COMPLETENESS RESULTS FOR CONFLICT-FREE
VECTOR REPLACEMENT SYSTEMS

Rodney R. Howell and Louis E. Rosier
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-86-21 September 1986






Completeness Results for
Conflict-Free Vector Replacement Systems

Rodney R. Howell and Louis E. Rosier

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712-1188

9 September 1986

Abstract

In this paper, we give completeness results for the reachability, containment,
equivalence, liveness, and various fair nontermination problems for conflict-free ~wector
replacement systems (VRSs). We first give an NP algorithm for deciding reachability.
Since Jones, Landweber, and Lien have shown this problem to be NP-hard, it follows
that the problem is NP-complete. Next, we show as our main result that the
containment and equivalence problems are Hg-complete, where Hg is the set of all
languages whose complements are in the second level of the polynomial-time hierarchy.
In showing the upper bound, we first show that the reachability set has a semilinear set
(SLS) representation that is exponential in the size of the problem description, but
which has a certain degree of symmetry. We are then able to modify a proof given by
Huynh (concerning SLSs) to complete our upper bound proof. We then show that the
liveness problem is PTIME-complete and has an O(nl's) upper bound. Finally, we show

various fair nontermination problems to be complete for NLOGSPACE, PTIME., and
NP.

1. Introduction

The reachability, containment, and equivalence problems for vector replacement
systems (VRSs) (or equivalently vector addition systems (VASs), vector addition systems
with states (VASSs), or Petri nets) are the subject of many unanswered questions
concerning computational complexity. The containment and equivalence problemns are,
in general, undecidable [1, 10]. However, the reachability problem is decidable 21, 28],
and, for classes of VRSs (VASs, VASSs, Petri nets) whose reachability sets are
effectively computable semilinear sets (SLSs), so are the containment and equivalence
problems. Classes whose reachability sets are effectively computable SLSs include finite

VRSs [20], 5-dimensional VRSs (or, equivalently, 2-dimensional VASSs) [11], conflict-



free VRSs [6], persistent VRSs [9, 23, 27, 31], and regular VRSs [8, 39]. The best known
lower bound for the general reachability problem is exponential space [26]. For finite
VRSs, tight non-primitive recursive upper and lower bounds have been shown for the
containment and equivalence problems [5, 12, 30, 32]. For 2-dimensional VASSs, the
reachability, containment, and equivalence problems can be solved in DTIN[E(QQC*H)
-[12]. The reachability problem for conflict-free VRSs has been shown to be NP-hard
[19]. The perhaps best studied class is that of symmetric VRSs. For this class, the
reachability and equivalence problems have been shown to be exponential space

complete [3, 16, 29]. Few other complexity results appear to be known concerning these

problems.

In this paper, we show completeness results concerning conflict-free VRSs for these
three problems, as well as for liveness and several fairness problems. Conflict-free V. ASs
were introduced by Crespi-Reghizzi and Mandrioli [6], who showed the reachability
problem to be decidable for this class. Conflict-free Petri nets were later introduced by
Landweber and Robertson [23], who showed that the reachability set of a conflict-free
Petri net was semilinear, and that the boundedness problem for this class could be
solved in exponential time. Howell, Rosier, and Yen [13] then introduced conflict-free
VRSs as a formalism that contains both conflict-free VASs and conflict-free Petri mnets
as special cases, but for which the boundedness problem retains the same computational
complexity; i.e., the boundedness problem was shown to be PTIME-complete for all
three classes. (As was pointed out in [13], even though there are translations between
the three classes, these translations do not always preserve sharp complexity boumnds.)
In this paper, we follow the precedent established in [13] of showing upper bounds for
VRSs, the most general of the three models, and showing lower bounds for systems

which satisfy the definitions of all three models.

The main result of this paper is to show the equivalence and containment problems
for conflict-free VRSs to be Hg-complete, where Hg is the second level of the
polynomial-time hierarchy (see Stockmeyer [36]). In showing this, we use a strategy

developed by Huynh [17] in showing the equivalence problem for semilinear sets to be in



Hl; . Given this result and the fact that conflict-free VRSs have semilinear reacha bility
sets [23], one might attempt to solve the problem by translating the VRSs to SLSs and
applying Huynh’s results directly. However, it can be shown that such a translation
must be exponential. Hence, we prove additional properties concerning the reswualting
SLS representations that enable us to obtain our results via a modified version of
Huynh’s proof. Now in his proof, Huynh used the fact that the membership problem
for semilinear sets is NP-complete [15]. We therefore first show that the reacha bility
problem for conflict-free VRSs is in NP. (Since Jones, Landweber, and Lien [19] have
shown the problem to be NP-hard, it follows that the problem is NP-complete.) In
order to show this, we give some properties of conflict-free VRSs that allow us to show
that there is an instance of integer linear programming that has a solution iff a given
reachability problem has a solution; furthermore, this instance of integer I1inear
programming can be "guessed" in polynomial time. Our next step is to give & SLS
representation of the reachability set. We have already mentioned that this
representation is exponential in the size of the problem description. On the other hand,
we are able to show a certain amount of symmetry in the SLS representation. It is this
symmetry that allows us to alter Huynh’s proof to give our upper bound. Finally, we

show a matching lower bound to complete the proof of our main result.

