1On leave from Department of Computer Science, University of Helsinki,

Finland.

A TRANSACTION MODEL FOR
OBJECT-ORIENTED VLSI CAD

Henry Tirri!
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-86-15 June 1986

Tukholmankatu 2, SE-00250

1 Introduction

The Very Large Scale Integrated circuit (VLSI) design environment is char-
acterized by a large volume of data with complex data descriptions. Both
data and descriptions of data are dynamic in nature, as well as the collection

of design rules. Hence VLSI CAD is emerging as one of the most challenging
application areas for database technology.

Unlike conventional database transaction processing VLSI CAD applica-
tions seem to require object-oriented accessing to design data and thus call
for a different orientation than the record (tuple)-based access paradigm
supported by existing database management systems. Also the traditional
transaction model [Gray 78] with short-lived, non-nested transactions is not
applicable to CAD environment in general [BaKK 85]. This problem is well
recognized and several proposals to extend the model of transactions for
design systems exist [BaKK 85], [KLMP 84], [LorP 83].

One fundamental problem that has to be addressed when developing a
transaction model for VLSI CAD databases, is the nature of consistency
preservation for design objects. A large portion of a design engineer’s time
is spent applying constraints that vary from standardized design rules to
rather ill-defined rules of thumb and personal preferences [BucC 85]. It is
almost impossible to specify all constraints at start-up of a VLSI CAD sys-
tem. Hence there has to be an inherent mechanism to define constraints
dynamically. However, allowing designers to share design objects raises the
question what are the consistency constraints that these concurrent accesses
to the design database have to preserve, and how this preservation should be
guaranteed. The standard notion of serializability [EGLT 76] is too restric-

tive in VLSI CAD environment since designers tend to exchange incomplete
designs.

Managing VLSI design information requires (due to the object-oriented
nature) modeling constructs that are able to reflect some of the semantics of
design objects. Molecular objects [BatK 85] is a database modeling construct
that seems to provide a reasonable tool for developing a semantic database
model for VLSI CAD objects. The key observation is that an object can be
decomposed to its interface description and its implementation descriptions,
which captures the nature of VLSI design objects (and also the concept of
versions). The transaction model presented is strongly influenced by this

type of data modeling, especially since we relate the interface description
and consistency constraints.

Abstract

In this paper we address the problem of developing a transaction process-
ing scheme in a VLSI CAD environment whose design database is based on
the molecular object model. We develope a transaction model that incorpo-
rates object-oriented processing (transactions access design objects instead
of tuples), hierarchical transaction structures and a notion of object con-
sistency. To show the feasibility of our model we describe a concurrency
control scheme for object-based VLSI CAD databases.

292 QGeneral architecture of a VLSI CAD database 3

implementation is usually defined by less complex circuits and their intercon-
nections. A circuit description is often hierarchical, since each component
circuit used in the implementation has its own interface and implementa-
tion. This reflects the recursive nature of VLSI design process. As arule, a
circuit interface can have multiple implementations.

Molecular objects are objects that have an interface description and an
implementation description. The implementation description of a molecular
object is defined by (a heterogeneous) composition of component objects
and their relationships. This abstraction is called molecular aggregation.
Since a circuit interface may have several implementations, the concept of
a molecular object is extended in the following way. Objects that share the
same interface but have different implementations are called versions. In
this case the interface description is called an object type. Intuitively an

object type describes all the common features of its versions; in our case the
circuit function and I/O-description.

Copies of both the object type and object versions (interface and im-
plementation) can be generated by instantiation. Instantiation differs from
duplication since it reduces redundancy; an instance of an object (version)
has references to a common definition instead of a copy of this definition.
Observe that using an instance of an object type creates a template in which

instances of any version of the object type may be placed (this is called
parametrized versioning in [BatK 85]).

