A RELIABLE AND DEADLOCK-FREE
MULTI-INDEXED B*-TREE

Arthur M. Keller
Department of Computer Sciences
_The University of Texas at Austin
Austin, Texas 78712-1188

TR-86-19 July 1986

Copyright © 1986 Arthur M. Keller

A Reliable and Deadlock-Free Maulti-Indexed B¥-Tree
Arthur M. Keller
University of Texas at Austin

ABSTRACT. B-trees are a mainstay of relational database implementation. Because multiple indexes may be
desired on a single relation, a multi-indexed B-tree is needed. Our goal was to design 2 disk data structure
and associated algorithms for a multiple B-tree structure that was reliable, deadlock-free, and reasonably
efficient.. Our system also supports variable-length keys and variable-length records. An arbitrary number of
B-tree indexes can be defined, each specifying one or more fields; a field can be part of more than one index.
We separated the dichotomy between primary and secondary indexes into the choice of at most one clustered
index and the ability to decide whether any particular index is unique or allows duplicates. This requires
a careful balance of these conflicting needs in the design of a synergistic system. Often design decisions
made originally for one goal were found to be beneficial for another goal, or even had unexpected benefits.
Our design engineers the combination of several techniques to create a workable solution to the problem of
multiple B-tree indexes for a gsingle file of data.

i Introduction

B-trees present sequential and keyed access to a collection of data [Bayer 72, Comer 79]. Records may be
accessed in order based on the values of some key or a specific record may be found that has a particular
key value. Hashed data structures may provide faster access t0 individual records by key, but they typically
do not provide ordered sequential access.

A multiple B-tree index structure permits access to records based on the values of multiple keys. This
approach is prone to deadlock because the data structure may be entered through any index and updating
a record may require updating gseveral, maybe even all, indexes. Through a combination of techniques, we
have designed data structures and algorithms that overcome this problem. An implementation, FLASH, has
been built that includes most of the features described in this paper [Alichin 80]. We will call a package
supporting these algorithms IFAP: Indexed File Access Package. A formal specification exists for this as an
Ada package [Keller 86].

There has been much interest in concurrent operations on B-trees [for example, Comer 79, Lehman 81}.
Our work differs from previous work in that we consider multiple B-trees referencing the same collection of
data. We use the pre-splitting scheme to split index blocks in anticipation of subsequent need.

We were particularly interested in reliability. In particular, the structure had to be crash-proof. Based
on the assumption that a disk block is either correctly and completely written or not at all, our algorithms
cannot corrupt a single B-tree. They can cause blocks to be lost rather than returned to the free block pool
or one or more B-trees to become unsynchronized from the data. This last issue can be fixed during system
restart if we maintain a list of such update operations pending.

2 Protocol for Access

We access blocks using a protocol that prevents deadlock. The principles of this protocol are as follows.

1. All locks on blocks are for exclusive access. Consequently, we never need to promote locks on blocks from
shared to exclusive.

This work was started while the author was at the Computer Science Department of Stanford University. This
work was supported in part by contract N39-84-C-0211 (the Knowledge Base Management Systems Project,
Prof. Gio Wiederhold, Principal Investigator) from the Defense Advanced Research Projects Agency of the
United States Department of Defense, and by the Computer Sciences Research and Development Fund
and the University Research Institute of The University of Texas at Austin. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representative of the
official policies of DARPA, the US Government, or the State of Texas.

Author’s address: The University of Texas at Austin, Department of Computer Sciences, Austin, TX 78712-
1188.

2. Moving a block requires that its parent block remain locked during the move. When 2 block is only
reachable through its parent, locking the parent block prevents following a dangling pointer.

3. When following a pointer o a block that may move, we retain the lock on the parent block until the
child block is locked. Then, if it is not necessary to move the child block, we can release the lock on the
parent block.

4. When following a pointer to an anchored block—a block that is not allowed to move—the parent block
may be unlocked before the child block is locked.

5. You can wait for a lock only if it is later in the list than all the locks being held.

6. If you cannot acquire a lock, and are not allowed to wait for it, you must restart your operation at an
anchored block, such as the root block of an index.

7. If a block that is moved has multiple pointers to it, it must remain locked until all pointers to it have
been updated.

These principles are used to access the data structures. The data structures and the algorithms have been
specifically designed to maintain a consistent data structure that survives system failure and is deadlock-free
for physical block access. In particular, we avoid the circular wait condition for deadlock.

8 Individual B*-Tree Indexes

Each B-tree index has the same structure (see Figure 1) and protocol for access. When reading the B-tree
to find a record, we use the following algorithm.

