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Abstract

We present a method for systolic design and derive alternative systolic designs for one ex-
pository matrix computation problem: matrix multiplication. Each design is synthesized from a
simple program and a proposed layout of processors. The synthesis derives (1) a systolic parallel
execution, (2) channel connections for the proposed processor layout, and (3) an arrangement of
data streams such that the systolic execution can begin. Our choices of alternative designs are
governed by formal theorems proved in the paper. The synthesis method is implementable and is
particularly effective if implemented with graphics capability. Our implementation on the Sym-
bolics 3600 displays the resulting designs and simulated executlons graphically on the screen.
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1. Introduction

The development of programs need not immediately address implementation concerns. Instead, one
can proceed in stages. One can first derive a program that conforms with the problem specification, and
then derive an execution (or "trace") and provide an architecture. Programs do not contain concepts of
execution but, from programs, executions can be derived for a variety of computer architectures. Such an
approach bridges the gap between two separate concerns: correctness and efficiency. To keep the correct-
ness proof simple, the program which is shown to solve the given problem should be simple. After correct-
ness has been established, the program’s execution can be complicated into a more desirable execution.

The complicated execution must have exactly the input-output behavior established for the program.

This division of concerns can be of great help in program development. In the best of all worlds,
where there is a proven, mechanical way to obtain efficient, complicated executions from simple
programs, the programmer never has to go beyond the program in his understanding of the problem solu-
tion. In fact, he or she might even get help in constructing a suitable computer architecture without delv-
ing into the intricacies of program execution. We will provide a glimpse into such a world. Admittedly,
we cannot deal with all programming problems, but the horizon of our world is expanding. Presently, it
contains sorting problems [9] and matrix computation problems [5]. Our notion of efficiency is paral-
lelism. Programs do not address the question of sequencing but may result in complicated, i.e., parallel

executions.

For exposition, we will confine ourselves here to matrix computations - in fact, to just one matrix
computation problem: matrix multiplication. We will present matrix multiplication programs and,
automatically, derive parallel executions for them. We will then proceed to propose architectures that
can perform these parallel executions. Our architectures will be systolic [6], i.e., they will be networks of
processors that are connected in simple patterns and perform simple operations. We will only have to
propose the layout of the processors. If it is suitable for our execution, the links of communication chan-
nels between processors and the layout and direction of the data travelling through the network can be
synthesized automatically. We call the end product comprising the program, parallel execution, and sys-
tolic architecture a systolic design. After scrutiny of the resulting design, we might want to improve it by
altering either the processor layout or the program. In our example, matrix multiplication, we will make
one adjustment to the processor layout and then one adjustment to the program. Our search for alter-

native designs is guided by a number of theorems about our design method.

The following section is a brief introduction to the design method. First, we describe programs and
traces. Second, we present a trace transformation strategy which yields parallel traces. Third, we describe
systolic architectures formally with the aid of four functions. Finally, we provide a brief idea of our

graphics support of the design method. In Sect. 3, we prove theorems about the four functions for a



specific class of systolic designs. Sect. 4 contains our example: matrix multiplication. Conclusions relate

our work to others in systolic design.

2. The Design Method: Programs, Traces, and Architectures

2.1. Programs
Our programs are expressed in a refinement language with the following features:

e The definition of a refinement consists of a refinement name with an optional list of formal
parameters, separated by a colon from a refinement body. An entry condition involving the formal
parameters may be added in curly brackets. The following are the only three choices of a refinement
body.

e The null statement, skip, does nothing.

e The basic statement is a statement that is not refined any further. It is represented by a name fol-
lowed by a list of parameters, or some special notation combining a number of parameters. Each of
our programs will contain a number of basic statements. They will be explained when the program is
presented.

e The composition S0;S1 of refinements S0 and S1 applies S1 to the results of S0. Each of 50 and 51
can be a refinement call (i.e., a refinement name, maybe, with an actual parameter list}), a basic state-
ment, or the null statement. Sequences of compositions S0;S1;...;Sn are also permitted. Refinement
calls may be recursive.