2.2 General architecture of a VLSI CAD database

Following the ideas introduced in [KLMP 84] the design system considered
here consists of a public database management system and private database
management systems which are connected via a local area network. Pub-
lic database acts as a design library, which contains predefined standard
components (elementary gates etc.) and design objects that have reached
a stable status. Designers’ private databases contain information about de-
sign objects the designer is currently working on. In addition there exist
semi-public databases which are used to exchange incomplete design objects
between cooperating designers. Users of a semi-public database form a user-
group that a designer can join (if authorized) or from which he can resign.
Usually a user-group consists of designers involved in a common subproject
of the overall design. Since we have adopted the object-oriented approach,
all design objects are assumed to be represented as molecular objects.

2 2 TRANSACTIONS IN VLSI CAD ENVIRONMENT

In this paper we address the problem of developing a transaction model
and a concurrency control scheme in a VLSI CAD environment whose de-
sign database is based on the molecular object model [BatK 85]. Our for-
mal transaction model is in tradition of the general framework presented in
[BaKK 85], [KorK 85]. However, the restriction we have adopted to con-
sider especially VLSI CAD with an object-oriented data model adds some
features to the transaction model, and allows us to make additional assump-
tions (e.g. of the operations available) than would be possible in the general
case. Our study provides one answer to the question of defining a notion of

consistency in a design database, namely interpreting interface descriptions
as consistency constraints.

Our work is divided as follows. In Section 2 we present an intuitive model
of transaction processing in VLSI CAD environment based on molecular
objects. A simple formal model is presented in Section 3 which is then used
for presenting a concurrency control scheme in Section 4. Finally, a brief
summary and possible extensions to the ideas presented is given in Section 5.

2 Transactions in VLSI CAD environment

A typical VLSI circuit design is a top-down process that begins with a de-
scriptive high-level specification of the design (primarily dataflow and timing
graphs). The descriptive graphs are hierarchical in the sense that their com-
ponents can be recursively decomposed into simpler components. There are
several relationships that might be specified among the components of a
high level design specification. Various constraints can be attached to the
graphs; e.g the limit of a time interval and area allowed.

VLSI circuit design utilizes usually a design library, which contains com-
ponents to be used in the construction of new components. It can also

contain designs that are themselves under construction; subparts of a larger
design or independent projects.

2.1 Modeling VLSI CAD objects with molecular objects

The description of a VLSI circuit consists of two parts: an interface descrip-
tion and an implementation description [McNB 83]. The interface descrip-
tion is the specification of the circuit function and input/output lists. The

retrieval requests address multiple levels of the design: given an object ver-
sion instance retrieve all subobjects down to level 1 or given a set of object
instances within a two-dimensional region at level 1, retrieve all subobjects
down to level i +n. Some of the retrieval requests require connection infor-
mation: given an object, find all objects that are connected to its I/O-lines.

The environment briefly described above differs considerably from a con-
ventional database application due to its object-oriented nature and hierar-
chically related long-lasting transactions. Consequently it is hard to see
how the traditional transaction model and notion of correctness, serializ-
ability [EGLT 76] could be applied to this environment. The framework
of [BaKK 85] addresses the problem of modeling hierarchical transaction
relations in a CAD environment in general with a notion of consistency.
However, since we are considering a specific CAD environment, VLSI CAD
with an object-oriented data model, we would like to be more specific. Our
contribution is the development of a transaction model that incorporates
object-oriented processing (data representation, access units), hierarchical
transactions in this special environment and a notion of object consistency.
We also apply this model to describe a concurrency control scheme. To our
knowledge this is the first attempt to develop a concurrency control scheme
for an object-oriented CAD database.

3 VLSI CAD transaction model

We proceed by defining a transaction model for the object-oriented VLSI
CAD environment. Our purpose is twofold: to develop a model where trans-
actions have a hierarchical structure and access units are arbitrary complex,
possibly heterogeneous objects instead of plain records. Secondly we would
like to provide a framework for the construction of transaction processing

mechanisms (concurrency control, recovery) for an object-oriented CAD en-
vironment.

As usual the construction of our model is based on defining notions of
consistency and operations. However, at logical level our database is a collec-
tion of objects, not a collection of records or tuples. Consequently the trans-
action operations operate on object level (although their implementations
naturally function at record level).! A natural consequence of this is that
we also consider consistency at object level, not the primitive record level.

