MAY SIMULATION LANGUAGE TUTORIAL

Michel A. Ellis, David Nesbitt,
Rajive Bagrodia, and Jeff Brumfield

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-86-18 July 1986

This work was supported by a grant from the IBM Corporation.

-2-

Table of Contents

1. Heirarchical Model Development
1.1 Model Development
2. Examples of System Models
2.1 Example 1: Batch Server System
2.2 Example 2: Batch Server System With Two Types of Printers
2.3 Example 3: Interactive Server System
2.4 Example 4: Interactive Server System With Revisions
2.5 Example 5: Interactive System With Dual Processors
3. Active Resource Manager Heirarchy
3.1 Description of Active Server Attributes
3.2 Active Server Conceptual Models (levels1-3)
4. Passive Resource Manager Heirarchy
4.1 Description of Passive Resource Manager Attributes
4.2 Passive Resource Manager Conceptual Models (levels 1-3)
5. Shared Memory Manager Heirarchy
5.1 Description of Shared Memory Manager Attributes
5.2 Shared Memory Manager Conceptual Models (levels1-3)
6. Code for the Examples
6.1 Notes on the Example Code
6.2 Example Code and Results

-3.

1. Heirarchical Model Development

1.1 Model Development

A model is a simplified representation of a complex physical system. A model is
constructed to gain a better understanding of a system by predicting its performance
under a variety of different operating conditions. Most modelers adopt a top-down, itera-
tive approach to system modeling. Initially, the modeler constructs a very simple model
of the system to answer fundamental questions about basic alternatives. The initial
model contains many simplifications either because details of the system remain undecid-
ed, or their inclusion in the model is considered unnecessary. To be useful, this model
must be able to evaluate a large number of alternatives quickly and inexpensively. As
decisions are made about the system organization, the high-level structure of the model
stabilizes. However, each system componenet still has a very simple representation. In
order to obtain more accurate results, the modeler refines the model iteratively. An itera-
tion introduces additional complexity in the model by increasing the amount of detail in
the representation of some components. During the implementation of the system,
design estimates can often be replaced by measured values. The model is then re-
evaluated to examine the impact of inaccuracies in the initial predictions. This process is
continued until a complete model with the desired complexity is obtained or the system
has been constructed. Once the system becomes operational, the model does not become
useless. The model may be used to tune the system to its environment and to predict the
impact of proposed changes in the system and its workload.

Due to the high resource requirements of constructing a model, sub-models may
be developed concurrently by a group of modelers. Frequently, the same sub-model may
be used to represent a number of components in various physical systems. As an exam-
ple, an active_server may be used to model the CPU of a computer system or the cashier
at the check-out counter of a grocery store.

To illustrate the ideas presented in this section, we consider the construction of a
simulation model of a supermarket. The purpose of the model is to estimate the average
time taken by a customer to pass through the check-out counter as a function of the
number of items he has purchased. In our model of the supermarket, a customer arrives
at the check-out counter with an arbitrary number of items, waits in a queue associated
with a cashier,-pays the appropriate amount and leaves the store. We have chosen this
everyday example because it captures many of the complex scheduling and capacity
planning issues involved in the design of computer systems. To illustrate this complexi-
ty, consider some fairly typical behavior patterns: a customer waiting in a queue notices
another queue being serviced faster, and decides to join the faster queue (customer reneg-
ing); the machine being used by a specific cashier may malfunction temporarily (server
failure), or the cashier may close his queue if it becomes too long (finite queue capacity);
a customer may desire to be serviced at a specific counter, which is not necessarily the

4.

one with the shortest queue (customer affinity for one of many servers); a customer may
request priority service (different service disciplines), etc. Rather than attempting to cap-
ture the entire complexity of the system, the modeler may initially choose a very simple
model -- for instance, a simple FCFS server. In this model, a single server services its
queue in a FCFS manner. When a customer needs service, he joins the queue, and waits
until he has received the required service. The arrival of customers is modelled by a
source entity, and a sink entity models their departure from the system. Since the FCFS
server is a frequently used model, it may be selected from a library of models maintained
by the modeler. The parameters of the general FCFS server are assigned appropriate
values and the model executed. Based on the results of executing his initial model, the
modeler may refine the model as follows: two types of service-centers are introduced --
express lanes to service customers with very small service requirements, and general
lanes for the remaining customers. The refined model consists of two sub-models, each
of which is a FCFS server. The arrival-rate of customers for each FCFS server should be
adjusted to match the overall arrival-rate in the earlier model. The two sub-models may
be developed concurrently by different modelers. The sub-model for the general lanes
can be refined independently of the other sub-model by replacing the FCFS server by a
collection of FCFS servers which are fed from a common source. Complex system
behavior like customer reneging, S€rver failures, finite queue capacity, and customer
affiniry may be introduced iteratively in the model. The sub-model for the express lanes
may be refined independently to experiment with other service disciplines, like priority
service based on number of items purchased by a customer (shortest job next).

There are four important aspects to the modeling process described above:

1. Reusability: A sub-model can be used to represent a variety of different
components.

2. Evolution: In general, a model evolves over time from simple to complex.
The representation of a system component may change depending on the
amount of information available and on the perceived effect of the component
on the performance parameter being measured. This implies that the system
components may be modeled at increasing levels of complexity during the
evolution of the model.

3. Cooperation: A group of modelers cooperate in the model development
process.

4. Multiple Copies: Several versions of a model may exist simultaneously.
Each version may include details needed to answer a particular question. It
follows that different versions of a model may incorporate different levels of
complexity in the representation of a given component.

The system described in this paper attempts to capture each of the above aspects

of the modelling process. Reusability has been an important criterion in the design of a
aumber of modeling packages and led to the adoption of a tool-based approach to model-
ing. In this approach, the system provides a library of modelling tools called entizies.
Each enrity in the library models a specific component. In addition, the library may also
contain entities for statistics collection and report generation. This tool-based approach
effectively captures the philosophy of top-down decomposition of 2 model into simpler
sub-models. If each component in the system being modelled can be represented by an
entity from the model library, the model may be constructed conveniently by selecting
the appropriate entities from the library. However, the general tool-based approach does
not provide any help in the evolution of a sub-model to introduce more complex behavior
patterns. Typically, the model library contains a single entity to represent a group of
physical components. This forces the modeler to design his model at the precise level of
complexity that has been built into each entity in the library. As a consequence, if the 1i-
brary entity is to0 complex, the modeler is forced to deal with a large number of parame-
ters that he may be unable to specify, or if it is too simple, use a simpler model than he
needs. This has been a classic shortcoming of most library-based systems. We introduce
the concept of hierarchical reusability as a solution to some of these problems. The next
chapter presents a series of examples which illustrate how hierarchies may be used to
develop models of simple computing Systems. The following chapters describe three
hierarchies for modeling: active-server hierarchy, resource- manager hierarchy, and 2

memory-manager hierarchy.

2. Examples of System Models

Introduction

This chapter illustrates the application of the heirarchical modeling process 10
construct a sophisticated model of a computer system. The model is developed iterative-
ly. A simple model of the system is constructed initially. Subsequently, each iteration
refines the model either by decomposing a sub-model into a collection of sub-models or
by refining a sub-model to introduce complexity in its description.

2.1 Example 1: Batch Server System

. 6-

As our first example, we choose a simple batch processing system. In the physical
system, users submit their jobs to an operator who queues each job for execution by the
computer. After a job has been executed, the output is sent to one of several identical line
printers where it is printed and is subsequently picked up by the user.

We develop a simple model of the physical system described above. The source
entity models the arrival of the batch jobs at the computer. This entity creates jobs at 2
specified rate which is equal to the average rate at which students submit their jobs to the
operator.

The operator and the compuler are modeled by a simple entity called izaslZ.
Jzasl2 is the simplest entity from a family of entities known as the active-server family.
This entity (at the first level of the heirarchy) services requests using a fofs service discip-
line. The entity has a simple parameter called its service rate which specifies the fixed
rate at which requests for service are processed.

To model access to a group of line printers, a resource entity, iztmfl, is chosen
from the passive-resource-manager family. This entity models exclusive access to one or
more of the passive resources (line printers) that it manages. The entity is the simplest
entity in this family and models access to a simple type of resource. The entity has a sim-
ple parameter numtok which specifies the initial number of units of the resource managed
by the manager. Upon receipt of a request, the manager services the request if enough
units of the resource are available. Otherwise the request is queued. A queued request is
serviced in a fcfs fashion when sufficient units of the resource become available to the
manager.

