CONCURRENCY CONTROL FOR
OBJECT ORIENTED
PROGRAMMING ENVIRONMENTS

Henry Tirri!
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-86-14 June 1986

1On leave from Department of Computer Science, University of Helsinki, Tukholmankatu 2, SF-00250
Finland.

Abstract

In this paper we address the problem of developing a concurrency con-
trol mechanism for a distributed object oriented programming environment
which allows several users on workstations to share objects in a transparent
manner. We develope an intuitive transaction model for the object oriented
environment which incorporates operation (method) inheritance with ar-
bitrarily nested transactions and describe a simple implementation of the
concurrency control mechanism based on method specific locking. Our ap-
proach can be applied to existing object oriented systems such as Smalltalk.

1 Introduction

An object oriented programming environment such as Smalltalk [Gold 84]
provides a single user personal workstation to support the programming
process. With the modern day technology these workstations can be con-
nected with a high performance local area network (LAN) which allows
users to transfer data between several workstations. Our purpose is to in-
troduce a concurrency control mechanism that allows several users to share
objects in this environment in a consistent way. This problem is related
to the widely studied field of concurrency control in distributed databases
[BerG 81], however in an object oriented environment the operations and the
notion of transaction are radically different from the ones in the traditional
database framework as described in [Gray 80].

First of all, an execution of an operation on an object defined by a
method is triggered by a message sent to the object itself as opposed to
the traditional database approach, where operation requests are sent to an
agent (e.g. data manager) that performs the operation. Hence in our case
data, i.e. objects, is active in the sense that it can perform the operation by
itself.

Secondly, since a method may invoke other operations on different ob-
jects by sending messages the transactions have a nested structure [BaKK 85],
[Lync 83], [Moss 81] with all the problems introduced by subtransactions ex-
ecuting concurrently with their parents.

Finally the number of operation types allowed is much larger than in
a conventional database environment, which typically has only four opera-
tions: retrieve, update, insert and delete a data item. The ability to distin-
guish between different operations introduces additional semantic informa-
tion that can be used by the concurrency control mechanism [KunP 83].

In this paper we address the problem of developing a concurrency con-
trol mechanism for a distributed object oriented programming environment
where objects can be shared and manipulated concurrently by several users.
Our study was inspired by the work of Schwartz and Spector [SchS 84] on
synchronization issues that arise when the notion of transaction is extended
for shared abstract data types. However, their general study left open the
problem of transaction nesting and method inheritance, both of which are
essential properties of an object oriented programming environment.

Our work is divided as follows. In Section 2 we present an intuitive

2 2 TRANSACTIONS IN AN OBJECT ORIENTED SYSTEM

model of the object oriented environment. With the notions introduced in
this model in Section 3 we describe a simple mechanism based on locking
[EGLT 76] to implement concurrency control for this environment. Our
approach can be directly applied to existing object oriented programming
environments such as Smalltalk. A simple prototype implementation of the
ideas presented has been implemented in Smalltalk itself on a Macintosh
microcomputer.

2 Transactions in an object oriented system

Our distributed transaction model differs from the traditional model in sev-
eral ways. Our model incorporates the concept of an object and methods
specific to that object instead of data items and general operations. Also
the details of how objects are represented and methods are implemented are
known only to the object’s implementor. Hence to develope a transaction
model we need to describe briefly the architecture of the environment as-
sumed in the model. This architecture is intended to capture some of the
essential features of a distributed environment based on the object oriented
paradigm.

2.1 The environment

We assume a graphical, interative programming environment consisting of
personal workstations supporting object oriented approach to programming.
An excellent example would be a workstation running a single user Smalltalk
system. A workstation has a private mass storage device (hard disk) that is
used for storing objects.!

Secondly these workstations are assumed to be connected to a single high
performance local area network that allows data to be exchanged between
workstations. To be able to share objects it is assumed that all the objects
in the distributed system have a unique id and a message can be sent to
any object from any workstation (a performance degradiation is naturally
possible if ”remote” objects are used).

Macintosh is a trademark licensed to Apple Computer, Inc.
! Alternatively workstations can be connected to a file server which handles all the
object storing.