2.2, Traces

Following the conventional implementation of composition as sequential execution, & sequential ex-
ecution is obtained from a refinement by replacing every semicolon with a right-pointing arrow. That is,
program S0;S1 has trace S0»S1. This implementation of composition is always safe, but may be overly
restrictive. We can transform it into different executions with the same effect. Such transformations can
relax sequencing and incorporate parallelism into executions. In certain cases we will execute program
S50.51 by trace <S0 S1> (angle brackets denote parallel execution). We call <50 S1> a parallel command,

and a trace with parallel commands parallel trace.

2.3, Trace Transformations
Transformations of a trace must preserve the trace’s effect but may alter its execution time. Trace

transformations are justified by semantic relations that basic statements may or may not satisfy.

(1) A basic statement S that is idempotent can be executed once or any number of times consecu-
tively with identical effect. Thus, 5+5 In a trace may be transformed to S, and vice versa.

(2) A basic statement S that is neuiral has no effect other than that it may take time to execute.
Thus, S may be omitted from or added to a trace. Neutrality implies idempotence.



(3) Two basic statements S0 and SI that are commutative can be executed in any order with
identical effect. Thus, S0+51 in a trace may be transformed to 51+50.

(4) Two basic statements S0 and SI that are independent can be executed in parallel and in se-
quence with identical effect. Thus S0+S1 in a trace may be transformed to <50 S1>. Indepen-
dence implies commutativity.

Semantic relations are made explicit by declarations that accompany the refinement program. The

format of a semantic declaration is:
enabling predicate = semantic relation

The enabling predicate is a condition on the parameters of the program components that are semantically
related. Like the correctness of refinements, the correctness of semantic declarations can be formally

proved.

We will exploit semantic declarations for different programs in one and the same way. After having
obtained a sequential trace, say [, from the program, we transform this trace into concurrency by exploit-
ing the declared semantic relations in the following way:

trans form(l) = remove-all-ntr(ravel-trans(l))
Informally, ravel-trans(l) ravels all basic statements in [, one by one, from right to left to a parallel trace.
First, the right-most basic statement is ravelled into the empty trace to form a single-statement parallel
command. Then each of the remaining basic statements in [ is ravelled into the parallel trace produced so
far. Duplicate idempotent statements are discarded if possible. The ravelling process merges the basic
statement with the right-most possible parallel command as permitted by the declared semantic relations;
otherwise, it commutes the basic statement to the right-most possible position and forms another single-
statement parallel command. Then remove-all-nir removes all neutral basic statements. This transfor-
mation strategy is the heart of our method. It has been defined formally [5] in the Boyer-Moore computa-

tional logic [1] and mechanically proved correct.

2.4. Architectures

A parallel trace specifies a partial order of basic statements without reference to a particular ar-
chitecture. We will connect the parallel execution to the systolic architecture that we have in mind. We
specify a systolic architecture with the help of two functions: step and place. The domain of both func-
tions is the set of basic statements that occur in the parallel trace. Step determines when basic state-

ments are to be executed, and place determines where basic statements are to be executed.’

Step maps basic statements to the integers. The intention is to count the parallel commands of the

iki general, we must distinguish multiple occurrences of identical basic statements - by some sort of counter, say. However, we
omit this trivial complication here. Our programiming examples lead to traces whose basic statements are all distinct.



parallel trace in their order of execution. Step is derived from the parallel trace by solving a set of equa-

tions. The derivation of step must adhere to two conditions:

{S1) basic statements of the same parallel command must be mapped to the same integer,

(S2) basic statements of adjacent parallel commands must be mapped to consecutive integers.

We are free to choose an appropriate integer for the basic statements of the first parallel command. If
step satisfies conditions (S1) and (82}, any two basic statements in the same parallel command must have

identical step values.

Place maps basic statements to an integer space of some dimension r. We assume that every coor-
dinate of that space is occupied by a processor. The intention is to assign basic operations to the proces-
sors. Processors that are not assigned an operation at some step simply forward the data on their input
channels to their output channels during that step. Processors that are at no step assigned an operation
need not be implemented. Place is not derived from the parallel trace but proposed separately. Flace has

to satisfy the following condition:

(P1) basic statements of the same parallel command must be assigned distinct places.