Finally the sink entity models the departure of jobs from the system (i.e. students
picking up hard output).

A schematic diagram for the model described above follows:

e

source active passive resource sinkK
A server man&g@r

A special entity called the job entity is defined to simulate the interactions
between the user and the system. A job entity is created by the source. After having been
created, a job first requests service from the computer and waits for acknowledgement
that the service has been completed. It then requests and waits for access to a single line
printer. After obtaining access, the job retains access to the printers for a time specified
by the job. After its output has been printed, the job relinquishes access to the printers
and terminates.

The statistical information generated by the execution of this model is 1) utiliza-

J

-7-

tion of the computer which is defined as the % of time the cpu was servicing requests; 2)
atilization of the line printers which is the average number of line printers that were in
use over the entire simulation period; and 3) the mean response time for requests which
is defined as the average time for a job entity to receive service from the cpu entity and
the resource entity. The first two statistical measures are automatically generated by the
respective entities. The third statistic is incorporated in the description of the job entity.

2.2 Example 2: Batch Server System With Two Types of Printers

For our second example, we refine the batch processing system introduced in ex-
ample one to introduce two types of printers. After a job has been executed by the com-
puter, it may be directed to one of two types of printers - laser printers or line printers.

To model this system, the source, sink and computer components and their
respective attributes remain as described in the previous example. The printer component
and its attributes change as described below.

To model access to two different types of printers, an entity called izemf2 is
chosen from the second level of the passive-resource-manager family. When the
resource entity receives a request for access to the passive resources (printers), if enough
units of the type of resource requested is available, the request is granted. Otherwise the
request is placed on 2 time of arrival (First-Come-First-Serve) queue. In general, a re-
quest specifies the number of each type of resource managed by the entity.

A schematic diagram for this model follows:

I @y

Source - aa’f‘iue passwe resource s5inK
Server mahacfiEr

The only change in the job entity is that it must now specify which type(s) of pas-
sive resources (printers) it requires. The job releases these resources after retaining ac-
cess for a time specified in its description.

The statistics gathered remain the same as in the first example.

-8-

2.3 Example 3: Interactive Server System

In this example, we assume that the system being modelled is an interactive com-
puter system. In the physical system, users at interactive terminals use a computer 10
create documents and then print them out on laser or line printers. The components of the
system are : users of the computer, terminals, the computer, and the printer manager and
the printers. Actions performed by the components are described below.

A user logs on to a terminal and sends commands to the computer in order to
create a document. The user sends an arbitrary number of editing commands followed
by a request to print the final document when he or she is finished. The computer exe-
cutes the commands and informs the user when the execution is completed. When a
computer receives a request to print a document, it forwards the request to the printer
manager which controls access to the laser and line printers, ensuring that only one docu-
ment is being printed on a given printer at any time.

The users of the system are classifed as undergraduate students, graduate stu-
dents, or professors. User commands are executed according to the priority of the user.
Professors have the highest priority, then graduates, and then undergraduates. The priori-
ty of each user is determinable from the logon id of the user.

A simulation model of the physical system described above is constructed as fol-
lows. We assume that each user thinks for a while, then issues a single command to the
computer from the terminal. The command requests service from the computer. The
computer services the user’s request according to the user’s priority. The number of edit-
ing commands requested by a user (before the final print command) is determined ac-
cording to a probability distribution. Each request of the user is preceded by 2 thinking
phase before entering his or her next command. If the user is finished editing his or her
document, then the last request made will be to have it printed on a laser or line printer.
A request is sent, containing the user’s id, to the printer manager.

When the printer manager receives a printer request, it releases the type of printer
needed to the computer so that the document can be printed. If a printer of the appropri-
ate type isn’t available, the manager queues the request according to the user’s priority
and services it when a printer is available. After the user’s document has been printed,
the printer is released and the user leaves the system.

For the simulation model, entities are created which model both the components
of the physical system (on a very simple level) and the actions taken by a user in editing
and printing a document. The model consists of the following entities: the source which
models arrivals; three entities to model the three hardware components and the
document-creation actions to be modeled (i.e. the interactive terminals, the computer,
and the printer manager for the laser and line printers); the users are modeled by an entity
called the job entity. When the job departs from the system, it is said to have reached the
sink (For this, as in previous examples, the sink does not need to be modeled as an actual
entity). -

The first entity to consider is the one needed to model the interactive terminals
and the process of users thinking and entering commands. Two points need to be con-

.9-

sidered in choosing this entity. First, the thinking time of the user must be simulated.
Second, the users are able to log on to an available terminal and immediately receive ser-
vice. For the purpose of this example, the number of users in the sytem is never greater
than the number of available terminals. A delay service center from level 2 of the active
server hierarchy, izasdy, will be chosen. The thinking time of the users can be easily
simulated as a service request 10 the delay server. Further, a delay server allows a user to
receive immediate service without waiting, no matter how many users are already being
serviced. The statistics that will be gathered by the delay server will be: the minimum,
maximum and mean think times, the utilization of the server, and the server throughput.

The second entity is used to simulate the computer. In this case, the computer
services one user at a time using a priority service discipline. Another active server enti-
ty, called izasl2 from level two of the active server hierarchy can be used to simulate the
computer. This entity has two parameters, the service rate which is the rate, in service
units per simulation unit, that service requests are satisfied; and the service discipline
which for this example has been specified as a priority service discipline. The com-
mands received by the computer can be simulated as requests for service from the user to
the izasl2 entity. The statistics that will be gathered by the izasl2 server will be: the
minimum, maximum and mean response and service times, the utilization of the server,
the maximum and mean queue length, and the server throughput.

The third entity simulates the printer manager and the printers. As in example
two, a level two passive resource manager, izeml2, can be used, except that the queueing
discipline will be specified as priority.

A diagram and complete description of the simulation model just constructed follows:

resources

source delay active passive passive sink
server server resource resource
(level 2) (level 2) manager manager

(level 2) (level 2)

Finally, the job entity description. The source creates jobs according to the in-

-10-

terarrival rate. Each job requests service from the delay server corresponding to the
average 'think time’ of the user. Upon completion of the service from the delay server, a
service request is sent {0 izasl2. The request is queued according to job priority. Upon
completion of the service request, the job either requires mMore service and again requests
service from the delay server followed by a request to izasl2, or a resource request con-
taining the resource type and the job’s priority is sent to the passive resource manager.
The probabilty of a job returning to the delay server is pl and the probability of going on
to izasl2 is p2. If a resource of the correct type can be allocated, it is; otherwise the re-
quest is queued. The passive resource manager allocates a resource to the job which the
job keeps for a time period simulating resource usage, then returns the resource to the
passive resource manager. Finally, the job proceeds to the sink and terminates. At this
point the response time statistics for the job are gathered.

2.4 Example 4: Interactive System with Revisions

For this example, we refine the model for the interactive system introduced in ex-
ample 3. The refinements introduced in this example model a computer that services re-
quests using a pre-emptive priority service discipline. The queue length is controlled t0
limit the number of requests in the queue. A final refinement is that the printer manager
now schedules requests for access 10 the passive resources (printers) using a priority dis-
cipline.

In the pre-emptive priority discipline, a server services its queue according to the
priority of the request. If a request with a higher priority is received by the server while it
is servicing a lower priority request, the request being serviced is pre-empted and the
higher priority request is serviced. The pre-empted request is put on the priority queue of
the server.

The components Or aspects of this system which change from the previous exam-
ple are the following: the users and the terminals (source); the computer’s associated
queue of requests which is maintained in a pre-emptive priority scheduling discipline; the
queue capacity (maximum number of requests in the queue) is now specifiable; and ac-
cess to the printers which is given according t0 2 priority discipline. The following com-
ponents Or aspects remain as described in example 3: the computer; the routing (back to
terminals or to printer); and the sink.

A schematic diagram of the model follows:

Z11-

— Il

pussive .
source delay active resource SinK
server server mana ger

To model the computer with queue capacity and which schedules requests using a
pre-emptive priority discipline, a server called izasi3 is chosen from the third level of the
active-server family. The statistics gathered by this entity are: the minimum, maximum
and mean response times; the utilization of the server; the minimum and maximum queue
length; and the server throughput.

An entity izeml2 is chosen from the second level of the passive-resource-manager
family to model the printer manager and the queues associated with each type of printer.
At this level of the heirarchy, the desired priority scheduling discipline may be specified.
The statistics gathered by this entity are the same as for example two.