1ye do not consider the possible catalog relations here.

4 2 TRANSACTIONS IN VLSI CAD ENVIRONMENT

Designers tend to subdivide large design objects (e.g. CPU) to subob-
jects by specifying required circuit functionalities and I /O-connections of the
subobjects, i.e. the object types. Object versions can then be designed inde-
pendently by designers themselves or by subcontractors [BaKK 85]. Hence
we have a hierarchy of transactions (designers’ actions) designing objects
in various levels in parallel. In the beginning most of the objects on the
higher, more abstract levels are instances of object types which gradually
can be completed to object versions. During this design process design

transactions manipulate design data in various ways, some of which are
listed below.

A transaction can create an object type and an object version, which can
be stored into the design library in the public database (checkin). This allows
other transactions to create instances of this object and use them in their
design process. Correspondingly, object types and versions in the public
database can be deleted, assuming proper authorization, and sometimes
updated (in a very restricted sense discussed in the next Section). Deletion
of an object type (or version) has an effect on those design objects that have
used instances of it, both in the public database and private databases.

Object types created can be stored into a semi-public database which
allows creation of instances of incomplete objects. Sometimes it is useful also
to allow an object version to be stored into a semi-public database. In this
case the purpose is not so much to allow other transactions to make instances
of an incomplete implementation but to exchange a partial product (i.e.
allow it to be copied) which some other transaction could complete. This
scheme might be used for example in the case where some of the designers
are ”specialists”. Instances of object types in semi-public databases should
not be used in object versions that are checked into the public database
before the creation of the object type is confirmed (i.e. the object type is

stored into the public database) since these interface specifications tend to
be unstable.

During a design of an object version instances of existing object types
and versions can be created, deleted and updated (although update is again
allowed only in a very restricted sense). It is also sometimes useful to copy
an object instead of creating an instance of it, for example when a new object
version is to be created that is based on a previous design.

In addition to the possibility of creating and deleting objects design-
ers also need information about the contents of design objects. Typically

Definition 3 Assume that x 1s the interconnection function (defined by wire
objects) of object version 7. Type & of an object version y 18 x(©UI) where
© = {0;} 1is the set of objects in vy and [= {I;} is the set of object instances
in~y (i,5 = 0)

A type of an object version is its specification based on the specifications of
its components and their interconnections. With this notion we are able to
define consistency in our transaction model.

Definition 4 An object 0 is consistent if for all v ¢ T we have §(y) = 7.
In addition an atomic object is consistent and 6() always implies any 74.

An instance I is consistent if the corresponding object (r,T),T = {7} is
consistent.®

Thus a design object is consistent when the implementations satisfy spec-
ifications. Note the difference between an object having a null version ¢
and having no versions at all. In the latter case the object is atomic and
does not require an implementation, in the former case we have a design
object whose specification has been created, but no implementation exists
for this specification. The definition of instance consistency is very flexible.
It allows an instance I to be consistent although the object it is derived from

has an incomplete version ', naturally assuming that # .

Definition 5 A state S of a database D is a pair (Ss,S1) where Sp is @

set of objects and St s a set of instances. State S 1is consistent if for all
0 ¢ Sp, I € S1 object § and instance I are consistent.

The basic operations that designers use operate on object level. These object
operations are implemented by atomic collections of lower level operations
(e-g. record level). However, for the purposes of our transaction model it
is sufficient to consider object operations as atomic. Ensuring atomicity of
object operations is an interesting topic, but is outside the scope of this
paper.

3Note that a specification 7 with a null version ¢ is always consistent since there exists
no contradiction between the specification and the implementation.

40ur simple definition of a database reflects the scope of this paper, which is limited
to consideration of design objects only. A real design database has also homogeneous,
relational data about the design data. However, from the transaction processing point of
view this data can be managed with traditional methods and is not of interest here.

6 3 VLSI CAD TRANSACTION MODEL

Therefore we depart from the traditional approach of defining a database
state as a set of record values and consistent states being states that satisfy
a given predicate C, and introduce the notion of object consistencyon which
our transaction model is based. This approach also allows us to reflect the
dynamic nature of defining constraints during a design process, we do not
require that all the object constraints are specified at start-up time.