The remainder of our completeness results have to do with the liveness and fair
nontermination problems. The concept of liveness for Petri nets was introduced by
Jones, Landweber, and Lien [19]. It follows from results in [19] that the liweness
problem for conflict-free Petri nets can be solved in NP. We are able to show an
O(nl‘s) upper bound for the liveness problem for conflict-free VRSs, and to show the
problem to be PTIME-complete. Various notions of fairness for Petri nets were
introduced by Carstensen and Valk [4]. In addition, we adapt to the VRS model several
notions of fairness introduced by Lehman, Pnueli, and Stavi [24]. We are able to show
the fair nontermination problems for each of these definitions of fairness to be cormplete
for either NLOGSPACE, PTIME, or NP. Since a number of these problems have
efficient solutions, we conjecture that the algorithms may be useful in the verification of

parallel systems which can be modelled using conflict-free VR.Ss.



The remainder of the paper is organized as follows. In Section 2, definitions of the
terminology used in this paper are given. In Section 3, we give our results concermning
the reachability, containment, and equivalence problems. Finally, in Section 4, we give

our results concerning the liveness and fair nontermination problems.

2. Definitions

Let Z (N, R) denote the set of integers (nonnegative integers, rational num bers,
_respectively), and let 7k (Nk, Rk) be the set of vectors of k integers (nonnegative
integers, rational numbers), and ZKX™ (NKX™ RKXm) pe the set of kXm matrices of
integers (nonnegative integers, rational numbers). For a vector ve ZX, let v(i),
1 <i<k, denote the i'h component of v. For a matrix V € ZKX™  let Vi), 1<i <k,
1 < j < m, denote the element in the ith row and jth column of V, and let Vs denote the
jth column of V. For a given value of k, let 0 in 7X denote the vector of k zeros (i.e.,

0(i)=0 for i=1,...,k). Now given vectors u,v, and w in 7% we say:

e v=w iff v(i)=w(i) for i=1,... .k;
e v > w iff v(i) > w(i) for i=1,....k;
e v>w iff v > w and v £ w;

o u=v+w iff u(i)=v(i)+w(i) for i=1,...,k.

A kXm wvector replacement system (VRS), is a triple (v,,U,V), where v < N,
UeNEXm  ond vezkXm  such  that for any i, 1<i<k, 1<j <m,
U(i,j)+V(i,j) = 0. v, is known as the start vector, U is known as the check matriz, and
V is known as the additzon matriz. A column u, of U is called a check vector, zand a
column v, of V is called an addition rule. For any x € Nk, we say addition rule wv. is
enabled at x iff x > ;. A sequence LY yreees¥ > of rules in V is enabled at a vector x iff
for each j, 1<j<n, f is enabled at x+y,+ - - - +yj_1. The reachability set of the VRS
V=(v,,U,V), denoted by R(vy,U,V) (or R(V)), is the set of all vectors z, suchh that
z=vy+y,+ - - - +y, for some n > 0, where each g (1<j<n)is a column of V', and
LY qpeees¥ > is enabled at v, Let o=<w,...,w, > be a sequence of vectors in Nk, I

W=V and for every r, 1 <r <+, there is a j such that Wrzwr—1+vj and w__4 = s,



then we say <Wg,...,w,> is a path in (v, U,V). If there exist r and 5, 1 Sr<s <8,
such that w_< w, (W <w), then we say that ==<w ,...,w_> is a loop (positive Zoop),
and that = is enabled at w_,. Let ¥ denote the Parikh mapping, such that if € is a
sequence of rules in V, then ¥(9) € N™, and ¥(6)(j) is the number of occurrences of V. in

9. Let §(¢) denote the displacement of 6. We also define an extended Parikh mapping
(see also [23]) ¥ such that ¥ (6)=<¥(6),5(8)>.

A VRS (VO,U,V) is said to be conflict-free iff (1) no number in U is greater thhan 1;
(2) no number in V is less than -1; (3) no row in V has more than one -1; and (4) if
V(i,j)=-1, then U(i,j) = 1, and all other elements in row i of U are 0. For a given
kxm addition matrix V, the minimal check mairiz is 2 kXm matrix U in ~wwhich
U(i,j)=1 if V(i,j)=-1, and U(},j)=0 otherwise. It is easy to see that the set of kXm
conflict-free VRSs with minimal check matrices is equivalent to the set of k Xm comflict-
free VASs (see [6]). Furthermore, there is an obvious translation from a conflict-free
Petri net (see [23]) with k places and m transitions to a kXm conflict-free VRS ~whose
addition rules and check vectors have no elements larger than 1. Thus, our definition is
general enough to include both previous definitions. In addition, all lower bounds
shown in this paper are shown using VRSs having minimal check matrices arad no

elements larger than 1. Thus, all of our completeness results hold for conflict-free

VRSs, conflict-free VASs, and conflict-free Petri nets.