The description of the source entity changes slightly to accomodate the capability
to specify the queue capacity. This change is effectuated by the specification of the entity
parameter, quecap, when instantiating the active Server, izasl3. The job entity must
specify the priority of the requests to both the active and passive SEIvers.

2.5 Example 5: Interactive System With Dual Processor

For this example, there are two significant additions to the system to be modeled.
First,the single processor computer is replaced by a dual-processor computer. The order
in which service requests are executed remains the same i.e. pre-emptive priority, howev-
er there are now two processors servicing requests from a common queue. Second, user
documents are retrieved from and saved on disk drives. Two disks are available, both of
equal service rates; the cpu accesses the disks t0 update and store documents. The com-
ponents of the system are now: users of the computer, terminals, the dual-processor com-
puter, the two fcfs disk drives and the printer manager and the printers.

The entity needed to model this dual-processor computer must have two identical
servers to simulate the two processors, the ability to set the queue capacity, and a pre-
emptive priority queueing discipline. Again, a level three active server entity, izasl3, is

-12-

chosen from the active server hierarchy. The number of servers parameter is set to two.
The statistics that will be gathered by izasl3 will be: the minimum, maximum and mean
response and service times, the utilization of the server, the maximum and mean queue
length, and the server throughput.

The disks will each be modeled by 2 level 2 active server entity with fcfs service
discipline.

A diagram and description of the job entity follows:
| O IO
3l
—O MO
!

/
source delay active active passive passive sink
server server server resource resource
(level 3) (level 2) manager manager

(level 2) (level 2)

The principle change in the job entity from previous examples is that it must
define the routing of a transaction to the several possible active servers and the passive
resource manager. In order to do this, branching probabilities, pI,p2 ,p3.,p4 are defined to
determine whether the job proceeds to the level two active servers, the passive resource
manager or back to the delay server, respectively. As in the previous examples, the
response time statistics gathered by the job entity are a measure of the length of time
from the job’s creation to its departure from the system.

3. Active Resource Manager Heirarchy

3.1 Description of Active Server Attributes

-13-

The active server hierarchy is based upon the increasing capability of the service
center to model more diverse and complex servers. The capabilities of the service center
at each level of the hierarchy are indicated by attributes and the range of attribute values
available to the user at each level.

The simplest attributes of a server, available at level 1, are service rate and ser-
vice discipline. Service rate determines the fixed rate at which customer requests for ser-
vice are satisfied. This rate is assumed to be expressed in number of service units per unit
of simulation time. For example a service rate of 10000 means that each customer will
recieve 10000 units of service for each unit of simulation time. The service discipline
refers to the order in which requests for service are handled by a service center. The two
types available at level 1 are first-come-first-served and priority.

Level 2 of the active server hierarchy extends the scope of service disciplines to
include the delay or infinite server. When using this discipline, a customer never waits
for service. Level 2 introduces two new attributes, server power and queue status. Server
power can be used to vary the service rate of a server. At this level, the power may be set
on or off. Queue status allows a server to dynamically close and open its queue. When
queue status is off, the server will not accept any further requests.

At level 3, two new service disciplines, and three new attributes, including mulu-
ple servers become available to the user. Level 3 introduces two new service disciplines,
last-come-first-served- preemptive-resume and preemptive priority. For Icfspr: if, when a
customer arrives at the manager with a service request, all servers are busy, then the cus-
tomer that has been serviced the longest is pre-empted and the new customer is allocated
that server. For preemptive priority, if a request entering the server’s queue has a higher
priority than a current customer, then the higher priority request may preempt the lower.
Level 3 also introduces a user-specifiable queue capacity which limits the number of cus-
tomers that can join the server queue. When the queue capacity is reached, customers can
no longer join the queue. In addition, switching over- head to simulate switching service
between customers is available at level 3. Finally, at level 3 the number of servers avail-
able at the service center becomes user specifiable. Once specified, the number of servers
at the center cannot be changed, although specific servers may be turned on or off using
the server power attribute, which can now be used to separately modify the power of
each server.

Level 4 adds two new service disciplines, round robin and processor sharing. For
round robin, each entering customer joins the queue, which is treated as if it were circu-
lar. Service is provided to each requestor by going around the queue, giving each a fixed
quantum of service. For processor sharing, a variable interval of service time is shared
evenly among all requestors currently in the server queue.

Level 5 introduces a modifiable service rate attribute, and two new attributes,
server priority and queue inspection by requestors. At level 3, the service rate attribute
becomes dynamically modifiable, relative always to the original,user-specified, service
rate. When multiple servers are available at a service center, a different service rate can
be initially specified and separately modified for each server. Multiple servers at a service
center can be assigncd priorities for handling incoming requests at level 5, using the new
server priority attribute. Server priority indicates which server(s) will handle an incom-

-14-

ing request first when more than one server is on and idle. The second new attribute 18
queue inspection, which allows a customer to inspect the queue and balk (choose not 1o
request Service) if for example, the queue is too long.

Level 6 increases the queue—status-dependent capabilities of a customer by allow-
ing a queued requestor to reneg and leave the queue. Level 6 also allows a customer (o
express affinity fora particular server(s) the customer would prefer to be serviced by.

At level 7, the basic server attributes of service discipline and service rate become
user-specifiable algorithms.

3.2 Active Server Conceptual Models(levels 1 - 3)

3.2.1 Level One

(single server, infinite queue)
Queue Server

— —_—

A customer arrives at the service center needing a certain number of units of ser-
vice. The customer immediately joins the queue, and while in the queue recieves the ser-
vice. The customer then departs the service center. Service is provided to one customer
at a time by a single server. The server provides sevice at 2 fixed rate. The service dis-
cipline determines the order in which customers are served.

Active server center attribufes:

* service rate integer >=0 1 static
(service units/time umnit)

* service discipline {fcfs,priority } fcfs static

3.2.2 Level Two

(single server, infinite queue, dynamic server power and queue status)

-15-

Queue Server

A customer arrives at the service center needing a certain number of units of ser-
vice. The customer immediately joins the queue, and while in the queue recieves the ser-
vice. The customer then departs the service center. Service is provided to one customer
at a time by a single server. The server provides service at a fixed rate. The service dis-
cipline determines the order in which customers are served. Both the queue an the server
may be dynamically made inoperable. Customers receive no service if the server is off,
although customers can continue to join the queue if it is open. Customers are denied en-
try to a closed queue, although customers already in the queue continue to receive service
if the server is on.

Active server center attributes:

* service rate integer >= 0 1 static
(service units/time unit)

* service discipline {fcfs,priority } fefs static
* server power {on,off} on dynamic
* queue status {open,closed} open dynamic
3.2.3 Level Two
(delay) .
: Server
DRSS 4 —_—

Same as the other service centers at this level, except that service is provided 10

-16-

each customer as if it were the only customer at the service center. A customer never
waits while other customers are being served.
Active server center attributes:

* service rate integer >=0 1 static
(service units/time unit)

* service discipline {delay} static
* server power {on,off} on dynamic
3.2.4 Level Three

(multiple identical servers, optional finite queue capacity)
Queue Servers

O

—_— : —_—

Service may be provided to customers by multiple identical servers. All servers
operate at the same fixed rate, although each server may be independently turned on or
off. Additional service disciplines are available. The maximum number of customers
that can wait in the queue can be specified by setting the queue capacity. Queue status

and queue capacity are independent. A queue of any capacity can be closed at any
length.

Active server center attributes:

* service rate integer >=0 1 static
(service units/time unit)

* service discipline {fcfs,priority } fcfs static

* new service disciplines {lcfs preempt-resume,
preemptive priority} static

S17-

* server power {on,off} on dynamic
* queue status {open,closed} open dynamic
* number of servers integer >= 1 1 static
* queue capacity integer >= 1 infinite static

4. Passive Resouce Manager Heirarchy

4.1 Description of Passive Resource Manager Attributes

A passive resource center manages a pool of resources available to requesting
customers. The attributes of a resource manager are resource types and the resource allo-
cation discipline. Resource types refers to the number of different types of resources
managed by a resource manager. The resource allocation discipline refers to the manner
in which incoming requests for resources are serviced.

At level 1, one resource type is available, and the initial size of the resource pool
is specifiable by the user. The allocation disciplines that can be used are first-come-first-
served, priority, and skipping. The skipping discipline allows satisfiable requests queued
behind unsatisfiable requests to be allocated resources.