Similarly our definition of a transaction is biased towards maintaining
object consistency. Intuitively our transactions are partially ordered sets
of transactions or atomic operations that create an object version (circuit
implementation) which satisfies given constraints.

In the following we use the term database to mean the collection of
all the databases in the environment. In the abstract level of our model
it is not necessary to make a distinction between the different database
types, although this distinction becomes important in Section 4, where we

discuss implementing concurrency control mechanisms for the VLSI CAD
environment.

Definition 1 An object 0 is a pair (r,T') where T is an object type and T
is a set of object versions 4. An object version y is a set of objects. An
object version that has no components is denoted by p and it is called a null
version. An object is an atomic object if it does not have an object version
(i.e. T is empty). We explicitly ezclude recursive objects.

The formal definition of an object is intended to capture the nature of a
VLSI design object. Object type 7 is the interface specification of the circuit.
This specification usually takes form of a functional specification (including
timing) and I/O-interface specification (number of pins etc.). Object version
4 is the implementation of the design object using usually less complex
circuits. An atomic object is a standard component available in the design

library. Since a circuit should not be used to implement itself recursion is
not allowed.?

Definition 2 An object instance I is a S-tuple (r,~,1d) where 7 is an object
type, v is an object version and id is a unique instance name. If v = ¢ Iis
an object type instance which is denoted by I.

2Following the classification in [BatB 84] our design objects fall into the category of
non-recursive, disjoint/non-disjoint objects.

pins) of the lower level circuits, since this information belongs to the details
of the implementation which the specification is intended to hide.

Our transactions are arbitrarily nested hierarchical structures. To de-
scribe a transaction in terms of atomic operations we use the notion of
transaction closure introduced in [BaKK 85].

Definition 8 The closure t* of a transaction t = (T,0,<,C) is a S-tuple
(0*,<*,C) where O* = 0u{o* | (t,0,<,c)eT} and <* is defined as follows:
assume that r,s€0*. We haver <* s if one of the following conditions holds:

e r,5€0 andr <s,

o there exists a transaction t; = (T3, Oy, <;,Ci) €T such that r, s8¢0} and
r <*s,

o there exists a transaction pair t; = (T;, 04, =i, Ci), tj = (T},05,=<4,C;) €T
such that r€O},5 €0} and t; < t; (£ # 7)-

Transaction closure flattens the transaction hierarchy, but preserves the or-
dering constraints of the operations. Observe that in general the ordering
<* remains partial. This brings us to an important difference between the
traditional transaction model and the nested models such as ours. Tradi-
tionally transactions are assumed to be units of global consistency, hence
if a transaction is executed alone it maps a consistent database state to a
consistent state. Nested transactions usually represent a set of transactions
that can be executed concurrently assuming that the imposed ordering con-
straints are obeyed. Requiring a nested transaction to be a unit of global
consistency would be equivalent to requiring a set of traditional transactions
to coordinate their execution without any concurrency control mechanism.
However, our transactions are units of consistency with respect to the nesting

level; i.e. a transaction preserves consistency if the subtransactions preserve
consistency.

When a transaction is executed system forces additional ordering among
the operations. In a distributed workstation environment several operations
can be executed in parallel, but the operations using a same executing agent
are serialized. Hence for the definition of a transaction ezeculion we attach
an executing agent to each operation.

8 3 VLSI CAD TRANSACTION MODEL

Definition 6 A (database) operation o is @ mapping o: § — §.

Although our model does not restrict the nature of object operations, for
simplicity we assume in the sequel that the operations allowed fall into one
of the following general categories: create/delete object types, create/delete
object versions, create/delete instances, retrieve information about the con-
tents of an object/instance, retrieve information about the environment of
an object/instance, update statistical or identification information in ob-
ject/instances. We also feel that these categories are representative of the
operations required in object-oriented VLSI CAD.