In systolic implementations, program variables are not realized by storage cells but by input and
output channels. We have to specily a layout and flow of data that provides each processor with the
expected inputs at the step at which a basic statement is supposed to execute. In our systolic architec-
tures, processors are only connected by unidirectional channels to processors that occupy neighboring
coordinates. That is, data propagate through the network at a fixed rate in a fixed direction. For ar-
chitectures with these characteristics, we can synthesize the input pattern and flow of data from step and
place. To this end, we introduce two more functions: pattern and flow. The domain of both functions is
the set of program variables. Flow specifies the direction of data movement, and pattern specifies the

initial data layout.

Flow maps program variables to the same r-dimensional integer space as place. The intention is to
indicate, for every processor in the network, which of its neighbors receive its output values at the next
execution step, i.e., to which of its neighbors it must be connected by an outgoing channel. Flow is syn-
thesized from siep and place as follows: if variable v accessed by distinet basic statements s0 and s1,

flow(v) = (place(s 1)-place(s0))/(step(s 1)-step(s0))
For variables v that accessed by only one basic statement, we have to provide the definition of flow ex-

plicitly. Flow is only well-defined if its images do not depend on the particular choice of pairs s0 and si.

Puattern maps program variables to the same space as place. The intention is to lay out the input

data for the various processors in an initial pattern such that the systolic execution can begin. (Flow



describes the propagation of the data towards and through the network as the execution proceeds.] With
constant fs being the arbitrary step value that we choose for the first parallel command, pattern is syn-
thesized from step, place, and flow as follows: if variable v is accessed by basic statement s,

pattern(v) = place(s)~(step(s)- fs)* flow(v)
Pattern is only well-defined if its images do not depend on the particular choice of basic statement s.
With pattern specifying the initial data layout, we can derive the data layout for successive steps of the

systolic execution: the data layout after k steps is given by pattern(v)+k* flow(v).

2.5. The Graphics System

We have implemented the transformation strategy and the computation of the previous functions.
We can use the system to simulate graphically systolic executions on stylized architectures. QOur system
displays a network of processors with interconnecting channels. At any fixed step, it also displays the data

layout and indicates processors active at that step.

The three central commands of the graphics system are add-processor, add-design, and
display-design. Add-processor adds the specification of a processing element, which consists of the name
of the basic statement the processor is supposed to apply, its number of arguments, and the identifiers of
its input and output variables, i.e., channels. Add-design asks for a design name and the four components
that are necessary to synthesize a design: a program refinement, semantic declarations, a step, and a
place function. At present, we require the explicit specification of step, even though it could be syn-
thesized from the parallel trace (see the following section). Display-design takes a design name and a
refinement call. It displays the data layout for the submitted call on the submitted processor layout and
simulates the systolic execution. The simulation can be controlled to advance or to back up a number of

steps. At each step, the active processors are highlighted.

3. Theorems for Linear Systolic Designs

In this section, we investigate a specific class of systolic designs: linear systolic designs. A systolic
design is linear if it is specified by linear step and place functions. Linear systolic designs are particularly
interesting because, usually, their data movement proceeds at a fixed rate in a fixed direction. We limit
our discussion to programs with only one type of basic statement, as is the case for matrix multiplication.
Let us denote the basic statement by s(zy,2,,...,x,_,). Also, we use s[z//z] to denote the substitution of

@ for argument z, in basic statement 8($0’$1”“’wr~1)'

Formally, a systolic design is linear, if step and place are described by the following equations:

+o

(E1) step{s(mo,x},...,mr_l)) = (Tt Ty Tt or

o %1% 0,171

(E2) place(s(%,xi,...,zr_l}} = (ai,ﬁzﬂ+ai,lml+'"+O’1,r—izr—1—§’a1,r7 o g (FFO T Tty T ey )
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where the range of place is the d-dimensional integer space. In a non-linear systolic design, equations (E1)
and (E2) would be of a higher degree. We shall explain the derivation of step and discuss theorems about

place, flow, and pattern that provide guidance in the choice of a place function.