At level 2, the number of resource types becomes specifiable by the user, each
type has its own pool, and the initial size of each pool can be set by the user. Additional-
ly, each requester now includes requests for each type in its resource request.

At level 3, the requestor is allowed to include alternative sets of requests for

resources of each type.

4.2 Passive Resaufce Manager Conceptual Models

.18 -

4.2.1 Level One

>

A customer requiring passive resources arrives at the passive resource manager.
The requestor enters the manager’s queue, and is serviced according to the manager’s al-
location discipline: fcfs, priority or skipping. On acquiring the required number of
resources, the customer leaves the manager. The customer may subsequently return to

the manager and release r€sources back to the manager without entering the manager’s
queue.

Passive resource center attributes:

* initial pool of
resources integer >= 0 infinite static
* queue type {fcfs,priority } fcfs static
* user request type integer variable dynamic
4.2.2 Level Two

(multiple resource types, multiple-fype user request)

—> D@* ~®@D —

¥

A customer requiring passive resources arrives at the passive resource manager.
The requestor enters the manager’s queue, and is serviced according to the manager’s al-

S19-

location discipline: fcfs, priority of skipping. The passive resource manager has more
than one type of resource available, and a customer indicates in its request how many
resources of each type is needed. If enough resources of each type are available in the
resource pools, then the customer is allocated the requested number of resources of each
type. On acquiring the required number of resources, the customer leaves the manager.
The customer may subsequently return to the manager and release T€SOUTCES back to the
manager without having to enter the manager’s queue. When a customer releases
resources back to the resource manager, the number of resources that are being returned
of each type ar¢ specified.

Passive resource center attributes:

* initial pool of vector of

resources integer >=0 infinite static
* queue type {fcfs,priority,

skipping} fcfs static

* number of resource

types integer >= 1 1 static
* user request type vector of integer >=0 dynamic
4.2.3 Level Three

(multiple resource types, alternative multiple-type user requests)

—_—

A customer requiring passive resources arrives at the passive resource manager.
The requestor enters the manager’s queue, and is serviced according to the manager’s al-
location discipline: fcfs, priority or skipping. The passive resource manager has more
than one type of resource available, and a customer needing resources of these types
presents the resource manager with a request that contains alternative sets of requests.

.20 -

Each set contains a single request value for each resource type available. If enough
resources of each type are available in the resource pools to satisfy one of the sets of re-
quests, then the customer is allocated the requested number of resources of each type. On
acquiring the required number of resources, the customer leaves the manager. The custo-
mer may subsequently return to the manager and release resources back to the manager
without having to re-enter the manager’s queue. When a customer releases resources
back to the resource manager, the number of resources that are being returned of each
type are specified.

Passive resource center attributes:

* initial pool of vector of
resources integer >=0 infinite static
* queue type {fcfs,priority,
skipping} fcfs static
* number of resource
types integer >= 1 1 static
* user request type matrix of alternative
vectors of integer >=0 dynamic

5. Shared Memory Manager Heirarchy

Y

5.1 Description of Memory Manager Attributes

The memory manager manages access 1o blocks of simulation memory. Two
types of blocks are managed: 1) Free blocks which are available for data storage and 2)
data blocks which contain previously stored data. The memory manager receives requests
1o allocate free blocks, allocate data blocks, or release a data block.

At the simplest level of the heirarchy(level 1), the only attribute that is specifiable

.21 -

by the user is memory size.

At level 2, the user is given the additional capability of specifying the service dis-
cipline for the manager. The service discipline refers to the order in which requests for
data and free blocks are serviced. Although the requests for free blocks and data blocks
are kept in separate queues, the discipline specified applies to both.

In addition to the attributes at the first two levels, at level 3, the user may specify
the memory allocation strategy. This attribute determines the method by which free
blocks of simulation memory is allocated. The methods provided are first-fit and best-fit.
For the first-fit strategy, the first block available which satisfies the request is returned.
For the best-fit strategy, the request is filled by the smallest block large enough to satisfy
the request. This implies that the list of free blocks is ordered on size.

5.2 Shared Memory Heirarchy Conceptual Models:

5.2.1 Level One
rezuesf Free Telease Dato.

il

reguesf Da’fa> f‘re_e Dofo.

A customer requesting either a Free block or Data block immediately joins a queue and is
serviced (or terminated) in finite time. The customer leaves the manager upon receiving
the desired amount of memory.

Memory Manager Attributes:

* memory size integer >= 1 static

5.2.2 Level Two

.93

____.,._._——}m .ae‘_,____.-.-—?""_i e

__...._n-—}j] s 2 o ° >j ———>

A customer request for Data or Free blocks is serviced according to the specified queuc-
ing discilpline - either fcfs or priority.

Memory Manager Attributes:

* memory size integer >= 1 static

* service discipline {fcfs,priority } fcfs static

§2.3 Level Three

T
3
—T

|

s o _________.._>

ST —— -.,V:

-
|

The strategy for the allocation of simulation memory may also be initially specified.

a @ cgw«}

Memory Manager Attributes:
* memory size integer >=1 static
* service discipline {fcfs,priority } fcfs static

« allocation strategy {bestfit firstfit} bestfit static

6. Code For The Examples

6.1 Notes on the Example Code

6.1.1 Functions used in the example simulation programs
The following functions are used by the example programs :

expon(mean) : given a mean value of type integer, generates a random number
according to the exponential probability distribution. The value returned is of type real.

prbgen(array,size) - given an array of cumulative probabilities and the size of the
array, returns an index to one of the cumulative probability values. Array should be of
type real and size of type integer. The returned index is of type integer. The intrinsic
function rand() is used.

cstore(cvarl cvar2) : copies the value of cvar2 into cvarl. Both variables should
be of type clocktype.

csub(cvarl cvarl) : given two variables of clocktype, returns the value of cvarl
minus cvar2. The return value is of type integer.

6.1.2 Entity family reserved words used in the examples

The following reserved words are used by the example simulation programs.
They are located in common.sim. For a description of the MAY reserved words, please
consult the MAY User Manual.

fefs - first-come-first-served service discipline flag.
prirty : priority service discipline flag.
prepri : pre-emptive priority service discipline flag.

6.2 Code and Results

6.2.1 Code for Example One

C*%*%i***k***i**%********k*#****i%**%ﬁk**%****i*k***ikt*t%*k*****i*****%

ok
fokal
c*
C*
ool
o*
ok
C*
C*
ol
o*
o*
C'k
c*
c*
c*

ENTITY SOURCE

FUNCTION:

This is the source entity which creates transactions according
to a specified interarrival rate.
Transactions are created until SOURCE is terminated.

PARAMETERS:

CPU: cpu active server entity id.
PRNMGR: printer manager entity id.
STAT1: statistics entity id.

MESSAGES:

TRMNT: Message to terminate the entity-instance.

c******ﬁ:***********-k*********'k*******'k*********************************

o*

fokal
i0

8000

entity source{cpu,prnmgr,statl)

local integer jobent,intarr
integer trans
real expon

message trmnt
set interarrival rate

intarr 3000
jobcnt 0

[l

create transactions until terminated by main
continue

let trans be job(cpu,prnmgr,statl)

jobecnt = jobent + 1

wailt int {expon{intarr}}

if (msg .ne. trmnt) go to 10

write (6,9000) jobent
format (//"Source Termination.”,
/. "Number of transactions created by source = ",16)

ende

c***‘k******************i**********‘k'k'k'k***’k**i**********‘k**********ﬁ*****

C'k
c*
C'k
okl
c*
C*
fokal
c*
fokdd
C*
C‘k
ok
o
C*
c*

ENTITY J OB

FUNCTION:

This is the transaction entity.

PARAMETERS :

CPU: cpu active server entity id.
PRNMGR: printer manager entity id.
STAT1: statistics entity id.

4

MESSAGES:

RQOCOMP: Request for service completed.
HAVTOK: Have been allocated rescurce requested.

c*i*****‘k******&***********‘k***********i"k**********k*****************?*

entity job{cpu,pramgr,statl)

integer cpumn,prnmn,numres,csub

fokd

o*

o*

fokad

o*

998

mean service times for cpu & printer,number of rescurces needed
parameter {cpumn = 50, praomn = 4000, numres = 1)

real expon

clocktype begclk

message rgcomp
message havtok

trace 3 when .true.
record starting time token for response stat
call cstore{begclk,clock)

request service from computer
invoke cpu with reqest(myid,int(expon(cpumn)))

wait for service complete message
wait maxint for (msg .eg. rgcomp)

request printer

invoke promgr with regtok(myid,numres)
wait to receive resource

wait maxint for (msg .eq. havtok)
simulate printer usage

wait int {expon (prnmn}}

return printer to manager

invoke prnmgr with reltok {myid, numres)

collect service stat

invoke statl with insert (csub(clock,begclk})
continue

ende

C*******1\'****‘k*'k******'k*'k'k******************i***************k**t*i******

okal

ENTITY MAIN

This is entity main which creates the active servers, passive
resource manager, statistics entity, and source entity.