There is an interesting difference between the operations in an object-
oriented design environment and traditional database management systems.
The design transactions tend to create new versions rather than update
old ones; construction of a circuit implementation is done in the private
workspace of the designer’s workstation and stored to the database after
the design is completed (or partially completed). Hence in our model com-
pleting an incomplete version is not seen as updating, but creating a new
version. This method allows a natural way of storing a design history which
makes it possible to use earlier versions to test alternative design decisions.
When versions become obsolete they are deleted. Updating objects is al-
lowed only in a very restricted way; only modifiable attributes [BatK 85]
such as number of versions of an object type can be updated. The concept
of multiple versions of data exists also in traditional database applications
[PapK 84],[Reed 78], but it is usually introduced to enhance the transaction
processing scheme (concurrency control and recovery). In the VLSI design
environment these versions are used in the design process, hence very lit-
tle additional overhead is involved in allowing the transaction processing
scheme to use a version strategy.

Definition 7 A transaction t is a 4-tuple (T,0,=<,C) where T is a set of
transactions, O is a set of operations, < is a partial order on TU O and C
is a consistency constraint. Every transaction is of finite depth.

This notion of a transaction is influenced by the general definition in [BaKK 85].
A transaction can be seen as a set of possible mappings from the database
state $ to S. However, in our case the consistency constraints of the sub-
transactions in T are not necessarily implied by C. This is due to the nature
of our consistency constraints. The specifications of higher level circuits do
not describe for example the I/O-interface (number of input pins and output

4.1 Databases and workareas 11

to apply the notions of our formal model and describe a concurrency con-
trol protocol for an object-oriented VLSI design database. As will be seen,
there are interesting similarities and differences between our approach and
traditional approaches for constructing concurrency control protocols in tra-
ditional (record-based) databases. To be able to present our protocol, we
have to be more specific in our description of the VLSI design environment.

4.1 Databases and workareas

For our purposes it is sufficient to distinguish the following databases in a
VLSI design system:

e public database (PUDB)
o semi-public databases (SPUDB)
e private databases (PRD B)

o design constraint databases (C.DB)

The public database is a project-wide database which is a collection of stable
design objects® from which new object copies (instances) can be generated.
For simplicity it is also assumed that the standard design library is included
in this public database. Object insertion to the public database as well as
object deletion requires proper authorization.

A semi-public database is used to store design objects that have not yet
reached a stable status, but could be useful to more than just one designer,
i.e. they are used to exchange design objects. To check out information
from a semi-public database a designer has to belong to the user-group of

the database. These user groups are formed dynamically to reflect current
organization of the project.

A private database is a designer’s local database that has objects ex-
tracted from the public database and semi-public databases. The objects
extracted are determined by the type of the design task, i.e. the private
database is intended to contain those objects that a designer uses in the

®1n this Section we use term object loosely to denote a basic data unit such as an object

type, object version or object type instance. When we want to stress that the object is of
certain type we use the appropriate term.

10 4 A CONCURRENCY CONTROL SCHEME FOR VLSI CAD

Definition 9 Let A be a set of agents and A; : O* — A o mapping thal
relates an operation o and the ezecuting agent Ai(0). Then an ezecution e
of a transactiont = (T,0, <, C) is a pair (0*, <') where <' is a partial order
defined as follows: assume that r,seO*. Then the following conditions hold:

e r<*s=>r<'s,

e for each pair of operations (r,s) such that A;(r) = A¢(s) we have either
r<'sors=<'r.

Definition 10 The effect of an ezecution e; s a finite collection F =
{fi}(§ > 1) where f; : S — fi(S) is defined as follows: let 01,0z,...,0n
be the ordered list of operations that have the same agent A(0). Then f; is
the composition 01 © 02 © ... © 0. The resulting state from an ezeculion e;

is §' = Ufi(S). An ezecution e; is consistency preserving if S is consistent
= §' = Ufi(S) is consistent.