Consider a non-empty parallel trace. The images of its individual basic statements under siep, as
defined in (E1), constitute a set of linear formulas. Take the image of the first basic statement in the
parallel trace and equate it with a chosen number. Impose conditions (S1) and (S2) to derive equations for
the other basic statements. The result is a set of linear equations in the variables %g g0 Fgpr e gy and
g p whose solution determines step. However, the equations do not guarantee the existence of a unique
solution. For example, if the parallel trace consists of only one statement, there are infinitely many solu-

tions for step, all of which satisfy conditions (S1) and (S2). It may also occur that no solution exists at all.

While conditions (S1) and (S2) are, generally, sufficient to synthesize step, condition (P1} is not suf-
ficient to synthesize place. We must propose place independently and test whether it satisfies {P1). The

following theorem provides such a test.

Theorem 1: Let step be a linear step function for parallel trace ¢ that satisfies (S1) and (S2). Let place
be a linear place function for . Place satisfies (P1) if the following equations have the zero vector as the

unique solution:

+...4 =
ae,ouo+ao,1u1 ety g% 0
o ==
a1,0u0+a1,1u1 L L) 0
+ Jru—
&y ot T g1 % L P 0

Proof:

Place satisfies (P1)
= {conditions (S1), (S2) and (P1}}
for all basic statements s(%’zl"“’xrﬂ) and s(yo,yl,...,yr_l) in £,
8(2 Ty, )FS(Yg YooY q) A step(s(xg,@,,..,%,_;))=step(s(yy,¥5-¥,1))
= place(s(mﬂ,:rl,...,mr__l))%place(s(yn,yl,..‘,yr_l))
= {step and place are linear, and equations (E1) and (E2)}
for all basic statements s(me,my...,xr_l) and s(y,,9;,--¥,.) 0 £,

8(2 s T 5T, )8 (Y Yy Y, y)

+ ..t ‘o, = + ot +
A g Tt g 1Ty -t 1 T T T 0¥ 0,1 YT T Y -1 Y1 o

= () gTgtoy T+t e, O, Tt X LR
?

+ +

1,171 1,r-1Fr-1" Y1 d0%0" %1% dr-1Tr-1 ad,r)
+ + RN +

%(a1,9y0+a1;191+”‘+a1,r~1yr~1 Ay oo Xl g ¥ ™ T Y adﬁ

= {algebraic simplification}



for all basic statements s(:sﬁ,xl,...,mr_l} and s(yﬂ,yi,...,yr_l} in t,

(2@ 5%, )Y Yy rY, )

Ao, a2 ta, Eoth T o

.*.
0,070  %0,1%1 0,r-1%r-1 O (Y e

0, %% 0r-1%-1%

+ o+ + + o+
= R MRt T o IR Tt R | ai,ﬁéal,ﬂyﬁ oy YTty Y Y,
Yo

+
Voo gty mitetey @ ray oy ygre ytetey Y, ey,
—  {algebraic simplification}
for all basic statements s(xo}xl,...,xr_i) and s(yﬂ,yl,...,yral} in ¢,
s(a:o,atl,.‘.,xr_l)?és(yo,yl,...,yr_l)
A g o(@gyp)rag (279 )b (7, 1y =0

= al,O(xO_y0)+al,l(x1—yl)+'"+a1,r—l($r~1—y )70
V...
v ad,o(xo"y9)+ad,1(x1'y1)+'"+ad,r—1(“’r—1”yr—1)?éo

= {predicate calculus}
for all basic statements s(:co,:cl,...,:cr_i) and s(yo,yl,...,yr_i) in t,
aa,o(xo_yo)+ao,1(ml_y1)+“'+a0,r~1(xr~1“y =0
A aylagygray (@ y ey (7, 7y =0

A
A “d,o(wo“yo)+ad,1(m1“y1)+'“md,r—i(xr—fyr—;)zo

= s(xﬂ,wl,...,xr_l)zs(ye,yl,...,yr_l)

& {algebraic simplification}

-+ +,..F =
g gto g Uyt F g p e =0
+ +...F ==
T I s B Ao IS B Ao | 0
-+ “+ e
@y Ut Oy Uyt =0

have the zero vector as the unique solution.