C*i*****'k1&'k***‘k'k***'k*'k******i*****'k*************‘k*****‘k***k*t**********

8000
ok

entity main

local integer cpu,prnmgr,statl

integer srvrte,initrs,title(26),titlen

service rate 1 sim unit = 1 msec,initial resources = 2

parameter (srvtre = 1, initrs = 2,titlen = 26}

include ‘common.sim’

data title/'T','R','A',’N','S','A','C','T','I','G',’N’,’ !,
IRI’IE!,ISI’IPI’IOI’!NI”ISI(IEfiI f,lT!,II!,iMI’IE!,ISI/

message

trace 3 when .true.

write (6,9000)

format (/,"Start of Simulation.”/)
set izstim to simulation run length
simulation period 500000

izstim = 500000

set up statistics entity for job response time

let statl be mnstat (titlen,title)

create cpu activer server and printer resource manager
let cpu be izasl2(fcfs,srvrte)

let prnmgr be iztmfl{initrs)

create source

9001

okl

let src be source{cpu,pramgr,statl)
run for simulation period
wait izstim

dump statistics

invoke statl with dump($)}
invoke cpu with dump(6)
invoke prnmgr with dump(6)

terminate cpu,prnmgr,source,statl
invoke cpu with trmnt

invoke prnmgr with trmnt

invoke src with trmnt

invoke statl with trmnt

write(6,9001)
format {/,"Simulation has finished.™)
ende

append informs MAY compilier of needed entities
append izasl2,iztmfl,mnstat

6.2.1 Results for Example One

start of simulation.

simulation has finished.

statistical dump at simulation time 500000.
transaction response times

the total of all values is 838267.

the total no. of values is 158

the average value is 5305.49

statistical dump at simulation time : 500000

System statistics for active server

Server type = fcfs

Service rate = 1
Number of servers = 1
response time
min max mean number
1 236 53.019 160
service time
min max mean number
1 236 52.763 160

Queue length statistics:
total jobs at server = jobs being serviced + jobs waiting
mean max current

0.017 2 0

System statistics

utilization thruput jobs completed
0.017 0.000 160
statistical dump at simulation time : 500000

System response time stats for token regquests:

Initial number of tokens: 2
minimum response time : 0
maximum responsé time : 11496
number of responses H 160

mean response time : 1484
System throughput : 0.00032
mean gueue length : 0.47514

mean available tokens (all types): 0.80533

jobs pre-empted
0

jobs still in gueue O

source termination.

number of transactions create by source = 160
Simulation terminated normally

gimulation period specified: 500000.

6.2.1 Code for Example Two

C****%****************i*i**k**********t****k***iiii**%i*i******&*%k*ﬁ#**

c* ENT ITY S OURCE

C*

c* FUNCTION:

c* This is the source entity which creates transactions according
c* to a specified interarrival rate.

c* Transactions are created until SOURCE is terminated.
c*

c* PARAMETERS :

c* CPU: cpu active server entity id.

c* PRNMGR: printer manager entity id.

c* STAT1l: statistics entity id.

C*

c* MESSAGES:

c* TRMNT: Message to terminate the entity-instance.

C*

C*******tt*t***********************************k***********************

entity source (cpu,prnmgr,statl)
local integer jobent,intarr
integer trans

real expon

message trmnt

c* set interarrival rate

intarr = 3000

jobcnt = 0
c* create transactions from job entity
10 continue

let trans be job{cpu,pramgr,statl)
jobcnt = jobent + 1

wait int (expon(intarr})

if (msg .ne. trmnt)} go to 10

write(6,9000) jobcnt
3000 format (//,"Source Termination.”,
+ /,"Number of tranasctions created by source = ",16)

ende

c*f***********i*****'k'k‘k*************************k*********‘k*************

c*

c* ENTITY J OB

C*

c* FUNCTION:

c* This is the transaction entity.

C*

c* PARAMETERS:

c* CPU: cpu active server entity id.

c* PRNMGR: printer manager entity id.

c* STAT1: statistics entity id.

C'k

c* MESSAGES: A

c* ROCOMP: Request for service completed.
c* HAVTOK: Have been allocated resource requested.
c*

C*********i*****************‘k**s\‘******#********i'k*************ﬁ******ﬁ*
entity job(cpu,prnmgr,statl)

real x%,lasprb,expon
integer cpumn,prnmn,linepr,1asprn,prbgen,csub

o* mean service times for cpu & printers,resource array indices,
c* laser printer probability
parameter (cpumn=50, prnmn=4000,linepr=1, lasprn=2,lasprb=0.20)
local integer prntyp(2)
clocktype begclk

message rgcomp
message havtok

Cc* trace statement
c* trace 3 when .true.
c* record starting time token for response stat

call cstore({begclk,clock)

c* request service from computer
invoke cpu with regest (myid, int (expon (cpumn}})
c* wait for service complete message

wait maxint for (msg .eg. rgcomp)

c* request printer

c* decide upon printer to use according to probability of laser

c* set resource array slots to number of each type of resource needed
prntyp{linepr} = 0
prntyp{lasprn) = int{rand(x)+lasprb]

if (prntyp(lasprn) .eq. 0) prntyp(linepr) =1
invoke prnmgr with regtok(myid,prntypl2])

c* walt to acquire resource

wait maxint for (msg .eg. havtok])
c* simulate printer usage

wait int (expon{(prnmn))
c* return printer to manager

invoke pramgr with reltok(myid,prntypl2])

c* collect service stat

invoke statl with insert (csub(clock,begclk))
999 continue

ende

cﬁ**********************iﬁ*******************i***t**********************

C*

c* ENTITY MAIN

c*

c* This is entity main which creates the active servers, passive
c* resource manager, statistics entity, and source entity.

c*

c****%****************t*********************i**************ﬁ*****i*****

entity main

integer initrs,nmres, resors(2),srvrte,title(26),titlen
c* set initial resource, service rate, number of resources
parameter (initrs = 2,srvtre = 1,nmres = 2,titlen=26)
local integer cpu,prnmgr,statl,src
clocktype begclk
include ‘common.sim’
data title/lTl’IRI,iA!liNillsl’iAlffCI'lTI’IIl'lOF,INIFI ri
+ IR!’IEI;!Sl’!PI’IOIiINIiISI!IEliI f!lTi!ilillMl’lEt,FSF/

message
c* trace 3 when .true.

write(6,9000)
5000 format {/,"Start of simulation.®,/)

c* set simulation period and izstim

10

c*

o%

[okad

ok

felal

o

8001

fokal

simulation period 500000
izstim = 500000

initialize initial-resources array for resource manager
do 10, i=1l,nmres

resors(i) = initrs
ceontinue

set up statistics entity for response time collection
let statl be mnstat(titlen,title)

create cpu activer server and printer resource manager
let cpu be izaslZ(fcfs,srvrie)
let prnmgr be iztmf?2 (nmres, resors)

create jobs

let src be source{cpu,prnmgr,statl)
run for simulation period

wait izstim

dump statistics

invoke statl with dump(6)
invoke cpu with dump(6)
invoke prnmgr with dump(6)

terminate cpu,prnmgr,statl,szc
invoke cpu with trmnt

invoke pramgr with trmnt
invoke src with trmnt

invoke statl with trmnt

write(6,9001)
format (/,"Simulation has finished.™)

ende

append informs MAY compilier of needed entities
append izasl2,iztmf2Z,mnstat

6.2.1 Results for Example Two

start of simulation.

simulation has finished.

statistical dump at simulation time 500000.
transaction response times

the total of all values is 1019225.

the total no. of values is 175

the average value is 5824.14

statistical dump at simulation time : 500000

System statistics for active server
Server type = fcfs

Service rate = 1
Number of servers = 1

response time

min max mean number
0 260 48.497 177
service time
min max mean number
0 260 48.497 177

Queue length statistics:
total jobs at server = jobs being serviced + jobs waiting
mean max current

0.017 1 0

system statistics

utilization thruput jobs completed
0.017 0.000 177
statistical dump at simulation time : 500000

System response time stats for token requests:

Token type: 1 initial tokens: 2
Token type: 2 initial tokens: 2
minimum response time : 0
maximum response time : 9226
number of responses : 177
mean response time : 1514

Token type: 1 mean‘available tokens: 0

jobs pre-empted
0

ot

Token type: 2 mean available tokens:

System throughput : 0.00035

mean queue length 0.53605

mean available tokens {all types): 2.51000
jobs still in gqueue : 0

source termination.

number of tranasctions created by source
Simulation terminated normally
Simulation period specified: 500000.