2.2 The transaction model 3

Since in this study we are interested only in the concurrency control
aspects we assume that the underlying message passing system is reliable.
In reality the environment necessarily has a recovery mechanism resembling
the ones used in distributed databases. Recovering from failures is a research
issue in itself and not a proper topic of this paper.

2.2 The transaction model

As usual, to be able to define transactions we first have to define entities
accessed in transactions which in our case are objects. In addition we have
to define what the object states are and what operations are possible.

Definition 1 A class C is a pair (M,V) where M 1s a set of methods and
V is a set of instance variables. A class C' = (M',V') 1s a subclass of class
CifMc M andV CV'"

A class describes the implementation of a set of objects that are all repre-
sented in the same way. The set of methods (M) describes the operations
that can be performed on an object belonging to this class. The set of
instance variables (V') describe the type of the value components of the ob-
jects state. Subclasses inherit all the methods and instance variables of the
superclass (but have additional methods and /or variables).

Definition 2 An object o described by class C s an instance of the class.
We denote this relation by membership, i.e. oeC.

Before defining operations we have to introduce the notions of object and
environment states.

Definition 3 Let Dom(v) be the value domain of an instance variable veV.
The state s, of an object o is a mapping f :V — UDom(v), f(v)eDom(v),
veV.

Hence state of an object (for our purposes) is simply an assignment of values
to the instance variables. The set of all objects o1is called environment. Ther

notion of state is extended for the environments in the obvious way:

Definition 4 A state S of an environment E s the union Us, for all ocE.

4 2 TRANSACTIONS IN AN OBJECT ORIENTED SYSTEM

Definition 5 An operation peM, is a mapping p : s, — S, i.e. operation
can change the state of one object only.

Definition 6 A transaction t is a 3-tuple (T, P, <) where T is a set of

transactions, P is a set of operations, < 1s a partial order on T U P. Every
transaction is of finite depth.

In an object oriented programming environment a transaction is a message
to an object. This message carries the type of the operation to be performed.
The semantics of the operation is described by a method which may involve
sending other messages that initiate subtransactions, which initiate new
subtransactions etc. At the bottom level, however, the transactions consist
only of primitive operations. The definition above defines transactions as
arbitrarily nested hierarchical structures. To describe a transaction in terms

of atomic operations we use the notion of transaction closure introduced in
[BaKK 85].

Definition 7 The closuret* of a transactiont = (T, P, <) 1s a pair (P*, <*)
where P* = PU{p* | (t,p, <) €T} and <* is defined as follows: assume that
r,s € P*. We have r <* s if one of the following conditions holds:

e r.seP andr < s,

e there exists a transaction t; = (Tg,P,-, <;) €T such that r,s ¢ P! and
r <* s,

o there ezists a transaction pair t; = (T;, P, <i), t; = (T, Pj,<;) €T
such that r e P}, s € P} andt; < ¢; (f#7).

Transaction closure flattens the transaction hierarchy, but preserves the or-
dering constraints of the operations. In general the ordering <, remains
partial. The nested form of a transaction is more intuitive than its closure.
However, the closure has to be introduced so that we are able to define
interleaving of the operations of nested transactions.

When a transaction is executed system forces additional ordering among
the operations. In a distributed workstation environment several operations
can be executed in parallel, but the operations using a same executing agent
are serialized. Hence for the definition of a ezecution of a set of transactions
we attach an executing agent to each operation.

2.2 The transaction model 5

Definition 8 Let A4 be a set of agents and A : P* — A a mapping that
relates an operation p and the executing agent A(p). Then an ezecution e of
o finite set of transactions T = {t;} (i > 1) is a pair (UP}, <') where <" is a
partial order defined as follows: assume that r,s¢ U P}. Then the following
conditions hold:

o ifr,seP! thenr <*s=>r1 <'s,

o for each pair of operations (r,s) such that A(r) = A(s) we have either
r<'sors=<'r.