Set current block to root of index
Lock root block
WHILE not leaf index block
Read current block
Set mext block to address of desired child block
Lock mext block
Unlock current block
Set current block to mext block
Read data block {whick is nov the current bleck)

Algorithm 1. Find Data Block for Reading

Each block is locked before it is read. Because a block may be moved, we keep the lock on the parent
block until we have locked the child block. This is compatible with our protocol for moving blocks, which
involves locking both the block being moved and the parent block which points to it. Because we are
acquiring locks in a defined order, we can assure deadlock-free access.

When updating records, especially when inserting new records, it may be mnecessary to insert mew
pointers in index blocks. The potential exists to cascade index block splits up the tree all the way to the
root if each block does not have room for an additional pointer. Not only does this occasionally involve bad
performance as index blocks are split, but it also incurs the possibility of deadlock when a writer splitting
block marching up the tree encounters another process marching down the tree. To avoid the march up the
tree when splitting index blocks, we presplit index blocks that are full on the way down. This is illustrated
in Figure 2. This algorithm follows.

Lock zoot block
Read root block
Set parent bleck to root block
Set current bleck to desired ehild bleck
YHILE current block not & data bleck
Lock current block
Read current bleck

IF there is not enough room im current block for a mew pointer
THEN Obtain two mew blocks
Place half of currenmt block im each nev block
Yrite both mew blocks (Figure 2, Step 1)
In parent blocks, replace pointer %o current block with
pointers to mnew blocks '
Rewrite parent block im place (Figure 2, Step 2)
Place current block on the free block list (Figure 2, Step 3)
get current block to the new block with the correct key range
Unlock other new block (Figure 2, Step 43
Unlock parent block
Set parent block to current block
Set current block to address of desired child block
Lock current block (the data block)
Read data block

Algorithm 2. Find Data Block for Updating

There are several important observations about this algorithm. First, it preserves the ordering of
accessing blocks that prevents deadlock. Second, the order in which blocks are locked, read, and unlocked
means that the splitting of blocks does not endanger the reading of blocks as no wild pointers are followed.
Third, when a block is split, the blocks are written in an order that preserves the integrity of the tree
structure even if the operating system crashes during the process, provided that a block is either entirely
written or not changed at all. In case of a crash, the worst that could happen is that there are blocks in the
file that are not referenced by the index structure, but all the data blocks are still reachable and the index
structure is still intact. The non-referenced index blocks can be reallocated by a clean-up utility that audits
the data structure.

A different protocol is needed when splitting the root index block of a B-tree so that the root doesn’t
move. This is illustrated in Figure 3. This algorithm follows.

Lock index block
Read index block
Set parent block to root index block
IF there is imsufficient room for another pointer im root index block
THEN Obtain two mew blocks
Copy half of root jpdex block into the twe mew blocks
Write the two mew blocks
Change root index block to point only to the two new blocks
Rewrite root index block
Set parent block to the nmev block with the correct key range
Lock parent block
Unlock root index block
Set child block to desired child block of parent child
Proceed with WHILE loop of Algorithm 2

Algorithm 8. Split Root Index Block
The split root index block algorithm {Algorithm 3] entails the same three observations as for Algorithm 2.
The algorithm for splitting data blocks will be covered in the next section.

4 Clustered ve. Non-Clustered Indexes

While there are a lot of similarities between treating clustered and non-clustered indexes, there are important
differences. There may be at most one clustered index per file. Any index may be unique (require distinct
data values) or non-unique regardless of whether the index is clustered.

3

Since clustering indexes point directly to data blocks, finding a data record by key to read or write
requires access to O(log n) blocks; however, several alternatives exist for non-clustered indexes. The opera-
tions on data blocks are: find data block through index (clustered or non-clustered), add new record to data
block, rewrite or delete record from data block, and split data block.

We will compare three alternatives for referencing data records from non-clustered indexes. The index
may point directly to the data block; the index may refer to the key value of the clustered index (if it is
unique); or the non-clustered index points to an indirect-block which points to the data block. For the
specified operations, Table 1 gives the number of blocks read or changed for each alternative, where n is the
number of data records, m is the pumber of data records moved, ¢ is the number of indexes, and 7 is the
number of index entries affected.

Operation Direct Pointer Indirect Pointer Pointer Through
Clustered Index

Find data block

through clustered Oflogn) O(log n) O(logn)

index

Find data block

through non- O(logn) O((logn) + 1) O(2logn)

clustered index

Add new record to O(ilogn) O(ilogn) Ofilog n)

data block

Rewrite or delete O((7 + 1) logn) O((s + 1) logn) O((5 + 1) logn)
data record
Split data block O(mlogn) O(m) 0o(1)

Table 1. Comparison of Costs of Some Operations
on Data Blocks and Data Records

We observe that using an indirect pointer is only slightly more expensive for finding a data block
through a non-clustered index than a direct pointer while being considerably cheaper than a pointer through
the clustered index. We also observe that using an indirect pointer is intermediate in cost for splitting 2
data block. The indirect pointer method has advantages not only in cost but also in reliability and freedom
from deadlocks, as we will soon see. We will proceed to describing the data structures and algorithms for
connecting data blocks to the index structures.