= 177

6.2.1 Code for Example Three

Ci*k*****#***k**********ﬁ*********#%f*i****k******ﬁ*ﬁk*i*****i#i***ﬁﬁ*i*

C*

c* ENTITY S O0OURCE

C*

c* FUNCTION:

c* This is the source entity which creates transactions according
c* tc a specified interarrival rate.

c* Transactions are created until SQURCE is terminated.
ci’

c* PARBMETERS

c* CPU: cpu active server entity id.

c* PRNMGR: printer manager entity id.

c* TTY: tty active server entity id.

c* STAT1: statistics entity id.

c*

c* MESSAGES:

c* TRMNT: Message to terminate the entity-instance.

c'k

C'k;k*-k****k**********'k'k*************'k***ﬁ:******************ﬁ***'k******'k*

entity source (cpu,prnmgr,tty,statl)
local integer jobcnt,intarr
integer trans

real expon

message trmnt

c* trace 3 when .true.
c* set interarrival rate
intarr = 4000
jobent = 0
c* create transactions until terminated by main
10 continue

let trans be job{cpu,prnmgr,tty,statl)
jobcnt = Jjobent + 1

wait int{expon{intarr})

if (msg .ne. trmnt) go to 10

write{6,9000) jobecnt
9000 format {(//,"Source Termination.™,
+ /. "Number of jobs create by source = w,1i6)

ende

C'kﬁt******************'k*'k*k**k'k'k****************‘k**ﬁt******f%***#***********

C'k

c* ENTITY J OB

C*

c* FUNCTION:

c* This is the transaction entity.

C*

c* PARAMETERS :

c* CPU: cpu active server entity id.

c* PRNMGR: printer manager entity id.

c* STAT1: statistics entity id.

c‘i

c* MESSAGES:

c* RQCOMP: Request for service completed.
c* HAVTOK: Have been allocated resource reguested.
C*

C*******i*****#*******?********i*****t*****k‘ks&*****ﬁﬁ*i*******'k*t******

entity Jjob{cpu,prnmgr,tty,statl)

real x,prob,lasprb,ttyprb,priarr(3),expon
integer cpumn,prnmn,linepr,lasprn,thnkmn,arrsze,csub,prbgen

c* printer indices for resource request array,laser probability,
c* size of job priority array
parameter {linepr = 1, lasprn = 2,lasprb = 0.20,arrsze = 3)
c* means for cpu,printer service times, tty probability and think mean

parameter (cpumn = 50,prnmn = 4000,ttyprb = 0.80,thnkmn = 5000}
local integer prntyp(2),priort
clocktype begclk

c* cumulative priority probabilities for prof,grad,undergrad
data priarr/0.20,0.50,1.0/

message rgcomp
message havtok

c* trace 3 when .true.
c* record starting time token for response stat
call cstore(begclk,clock}

c¥* set priority of transaction - ungrad = 3, grad = 2,prof =1
priort = prbgen{priarr,arrsze)

10 continue

c* terminal think time
invoke tty with regest (myid, int (expon (thnkmn)}}
wait maxint for (msg .eqg. rgcomp)

20 continue
c* request service from computer
invoke cpu with pregst{myid,priort, int {expon(cpumn}))

c* wait for service complete message
wait maxint for (msg .eg. rgcomp)

c* branch back to tty or go on to printer
if (rand(x) .le. ttyprb} go tec 10

c* request printer

c* decide upon printer to use according to probability of laser
pratyp (linepr} = 0
prntyp{lasprn) = int{rand(x)+lasprb)

if (prntyp(lasprn) .eq. 0) prntyp(linepr) =1
invoke prnmgr with pregtk(myid,priocrt,prntypl2]}
wait maxint for (msg .eg. havtok])

c* simulate printer usage
wait int (expon{prnmn))
c* return printer to manager

invoke prnmgr with reltok(myid,prntypl(2])

c* collect service stat

invoke statl with insert (csub(clock,begclk}))
999 continue

ende

A
c*******ﬁ******k*%****i*f***********i***********************%*******i?**

c* ENTITY MAIN

C*

c* This is entity main which creates the active servers, passive
c* resource manager, statistics entity, and source entity.

c*

C*&******************ii****ﬁﬁi****ﬁ***%********iﬁ**************i*t*****

[ohd

9000

C*

10

okl

o

folal

okl

ok

fokal

okl

8001

entity main

local integer cpu,tty,prnmgr,statl,src

integer initrs,srvrte,numres,resors{2),title(26),titlen

set initial resources,service rate,number of resources

parameter{initrs = 2,srvtre = l,numres = 2,titlen=26)

include fcommon.sim’

data title/lfz\l’lRl’iAl,INI,IsfflAi,iCl,lTlilI!'lol’iNl,l If
lRl,lBl’,le,lPl,lOl’INI'ISI’IEI” l’ITl,lII’IMI"E'

message
trace 3 when .true.

write (6,9000)
format (/,"Start of Simulation.”/)

set length of simulation run
simulation period 3000000
izstim = 1000001

initialize passive manager - printer - resources
do 10, i=1,numres

resors{i) = initrs
continue

set up statistics entity for job response times
let statl be mnstat(titlen,title}

create tty
let tty be izasdy(srvrte)

create cpu activer server and printer resource manager
let cpu be izasl2(prirty,srvrte}
let prnmgr be iztml2 {(numres,resors,prirty)

create jobs
let src be source{cpu,prnmgr,tty,statl}

run for simulation period
wait izstim

dump statistics

invoke statl with dump(6)
invoke cpu with dump (6)
invoke prnmgr with dump (6}
invoke tiy with dump(é)

terminate

invoke cpu with trmnt
invoke pramgr with trmnt
invoke tty with trmnt
invoke src with trmnt
invoke statl with trmnt

write(6,9001)
format {/,"Simflation has finished."™)
ende

append informs MAY compilier of needed entities
append izasdy,izasl2,iztmlZ,mnstat

87/

6.2.1 Results for Example Three

start of simulation.
simulation has finished.

statistical dump at simulation time 1000001.

transaction response times
the total of all values is 7072408.
the total no. of wvalues is 264
the average value is 26789.42

statistical dump at simulation time : 1000001

System statistics for active server

Server type = priority

Service rate = 1
Number of servers = 1
response time
min max mean number
0 492 52.863 1259
service time
min max mean number
0 347 49.718 1259

Queue length statistics:
total jobs at server = jobs being serviced + jobs waiting
mean max current

0.067 3 0

System statistics

utilization thruput jobs completed
0.063 0.001 1259
statistical dump at simulation time : 1000001

System response time stats for token requests:

Token type: 1 initial tokens: 2
Token type: .2 initial tokens: 2
minimum response time : 0
maximum response time : 6309
number of responses : 264
mean response time : 322

Token type: 1 mean.available tokens: 1

jobs pre-empted
0

Token type: 2 mean available tokens:

ot

System throughput : 0.00026

mean gueue length : 0.08523

mean available tokens (all types): 3.04110
jobs still in gqueue : 0

statistical dump at simulation time : 1000001

System statistics for active server
Server type = delay

service rate = 1
maximum number of servers = 20

response time

min max mean
4 38944 4933.894
service t;me
min max mean
4 38944 4933.894

Queue length statistics:

number

1269

number

1269

total jobs at server = jobs being serviced + jobs waiting

mean max current

6.207 13 10

System statistics

utilization thruput jobs completed

0.050 0.001

source termination.
number of jobs create by source = 274
Simulation terminated normally

Simulation period specified: 3000000.

1268

jobs pre-empted
0

6.2.1 Code for Example Four

C**i***i**%****ﬁ***ifﬁ?*****i**k*#**x***ﬁx%****ti***ﬁ*ktﬁ***i**i*%******

C*

c* ENTITY SOURCE

~E

c* FUNCTION:

c* This is the source entity which creates transactions according
c* to a specified interarrival rate.

c* Transactions are created until SOURCE is terminated.
c*

c* PARAMETERS :

c* CPU: cpu active server entity id.

c* PRNMGR: printer manager entity id.

c* TTY: tty active server entity id.

c* STAT1: statistics entity id.