The reachability problem for VRSs is to determine, for a given VRS V and a ~rector
v, whether v € R(V). The containment and equivalence problems are to determime, for
two given VRSs V and V, whether R(V)CR(V) and whether R(V)=R(V), respectively.
A VRS V is said to be bounded iff for each row i, there is a constant ¢ such that if
vER(V), then v(i)<c. The boundedness problem for VRSs is the problem of
determining whether a given VRS is bounded. An addition rule V5 €V is said to Toe live
in (VO,U,V) if for any w ER(VO,U,V), there is a path ¢ in (w,U,V) that enables V- The
transition liveness problem for VRSs is to determine, for a given VRS (VOSU,V) and an
addition rule \f €V, whether \f is live in (VO,U,V), The VRS (VO,U,V) is said to e live

if every transition VjGV is live in (vy,U,V). The liveness problem for VRSs is to



determine whether a given VRS is live,.

The remaining problems studied in this paper have to do with various notioms of
fairness. The first three types of fairness we consider were introduced by Lehmman,
Pnueli, and Stavi [24]. Let o be an infinite path in (vgUsV). o is said to be impartZal if
every addition rule \f €V is executed infinitely often. o is sald to be just if every
addition rule vjEV that is enabled continuously after some point in ¢ is executed
infinitely often. o is said to be fair if every addition rule VjGV that is enabled
infinitely often in o is executed infinitely often. The remaining definitions of fairness

come from Landweber [22] and Carstensen and Valk [4]. Let 4 be a finite set of finite

nonempty subsets of NK. o is said to be

e I-fair for A if there is an A € A such that some vector reached by ¢ is in A.
e 1'-fair for A if there is an A € A such that every vector reached by ¢ is in A.

e 2-fair for A if there is an A € A4 such that some vector reached infinitely
often by ¢ is in A.

o Z-fair for A if there is an A € A such that every vector reached infinitely
often by o is in A.

e 3-fair for A if the set of vectors reached infinitely often by o is an element

of A.

e &-fair for A if there is an A € A such that every vector in A is reached
infinitely often by o.

We refer to these six types of fairness collectively as ¢-fairness, where i is understood to
be an element of {1,1',2,2/.3,3"}. The impartial (just, fair, i-fair) nontermination
problem is the problem of determining whether there is an infinite impartial (just, fair,

i-fair, respectively) path in a given VRS for a given set A (if applicable).

Part of our analysis involves notions from the theories of semilinear sets and convex
polyhedra. We define here the terms used in this paper. For a detailed treatmemnt of
the theory of convex polyhedra, see Stoer and Witzgall [37].



For any vector v, € NK and any finite set P(={V1,.,.,vm})C_iNk, the set L(v,,P)={x

: 3k, .0k € N¥ and X=VO+Z:’;1 k.v.} is called the linear set with base v, over the set
of periods P. A finite union of linear sets is called a semilinear set (SLS for short). The

cone generated by v, and P, denoted by C(vgP), is the set {x : Jk,,...k  €R,
ki ek 20, and X=VO+ZZ:1 kv.}. If vo=0 and we restrict k,....,k in the above set

so that ZT___I k=1, then that set is called the convex hull of P, and is denoted conv(P).
Let A€ 7kXm and bEZk. If As£0, then the solution set of the linear equation
AjXsz(j) over x ER™ is a hyperplane, and the solution set of the linear inequality

AJ-XT < b(j) over x €R™ is a halfspace. Finally, the solution set of Ax < b is called a

convez polyhedron (or polyhedron, for short).

3. Reachability, Containment, and Equivalence

The first problem we would like to examine is the reachability problem. Jones,
Landweber, and Lien [19] have shown this problem to be NP-hard. Although the
problem is known to be decidable [6], no upper bound on its complexity has yet been
shown. In order to tighten this gap, we will show the problem to be NP-complete. Our
strategy is to guess an instance of integer linear programming whose solutions give
Parikh maps of sequences of addition rules that lead to the desired vector.  The

following two lemmas will give sufficient conditions to guarantee that for every solution

%, there is an enabled sequence ¢ such that ¥(4)==%.

Lemma 3.1 (from [13]): For any kXm conflict-free VRS V=(v,,UV) that is
described by n bits, we can construct in time O(nl's) a path ¢ in which no rule in V is

used more than once, such that if some rule v_is not used in o, then there is no path in

which v, is used.

Proof: We construct o as follows. First, we execute all rules enabled at v,. Then we
repeatedly cycle through U, executing all those rules which are enabled but have not yet
been executed. We continue until a complete pass is made through U, during which no

position increases in value. (Note that this is a sufficient condition to conclude that no



new rules are enabled.) Clearly, no more than m+1 passes are made through U. On
each pass except the last, there is at least one rule (say vj) enabled that was not enabled
the previous pass; i.e., some position (say p) which was zero the previous pass is now
positive. Furthermore, since V is conflict-free, if some rule subtracts from position p,
4 that rule must be Vi Therefore, position p must have never previously been positive.
~ Thus, on each pass except the last some position becomes positive for the first time, so
the number of passes is no more than min(k,m)+1=0(n"%). Therefore, the emntire

procedure operates in time O(n'®).

Now suppose there is a path ¢ using rules not in o. Let v, be the first such rule

’

executed in o/. Then all rules used before v, in ¢ are used in o. Since v, is not executed

in o, no position from which v_ subtracts ever decreases in value in o; hence, these
positions are at least as large as they are at the point at which v, is executed in o.