{End of Proof)

When place maps to r—1 dimensions, the test for (P1) reduces to the computation of a determinant.

Corollary 1: Given the premises of Theorem 1, if place maps into the (r—1)-dimensional integer space, it

satisfies (P1) if the following determinant is not zero:

! %o %1 v %o
| X0 %11 v Y1
%10 Fr-11 0 Frered

In general, the reverse implication does not hold. Nevertheless, this corollary encourages the choice of r~1

for d.
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Given a linear step function satisfying (S1) and (S2) and a linear place function satisfying (P1), we
can compute flow and pattern. The computation of flow and pattern must be well-defined, that is, their
result must not depend on the choice of basic statements. In programs with systolic implementations,
variables are usually array or matrix elements. The variable subscripts appear as arguments of the
program’s basic statements. If the variable subscripts are determined by r—1 arguments of the r-argument
statement, then the flow of the variable derived from step and place is well-defined. This property is
stated in Theorem 2. In our programming example, matrix multiplication, matrix elements accessed by a

basic statement are determined each by two of the statement’s three arguments (Sect. 4).

Theorem 2: Let siep be a linear step function for parallel trace ¢ that satisfies (S1) and (S2). Let place
be a linear place function for ¢ that satisfies (P1). If the subscripts of variable v are determined by r-1

arguments of the basic statement, then flow is well-defined for variable v.

Proof:
— — s ol : — . .
Let s =5s(2g -, -%, 1), s, =s,[z)/x], syv-sxlyi/:ri], and sy,~sz[y£’/:cz.}. Let the subscripts of
variable v be zy, .., T, ;) T and T 1 that is, the arguments of basic statement s , except the
(¢+1)-st one, T, . Then, Sy 1 Sp0 8y and 8y all access variable v, Assuming

0T i T i e

step(sx)%step(sx,), and step(sy)#step(sy,), we can conclude:
flow is well-defined for variable v
Bgpeenr® i gy preo®py
= {well-definedness}

(place(s )-place(s_ ,))/(step(sx)—step(sx,))=(place(sy)~place(sy,))/{step(sy)—step(sy b))
= {step and place are linear, and 8,0 8500 8y and 8, have identical arguments in all positions but 7}
() (2 )ey o))/ Y R e O e I o g (4;79;)
= {algebraic simplification}
(“1,5/%,3"""ad,i/“o,e‘)“”—‘(a'z,s'/%,if"""d,i/%,s')
= {algebraic simplification}
true

{End of Proof)

Given a parallel trace ¢ which satisfies conditions (S1}, (82), and (P1), no two basic statements in ¢
can be identical. Il a variable’s subscripts are determined by all r, not just r—1, arguments of a basic
statement, this variable can be accessed by at most one basic statement. Therefore, we can not derive its
flow function, and have to provide that explicitly. In general, while the processor layout for a program
with r-argument basic statements requires dimension r-1, the data layout requires dimension 7. An ex-
ample is matrix-vector multiplication [5].

Given a step function satisfying {S1) and (82), a place function satisfying (P1), and a well-defined

flow function, the derived pattern function is well-defined. This property is stated by Theorem 3.

8



Theorem 3: Let siep be a linear step function for parallel trace ¢ that satisfies (S1) and (S2). Let place
be a linear place function for ¢ that satisfies (P1). Let flow, derived from step and place, be well-defined.

Then pattern, derived from step, place, and flow, is well-defined.

Proof:

If basic statements s0 and s are distinct and access variable v of identical subscripts:
pattern is well-defined for variable v
= {well-definedness}
place(s0)—(step(s0)- fs)* flow(v)=place(s 1)~(step(s 1)- fs)* flow(v)
= {algebraic simplification}
place(s0)-place(s1)=(step(s0)-step(s 1))* flow(v)
= {definition of flow}
true

(End of Proof)

4. Systolic Designs of Matrix Multiplication

The problem is to multiply two distinct nXn matrices A and B and assign the product to 2 third

nXn matrix C, such that

n-1
¢ ;= > (@, % b ) for 0<i<n-1and 0<j<n~1
k=0
In the solution to this problem, we will use a basic statement called inner product step. An inner
product step accesses the matrix elements a; . bkj and ¢ 5o and performs the operation

¢. . == ¢..+t Q.