Analogously to the traditional transaction model, allowing arbitrary trans-
action executions also introduces the possibility of creating inconsistencies.
Hence the set of consistency preserving executions E; describes those ex-
ecutions that are ”correct” in the sense that they leave the database in a
consistent state. Since incorrect executions should not be allowed the sys-
tem has to ensure that only correct executions are allowed. A protocol is a
set of rules that describes a subset of possible executions.

Definition 11 A protocol isa predicate P on a set of transaction ezecutions
E;. If for e € By P(e) is true, we say that € is legal under P. A protocol P
is consistency preserving if for all e € Ey P(e) = e is consistency preserving.

Ideally we would like to have a protocol that defines the exact set of con-
sistent executions. However, in practice protocols have to be restricted to
approximate this set, since testing an execution for consistency preserving is
an intractable problem in general, even in the case of serializability [Papa 79]
which is a stricter notion than our consistency preserving.

4 A concurrency control scheme for VLSI CAD

The transaction model defined above is very general and allows a wide va-
riety of transaction implementation schemes. In this Section our purpose is

4.3 ‘'Transactions 13

about the contents of an object can be viewed in many ways: retrieve all
subobjects down to level 7, given a set of objects within a two-dimensional
region at level i find all instances of these objects down to level 1 + n etc.
Developing an efficient implementation to handle these retrieval requests is
a research issue by itself. From concurrency control point of view retrievals
are problematic only when a consistent view is required in the presence of
concurrent insertions and deletions.

4.3 Transactions

Our model in Section 3 allows a transaction to invoke subtransactions that
are executed in parallel with the parent transactions. This allows model-
ing of the situation, where a designer wants to split the design process to
two or more design processes which can be progressed in parallel by the de-
signer itself® or by some other designers (client/subcontractor -relationship
of [BaKK 85]). The structure of a typical transaction is shown in Figure 1.
The purpose of the initial checkout phase is to create a local database against
which retrieval requests can be performed instead of retrieving related data
from the public database. After the initial checkout transactions enter a de-
sign phase, where new designs are constructed in the work area and stored
to the private database. Also from time to time additional checkouts from
the public database are possible (adding recent designs). At a design phase
a transaction can originate subtransactions that operate on the same private
database as the parent transaction (”tasks”) or on another private database
» subcontraction”). In both cases the subtransactions can outlive the design
phase. In a checkin phase a transaction can make object types or object ver-
sions partially public by inserting them to a semi-public database or make
them stable by inserting them to the public database. It is not required that
all the insertions have to be done at the end of the transaction, hence there
may be several checkin phases in a transaction.

4.4 Concurrency control protocol for object consistency

The notion of database consistency introduced in Section 3 is based on con-
sistent objects, hence to maintain the database consistency the concurrency
control protocol has to prevent transactions from introducing inconsisten-
cies by creating inconsistent objects. In addition it has to be able to enforce

©This is easily realizable through the windowing support of modern workstations.

14 4 A CONCURRENCY CONTROL SCHEME FOR VLSI CAD

Checkout phase

o read object types and versions from PUDB and SPUDBs into PRDB

Design phase

o create instances of object types and versions in PRDB, PUDB and SPUDBs
o retrieve information about the contenis of objects in PRDB, PUDB and SPUDBs
» delete objects from PRDB

o start a new subtransaction (i.e. open a new window) etc.

Checkin phase

o insert object types and versions to PUDB and SPUDBs inte PRDB

Design phase

o create instances of object types and versions in PRDB, PUDB and SPUDBs

Checkin phase

e insert object types and versions to PUDB end SPUDBs to PRDB

Figure 1: The structure of a possible transaction in a VLSI CAD environ-
ment

4.4 Concurrency control protocol for object consistency 15

consistency even if deletion of an object may have an effect on the consis-
tency of other objects. Both of these requirements differ considerably from
what is usually expected from a concurrency control protocol in a traditional
application area. In VLSI CAD environment the protocol has to cope with
inserts and deletes and dynamic checking of transaction consistency instead
of writes and static consistency checking in traditional database applica-
tions. We proceed by describing the overall concurrency control scheme for
maintaining object consistency. A more detailed discussion on the imple-
mentation of this scheme will appear in a sequel to this paper.