Then v, is enabled by ¢, a contradiction. Therefore, if v, is not used in o, then there is

no path in which v is used. 0

Lemma 3.2: Let (v,U,V) be a kXm conflict-free VRS, and let 6 be an arbitrary
sequence of rules from V. If every rule in ¢ appears in some path that uses only rules

from 9, and if &(6)+v, > 0, then there is some sequence ¢' enabled at v, such that

(8 )=w(0).

Proof: We will construct a path o consisting of a sequence of n segments, Tys=neslps
where n is the maximum number of times any rule appears in 4. Each segment will be
a sequence containing at most one occurrence of each rule in 4. Furthermore, ¢ will be
such that if some segment contains no occurrence of some rule, then no succeeding
segment will contain an occurrence of that rule. Now, if we restrict our VRS to comtain
only the rules used in 4, then from Lemma 3.1, some sequence containing every rule in ¢
exactly once is valid at v, This sequence will be segment oy of s. We construct
segment o, 2<r<n, as follows: while there is an enabled rule v which occurs at least r

times in ¢ and has not yet been used in 7., execute Vi We claim that according t<o this

construction, segment o (1<r<n) uses exactly one occurrence of each rule that ap pears



at least r times in 4. Suppose, to the contrary, that at some point in the construction of
= there are no enabled rules in the nonempty set S of rules that appear at least r times
in ¢ but which have not been used in 0. Without loss of generality, assume o is the
first segment for which this happens. Let Vi be the first rule used in o that also appears
in S, and let w be the vector produced by the first r segments of . Now there must
exist an i, 1 <i<k, such that w(i)=0 and U(i,j)=1. If V(i,j)s%4-1, then froma the
definition of conflict-freedom, no rule can subtract from position i, so position 1 would
have had to have been 0 throughout ¢. But this would mean Vs could not have been
executed even once—a contradiction. Therefore, V(i,j)=-1. Since §#6)+v, >0, some
rule Vi used in o or occurring in S must add to position i. Since \f is the only rule that

can subtract from position i, vy can not have been executed since the last time v. was

i

J
have been executed the same number of times in the first r segments, so VO(i) < w(i)=0.

executed; otherwise, \f would be enabled by w. Thus, vj,e S. Now clearly, v, and v

Since v is the first rule from S used in o, some other rule (not vj,) which adds to
position i must have been executed before v, was first used. But this forces w(i)>=>0--a
contradiction. Therefore, segment o, contains exactly one occurrence of each rule that

appears at least r times in ¢, for 1<r<n. Thus, the sequence ¢' of rules comprising o

satisfies the lemma. 0

The following is a corollary to the proof of Lemma 3.2; it will be used in obtaining

later results.

Corollary 3.1: If ¢ is a sequence of rules enabled at v such that §6)>0, then there
exists a vector v'<v with no element larger than 1 and a sequence of rules ¢’ with

#(6)=y(¢') such that ¢ is enabled at v'.

Proof: Let v/(i)=0 if v(i)==0, v/(i)=1 otherwise. =~ Consider the first segment
constructed in the proof of Lemma 3.2. Since each rule used in ¢ is used exactly onice in
this segment, no more than 1 is subtracted from any position during the execution of
the segment. Thus, this segment is clearly enabled by v/. Now from Lemma 3.2, there

is some sequence ¢ enabled at v/ such that ¥(6)=v(¢'). O
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We are now ready to show the reachability problem to be NP-complete. Recall
that the problem was shown to be NP-hard in [19]. An inspection of the construction
used in that proof reveals that it holds for both conflict-free Petri nets and conflict-free

VASs. Hence, we only need to show the upper bound.
Theorem 3.1: The reachability problem for conflict-free VRSs is NP-complete.

Proof: Let (v,,U,V) be a kXm conflict-free VRS, and let weNK be an arbitrary vector.
Our algorithm assumes the existence of some path that results in w, and guesses the set
of rules used in that path. It then verifies whether there is some path which uses
exactly this set of rules. By Lemma 3.1, this can be verified in polynomial time. Let
the set of guessed rules be the kXn matrix V.. Our algorithm now verifies that there is
some x€N", x(i)>1 for 1<i<n, such that V'x+v,=w. From Borosh and Treybig [2],
this can be verified in NP. Now from Lemma 3.2, if such an x exists, then
WER(VO,U,V). O

We now turn to the containment and equivalence problems. We will show that
these problems are Hg—complete, where Hg is the set of complements of all languages
that can be recognized by a polynomial-time-bounded nondeterministic Turing ma.chine
with an NP oracle (see Stockmeyer [36]). In showing the upper bound, we follow a
technique used first by Huynh [17] (see also [12]). In [17], Huynh gave a proof that the
containment and equivalence problems for semilinear sets are in Hg . Landweber and
Robertson [23] have shown that the reachability set of a conflict-free Petri met is
semilinear; it is easy to verify that this also holds for VRSs. In what follows, we give an
upper bound on the size of the SLS representation of the reachability set. In particular,
we give an SLS representation in which no integer is larger than (c*k*m*n)d*k*m, ~where
k and m are the dimensions of the VRS, n is the largest absolute value of any integer in
the VRS, and ¢ and d are fixed constants independent of k, m, and n. Now the
technique used in [17] is to show that if the two SLSs are not equal, then there is a