C*

c* MESSAGES:

c* TRMNT: Message to terminate the entity-instance.

C*

c**

entity source (cpu,pramgr, tty,statl)
local integer Jjobent,intarr
integer trans

real expon

message trmnt

c* set interarrival rate
intarr = 3500
jobcnt = 0
c* create transactions
10 continue

let trans be jcob{cpu,prnmgr,tty,statl)
jobcnt = jobent + 1

wait int (expon{intarr})

if (msg .ne. trmnt) go to 10

write(6,9000) jobent
9000 format {//,"Source Terminated.”,
+ /,"Number of transactions created by source = ",16)

ende

c*******i********i*****t********************i*************************%*

C*

c* ENTITY J OB

C‘k

c* FUNCTION:

c* This is the 7job entity.

C*

c* PARABMETERS:

c* CPU: cpu active server entity id.

c* PRNMGR: printer manager entity id.

c* TTY: tty active server entity id.

c* STAT1: statistics entity id.

c*

c* MESSAGES:

c* ROCOMP: Request for service completed.

c* OCLOSD: Queue closed, cannot request service.
c* HAVTOK: Have been allocated resource requested.
c*

C****%**#ﬁ************%***i*****S***i**t*k***#*i******k****#*****#*****

entity dob{cpu,prnmgr,tty,statl)

real X,prob,lasprb,ttyprb,priarr(3),;expon
integer cpumn,prnmn,linepr,lasprn,thnkmn,arrsze,prbgen,csub

c* rescurce request array indices,laser probability
parameter (linepr = 1, lasprn = 2,lasprb = 0.20,arrsze = 3)
c* means for cpu,printers,think time at tty, tty probability

parameter (cpumn = 50,prnmn = 4000,ttyprb = 0.80,thnkmn = 5000}
local integer prntyp{2),priort
clocktype begclk
c* priority probability array
data priarrz/0.20,0.50,1.0/

message rgcomp
message gclosd
message havtok

c* trace 3 when .true.
c* record starting time token for response stat
call cstore(begclk,clock)

c* set priority of transaction - ungrad = 3, grad = 2,prof = 1
priort = prbgen({priarr,arrsze)

10 continue

c* terminal think time
invoke tty with regest {(myid, int (expon {thnkmn}))
wait maxint for (msg .eg. rgcomp)

20 continue
c* request service from computer
invoke cpu with pregst (myid,priort,int (expon {cpumn}})

c* wait for service complete message
wait maxint for ({msg .eg. rgcomp).or. {msg .eg. gclosd))
if (msg .eqg. gclosd) go to 10

c* branch back to tty or go on to printer

if (rand(x}) .le. ttyprb) go to 10
c* request printer
c* decide upon printer to use according to probability of laser
prntyp{linepr} = 0
prantyp{lasprn) = int (rand(x)+lasprb)
if (prntyp{lasprn) .eqg. 0) prntyp{linepr} = 1
invoke prnmgr with pregtk(myid,priort,prntypl2])

wait maxint for (msg .eg. havtok)

c* simulate printer usage
wait int (expon{prnmn}}
c* return printer to manager

invoke prnmgr with reltok(myid,prntypl2])

c* collect service stat

invoke statl with insert {csub{clock,begclk})
99¢% continue

ende

B3

C**ﬁ************i*i*****i*****************************%**ﬁ****ﬁ*********

C*

c* ENTITY MAIN

c*

c* This is entity main which creates the active servers, passive
c* resource manager, statistics entity, and source entity.

C*

c***f*kﬁ**************%********************************i’****'k***#******

entity main

local integer cpu,tty,prnmgr,statl,src
integer initrs,srvrteenumres,rescrs{2),title(26},titlen,nmsrvs,quecap

c* initial resources,service rate,number of resources, number of servers
c* queue capacity
parameter (initrs = 2,srvtre = l,numres = 2,titlen=26,nmsrvs=1, quecap=5)

include ‘common.sim’
data title/lTl,IRl,IAI,INI,ISIiIAI,ICI,iTI’III’IOI,lNIEI I,
+ IRI,IEI,lsl,IPI,IOI,'NI,’SF’IEI’I I,ITI,I’II,IMI,VEI,ISI/

message
c* trace 3 when .true.

write(6,9000)

3000 format {/,"Start of simulation.”}

c* set maximum simulation period, and izstim
simulation period 3000000
izstim = 1000010

c* initial number of passive resource (printer) resources
do 10, i=1,numres
resors (i} = initrs
10 continue
c* create response time statistics entity

let statl be mnstat{titlen,title)

c* create tty
c* service rate 1 sim unit = 1 msec
let tty be izasdy(srvrte)

c* create cpu activer server and printer resource manager
told service rate 1 sim unit = 1 msec

let cpu be izasl3(prepri,srvrte,nmsrvs, quecap)

let prnmgr be iztml2 (numres, resors,prirty)

c* create Jjobs
let src be source{cpu,prnmgr,tty,statl)

c* run for simulation period
wailt izstim

c* dump statistics
invoke statl with dump(6)
invoke cpu with dump (6}
invoke prnmgr with dump(6)
invoke tty with dump(6)

c* terminate
invoke cpu with trmnt
invoke prnmgr with trmnt
invoke tty with trmnt
invoke src with trmnt
invoke statl with trmnt

write(6,9001)

8001 format {/,"Simulation has finished.")
ende
c* append informs MAY compilier of needed entities

append izasdy,izasl3,iztml2, mnstatl

6.2.1 Results for Example Four

start of simulation.

simulation has finished.

statistical dump at simulation time 1000010.

transaction response times
the total of all values is 8032277.
the total no. of values is 273
the average value 1is 29422.26

statistical dump at simulation time : 1000010

System statistics for active server

Server type = preemptive priority

Service rate = 1
Number of servers = 1
waiting gqueue capacity = 5
response time
min max mean number
0 420 53.160 1409
service time
min max mean number
0 347 49.772 1408

Queue length statistics:
total jobs at server = jobs being serviced + jobs waiting
mean max current

0.075 3 0

System statistics

utilization thruput jobs completed jobs pre-empted
0.070 0.001 1409 38
statistical dump at simulation time : 1000010

System response time stats for token reguests:

Token type: 1 initial tokens: 2
Token type: 2 initial tokens: 2
minimum response time : 0
maximum response time : 12086
number of responses : 273
mean response time : 491

Token type: 1 mean available tokens: 1

Token type: 2 mean available tokens: 1

System throughput : ¢G.00027

mean gueue length : 0.13431

mean available tokens (all types): 2.83317
jobs still in queue : 0

statistical dump at simulation time : 1000010

System statistics for active server
Server type = delay

service rate = 1
maximum number of servers = 20

response time

min max mean number
1 38944 4931.275 1416
service time
min max mean number
1 38944 4931.275 1416

Queue length statistics:
total jobs at server = jobs being serviced + jobs waiting
mean max current

6.949 15 7

System statistics
utilization thruput jobs completed

0.050 0.001 1416

source terminated.

number of transactions created by source = 280
Simulation terminated normally
Simulation period specified: 3000000.

jobs pre-empted
0

6.2.1 Code for Example Five

c* RQCOMP: Request for service completed.

c* QCLOSD: Queue closed, cannot request service.
c* HAVTOK: Have been allocated resource reguested.
c‘k

c'k'ﬁ:'k********'#***t***************‘k*********?***************'&'k***'#'k***-k**

entity job{cpu,prnmgr,tty,diskl,diskz,statl}

integer cpumn,prnmn,thnkmn,dskmn,pbasze,pbisze

okl means for cpu,printers,think time,disks)
parameter {(cpumn = 50,prnmn= 4000,thnkmn = 5000,dskmn= 20)
real lasprb,dsklpb,dsk2pb,prnprb, x,expon,prbarr{4) ,priarr (3}

c* laser probability,probability array sizes

parameter (lasprb = .20,pbasze=4,pbisze=3)

integer linepr,lasprn,ungrad,grad,prof,branch,prbgen,csub
c* resource request array indices,priority assignments

parameter (linepr = 1, lasprn = 2,ungrad = 3, grad = 2,prof = 1)
local integer prntyp(2),priort
clocktype begclk

c* cumulative probability array for branching after cpu
data prbarr/0.20,0.30,0.40,1.00/
c* cumulative probability array for priority assignment

data priarr/0.20,0.50,1.00/
message rgcomp
message havtok
message gclosd
c* trace 3 when .true.