The implementation of the object consistency protocol (OCP) consists
of five algorithms:

lock manager (PULM) for PUDB

lock manager (SPULM) for SPUDBs
e lock manager (PRLM) for PRD Bs
o object consistency checker (OCC)

o object disconnector (OD)

FEach database has a lock manager of its own, object consistency checkers
are local to each workstation (private database management system) and
object disconnectors are included in the transaction management system of
semi-public databases and the public database.

Lock managers provide a mutual exclusion mechanism which guarantees
atomicity of object insertion, object deletion and retrieval operations. The
objects in the databases are typically non-disjoint, hence to prevent the
creation of ”orphan objects” in a deletion operation all the instances of the
object have to be locked before the deletion can take place. Parallel to
the search for all the instances some other transaction may try to insert a
new instance. Consequently in this environment the problem of phantoms
[EGLT 76] is realistic. Solving the problem with physical locking methods
is very cumbersome, hence the lock managers use logical level locking. The
method we use is related to precision locks introduced in [JoBB 81].

It is assumed that in order to delete an object the database system has to
first find out if the object really exists. Therefore the whole database is first
searched to find the object to be deleted before an acknowledgement is sent

16 4 A CONCURRENCY CONTROL SCHEME FOR VLSI CAD

to the transaction. Each retrieval operation r has an associated descriptive
predicate P,. Deletion operation carries the name of the object to be deleted
(na) and insertion operation the object to be inserted (8:). As the lock
manager receives operations it extracts the predicates, object names and
objects and tries to enter them into corresponding lists (L, Lg, L;). Before
P, is inserted in the list it is checked against Lq and L; to see if there exists
an object # such that P,(8) = true (or Pr(ng) = true). If so then the read
space of request r is being modified and r is blocked until the insert or
deletion operation is finished and the corresponding item is removed from
the list. Similarly an insert operation is checked against retrieval and delete
lists and a delete operation against retrieval and insert lists. It should be
observed that there is no retrieval vs retrieval check, insert vs insert check
or delete vs delete check, hence these operations can be run in parallel.
The lock manager algorithms are essentially the same in all the databases
(PUDB,SPUDB and PRDB), but in the semi-public databases and in

the public database lock managers and object disconnectors are integrated
to form one module.

Object consistency checker algorithm is invoked when an object version
(or a new object type with an object version) insertion is attempted to a
semi-public database or the public database. We do not require that a pri-
vate database is consistent; in fact it is inconsistent most of the time during
a design process, since it contains incomplete versions. Note that the lock
managers do not maintain object consistency, they only guarantee that the
basic operations are performed correctly in the presence of other simultane-
ously executed operations. The purpose of the object consistency checker is
to prevent designers from making inconsistent objects public. Observe that
an object type v with a null version ¢ is always consistent, hence a designer
can introduce new objects under design by making an object type public.

An OCC algorithm is essentially a special purpose theorem-prover which
uses the specifications of the subobjects and the interconnection function de-
fined by the wire objects to construct the type §(«) of the object version «.
This type is checked against the object type 7. If we have §(7) = 7 inser-
tion is allowed, otherwise operation is aborted and diagnostic information
is returned to the transaction. This process can also be semiautomatic. In
addition OCC also performs constraint checking against the design rules in
the appropriate constraint databases. Although OCC is a rather compli-

cated module, it is only a variant of the design verification modules already
used in the engineering community.

17

Finally, an object disconnector is the algorithm that controls the compli-
cated situation when an object used by other transactions is deleted. This
situation arises for example when a designer decides to choose an alternative
implementation for the object and wants to delete an object version that he
has made public by inserting it to a semi-public database. When a trans-
action checks out an object from a semi-public database it becomes a child
transaction of the creator transaction with respect to this object.

We denote the creator transaction by t.(6) for each object 6. The child
relation is maintained in the database where the object is stored. When
a deletion of an object # occurs all the child transactions ¢ of the creator
transaction t.(f) are informed by a deletion message which, after displaying

an appropriate message to the designer, generates a delete operation for the
object instance (or copy).