* )
i i, ik bk,.?

If variables A, B, and C are fixed, we can express the inner product step solely in terms of the matrix

subscripts 7, 7, and k. We will use the notation (¢:5:k).

With inner product steps, the following program performs matrix multiplication if matrix C is in-

itially zero everywhere:

matriz-matriz(n): product{n-1,n-1)
product(0,n): row(0,n,n)

{i>0} product(i,n): product(i-1,n}); row(i,n,n)
row(:,0,n}: inner-product{i,0,n)

{5>0} row(i,gn): row(1,5-1,n); inner-product(i, jn)
inner-product(?,j,0}: (2:5:0)

{k>0} inner-product(i,s,k): inner-product(i,s,k-1); (¢:5:k)



To accumulsate the elements of result matrix €, we must recurse over ¢ and J. To compute each element of

C, we must recurse over k. Refinement matriz-mairiz consists of these three recursions.

We consider matrices whose non-zero values are concentrated in a ®*band® around the diagonal. An
inner product step (7:5:k) containing off-band elements a; OF bk,j does not change the value of € i ie., is
neutral. We exploit this neutrality. To identify off-band elements of the matrix, we must precisely
describe the width of the band of non-zero elements around the diagonal. This band width is determined
by two natural numbers: the largest distance p, of a potentially non-zero element in the upper triangle
from the diagonal, and the largest distance, g, of a potentially non-zero element in the lower triangle from
the diagonal.2 In the following systolic designs, we fix band widths of matrices A and B each to p=1 and
g=1. As a result, the band width of matrix C'is p=2 and ¢g=2.

Only neutral inner product steps are idempotent. Since we exploit their neutrality, we do not exploit

their idempotence.

On a parallel architecture that permits the sharing of variables, two inner product steps (:10:50:k0)
and (i1:51:k1) are independent if their target variables ¢, i0 and ¢, 1 e distinct.> But we are interested
in executions on particular, systolic architectures that do not permit the sharing of variables. Therefore,
we must use a stronger independence criterion and require that @50 k0 and @1y BTC distinct, bka,j@ and
b . are distinct, and ¢., .. and c,, ., are distinct. Recall that the three variables of an individual inner

k1,51 £0,50 11,51
product step are distinct by assumption.

All inner product steps are commutative. We do not exploit commutativity unless it is a consequence

of independence.

Therefore, we declare the following semantic relations of neutrality and independence for inner

product steps:

(D1) 1<k-iV 1<i-kV 1<j-kV 1<k-j = ntr (2:5:k)

(D2) (5%, Vi A A (741, V bk ) A (G#1, v gk ) = (iyj;ky) ind (3,09,

2The distance of a matrix element from the diagonal is the absolute value of the difference of its two subscripts.

8See the Independence Theorem of [8].
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4.1. The First Design
Substituting *;* with "»* in the program to obtain a sequential trace, and then applying trans form
to the sequential trace, we derive a parallel trace. For example, the parallel trace for the multiplication of

two 4X 4 matrices (matriz-matriz(4)) expands to:

» <{0:0:1) (0:1:0) (1:0:0)> + <(0:1:1) (1:0:1) (1:1:0)>
» <(0:2:1) (1:1:1) (2:0:1)> » <(1:1:2) (1:2:1) (2:1:1)>
s <(1:2:2) (2:1:2) (2:2:1)> +» <(1:3:2) (2:2:2) (3:1:2)>
+ <(2:2:3) (2:3:2) (3:2:2)> » <(2:3:3) (3:2:3) (3:3:2)> » <(3:3:3)>

<{(0:0:0)>

This trace has length 10. In general, the length of the parallel trace is 3n-2 and is independent of the
band width. But the band width influences the width of the trace, i.e., the degree of concurrency.