Figure 4 illustrates the data structures for data blocks. The data blocks are directly referenced by the
leaf index pages of the clustered index. The leaf index pages of the non-clustered indexes point to blocks
containing one record per key value, where the record contains a list of tuple IDs for the records with that
index value. These are called record list blocks and their format is similar to that of data blocks. Tuple
IDs are permanently associated with records and do not change when records are updated, even when the
clustered index value changes. Physically a tuple ID consists of two parts: the block number of the tuple
ID block and the slot number within that block. Tuple IDs are assigned sequentially from tuple ID blocks.
Thus, to assign a new tuple ID, it is only necessary to know the last tuple ID assigned. When a record is
deleted from the file, ite tuple ID is turned into a tombstone for the record; rather than being reused, it
contains 2 value that indicates the record was deleted. Ordinarily, tuple ID pointers in the tuple ID block
contain the address of the block containing the record. Since data records are preceded by a header that
contains the tuple ID, the data block may be searched for the desired record. Since tuple IDs are essentially
physical pointers, tuple IDs may be used as a fast access path for records; they are suitable for use as links
between relations in a relational database. Also because tuple ID blocks never move, it is not necessary to
hold onto the lock of a leaf index block when reading 2 tuple ID block. (Recall that we held onto the lock
of 2 parent block until we have locked the child block when we cannot otherwise guarantee that the child
block will not move.)

Now that we have explained the data structures connecting data blocks to the indexes, we proceed to
algorithms for the operations on data records. Algorithm 4 describes the process of reading a data record

4

using the clustered index.

Perform Algorithm 1 on clustered index
(The parent block is not mow locked)
Search data block sequentially for desired record

Algorithm 4. Reading Data Record Through Clustered Index

Algorithm 5 describes the process of reading a data record through a non-clustered index. There are
several important observations about this algorithm. We have already observed that we may unlock the
record list block once we have obtained the tuple ID. We do not keep any locks while waiting for another
lock. This is how we prevent deadlock in this portion of the data structure. When we get to Algorithm
6, we will see that updates may require traversing from the data block to the tuple ID block, the opposite
direction from Algorithm 5. Also note that if the record has moved to another data block while we were
waiting for its old block, we repeat the loop still holding onto the lock of the tuple ID block. If the record
was deleted while waiting for its 0ld block, we need to retry the entire operation at the beginning, probably
waiting a short time for the index to become consistent by a concurrent writer.

Perform Algorithm 1 on pon-clustered index

(The leaf index block is not now locked)

Search record list block for desired key value

Ubtain tuple ID

Release lock on record list block

Perform Algorithm € %o read data block using tuple ID
Release lock on taple ID block

Scan data block for record with correct tuple ID

Algorithm 5. Reading & Data Record Through a Non-Clustered Index
Reading a data record given its tuple ID is described in Algorithm 6.

REPEAT
Obtain lock on tuple ID block (wait if pecessary)
Read tuple ID block
Find address of data block
Try to lock data block
IF cannot lock data block
THEN Release lock on tuple ID block
Wait for lock om data block
IF Succeeds
THEN Check that tuple ID still refers to same data block
IF tuple ID is a tombstone
THEN relesse locks and GOTO start of B-tree
package {zetry operation)
IF Sene
THEN Continue below after UNTIL
ELSE Release lock on data block
ELSE Release lock on data bleck
UNTIL both tuple ID bleck and data block are locked

Algorithm 6. Reading & Data Record Using Its Tuple ID

5

5 Updating Records

There are three operations for updating records: replace, delete, and insert. For replace and delete, we
require that the record have been read with intention to modify. The tuple ID is used to identify the record.
For replace, all fields may be changed, including those associated with the clustered index. Records may also
be inserted, and a new tuple ID is assigned unless one for a deleted record is supplied. {This allows rollback of
a deletion performed by a transaction subsequently aborted.) Insertions are done by traversing the clustered
index to place the record and then the other indexes are corrected. Deletions are done by locating the record
using the tuple ID, removing it from its data block, and then fixing the indexes. Replacement is done by
using the tuple ID to locate the record, updating it, and then fixing the indexes. However, if the clustered
key changes, it is deleted from its block using the tuple ID, inserted using the new cluster key, and then
the indexes are updated. Replacement and insertion may require a data block to be split to hold the new
record. This would require the leaf block of the clustered index to be updated. If this block is already locked,
we can update it. Otherwise, locking it would involve traversing the clustered index the wrong way with
the potential for deadlock. We use a different algorithm when the clustered index leaf block is not locked.
Algorithm 7 describes the process of splitting a data block when the block and its clustered index leaf block
are both locked.