"small® witness to that fact. Unfortunately, applying our derived bounds to the result

f*k *
in [17] yields a bound of O((k*m*n)(k*m}c m) for the largest integer in the stz allest



i1

witness. This is clearly too large to guess in polynomial time. Furthermore, we cannot
improve our bounds enough to make a direct application of Huynh’s results work. To
see this, observe that there is a bounded kX(k-1) conflict-free VRS with start vector
(1,0,...,0) which has, for any position i, 2Zi<k, a rule which will subtract 1 from
position -1 and add 2 to position i. The reachability set of this VRS has at least ok
bases, and even Ifor SLS representations of this size, Huynh’s results yield a bound of
O((k*m*n)(k*m)c k). In [12], a variation of the proof in [17] was given in which a small
enough bound was placed on the sizes of the periods to allow some degree of
improvement to be made. However, even if a bound of n could be placed on the largest
integer in any period, this proof does not not yield a polynomial bound on the binary
representation of the smallest witness. What we are able to do, however, is to give an
SLS representation with a high degree of symmetry. It is this symmetry, together with
our bound on the size of the SLS representation, that allows us to alter the proof in
[17] to give us our tight bound on the size of the smallest witness. The following

lemma gives the SLS representation of the reachability set of an arbitrary conflict-free
VRS.

Lemma 3.3: Let (VO,U,V) be a kXm conflict-free VRS in which n is the largest

absolute value of any integer. Then there exist constants c¢;, c,, dl’ and d2,

independent of k, m, and n, such that R(VO,U,V)zuveBL(V,PV), where B is the set of
LM S

all reachable vectors with no element larger than (c,*k*m*n)‘2 K'm and P_is the set of

all displacements of loops enabled at v such that if p€P_, then
1. p has no element larger than (dl*k*m*n)d;k*m, and
2. if v(i)==0, then p(i)=0.

Proof:

(UveBL(V’Pv) CR(vy,U,V)): Clear.

(R(VQ,U,V)guvegL(v,Pv}): Let G={6,,-..,, } be the set of all nonempty sequiences
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¢ of rules in V for which ¥"(§)>0, and there is no nonempty sequence ¢ such that
0<vuT(¢)<¥(6). (The fact that G is finite follows from results in [20]). For each
G ={63-.-,07 } ©G, let W'_ be the set of vectors w such that (1) there exists a sequence ¢
of rules in VS which, when applied to Vo yields w, (2) all sequences in GS are enabled at
w, and (3) <w¥(6),w> is minimal over the set of all <¥(4),w> satisfying conditionns (1)
and (2). Also, let W_ be defined in the same manner as W', except that condition (2)
should read "for each sequence £7€G_, there is a sequence 6.€G such that 5(6?):5(%.) and
6, is enabled at w." From Theorem 4.1 in [23], R(VO,U,V)=UGS_C_Guwew,sL(W,S(Gs)),
where §(G,) denotes the set of all displacements of loops in G_. (The proof in [23] deals
with persistent Petri nets; however, the same proof technique works for conflict-free
VRSs.) An inspection of the proof of Theorem 4.1 in [23] reveals that
R(VO,U,V)zuengU_wewsL(w,é(Gs)) as  well. We  will  show that
Ua_calwew LW:AG)) & Uyepl(viPy)-

Let yEUngguwewsL(w,ﬁ(GS)). In particular, let y=w+§:;6=1 ajé(ﬁ?), where
G ={f},...0 }CG, weWw,, ajZO. We will first give a bound for §(¢) for each 9€G. Let
S
x=¥(4), and v=6(¢). Then the following system of Diophantine inequalities holds (recall
that Vx gives the displacement of 8):

Vx>0

Vx=v

x(j)>1if \f is used in 4, 1<j<m
x(j)==0 if s is not used in 4, 1<j<m

We now claim that ¥(6) is a minimal solution of the above system over the variables
<x(1),...,;x(m),v(1),...,v(k)>. To see this, observe that any smaller solution thary @(6)
would describe a sequence ¢ using the same rules as 8 such that o™ (¢)<@ (6)--a
contradiction of the definition of G. From results of von zur Gathen and Sieveking
[40] and Huynh [15], all variables in any minimal solution are bounded abowve by
(dl*k*m*n)d2*k*m for some constants d; and d,. Thus, 5(9)(i)§(dl*k*m*n)dz*k*m,
1<i<k.

We will now show a bound for w. Recall that there is some sequence ¢ that, when
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applied to v, yields w. Let v/<w be some minimal vector such that for any sequience
7€G,, there is a sequence GJEG such that ﬁ(ﬂi)zﬁ(ﬂj) and 2 is enabled at v. By
Corollary 3.1, no element in v’ is larger than 1. If x and v are again defined as abbove,
the following system of Diophantine inequalities holds (recall that Vx+v0=w):

Vx+V02v’

Vx=—=v

x()=>11if v, is used in 4, 1<j<m

x(j)==0 if \f is not used in 4, 1<j<m
Now clearly, all solutions to the above system over the variables
<x(1),0ee,x(m),v(1),...,v(k)> are pairs <¥(¢'),w-v,> such that w' satisfies conditioras (1)
and (2) of the definition of W_. Since weW_ and <¥(0),w-vy> is clearly a solution of

the above system, in order to satisfy condition (3) of the definition of W, <W(0),w—vy>
must be a minimal solution. Thus, W(i)ﬁ(dl*k*m*n)dz*k*m, 1<i<k.