The step function is derived from the parallel trace. Let the step function be a linear function:
step((i::k)) = aOxi+alkjraZsk+a8
Recall that we are allowed to choose the step value of the first parallel command. We choose the value to
make the constant term, a8, 0. In this case, the step value of the first parallel command is 0. Applying
the step function to the basic statements in the first two parallel commands of the above parallel trace,

we obtain the following equations:

al = 0

af+tal = 1
al+al = 1
al+al = 1

The solution to these equations is a0=al=a2=1 and a3=0. The solution is consistent for the equations
obtained by applying the step function to the rest of the basic statements. Therefore, the derived step

function is:

step((i:5:k)) = i+g+k

The place function cannot be derived from the parallel trace. The inner product step has three ar-
guments, i.e., r=3. Without much reflection, we propose a simple (r-1)-dimensional, i.e., two-

dimensional, place function:

place((i:5:k)) = (i.3)
By Corollary 1, place satisfies condition (P1), because the determinant constructed from the coefficients of

step and place is not zero:
11
i 0 0 =1
0 1 9

where the first row, (1 1 1), is constructed from step, the second row, {1 0 0}, from the first dimension of

place, and the third row, (0 1 0}, from the second dimension of place.

Variable a, , appears in basic statements (i:5:k) and (¢:7+1:k), and these two statements are executed

in consecutive steps. Therefore, we can derive the {low of a .
z

11



flow(az.}k} = place({i:5+1:k))~place((:5:k))
= (071)

Similarly, we derive the flows of bicj and L

flow(bk)j) = place((i+1:5:k))-place((?:5:k))
= (170)

flow(c;.’}.) = place((s:5:k+1))-place((:5:k))
= (0,0

Variables ¢ i stay stationary during the computation. By Theorem 2, flow is well-defined.

With functions step, place, and flow, we derive the initial data layout as follows:
pattern(a‘.’k) == place((é:j:k))-step((z':j:k))*flow(ai)k)
= (i-k,~1-2k)
pattern(?)k,j) = place((i:j:k))-—step((i:j:k))*flow(bk,j)
= (~5-2k,j-k)
pattern(ci)j) == place((i:j:k))~step((e':j:k))*flow(cg.’j)
= (4.4)

By Theorem 3, patiern is well-defined.

The network of processors and the initial data layout, as produced by the graphics system, is
depicted in Figure 1. Each dot represents an inner product step processor. Arrows represent the propaga-
tion of data. A variable name labelling an arrow indicates the "location® of the current value of that
variable. If the arrow points to a processor, this value is input to that processor at the current step of the

systolic execution.

The processor layout of this design mirrors the band of matrix C. The number of processors depends
on the size of the input. For matrices with large size, this design may require a large number of proces-

sors. We can improve this situation by proposing a different place function.

4.2. The Second Design

For the program of the first design, we can derive another architecture whose number of processors is
independent of the size of the input. Recall that the neutrality of basic statements is determined by the
band width. The corresponding semantic declaration, {D1), makes reference to the distance of an element
from the diagonal. We define place in terms of that distance:

place((i:5:k)) = (i-k,j-k)
Place lays out processors in the bound of the band width, thereby, eliminating the dependence on the size
of the input. What remains is a dependence only on the band width. By Corollary 1, this place function

also satisfies (P1).
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With the new proposed function, we derive the following flow and patiern:
flow(a‘.’k) = (0,1)

ﬂow(bk j) = (1,0)

jlow(cz.j) == {~1,-1}

pattern(a, ) = (i~k~i-2k)

pattern(bkj) = (~5~2k,j-k)

pattern(cs.j) = (24+5,i+2j)

Flow and pattern, again, are well-defined.

The network of processors and the initial data layout is depicted in Figure 2. This design is presented
in [6]. The number of processors is (p L) A+1)*(pB+qB+1), where p, and g, describe the band width of
matrix A, and py and g describe the band width of matrix B. It is independent of the size of the input.

After arriving at an improved processor layout, we now modify the program to improve execution

speed. We could have proceeded in the converse order.