Obtain 2 new data blocks (or as many as it takes to hold all the records)
Copy half of the records including new record into each pew block
Yrite the new blocks
Rewrite the leaf index block so that it points to the nmew data blocks
Make a 1list of tuple ID pointers that need to be changed
Release locks on mevw data blocks as well as index block, but retain
lock on old data block
FOR each tuple ID pointer that needs to be changed
Lock tuple ID block {waiting if necessary)
Read, change, and rewrite tuple ID block
Release lock on tuple ID block

Algorithm 7. Splitting a Data Block Through Clustered Index

When the clustered index leaf block is not locked or when a record is too big to fit in one block, we
create a train of blocks. This is shown in Figure 4. The train of blocks is treated as one large block. Only the
first block in the train needs to be locked; locking it locks the entire train. Successive blocks in the train are
linked. Either the first block points to all the other blocks, or they are in a singly linked list. This approach
is also used for the list of records for non-clustered indexes when they do not fit in one block. Algorithm 8
describes the processes of splitting a data block when the clustered index leaf block is not locked. We assume
the data block is locked. There is no need to update the tuple ID blocks as all records are still reachable
through the first block in the train.

Obtain a new data block

Copy records into mew data block

¥Yrite mew datas block

Remove duplicate records from pld dste block
Rewrite old data block

Algorithm 8. Splitting a Data Block Not Through Clustered Index
Inserting a new record is described in Algorithm 9.

Perform Algorithm 2 on eclustered index
Obtain tuple ID
IF there is emough room in data block for nev record
THEN Add record to data block
Rewrite data block

ELSE Perform Algorithm 7 %o split data block
Unlock parent block
Lock tuple ID block (vaiting if necessary)
Place pointer to dsta block in tuple ID slot
Rewrite tuple ID block in place
Unlock data block and tuple ID block
FOR each non-clustered index

Perform Algorithm 10 to insert mew key in index
IF uhidheness test fails on any index

THEN Delete record using Algorithm 12

Return with error status

Algorithm 9. Insert New Record

There are several interesting observations about Algorithm 9. Before accessing any of the non-clustered
indexes, we release all physical locks. This prevents deadlock. Also, we may not discover a duplication in
a unique index until after we have inserted the record. As we have not yet returned to the caller, we may
delete the record using Algorithm 12. To prevent another user from finding that record, we have to use
logical locks on records. The distinction between logical locks and physical locks is described in Section 7
below.

Algorithms 10 and 11 maintain non-clustered indexes. Algorithm 10 inserts a key into a non-clustered
index and Algorithm 11 removes 2 key from a non-clustered index.

Perform Algorithm 2 on pon~clustered index
IF key and tuple ID are already in index
THEN that is ok; proceed to mext index
IF key already exists in index
THEN IF index is unique
THEN Proceed to undo request
ELSE Add pew tuple ID to end of list
IF it fite
THEN Rewrite record list block
ELSE Perform Algorithm 7 to split record list bleck
ELSE Create a mew list
Assign a new tuple ID to the list
IF the new list fits
THEN Rewrite record list block in place
ELSE Perform Algorithm 7 to split second list block
Release all physical block locks
Lock tuple ID block
Read tuple ID block
Set tuple ID slot %o point to mew zecord list
Rewrite tuple ID block in place
Release lock on tuple ID block
Release all remaining physical locks

Algorithm 10. Insert a Key and Tuple ID Into Non-Clustered Index

Perform Algorithm 2 om mon-clustered index
Find key and tuple ID in record list
IF either does not exist
THEN that is ok; proceed to mext index
IF only one tuple ID in record list
THEN Remove record list
Rewrite record list block
Release all physical block locks
Lock tuple ID block for record list (wait if pecessary)
Read tuple ID block
Mark tuple ID for record list deleted
Rewrite tuple ID block in place
Release lock on tuple ID block
ELSE Remove tuple ID from record list
Rewrite record list block
Release all remaining physical block locks

Algorithm 11. Remove a Key and Tuple ID From a Non-Clustered Index

There are several reasons that we assign tuple IDs to record lists. The format of the record list blocks
are now identical to that of data blocks. Also if we are reading the records sequentially through a secondary
index, we can find the next record with the same key by using the tuple ID of the record list rather than by
searching the non-clustered index again.