Definition 9 The effect of an execution e 1s a finite collection F = {fi}
(i > 1) where f; : S — fi(S) is defined as follows: let p1,p2,...,Pn be the
ordered list of operations that have the same agent A(p). Then f; is the
composition p1 © p2 © ... © Pn. The resulting state from an ezecution e 1is

S'= Uf,(S)

Until this point, we have not imposed any constraints on the transactions
or restrictions to the set of possible executions. By definition transactions
are usually understood as an abstraction mechanism that allows users to
group a collection of operations to form a unit of consistency. Hence trans-
actions are assumed to be consistency preserving in the sense that given
a consistent state of the environment the execution of the transaction also
Jeaves the environment to a consistent state. This allows the definition of a
very general notion of execution correctness called serializability [EGLT 76).
Since transactions are units of consistency any serial (one-by-one) execution
trivially preserves the consistency of the environment. Hence any execution
that has the same effect on the enviroment (users included) than a serial
execution of the transactions involved is correct.

Definition 10 An ezecution e is serializable if the effect of the execution
F. is the same as the effect of some serial ezecution e,, i.e. F.(S) = F..(S)
for some e,.

This notion of serializability is used as the correctness criteria against which
the mechanisms for concurrency control can be tested. Unfortunately testing
for serializability of an execution is an inherently difficult task [Papa 79,
hence the efficient mechanisms can only approximate this criteria. However,
we require that the mechanism is not allowed to produce non-serializable
executions. A mechanism satisfying this condition is sound.

6 3 METHOD SPECIFIC LOCKING

3 Method specific locking

The formal framework defined above allows us to describe a wide variety
of concurrency control mechanisms. In this Section our purpose is to de-
scribe a simple sound concurrency control mechanism that can be efficiently
implemented. While we do not describe the mechanism with any specific
programming language syntax, we show how it preserves consistency by re-
stricting the interleaving of operations. Filling up the details for a specific
environment (e.g. Smalltalk) is a straightforward task and not considered
here.

The proposed mechanism is based on locking, a method which is widely
used in database systems. In a locking mechanism each operation has to
lock the object accessed before the operation can be carried out, i.e. a
locking provides a mutual exclusion mechanism to restrict the concurrent
access to objects. However, locking by itself does not guarantee consistency
preservation, additional restrictions have to be imposed on the order how
a transaction locks and releases objects. A classic result by Eswaran et
al [EGLT 76] shows that under the general assumptions we have adopted
consistency preservation requires locks to be acquired in two-phase manner:
no locks can be released in a transaction before it has all the locks it will
ever need.

The basic two-phase locking policy described above, although sound,
is a very conservative method that restricts the possible concurrency of
the operations drastically. Fortunately this method can be improved by
introducing more information for the locking mechanism. Our notion of
correctness required only that the effect of the execution should be similar
to that of a serial one. Hence there exists operations that can be allowed to
interleave with the operations performed by transaction since they do not
violate the correctness of the result. A canonical example is a read operation
that does not change the state of an object and thus can be interleaved
with read operations from other transactions. In locking this additional
information is captured by lock modes [Kort 83].

The mechanism introduced here, method specific locking (MSL) is based
on these two simple observations. Hence it suffices to show

e 1) How lock modes can be implemented in an object oriented environ-
ment.

3.1 Implementing method lock modes 7

o 2) How the two-phase behavior of the transactions can be guaranteed.

After this showing the soundness of the mechanism is easy.

3.1 Implementing method lock modes

By definition each object is associated with a set of methods that describe
how the possible operations are performed. To implement method locks the
method invoking mechanism has to be augmented with a compatibility vec-
tor, a lock vector and a lock queue. These data structures describe the state
of an object from the concurrency control point of view and are attached to
objects (data structures) representing methods and the object itself.

o A compatibility vector (cv) is a bit vector that has a component for
each possible object method. Every method m has a compatibility
vector of its own which specifies those methods that are incompatible
with m by setting the corresponding component value to one.

o A lock vector (lv) for each object is a vector of pairs (b,1) that has a
component for each possible object method. The b; components of the
pairs describe the method types for which the object is currently locked
(b; = 1 if the object is locked in mode method ¢). An l; component is
a transaction id list denoting transactions that hold the corresponding
lock b;.

e A lock queue is a message queue that in addition to the queueing
messages also has information which method lock types a message is
queueing for.

