rule in V is used more than once in o, such that if some rule w is not

used in o, then there is no path in which w is used.

We construct o as follows. First, we execute all rules enabled at Vo Then we repeatedly cycle through U,
executing all those rules which are enabled but have not yet been executed. We continue until a complete
pass is made through U, during which no position increases in value. {Note that this is a sufficient
condition to conclude that no new rules are enabled.) Clearly, no more than k+1 passes are made
through U. On each pass except the last, there is at least one rule (say vj} enabled that was not enabled
the previous pass; iLe., some position (say p) which was zero the previous pass is now positive.
Furthermore, since V is conflict-free, if some rule subtracts from position p, that rule must be v..
Therefore, position p must have never previously been positive. Thus, on each pass except the last some
position becomes positive for the first time, so the number of passes is no more than
min(k,m)+1=0(n0‘5)‘ Therefore, the entire procedure operates in time O(nl‘5 .

Now suppose there is a path ¢ using rules not in o. Let v, be the first such rule executed in o'
Then all rules used before v, in o' are used in 0. Since v, is not executed in o, no position from which v,
subtracts ever decreases in value in o; hence, these positions are at least as large as they are at the point
at which v, is executed in ¢. Then v, is enabled by o, a contradiction. Therefore, if v, is not used in o,

then there is no path in which v, is used. |

The following lemma gives necessary and sufficient conditions for determining which addition rules in

a conflict-free VRS can appear in a loop.






Lemma 3.2: Given a conflict-free VRS {VG,U,V}, let V' be any matrix of rules in V which can be
executed in some path. There exists a path o containing a loop whose rules used are exactly those in V/
iff every row in V' that contains a -1 also contains a positive number. Furthermore, the loop in ¢ can be

required to have each rule in V! used exactly once.

Proof: Assume there is a path o containing a loop whose rules used are exactly those in V. Recall that
loops have a nonnegative displacement. Suppose some rule v in V' subtracts 1 from some position p (i.e.,
Vi{p,j)=-1). Since v is used in a loop in o, some rule used in the loop must add to position p. Since
every rule in the loop is also in V', row p in V! must also contain a positive number. Hence, every row in

V' that contains a -1 also contains a positive number.

Now assume that every row in V' that contains a -1 also contains a positive number. From Lemma
3.1 there is a path o' that uses all of the rules in V' exactly once. Let rule \f be the first rule from V'
executed in ¢’. Since the remainder of the rules in V! are subsequently executed in o', every position from
which v subtracted 1 has subsequently increased in value. We can therefore append v to o'. By repeated
application of this principle to each of the remaining rules in V' in the order they appear in ¢/, we can
construct a path o containing a loop whose rules used are exactly those in V. Furthermore, each rule in

V' is used exactly once in the loop. ]
We now give our algorithm for determining boundedness in a conflict-free VRS.

Theorem 8.1: The boundedness problem for conflict-free VRSs is solvable in time O(n1'5), where n is

the number of bits in the description of the VRS.

Proof: Let )’w——(VO,U,V) be an arbitrary kX m conflict-free VRS that is described by n bits. We first
remove all columns j of U and V such that column j of V is all zeros. From Lemma 3.1 we can remove
from U and V in time O(nl's) all columns representing rules that can never be used. Now if more than k
columns remain in each matrix, some column of V must contain no -1’s; hence, a positive loop can be
executed. Therefore, without loss of generality, assume no more than k columns remain; i.e., the number
of remaining columns is O(n0'5). We now wish to remove from U and V all columns that cannot be used
in any loop. By Lemma 3.2, if V{i,j)=-1 and row i of V contains no positive numbers, column j can be
removed from U and V. This can be repeated until every row of V that contains a -1 also contains a
positive number. This can clearly be done in time O{n!®). Call the resulting addition matrix V' and the
resulting check matrix U'. By Lemma 3.2, there is a path that contains a loop with every rule in V' used
exactly once; hence, if some row has a positive sum, V is unbounded. Therefore, assume without loss of
generality that each row of V! that contains a -1 also contains exactly one 1, with the rest of its elements

zero. We now give an algorithm that we claim will find a positive loop in V' iff one exists {let V]|v






indicate a column vector v appended to a matrix V)

unbounded « false
for each column j in V' do
initialize V" to the null matrix
VII P V"”Vj
R« {i | VI(1,})=-1}
C«{i}
while Rs£ ¢
pick an element ¥ €R
let j' be the column for which V/(i’,j/)=1
if ¢ C then
VI V| 1"3:
R RU{i | Vi j)=-1}
C — CU{)
end if
R —R-{i'}
end while
if some row of V" has positive sum then unbounded « true endif
end for