Algorithm 12 describes deletion of a record using its tuple ID.

Perform Algorithm 6 to read data block
Remove record from data block
Rewrite data block in place
Unlock data block
Mark tuple ID deleted im tuple ID block
Rewrite tuple ID block in place
Unlock tuple ID block
FOR each pon-clustered index
Perform Algorithm 1i to remove key and tuple ID from index

Algorithm 12. Deletion of a Record Using Its Tuple ID

The algorithm for replacing a record depends on whether the clustered index key changes. Algorithm
13 describes the process if the clustered index key does not change; Algorithm 14 describes the process when
it does. Note that we add the new index entries before deleting the old ones so that we will have less work
to undo if we find a duplicate in a unique index.

Perform Algorithm 6 to read data block by tuple ID
Unlock tuple ID block
Remember old record
Replace it with new record, performing Algorithm 8 if necessary
Rewrite data block
Unlock data block
FOR each non-clustered index that changed
Insert new key using Algorithm 10
IF failure due to duplicate entry ip a unique index
THEN Perform Algorithm 6 to read data block by tuple ID
Unleck tuple ID block
Restore old record

Rewrite date block
Unlock data block
FOR each non-clustered index we have changed
Remove mew key by using Algorithm i1
Return with error status
FOR each pon-clustered index ¢that changed
Remove old key by Algoritbm 11

Algorithm 18. Replace Record When Clustered Key Does Not Change

Perform Algorithm 6 to read old record by tuple ID
Remember old data record and tuple ID
Read old tuple ID block
Mark old tuple ID deleted
Rewrite old tuple ID block
Unlock old tuple ID block
Obtain new tuple ID for old recoxd
Lock new tuple ID block
Change tuple ID of old record to new tuple ID
Rewrite old data block in place
Read pew tuple ID block
Set tuple ID pointer to refer to old data block
Rewrite new tuple ID block in place
Release all physical block locks
Insert replacement record using Algorithm 9 and o0ld tuple ID
IF insert fails due to duplicate entry in clustered index
THEN Perform Algorithm € to read old record using new tuple ID
Mark new tuple ID as deleted
Rewrite new tuple ID block
Unlock new tuple ID block
Lock old tuple ID block
Change tuple ID of old record to old tuple ID
Rewrite old data block in place
Read old tuple ID block
Set old tuple ID to old data block
Rewrite old tuple ID block
Release all physical block locks
FOR each non-clustered index changed (only for changed fields)
Remove mew key by Algorithm i1
Return with error status
Perform Algorithm 6 on old data record using new tuple ID
Remove record from data block
Rewrite data block in place
Unlock data block
Mark mew tuple ID deleted in mew tuple ID block
Rewrite mew tuple ID block in place
Unlock new tuple ID block
Release all remeining physical block locks
FOR each clustered index key that changed
Perform Algorithm i1 te remove key and old tuple ID from index

Algorithm 14. Replace Record While Changing Clustered Index Key

9

There are several important observations about Algorithm 14. To prevent deadlock, we do not hold any
physical locks when we access 2 non-clustered index. We also do not remove the old record nor the old index
entries until the insertion of the new ones succeed. This reduces the amount of undo/redo work needed when
a replacement fails due to 2 duplicate entry in a unique index. Were the old index entries to be prematurely
deleted, it might be impossible to restore them if another conflicting index entry was inserted in the interim.
We use a temporary tuple ID for the replaced record so we can §nd it again in case the data block is split
and the record is moved. Since the tuple IDs for replaced records are short-lived and internal, they may be
assigned from a special pool of tuple IDs that are reused.

When a train of blocks is formed by Algorithm 8, we spawn a process to perform Algorithm 15 to
convert the train into individual blocks.

Perform Algorithm 2 to £ind train through clustered index
Perform Algorithm 7 to split train into ordinary data blocks

Algorithm 15. Clean Up Trains Formed by Splitting Data Blocks not Through Clustered Index
g Files Without Clustered Indexes

The algorithms presented in preceding sections assume that there is a clustered index. If the file does not
have a clustered index, several of the algorithms change. The revised data structure is shown in Figure §.

The primary differences affect insertion and block splitting algorithms. The insertion algorithm {Algo-
rithm 9) now uses any index, preferably a unique one, and places the new record in any data block with
sufficient room. This is shown in Algorithm 16. The block splitting algorithms (7 and 8) no longer need be
concerned with the clustered index leaf block. This is shown in Algorithm 17. We will not list the other
algorithms that require adaptation.