We are now ready to show yEUveBL(V’Pv)‘ Suppose for some i, y(i)%0 and

w(i)=0. Since y=W+Z;$:1 aj6(9?), there must be some j, 1<j<r_, such that aﬁéO and
6(9?)('1)7&0. Thus, if {}? applied to w (recall that by definition 9? is enabled by w) 37ields
w', then w'(i)5£0. Since each 6€G has nonnegative displacement, after no more tlInan k
applications of this technique, we generate a z such that y=z+2§i . a’j*a(ﬂ?), <~ here
z(i)S(cl*k*m*n)c2*k*m for some ¢, and ¢, z(i)=0 iff ¥y(i)=0, al.>0,
GS,={9S',...,9§'S5}_C“ G, and o;?" is enabled at z, for all 1<i<k, 1<j<r,. Clearly, 2653, and

if a’j_>_1, then 6(6??)(51:’2° Thus, YEU, gL(V.P,)- O

We will now show that if some vector w is reachable in a conflict-free VRS VWV, but
not in another conflict-free VRS 7V,, then there is some vector w' whose I>inary
representation is polynomial in the size of the representations of 'V}L and 'VQ, such thhat w'
is reachable in ’Vl but not in 'Vz. In so doing, we closely follow the technique developed
in [17]. An important point to remember is that for any linear set L(V,Pv) given in the
SLS representation of V (from Lemma 3.3), v(i)=0 only if for all peP , p(i)=0. Itis
precisely this fact that gives us our improvement over a direct application of the results

from [17]. Since the proof is rather lengthy, we omit many of the details that m ay be
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found in [17].

Lemma 3.4: There exist constants ¢ and d such that for any two kXm conflict-free

VRSs 7V, and '1/’2 in which n is the largest absolute value of any integer, if

5
wER(V,)\R(V,), then there exists a w'€R(V;\R(V,) such that W'(i)ﬁ(c*k*m*n)d*k *m

.Proof: From Lemma 3.3, R('Vl)zuveBlL(v,P‘lf) and R('Vz)zuveBQL(v,Pg), where B,
B, P‘lj, and P% are as defined in Lemma 3.3. If we let |S| denote the number of

2
elements in a set S, then Ileg(cl*k*m*n)dl*k "M for some constants ¢, and d,

independent of k, m, and n.  Let weSL,\SL,, where SL1=Uv€B1L(v,P\1f),
SLy=U, EBzL(V’Pg’)' Without loss of generality, assume that WEL\SL2, w here
L=L(X,P}1() such that x€B,. For convenience, let B2={x1,...,xlB2i}, and let C=C(X,P)1()

and Ci=C(xi,P)2(i). Without loss of generality, let weC;N...NC_ and W¢0r+lu"‘uc}82[’
where 1<r<|B,|. From Lemma A.5 in [17], for each Cj, r+1<j<|[B,|, there is a

halfspace Hj defined by a linear inequality aijij, whose entries are no larger in

* 2*
absolute value than (cz*k*m*n)d2 k™ m for some constants ¢y, dy, independent of k, m,

and n, such that WGEHj and HjﬂCj-:(b. Then let szCﬂClﬂ...ﬂCrﬂHr+lﬂ.,.ﬁHlBQI.

From Lemma 2.1 in [17], C_=conv(E)+C(0,F), where ECRK, FCNK are finite sets of
nonnegative vectors. (For any U,Vng, U+V denotes {u+v:u€U,veV}.) Furthermmore,
E and F can be chosen so that the integers in EUF are no larger than

45
(03*k*m*n)d3*k ™ for some constants ¢; and d; independent of k, m, and n.

We will now show that Pi ————Pz =...=P}2{. It is in showing this fact that we
1 2 T

depart from the proof given in [17]. Consider arbitrary Pg and Pi_l, 1<3,i'<r. We will
J 3

show that sz:Pij:' If xj(i) (Xj,(i)) = 0, then for all pEsz (sz’), p(i)=0 (b the

definition given in Lemma 3.3). Now since WEC(XJ—,P?)QC(XJ-,,P?L’), if xj(i) (Xj,(i)) = 0,

then w(i)==0; i.e., if w(i)540, then Xj(i) (Xj,(i)) s 0. Conversely, if w(i)=0, clearly” Xj(i)
(Xj,(i)) = 0. Thus X}-(i)z(} iff xj,(i)zzo. Now consider a sequence of addition rules 4

enabled at X;e From Corollary 3.1, there is a sequence ¢, ¥(8)=v¥(¢'), such that ¢ is
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enabled at some point X'ij, where ¥’ has no element greater than 1. Since xj(i)x() iff
Xj,(i)::(), x’ng,, and, hence, # is enabled at Xjr- In particular, any loop enabled at x. is

also enabled at X and by symmetry, the converse also holds. Thus by the definnition
given in Lemma 3.3, Pisz%,'