The for loop in the above algorithm executes at most O(nO'B) times. The sets R and C contain the
indices of the rows that are to be examined and the columns that have been examined, respectively, on
the current iteration of the for loop. Note that no column is examined more than once, and that a row is
examined only if some column previously examined contained a -1 in that row. Since no row contains
more than one -1, the while loop terminates after at most k iterations. Since R can be implemented as a
queue, and C has at most m elements, every statement which must be executed every time through the
while loop takes at most O(m) time. Now the three statements inside the if block execute no more than
m times {on a given interation of the for loop), and each takes at most O(k) time. Thus, the body of the

for loop takes at most O(n) time, and the entire algorithm operates in time O(n1‘5).

Now if V is bounded, from Lemma 3.2 no matrix V7 containing a row with a positive sum can be
generated by an iteration of the for loop. Suppose V is unbounded. Let 7 be the shortest positive loop
that can be executed in V. If we let x be a vector designating the number of times each rule in V' is
executed in 7 and w be the displacement of 7, we have Vix==w. Let element j of x be a maximal element
of x. We will now show that the iteration of the above algorithm which begins with C={j} produces a
matrix V" containing a row with a positive sum. The proof is by contradiction. Since any row in V¥ that
contains a -1 also contains a 1, the sum of each row in V" must be nonnegative. In order to obtain the
contraction, assume that every row of V' has a zero sum. If V/(i,j)==-1, there must be exactly one element
in row i, say V(i,j"), such that V'(i,j)==1. Since all other elements of row i are 0, we have
x(j}-x(j)=w(i) > 0; hence, since x(j) is a maximal element of x, x(j')=x(j). Thus it is easily seen that each

rule in V¥ is executed exactly x{j) times in m, and the sum of all the occurrences of these rules is therefore






0. Now let W be the minimal check matrix for V. Clearly, if ¢ is any path in V enabling 7, o also is a
path in V:(VO,W,V). From a result in [1], if all x(j) occurrences of the rules from V" in 7 are removed,
the resulting positive loop 7’ is also enabled by ¢ in V. We now claim that ' is enabled in V by the path
o, which is obtained by appending 7 to o. This claim is also proved by contradiction. Suppose 7’ is not
enabled by o in V, and let v_ be the first addition rule used in 7' that is not enabled. Clearly, # is
enabled by om in V| so if v, is not enabled in V, it must be because some position pi<U(i,r):1, where
V(i,r) 54 -1. Now since every addition rule used in 7' is used in m, at some point in o7 we must have
p, > 1. But since V is conflict-free, if U(i,r)=1 and V(i,r) 5% -1, then row i of V cannot have a -1. Hence,
p; cannot decrease in value--a contradiction. Therefore, 7' is a positive loop shorter than 7 that appears
in a path in V. This contradicts our original choice of m; hence, some row in V" must have a positive

sum. This completes the proof. |

The preceding algorithm will also work for conflict-free Petri nets; however, due to their more
succinct representation, we cannot conclude from the fact that k > m that m is O(nO‘S). The best we can
state in this regard is that m is O(n). We therefore have the following corollary, which gives an

improvement over the exponential-time result in [10].

Corollary 3.1: The boundedness problem for conflict-free Petri nets is solvable in O(nQ) time, where n is

the number of bits necessary to describe the Petri net.

4. The Lower Bound

In this section, we show the boundedness problem for conflict-free VRSs to be PTIME-complete. In
order to show the problem to be PTIME-hard, we use a reduction from the path system problem, which is
known to be PTIME-complete [5]. A path system is a 4-tuple P=(X,R,S,T) where X is a finite set of
nodes, S(CX) is the set of starting nodes, T{CX) is the set of terminal nodes, and R{CXXXXX) is the
set of rules. A node x in X is said to be admissible iff either x € T or there exist y,z €X such that
{(x,y,2) €R and both y and z are admissible. The path system P is said to have a solution iff there is an

admissible node in S.

Lemma 4.1: The boundedness problem for conflict-free VRSs is PTIME-hard, even if the largest integer

mentioned in the system is 1 and the VRS has a minimal check matrix.