These data structures can be used to implement method lock modes as
follows. When a message is received the compatibility vector of the corre-
sponding method cvp, is compared against the b; components of the lock
vector v, of the receiver o bitwise with a logical and operation. If any of
the comparisons is true, the corresponding transaction id lists I; are checked
if the lock is held only by the transaction itself in which case the lock con-
flict is ignored and the lock is granted. Otherwise the object is locked by
an incompatible method by some other transaction and the message have
to wait in the lock queue releasing of the corresponding lock component(s).
If no incompatible lock exists the lock vector is updated to reflect the new

8 3 METHOD SPECIFIC LOCKING

lock status of the object, i.e. the corresponding b component value is set
to one, id list [is augmented with the transaction id and the operation is
performed. The lock vector is also updated when the object receives a spe-
cific release message. Setting a lock vector component b to zero initiates
search for queueing messages that could be performed. In case of several
alternatives to be invoked messages are served in First-Come-First-Served
basis.

Compatibility vectors provide a simple tool to implement locking schemes
that vary from mutual exclusion to total sharing of objects. It should be
observed that this mechanism allows the implementation of concurrency
control also with only partial information of the possible methods since un-
necessary incompatibilities only decrease concurrency level but do not affect
soundness. This is important since objects inherit methods from the super-
classes and it is sometimes impractical to require that the introducer of a
new method should be aware of semantics of all the inherited methods.

3.2 Implementing two-phase behavior

We have already mentioned that soundness of our locking mechanism de-
pends on the two-phase behavior of transactions. Since our transactions are
allowed to be arbitrary nested hierarchical structures a subtransaction can
not independently start releasing locks, since this doesn’t guarantee global
two-phase behavior. In fact requiring global two-phase behavior in our dis-
tributed system is related to the general problem of detecting so-called sta-
ble properties of distributed systems [ChaL 85], especially termination. The
general algorithm presented in [ChaL 85] is viable also in our case where the
lock point? of a transaction need to be found. However, since our transac-
tions are finite and tree-structured we do not have to be as general as Chandy
and Lamport in their study and hence can outline a simpler algorithm to
determine the lock point in our special case.

Let us call a receiver of an original transaction message (for transaction t)
a root object and objects that have not sent subtransaction messages leaf
objects. The protocol that transactions have to obey when acquiring and
releasing locks (Tree Locking Protocol (TLP)) can be described in terms of
objects responding to messages in the following way. Let m be a message to
object o with method p.

2Lockpoint is the moment of computation when a transaction has acquired all the locks
it requires.

3.8 Coping with deadlocks o}

p = ready(t): if o is not a root object send message m' with method
ready(t) to the parent object in transaction t. If o is a root object and
there are no more messages to invoke subtransactions, send a message
m! with method release to all son objects (in transaction t).

o p = release(t): if o is not a leaf object send message m' with method
release to all son objects (in transaction t).

o p f{ready(t), release(t)}: acquire lock in mode p on object o for trans-
action t.

e A lock on an object can be released if the operation is performed and
a release(t) message has been received.

Theorem 1 Tree Locking Protocol guarantees that transaction locks are ac-
quired in a two-phase manner.?

Intuitively TLP forces two-phase behavior by requiring the son objects to
inform the parent object when they have reached their local lock point. This
information is accumulated to the original root object which then informs
subtransaction objects when the global lock point has been reached. It
should be observed that the objects do not have to wait the end of the
execution of the operation to send the ready(t) message, they only have to
know that no more messages are sent.

The method described above forces serializability of the executions by
restricting the possible interleavings by delaying some of the messages. It
allows compatible operations to be interleaved freely as the order of these
operations does not affect the resulting state of the environment.

Theorem 2 If the ezecution of the original transaction terminates with all
the messages performed, MSL is sound.

3.3 Coping with deadlocks

The theorem above states that no inconsistencies are created if MSL is used
and the computation does not terminate prematurely. However, as with
any locking method a possible deadlock may cause this early termination.

3Proofs are presented in the full version of this paper.

10 3 METHOD SPECIFIC LOCKING

Hence to be practical the implementation of MSL has to be able to cope with
deadlocks. Due to the distributed nature of our object environment detecting
deadlocks is an inherently difficult problem. There exist several distributed
deadlock detection algorithms in the literature, many of them are incorrect
[GIiS 80] and all the proposals involve considerable message overhead which
makes them impractical in a high performance programming environment.

There exists at least two ways to avoid using these algorithms: introduc-
tion of a centralized object that creates a global data structure to describe
the waiting relation between transactions, and approximation of deadlock
detection with ttme-outs. The former approach is very inefficient due to the
bottleneck created and against the overall distributed approach adopted in
the architecture we described in Section 2.1. Hence we choose the latter one
and attach a time-out mechanism to each non-leaf receiver object.