Perform Algorithm 10 on an index
Obtain tuple ID
Dbtain a data block for mew recoxd
Lock data block
Read (if necessary), add record to, and rewrite data block
Lock tuple ID block (waiting if necessary)
Set tuple ID slot to point to data block
Rewrite tuple ID block in place
Unlock 21l physical block locks
FOR each other index
Perform Algorithm 10 to jnsert key and tuple ID
IF uniqueness test fails on any index
THEN Delete record using Algorithm 12
Return with error status

Algorithm 16. Insert Record When There is no Clustered Index

Obtain new data block for new record

Move mew record into pew data block

¥rite new data block

Lock tuple ID block for new record

Read tuple ID block

Set tuple ID slot to point to nmew date block
Rewrite tuple ID block in place

Unlock tuple ID block

Remove old record from old data block if necessary
Rewrite old data block in place if necessary

Algorithm 17, Splitting a Data Block When There is no Clustered Index

10

7 Physical vs. Logical Locks

We use physical locks on blocks and logical locks on records. The physical locks are by block address;
the logical locks are by tuple ID. We will first show that concurrent operations involving physical locks is
deadlock free. We will then consider logical locks.

TaEOREM. The algorithms described above for physical locks are deadlock free.

ProOOF. Each index is treated separately. We never have blocks locked from more than one index at 2
time for any one request. The blocks are locked in indexes according to a partial order that may be extended
to a total order. With the exception of tuple ID blocks, there is no circularity in lock acquisition, which is
one condition for avoiding deadlock.

There is some circularity involving data blocks and tuple ID blocks. However, the following observations
about our locking discipline will show that there is no possibility of deadlock on physical locks. Only one
tuple ID block may be locked at a time. We can wait for a tuple ID block. But if 2 tuple ID block is locked,
we can attempt to acquire but cannot wait for a lock on a data block. Therefore, tuple ID blocks appear
later in the ordering than data blocks, and we are not allowed to wait for a lock earlier in the ordering than
locks we hold. If we can acquire a data block lock while holding a tuple ID block lock, we can proceed with
impunity, but if the data block is already locked, we must give up our lock on the tuple ID block in order
to wait for the lock on the data block. Since there can be no circularity in the ‘wait-for’ graph, no deadlock
on physical locks i8 possible. : B

Locks on physical blocks are held only while manipulating the disk data structure. In between calls to
the IFAP, no physical locks are held. Instead, logical locks on records may be held. Much literature exists
on locking approaches and strategies. We have not described when logical locks are acquired on records but
we shall be content to make several observations.

Our physical locks do not obey a two-phase locking protocol. If it is necessary to abort an operation,
we perform & compensating operation which ned not leave the file in its original internal state but only in
the same state as visible from the outside.

The protocol implemented on records may be two-phase locking |[Eswaran 76, Gray 78], optimistic
concurrency control [Kung 81], or some other approach [Buckley 85]. We aim to guarantee the consistency
of the data structures. In the event of a crash, the integrity of the data structure is maintained. We are not
concerned with whether the old record is there or the new one, but only that only one record be reachable
through the index structures correctly. Unreachable blocks are not as serious 2 problem as unreachable or
duplicate records. File recovery techniques are described in Section 8. Use of this IFAP by systems requiring
atomic transactions, such as database systems, need to implement their own logging and recovery of records.
We will guarantee that once records are stored they remain in the file intact until replaced or deleted.

The separation of locking into logical and physical locks solves many problems as we have seen, but it
introduces some new ones. If a record is deleted by a transaction that subsequently aborts, it may not always
be possible to restore the deleted record. In particular, if in the interim another record is inserted with the
game values for some unique index as the deleted record, the attempt to reinstate the deleted record will
£2i1. We do not lock phantom records. We also keep indexes up to date. If we deferred updating the index,
another insert request by the same transaction with a matching unique index key value might unnecessarily
fail.

For the benefit of systems using two-phase locking [Eswaran 76, Gray 78|, the IFAP should automatically
acquire locks a8 records are returned to the caller. We suggest that the intention to modify the record be
specified when the record is read so that an exclusive lock on the record may be obtained. Locks may be
released explicitly, 2t end of transaction, or when the record is modified (rewritten or deleted). Therefore,
with the exception noted earlier, a scheme for Jogical locks on records could be included (indeed, it exists in
our implementation) that would support two-phase locking. Since no physical locks are held between calls,
any locking scheme may be used on logical records, including non-two phase protocols [Buckley 85].

& File Recovery Technigues

The algorithms presented above are specially designed to maintain the integrity of the disk data structure in
the event of a crash. In particular, we use leaf-first updating. We do require that disk blocks are either com-
pletely and legibly written or not altered at all. Uninterruptable power supplies to disk drives can guarantee

i1

that writes complete when there is a power failure. However, during some operations, inconsistencies may
arise due to failure, such as indexes may not reflect the latest changes to the data. This section describes
how to limit these problems and correct them when they arise.