We now continue with the reasoning from [17] using the fact shown above.
Consider w and C_. We have weC_. In what follows we will show that in C_ if v has
an element that is too large, i.e., w is too "far away" from conv(E), then we can find a
"small" witness w' for the fact that SL,&SL,. To this end, consider the linear sets

L(O,P)lc), L(O’P’Q‘l)’ and the cone C(0,F). Huynh [17] points out that C(0,F") C

2 2 : 2 2
C(O,Pi)mC(O,le)ﬂ...mC(O,er). Since PXI=PX2=..,=P§r, C(O,F)QC(O,P}()QC(O,Pil).
Therefore, from Caratheodory’s theorem for cones (see [37]), each VEF may be expressed

as a linear combination of not more than k linearly independent vectors in P)lc (Pi ,
1
respectively). Hence, there are nonnegative integers A Xy such that XIVEL(O,Pi) and

RQVGL(O,P?( ), where Ay Ao may be chosen, by Cramer’s rule, as some subdetermimants
1

of +the matrices formed by vectors in P)l(, Pgl, respectively. "Thus,

%1, 2%
>\1,>\2§(c4*k*m*n)d4 k™ m ¢4 some constants c, and d, independent of k, m, amad n.
2
Hence, the least common multiple A of X%, is no more than (cs*k*m*n)dS*k *m

2
Thus, for each vEF, there exists an integer xv_<_(c5*k*m*n)d5*k "M such that XN,V E
i 2y 1 2 2 . .
L(O,PX)HL(O,le) = L(O,Px)r‘xf_(G,le)ﬁ...ﬂL(O,PXr). (Note that in [17], X  is the least
common multiple of r+1 integers; if we had not been able to reduce the number of

factors, our bound for x would have been double-exponential in k and m.)

Let G={Avv : v€F}. Intuitively, each AV is a "superperiod" which can be
subtracted from w so that 2 "small” witness w' can be obtained. We formalize this idea
in the following. Suppose w has an element larger than any integer in E. Then C_ is an

unbounded polyhedron, and F (or equivalently G) is not empty.

Comnsider the lattice points in Cw, i.e., elements in CwﬂNk. Let uECWﬂNk. By

Caratheodory’s theorem for cones (see [37]), u may be expressed  as
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uzzyeEng+Zz€GtazZ, where gy’aZERs .9},732209 EyeEQyzl, and GigG is 3

linearly independent set. Therefore, u'=u-} _ - |e, [2<u and u'ECWﬂNk. Let U
denote the set of all such lattice points u' in er‘\Nk. It can easily be seen that the

4
largest integer in U is no more than (cs*k*m*n)ds*k "I for some constants cg annd dg
. e s k
independent of k, m, and n. In addition, it holds that C, NN =Uu€UUG,_(:-GL(u,G’),
where G’ runs over all subsets of < k linearly independent vectors in G. It can now be
shown, similar to Lemma 2.2 in [17], that for each u€U, the intersection

L(u,G’)mL(x,Pi) is a SLS of the form UerL(y,G') so that the integers in Y are no

* 5*
greater than (c*k*m*n)d k™ m for some constants ¢ and d independent of k, m, and n.

Clearly, YC L(u,G’)ﬂL(X,Pi).

We are now in position to conclude the proof. Observe that We(CwﬁNk)ﬂL(x,P)l().
So for some w'€Y and G’ a subset of G containing no more than k linearly indeperndent
vectors, weL(w',G'). Now w' is in the set L(X,P}l(). On the other hand, it is clear that
W'EL(Xl’Pil)U"‘UL(Xr’Pzr)’ since w would belong to L(Xl,Pil)U...UL(Xr,Pir) otherwise.
Thus w'€L\SL,,. O

We are now ready to show our main result, that the containment and equivalence
problems are Hg—complete. The upper bound follows almost immediately from Lemma
3.4 and Theorem 3.1. Before formally proving the theorem, we will briefly explain the
strategy for showing the lower bound. Let X and Y be disjoint sets of Boolean
variables, and let F(X,Y) be a Boolean expression in 3DNF. Stockmeyer [36] showed the
problem of deciding whether (VX)(IY):F(X,Y)=0 is Hl;—complete (the notations (VX)
and (IY) denote (Vxl...‘v’xnl) and (Eyl...':'inQ), respectively, where X={X1,...,Xn1} and
Y={yl,..,,yn2}). We will reduce this problem to the containment and equivalence
problems. The reduction will consist of constructing two conflict-free VRSs, 'Vl arnd 'Vz,
which are identical except that 'V2 has one additional rule. Let us say that a clauase in
F(X,)Y) is killed if one of its literals has a value of 0. The function of the VRSs is to
simulate an assignment of values to the variables in XUY, signifying killed clauses by

incrementing certain positions. The additional rule in 'V2 will allow it to kill all clauses
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after a complete assignment is made. Thus, if we record which clauses were killed by
assignments to X variables, R(V,)=R(V,) iff for any assignment of values to X there is
an assignment of values to Y that results in killing all clauses. Now the VRSs must be
able to record which variables have been assigned values, which clauses have Tbeen
killed, and which clauses have been killed by X variables. We also wish to make our
proof general enough to work for conflict-free VASs and Petri nets as well. To

accomodate each of these requirements, we use two positions for each variable and eight

positions for each clause.