The child transactions respond with an acknowledgement when the de-
signer has acknowledged seeing the message and the object has been deleted.
After receiving acknowledgements from all the child transactions the actual
deletion operation can be performed. Although this seems to be a rather
time-consuming procedure it is due to the nature of the problem; objects
can not be allowed to simply ”vanish” and leave holes in the design. Also

replacing an object involves usually design decisions and cannot be done
automatically.

5 Conclusions

In this paper we have proposed a transaction model for object-oriented VLSI
CAD with an intuitive description of the environment itself. We have chosen
molecular objects as our data model, since it seems to reflect the object-
oriented nature of CAD designs in general and allows us to depart from
the traditional view of database consistency. However, the notion of object
consistency is very general and assumes only that an object consists of two

parts: specification and implementation. Hence it can be applied to any
object-based design environment.

We applied our model to present a concurrency control scheme in VLSI
CAD environment. This scheme is one possible implementation of preserv-
ing object consistency, alternative schemes can be constructed. This work
is a first attempt to provide a suitable framework for developing transac-
tion processing mechanisms for object oriented VLSI CAD. Therefore we

18 6 REFERENCES

have deliberately tried to keep the model as simple as possible, to be able
to set the stage for further expansions. In addition to concurrency control
the transaction processing architecture requires methods to implement ob-

ject queries efficiently and a recovery mechanism, issues that are topics for
further research.

Acknowledgements

We would like to thank Hank Korth for helpful discussions and suggestions.

6 References

[BaKK 85] Bancilhon, F., W.Kim and H.Korth, A model of CAD trans-

actions. Proceedings of the 11th International Conference on Very
Large Databases, 1985, 25-33.

[BatB 84 | Batory,D. and A.Buchmann, Molecular objects, abstract data
types, and data models: a framework. Proceedings of the 10th Inter-
national Conference on Very Large Data Bases, 1984, 172-184.

[BatK 85] Batory,D. and W.Kim, Modeling concepts for VLSI CAD ob-
jects. ACM Transactions on Database Systems, 9:3 (1985), 322-346.

[BucC 85] Buchmann,A. and C. Perez de Celis, An architecture and data
model for CAD databases. Proceedings of the 11th International Con-
ference on Very Large Data Bases, 1985, 105-114.

[EGLT 76]EswaranXK.,J.Gray, R.Lorie and T.Traiger, The notion of con-

sistency and predicate locks in a database system. Communications
of the ACM, 19:11 (1976), 624-633.

[Gray 78 | Gray,J., Notes on database operating systems. IBM Research
Report: RJ2188, IBM Research, 1978.

[JoBB 81] Jordan,J., J.Banerjee and R.Batman, Precision locks, ACM
Conference on Management of data (SIGMOD’81), 1981, 143-147.

[KLMP 84 | Kim,W., R.Lorie, D.McNabb and W.Plouffle. A transaction
mechanism for engineering design databases, Proceedings of the 10th
International Conference on Very Large Data Bases, 1984.

19

[KorK 85] Korth,H. and W.Kim, A concurrency control scheme for CAD
transactions. Technical Report TR-85-77, Dept. of Computer Sci-
ences, University of Texas at Austin, 1985.

[LorP 83 | Lorie,R. and W.Plouffle. Complex objects and their use in
design transactions. Proceedings of Databases for Engineering Appli-
cations, Database Week 1983 (ACM), 115-121.

[McNB 83 JMcLeod,D., K.Narayanaswamy and K.Baba Rao, An approach
to information management for CAD/VLSI applications. Databases
for Engineering Applications, Database Week 1983 (ACM), 39-50.

[Papa 79] Papadimitriou,C., The serializability of concurrent database
updates. Journal of the ACM, 26:4 (1979), 631-653.

[PapK 84] Papadimitriou,C. and P.Kanellakis, On concurrency control
by multiple versions. ACM Transactions on Database Systems, 9:1
(1984), 89-99.

[Reed 78] Reed,D., Naming and synchronization in a dezentralized com-
puter system. PhD dissertation, MIT, Dept. of EECS, 1978.