We assume that physical locks apply to all processes within an operating system environment. We
also assume that the IFAP is allowed to complete the current request if the caller is cancelled at user or
operating system request. Consequently, we can assume that if any IFAP fails during a request, the cause is
an unexpected shutdown aflecting all processes in the operating system environment. Thus, the integrity of
a file can be restored by the first process to attempt to access that file after the crash.

IFAP stores in a known location in the file the status of each request in progress that may result in
inconsistencies of the disk data structure. When the request is started the relevant information is stored and
when the request is completed, the information is deleted or marked completed.

Each time IFAP opens a file, it attempts to acquire exclusive access to the file. If it can, it is the sole
user of the file. It will then check for operations in progress and complete them as necessary. When this
is complete, if shared access to the file is desired, IFAP will demote its lock on the file to be shared. The
next IFAP instantiation will then not be able to acquire an exclusive lock on the file and it will assume that
the file has been recovered if necessary. This assumes that physical locks do not transcend crashes of the
operating system environment, or at least that they can be acquired wholesale by an exclusive accessor of
the file. '

The user of IFAP, typically a database management system, needs to be concerned with logging and
recovery of a record [Haerder 83, Kohler 81]. IFAP ensures that record operations are completed; the user
must ensure that the correct records are stored.

9 Effciency Considerations

We have decided not to link the leaf pages of the index together, for example, as in the sequence set in IBM’s
VSAM. There are several reasons for this decision. First, there are no algorithms for maintaining a B-tree
with a sequence set that avoid violation of the integrity of the pointer structures in the event of a crash
between the writing of blocks for an operation. Second, concurrency control considerations are exacerbated
by the additional access path provided by the sequence set. Third, presplitting of index blocks requires
having the parent block locked when determining whether child index block should be split; this is not done
when using the sequence set. The algorithms are considerably simplified when all access to the B-trees
involves traversing a tree from its root.

Since every access to the file except by tuple ID involves searching a B-tree from the root, special care
must be taken to make this access efficient. We suggest use of a buffer management facility that maintains
a cache of all disk blocks read or written recently. When our instantiation of IFAP reads an index block
from a file, if the block has been accessed recently, the buffer manager will return it without having to
read from disk. If another instantiation of IFAP has updated it since we last read it, we will get the latest
version without much additional overhead. Thus even though complete traversal of a B-tree will require
many repeated requests for the root index block, few disk reads for the root index block will be required
if sufficient buffer memory is available. This facility is provided by the PMAP input-output interface to
TOPS-20 adapted from Tenex.

If main memory is plentiful, the tradeoff of using the indirect pointer (tuple ID) rather than clustered
index key may have different characteristics, especially if the entire clustered index fits in memory. This
requires that the clustered index key be unique or at least extended internally to make it unique. The
algorithms presented here can be adapted to use clustered index key.

16 Conclusion

We have described a multi-indexed B*-tree that is reliable, deadlock-free, and reasonably efficient. We
wanted the B-tree structure to be reliable. By this we mean that a crash cannot result in corruption of the
B-tree structure. The worst that can happen is the B-trees lose synchrony with the data, which is easily
fixed in restart, or disk blocks are lost, but they are easily returned to the free block pool by scanning the
file,

We wanted the B-tree structure to be deadlock-free. Obviously this is not possible on the record level
if multiple record locks can be held by any user. Rather, manipulation of the B-tree structure requires that

1z

block locks are held during a B-tree operation, and it is the protocol on these block locks that is deadlock-
free. As a replacement may enter through any of the B-trees and, by changing multiple attributes, cause any
collection of B-trees to change, 2 single partial ordering applied to all block locks could not alone prevent
deadlock.

We wanted the B-tree structure to be reasonably efficient. But we were also interested in low variance
in response. For example, the use of indirect pointers between non-clustered indexes and the data is a
compromise between using direct pointers and using the clustered index key.

Other requirements included variable-length keys, variable-length records, separation of clustering {an
efficiency issue) and unique index (a data dependency issue), as well as minimal assumptions about the
capabilities of the underlying operating system.

"" These conflicting needs had to be carefully balanced in the design of a synergistic system. Often design
decisions made originally for one goal were found to be beneficial for another goal, or even had unexpected
benefits. For example, we used an anchored pointer for indirect pointers from non-clustered indexes to the
data. The indirect pointer was created for efficiency in moving clustered records. Anchoring it allowed us
to release all locks before waiting for a new lock when it would violate the partial order. This permits the
use of a non-preemptive deadlock prevention algorithm.