Proof: Civen an arbitrary path system P=(X,R,S,T) we want to construct a conflict-free VRS
V=(v,,U,V) such that Vis unbounded iff P has a solution. Let X={x,,...x,}, |S|=m, and [R|==n. Then
Y will be a (k*n+k+n+3)X(n+m+2) conflict-free VRS. For ease of illustration let us denote a
configuration of V (which is simply a (k*n+k-+n+3)-dimensional vector) by an assignment of values to the

following set of variables:






{ay by d; dydy | 1<i<k 1< <),
Each addition rule in V can then be specified by a set of changes to the variables. Now Vy is defined by

the following variable assignment:

1if X, € T
¥ij, 1<i<k 1<)<n, a~-:{
1} .
0 otherwise

1if X, € T
vi, 1 <i<k, bi:{

0 otherwise
Vj: 1 SJ S n, Cll:l

dlzdzzdg—:()

The addition rules in V are given below; U is the minimal check matrix for V. For convenience, each
addition rule has a type associated with it. Each type 1 addition rule corresponds to a rule in R. Each
type 2 addition rule corresponds to an element in S. The two type 3 addition rules will allow the system

to become unbounded provided they can be enabled by some path.

Type 1: If (xr,xs,xb) is the jt’h rule in R, then the following defines an addition rule \f in V:
vk, 1 <h<n, a, —a,+l1
a.+3a -1
5] 5]

atj — atj'l

b «—b +1
T T

c.+—¢.~1
J J

Type2: If x, € S then the following defines an addition rule v “ in'Vv:

bi — bi—l
dl — dl—i—l

Type 3: The following two addition rules are also in V:

1.4, < d-1
d, « d,+1
d, — d,+1

2.d; < d,+1
d2 — dy1
d, < d+1
V is clearly conflict-free and can be constructed in deterministic logspace. Before we show that Vis

unbounded iff P has 2 solution, we will show that V is unbounded iff there is a path in V which enables a

type 2 addition rule. Clearly, only the type 3 rules can appear in a matrix of rules VICV in which each






row containing a -1 also contains a positive number; therefore, from Lemma 3.2, only the type 3 rules can
occur in a loop. Since the type 3 rules can become enabled iff some type 2 rule can become enabled, V is
unbounded iff a type 2 rule can become enabled. As a result, we need only to show that P has a solution

iff there exists a path in V that enables a type 2 addition rule.

Let us say that a node x €Xis Q-admissible for some QCR iff (X,Q,{xr}}T) has a solution. We will
now show by induction on |Q] that for all r, x 1s Q-admissible iff there exists a path o in V using only
type 1 addition rules corresponding to rules in Q, such that o leaves br>0. If Q=0, the claim clearly
holds. Let |Q|>0 and assume the claim for all Q' such that |Q|<|Q|. Suppose some node x_is Q-
admissible. If x € T, the claim clearly holds. If X, ¢ T, then there is a rule (Xr,xs,xt) €R such that x_ and
X, are Q'-admissible, Q'zQ-{(Xr,XS,Xt)}. From the induction hypothesis, there exists a path o_ (O't) inV
using only type 1 addition rules corresponding to rules in Q', such that o (0,) leaves b (b)) > 0. Clearly,
at the first point in o_ (o) at which b (b) >0, a, (a,,) > 0 for all h. It follows from the proof of
Lemma 3.1 that there exists a path ¢ whose addition rules used are those used in o union those used in
o, Let (xr,xs,xt) be the j*P rule in R. Since (xr,xs,xt) Q' v is not used in o'; therefore, o’ must leave a_
(atj) > 0. v, can then be executed, leaving br>0. Thus, the claim is satisfied.

Now suppose there is a path in V using only type 1 addition rules corresponding to rules in Q, after
which br>0' Let o be the shortest such path. If o is the null path, then x € T and the claim is satisfied.
Otherwise, some addition rule v corresponding to a rule (Xr,xs,xt) € Q was the last addition rule executed
in o. Since a; (atj) must be positive for \f to be executed, bS (bt) must clearly become positive in o.
Thus, there is a path o (O‘t) in V using only type 1 addition rules corresponding to rules in
QI:Q"{(Xr’Xs’Xt)} after which b_ (bt) > 0. From the induction hypothesis, x_ and x, are Ql-admissible;

therefore, x_ is Q-admissible. We have therefore shown our claim.

Since only type 1 rules may be executed before the first type 2 rule is executed, there is an R-
admissible {i.e., admissible) node x € S iff there exists a path in V after which br>0; i.e., P has a solution
iff there exists a path in V that enables a type 2 addition rule. We can therefore conclude that V is
unbounded iff P has a solution. This completes the proof. 7

The following theorem now follows immediately from Theorem 3.1 and Lemma 4.1.

Theorem 4.1: The boundedness problem for conflict-iree VRSs (VASs, Petri nets, respectively) is
PTIME-complete.
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