If an object does not receive ready(t) message from a son object within
a prespecified time interval it sends a clear(t) message to the corresponding
son object and waits for an acknowledgement (a cleared(t)) from the object.
After this the object waits a randomly chosen time period before resending
the original message.

If an object receives a clear(t) message it checks the lock vector to find
if t holds a lock on the object. If it doesn’t the corresponding message is
removed from the lock queue and the parent transaction is acknowledged
with a cleared(t) message. If t holds a lock and the object is a non-leaf
object a clear(t) message is sent to all son objects. After receiving cleared(t)
messages from all the son objects the lock vector is updated and the parent
object is acknowledged. In the latter case a leaf object only updates the lock
vector.

The obvious disadvantage of this simple scheme (and any other time-out
scheme) is that it can restart part of the computation unnecessarily even if
a deadlock does not exist. The tree structure of our transactions suggests
that the time-out value should vary depending on the hierarchy level of the
object, i.e. the accepted delay should increase depending on how close the
object is to the root object in the transaction tree. This can be implemented
for example by keeping track of the level of nesting with an index field in
each subtransaction message.

11
4 Conclusions

In this study we have addressed the problem of developing a concurrency
control mechanism for object oriented programming environments. The sim-
ple formal transaction model is intended to capture the nature of transaction
processing in a workstation based distributed environment; it incorporates
hierarchical nested transaction structures and the notion of correctness in
this environment.

The framework of the model was used to develope a concurrency control
method based on locking called Method Specific Locking (MSL), a variant
of a well known two-phase locking policy used in databases. MSL profits
from the additional information of compatible operations by using several
lock modes (method lock modes) and forces global two-phase behavior in a
distributed manner with a special protocol. Deadlocks are resolved with a
simple time-out mechanism with different levels of delays.

Our study has deliberately ignored reliability issues. A practical transac-
tion mechanism has to be complemented with a distributed object oriented
recovery mechanism, an interesting topic for further research.

5 References

[BaKK 85] Bancilhon, F., W Kim and H.Korth, A model of CAD trans-
actions. Proceedings of the 11th International Conference on Very
Large Databases, 1985, 25-33.

[BerG 85 | Bernstein,P. and N.Goodman, Concurrency control in distributed
database systems. ACM Computing Surveys, 13:2 (1981), 185-221.

[ChaL 85 / Chandy,M. and L.Lamport, Distributed snapshots: determin-
ing global states of distributed systems. ACM Transactions of Com-
puter Systems, 3:1 (1985), 63-75.

[EGLT 76 |Eswaran,K.,J.Gray, R.Lorie and T.Traiger, The notion of con-
sistency and predicate locks in a database system. Communications
of the ACM, 19:11 (1976), 624-633.

[GliS 80] Gligor,V. and S.Shattuck, Deadlock detection in distributed sys-
tems. IEEE Trans. Softw. Eng. SE-6:5 (1980), 435-440.

12 5 REFERENCES

[Gold 84 | Goldberg,A., Smalltalk-80: The interactive programming envi-
ronment. Addison-Wesley, 1984.

[Gray 80 | Gray,J. A transaction model. IBM Res. Report RJ2895, IBM
Research Lab., San Jose, 1975.

[Kort 83 | Korth,H., Locking primitives in a database system. Journal of
the ACM, 30:1 (1983), 55-79.

[KunP 83] Kung,H. and C.Papadimitriou, An optimality theory of con-
currency control for databases. Acta Informatica 19:1 (1983), 1-11.

[Lync 83 | Lynch,N., Multilevel atomicity - a new correctness criterion
for database concurrency control. ACM Transactions on Database
Systems, 8:4 (1984), 484-502.

[Moss 81 /Moss,J., Nested transactions: an approach to reliable distributed
computing. Ph.D. dissertation, MIT, 1981.

[Papa 79] Papadimitriou,C., The serializability of concurrent database
updates. Journal of the ACM, 26:4 (1979), 631-653.

[SchS 84]Schwartz,P. and A.Spector, Synchronizing shared abstract types.
ACM Transactions on Computer Systems, 2:3 (1984), 223-250.