4.3. The Third Design
Recall that any two inner product steps are commutative. We decided not to declare this com-
mutativity, Now we realize that a specific commutation can lead to a better systolic design. We perform
this commutation in the definition of refinement inner-product:
inner-product(s,7,0): {i:5:0)
{k>0} inner-product(i,jk): (i:5:k); inner-product(s,f,k-1)
The parallel trace obtained for the multiplication of two 4X4 matrices (matriz-matriz(4)) expands to:

<> » <>+ <(0:0:1)> » <(0:0:0) (0:1:1) (1:0:1) (1:1:2)>

<€0:1:0) (0:2:1) (1:0:0) (1:1:1) (1:2:2) (2:0:1) (2:1:2) (2:2:3)>
<(1:1:0) (1:2:1) (1:3:2) (2:1:1) (2:2:2) (2:3:3) (3:1:2) (3:2:3)>
<(2:2:1) (2:3:2) (8:2:2) (3:3:3)> » <(3:3:2)> » <> +» <>

¢

+

¢

If we do not consider band width, i.e., do not exploit neutrality, this trace has the same length as pre-
vious trace: 10 or, in general, 3n~2. But, contrary to the previous trace, a consideration of band width
can shorten this trace: the leading and trailing empty parallel commands result from the elimination of
neutral basic statements. Not counting the empty parallel commands, this trace has length 6 or, in
general, n+min(p A,QB)+min(q A’pB)' Hence, for constant band width and large n, we achieve a speed-up by
s factor of 3. The effect of the commutation in inner-product is that, in the execution, k is counted down,
not up. Therefore, the derived step function contains a subtraction rather than an addition of k:
step((i:5:k)) = i+5-k
The step value of the first (non-empty) parallel command is -1 or, in general, —min(pA,gB). We keep the
place Tunction of the second design:
place((i:5:k)) = (i~k,j-k)

Again, we derive well-defined flow and pattern functions:
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ﬂow(as.Jk) = (0,1)

flow(b, ) = (1,0)

flow(ci}j) = (1,1)

pattern(ai’k) = (i~k,~i-min(p ,,95))
pattern(bk}j) = (=j-min(p,,qp),5-k)
pattern(cs.,j) = (~s~min(p ,,q5),~i-min(p ,,q,))

Note that pattern depends on the band width because the value of the first step does.

The network of processors and the initial data layout (at the first inner product step) is depicted in

Figure 3. This design is also presented in [12].

5. Conclusions

Our work is distinguished from others, e.g., [2, 4, 7, 10, 12], in several respects. Embedding systolic
design into a general view of programming enables us to separate distinct concerns properly {Chandy and
Misra [3] adopt a similar view). The explicit formulation of a parallel execution provides a precise link
between the two components proposed by the human: the program (the solution of the correctness
problem) and the processor layout (the solution of the implementation problem). Our insistence on formal
rigor at every stage expedites the automation of a large part of the development. Theorems aid the

human in his part of the development.

These benefits are demonstrated by our graphics implementation. As a consequence of the isolation
of different development stages (program, execution, architecture) in our method, we can quickly and
easily change different parameters, one at a time, and obtain a clear display of the effect on the systolic

design.

The pairing of a program with a processor layout makes the evaluation of a design particularly con-
venient: the program determines the execution speed (as the length of the parallel trace) and the processor
layout determines the size of the design. The density of the data layout is determined only by the pair but
not by either component alone. For example, our first and second designs are based on the same program
but the densities of their data layouts differ. Similarly, our second and third designs have the same
processor layout, but the densities of their data layouts differ. We conclude that one should not judge 2

systolic design by the density of its data layout.

We are not very satisfied with the way in which we identified the commutation in the definition of
inner-product that lead to our third design. We also attempted commutations in the other refinements,
product and row, but they lead to executions that are never faster and sometimes slower. All we can

provide at this time is an implemented system that lets us conduct these searches conveniently.
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To reach the first step of our parallel systolic execution, several steps of *soaking up® data may have
to be taken. Similarly, after the last step of our execution, data remaining in the network may have to be
“drained®. After arriving at a particular design, we can compute the the lengths of the soaking and

draining phases from step and place. Soaking and draining influences the performance of the design.

The restrictions that we impose on systolic architectures include that data must travel in a fixed
direction. However, we can also derive designs in which data are reflected or broadcast. To enable reflec-
tions we must copy variables, and to enable broadcasts we must duplicate variables in the program. For

example, we have synthesized Rote’s design of the Algebraic Path Problem [11] with our method.
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