Our design is 2 solution to an important database implementation problem. But it also illustrates clearly
some tradeoffs made in design decisions. We have combined an appropriate collection of techniques to obtain
a synergistic whole. The whole is greater than the sum of its parts, for it says how they fit together. The
choice of these parts and the process of fitting them together is engineering.

11 Acknowledgements

Gio Wiederhold suggested the problem. The first implementation of the system, called FLASH, was by
Jim Allchin. Further implementation work was done by Xiaolei Qian and Arun Swami. The design of the
system and the refinement of the algorithms were done by Arthur Keller. This manuscript was prepared
with the helpful assistance of K. F. Carbone. A functional description and an interface for Ada is also
available [Keller 86]. George Copeland suggested considering the issue when large main memory is available.
Bruce Shriver suggested some improvements in the presentation, more of which will be incorporated in the
published version.

12 Bibliography)

[Alichin 80] Alichin, J. E., Keller, A. M., and Wiederhold, G. “FLASH: A Language Independent,
Portable File Access System,” Int. Conf. on Management of Data, Santa Monica, CA, ACM, May

1980, pp. 151-156.

[Bayer 72] Bayer, R., and McCreight, C. $QOrganization and Maintenance of Large Ordered Indexes,”
Acta Inf. 1, 3 (1972), pp. 173-189. ’

[Bayer 77| Bayer, R., and Schkolnick, M. “Concurrency of Operations on B-trees,” Acta Inf. 9, 1 (1977},
pp. 1-21.

[Buckley 85] Buckley, G. N., and Silberschatz, A. “Beyond Two-phase Locking,® Journal of the Assoc. for
Comput. Mach., Vol. 32, No. 2, April 1985.

[Comer 79] Comer, D. sThe Ubiquitous B-tree,” in Comput. Surv. 11, 2 (June 1979}, pp. 121-137.

[Eswaran 76] Eewaran, K. P., Gray, J. N., Lorie, R. A, and Traiger, I. L. *The Notions of Consistency
and Predicate Locks in a Database System,” Comm. of the Assoc. for Comput. Mach., Vol. 19, No.
11, November 1976.

[Gray 78] Gray, J. *Notes on Data Base Operating Systems,® in Operating Systems, Lecture Notes in
Computer Science, Vol. 60, Springer-Verlag, New York, 1978.

[Haerder 83] Haerder, T., and Reuter, A. $Principles of Transaction-oriented Database Recovery,” ACM
Comput. Surv., Vol. 18, No. 4, December 1983, pp- 287-213.

[Keller 86] Keller, A. M. “Indexed File Access for Ada,® submitted for publication.

[Kohler 81] Kohler, W. H. “A Survey of Techniques for Synchronization and Recovery in Decentralized
Computer Systems,” ACM Comput. Surv., Vol. 13, No. 2, June 1981, pp. 149-183.

[Kung 81] Kung, H. T., and Robinson, J. T. *On Optimistic Methods for Concurrency Control,” ACM
Trans. on Database Systems, Vol. 6, No. 2, June 1981, pp. 213-226.

i3

[Lehman 81] Lehman, P. L., and Yao, S. B. “Efficient Locking for Concurrent Operations on B-trees,”
ACM Trans. on Database Systems, Vol. 6, No. 4, December 1981, pp. 650-670.

i4

> index

7/

} dela

Figure 1. Index Data Structures

@ Parent and child blocks both locked
(D) Wwrite new child index blocks

| / ! \.\ (2) write parent with new pointers

:::\ // l: (@ Add old child index block to

available list

@ @ Release locks on old child,

‘ \ ‘ ‘ ‘ ‘ ‘ ‘ parent, and one child block

Figure 2. Splitting a non-root index block

Block rewritten_ in place
New Block

Deleted Block

—--- Removed pointer
New pointer
Legend for Figures 2 and 3

@

Al

|

®©

(D) write new child index blocks

(@) Write root index block with.
pointers only to new child
index blocks.

Figure 3. Splitting 8 root index block

clustered indeX non-clustered indexes
non-leaf
/\ index

blocks

[l'_] [%l teaf index

blocks

)

Tist of

] D records for

non-clustered
indexes

d
| e
El; [
]

cf’

OCo— 0
date blocks

N
train of date blocks

O

o

tuple 1D blocks

()
O O
o O
O
0O 0O
O

Figure 4. Disk Data Structures

non-leaf
index
blocks

Tesf index
blocks

1ist of
records

tuple ID blocks

\—{3 \-D data blocks

Figure 5. Disk data structures for files without
clustered indexes