c* record starting time token for response stat
call cstore(begclk,clock)

c* set priority of transaction
priort = prbgen{priarr,pbisze)

10 continue
c* terminal think time
invoke tty with regest (myid, int {expon (thnkmn}))

wait maxint for (msg .eg. rgcomp)

20 continue
c* request service from computer

invoke cpu with pregst (myid,priort, int (expon (cpumn}})
c* wait for service complete message

wait maxint for ((msg .eg. rgcomp) .or. {(msg .eg. gclosd))

c* branch after cpu

c* printer=1, diskl=2, disk2=3, tty=4
branch = prbgen{prbarr,pbasze)
go to (30,40,50,10)branch

30 continue
c* request printer
c* decide upon printer to use according to probability of lazer

protyp{linepr) = 0
prntyp (lasprn} = int(rand(x)+lasprb)
if (prntyp{lasprn) .eq. 0 } pratyp{linepr) = 1
invoke prnmgr with preqgtk (myid,priort,pratypl(2]1)
wait maxint for {(msg .eg. havtok)
cF simulate printer usage
wait int (expon(prnmn))
invoke prnmgr with reltok (myid,prntypl2])
go to 998 ; '

40 continue :
invoke diskl with regest (myid, int (expon{dskmn}})
wait maxint for {(msg .eg. rgcomp)

c* return to cpu
goc to 20
50 continue

invoke disk2 with regest (myid, int {expon (dskmn)})
walit maxint for {(msg .eg. rgcomp)

c* return to cpu
go te 20
998 continue
c* collect response time stats
invoke statl with insert (csub(clock,begclk})
99¢g continue
ende

c******'k*********************‘k******'k’k************‘k******'k*‘k************

C'k

c* ENTITY MAIN

c*

c* This is entity main which creates the active servers, passive
c* resource manager, statistics entity, and source entity.

C*

C***'k*******************‘k******k*********************‘k****************7‘:
entity main

integer nmres,resors(2),nmsrvs,quecap,titlen
local integer cpu,prnmgr,tty,diskl,disk2,statl,src
integer srvrte,initrs,title(26)
c* service rate,initial resocurces,number of resources,number of
c* servers, queue capacity
parameter {srvtre = 1l,initrs = 2,nmres = 2,nmsrvs = 2,guecap = 5)
parameter (titlen = 26)
include ‘common.sim’
data title/lTF’FRl,fAl'INIIFSI,!AI’fCI’IT',lII’IOl,INI,l l’,
+ ,R,,,E"'S"’P",O’"N’;’S','E’,’ i,!TI,III,IM',’E!fISI/

message
c* trace 3 when .true.

write(6,9000)
9000 format ("Start of simulation.”™)

c* set maximum simulation period
simulation period 2500000
izstim = 850001

c* initial number of passive resource (printer) resources
do 10, i=1l,nmres
resors (i) = initrs
10 continue
c* set up statistics entity for transaction response times
c* statl will be «for simple recording of the mean response time

let statl be mnstat{titlen,title}

c* create tty
let tty be izasdy(srvrte)
c* create cpu activer server and printer resource manager

let cpu be izasl3(prepri,srvrte,nmsrvs,quecap)
let prnmgr be iztml2 (nmres,resors,prirty)
o% create disks

[k

ok

o*

9001

let diskl be izasl2 (fcfs,srvrte)

let disk2 be izasl2({fcfs,srvrite)

create jobs

let src be source{cpu,prnmgr,tty,diskl,disk2,statl)

walit izstim

dump statistics

invoke statl with dump(6)
invoke cpu with dump(6)
invoke prnmgr with dump(6)
invoke tty with dump({6)
invoke diskl with dump (6)
invoke disk2 with dump(6)

terminate

invoke cpu with trmnt
invoke pramgr with trmnt
invoke tty with trmnt
invoke diskl with trmnt
invoke disk2 with trmnt
invoke src with trmnt
invoke statl with trmnt

write(6,9001)
format {/,"Simulation has finished®")
ende

append informs MAY compilier of entities needed
append iztml2,izasdy,izasl2,izasl3,mnstat

start of simulation.

simulation has finished

statistical dump at simulation time 850001.
transaction response times

the total of all values is 781502.

the total no. of values is 33

the average value is 23%84.91

statistical dump at simulation time : 850001

System statistics for active server
Server type = preemptive priority

Service rate = 1
Number of servers = 2

wr

walting gueue capacity =

response time

min max mean number
0 199 45.744 172
service time
min max mean number
0 189 45.744 172

Queue length statistics:
total jobs at server = jobs being serviced + Jjobs waiting
mean max current

0.009 2 0

System statistics

utilization thruput jobs completed
0.005 0.000 172
statistical dump at simulation time : 850001

System response time stats for token requests:

Token type: 1 initial tokens: 2
Token type: 2 inigial tokens: 2
minimum response time : 0
maximum response time : 0
number of responses : 33
mean response time : 0

Token type: 1 mean available tokens: 1

H

jocbs pre-—empted
0

6.2.1 Results for Example Five

C&***i%****i*'k*'ﬁ:*3****%*ir*‘k'k*'k*****'k*ﬁ*%#ﬁ#*??*****%**i**ti***ﬁ(*'kt&'k'k'k*?*

ENTITY S 0OURCE

FUNCTION:

This is the source entity which creates transactions according
to a specified interarrival rate.
Transactions are created until SOURCE is terminated.

PARAMETERS:

CPU: cpu active server entity id.
PRNMGR: printer manager entity id.
TTY: tty active server entity id.
DISK1l: diskl active server entity id.
DISK2: disk2 active server entity id.
STAT1: statistics entity id.

MESSAGES:

TRMNT: Message to terminate the entity-instance.

C*k***‘k**********t‘k***‘k*‘k*'k*****k****t**k************'k*****************

8000

entity source (cpu,prnmgr,tty,diskl,diskz,statl)
local integer jobcnt,intarr

integer trans

real expon

message trmnt

trace 3 when .true.

set interarrival rate

intarr 25000
jobcnt O

o

create transactions

continue

let trans be job(cpu,prnmgr,tty,diskl,disk2,statl)
jobecnt = jobent + 1

wait int (expon{intarr})

if (msg .ne. trmnt) go to 10

write (6,9000) jobent
format (/,"Source Termination.”,
/., "Number of transactions created by source = ",16)

ende

c**************************'k*********t*****i****'k************'k*i’*#***’k**

c*

o

ENTITY J OB

FUNCTION:

This is the job entity.

PARAMETERS: .

CPU: cpu active server entity id.
PRNMGR: printer manager entity id.
TTY: tty active server entity id.
DISK1l: diskl active server entity id.
DISK2: disk? active server entity id.
STAT1: statistics entity id.

MESSAGES:

Token tvype: 2 mean

System throughput 0.00004

mean gueue length : 0

available tokens:

mean available tokens ;all t§pes): 3.82239
jobs still in queue : 0
statistical dump at simulation time 850001
System statistics for active server
Server type = delay
service rate = 1
maximum number of servers = 20
response time
min max mean number
53 23053 4612.314 137
service time
min max mean number
53 23053 4612.314 137

Queue length statistics:
total jobs at server =

mean max
0.743 4
System statistics
utilization thruput
0.026 0.000

statistical dump at simulation time

System statistics for active server

Server type = fcfs
Service rate = 1
Number of servers = 1
response time

min max

0 77

service time

min max

0 77

jobs being serviced + Jjobs waiting

current

0

jobs completed

mean

24.375

mean

24.375

137

850001

number

16

number

fod
o

jobs pre-empted
0

Queue length statistics:
total jobs at server = jobs being serviced + jobs waiting
mean max current

0.000 1 0

System statistics

utilization thruput jobs completed
0.000 0.000 16
statistical dump at simulation time : 850001

System statistics for active server
Server type = fcfs

Service rate = 1
Number of servers = 1

response time

min max mean number
2 62 20.632 19
service time
min max mean number
2 62 20.632 19

Queue length statistics:
total jobs at server = jobs being serviced + jobs waiting
mean max current

0.000 1 0

System statistics
utilization thruput jobs completed

0.000 0.000 15

source termination.

number of transactions created by source = 33
No active entities present.
Simulation terminated at time: 850001.

jobs pre-empted

0

jobs pre-empted
0