Theorem 3.2: The equivalence and containment problems for conflict-free VRSs are

Hg- complete.

Proof: Recall that Hg is the set of all complements of languages that camn be
recognized by a polynomial-time-bounded nondeterministic Turing machine with an NP
oracle. We will first briefly describe such a machine which will decide non-containInent.
Let Vl and 'V2 be kXm conflict-free VRSs such that the largest absolute value of any
integer in either VRS is n. From Lemma 3.4, if R(V,)ZR(V,), then there is a
WGR(Vl)\R(Vg) that can be guessed in polynomial time. From Theorem 3.1, we can
then check that weR(V,)\R(V,) with an NP oracle. Thus, the containment (and, hrence,

equivalence) problem is in Hg .

We will now show the containment and equivalence problems to be Hg-hard- Let
X:{xl,...,xnl}, Y={y1,...,yn2}, XNY=0, F(X,)Y)=C,V..vC_, Cj=al,j/\a27j Neg
ai,je{x’i : xEXUY}. We will define a (2n,+2n,+8m)X(3n,+3n,+8m) conflict-free VRS
VY, and a (2n,+2n,+8m)X (3n,+3n,+8m+1) conflict-free VRS 7V, such  that
R(V,)=R(V,) iff (VX)(IY):F(X,Y)=0. The construction will be such that R(V,)SER(V,);
hence, it will also be the case that R(V,)CR(V,) iff (VX)(IY)F(X,Y)=0. For ease of
illustration, we will treat the reachable vectors as a set of assignments to a set of

variables. The addition rules will then operate on these variables. The variables we

will use are {a,3 : 1<i<n,} U {bi’gi 1 1<i<n,} U {Ci,j’ﬁi,j : 0<i<3, 1<j<m }. g
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and a will correspond to X5 bi and Fi will correspond to Y5 Coj and s will correspond
to C,, and ¢ i and ¢,

0.

2

i will correspond to @ 5 Both VY, and 'V2 will have start vectors of

V, and V, will both have the following rules:

e vl 1<i<n;:
PR

Co; CO,j+1 V j for which X, € Cj’ 1<j<m

o viz, 1<i<n;:
a; ai+1

€ i+ Co 1 V j for which %, € Cj, 1<j<m

o v3, 1<i<n,:
5 1<
bi — bi+1
¢; o = ¢ +1 Vik for which a;, =y;, 1<j<8,1<k<m

® V?, 1<i<n,:
bi < bi+1
Cix Cj,k+1 Vj,k for which aj,kzyi’ 1<j<3,1<k<m

® Visj’ 0<i<3, 1<j<m:

C. . C. -1
I)J l?J
cij - ci’j—i—l

2

o v?j, 1<i<3, 1<j<m:

6,5+ Gt
Gpj T Gt
I 1

i1, T SRy

ov!, 1<i<m:

i ¢yl
¢z ¢3;t1
g1+ T3yl
o v¥, 1<i<n,:

a. +— a.-1

1 1
ai on ai—H
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o v, 1<i<n,:
PRt
b. « b.-1
1 i

In addition to the above rules, V, has the following rule:

eV
a,i+—~ai+l,V1Si§Il1
§i<——§,i-1,V1SiSn1
bi<——bi+1,V1§i_<_n2

b,<b-1,V1<i<n,
cije—cij+1,‘v’1§i§3,1§j§m

2

Clearly, both systems are conflict-free, and R(V,)CR(V,). We will call all rules

superscripted with i type ¢ rules. The type 1 rules correspond to assignments of O to X

variables, and type 2 rules correspond to assignments of 1 to X variables. Similarly,
type 3 rules correspond to assignments of 0 to Y variables, and type 4 rules correspond
to assignments of 1 to Y Vériables. Note that the execution of a type 1 or 2 rule that
corresponds with an assignment that kills clause Cj will increment c .. Likewise, the

3

execution of a type 3 or 4 rule that corresponds with an assignment that makes «; J.=O

will increment ¢ 5 Thus, the function of the types 5, 6, and 7 rules is to allow ¢ 5
1<i<3, to reach any positive value if clause Cj is killed. Finally, the types 8 and 9
rules will enable rule vi% in V,, which in turn will allow ¢ 5 1<i<3, to reach any

positive value if all a;’s and b, ’s have been incremented at least once.

Based on the above comments, we now make the following observations:

1. a,+8; reflects the number of value assignments made to X (where any
assignment may be made O, 1, or more times).

2. b;H_aﬁi reflects the number of value assignments made to y;.

3. 60j+60j reflects the number of times clause Cj has been killed by
assignments to variables in X.
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4. In V ¢ +c , 1<<i<3, can become positive only if clause C is killed.

5. In VQ, c. +c , 1<i<3, can become positive only if either clause C is killed
or every varzable in {XUY?} has been assigned a value at least once.

We are now ready to show that R(V,)CR(V,) iff (VX)(IY):F(X,Y)=0.

(=): Assume R(V,)CR(V,). Let B:X—{0,1} be any assignment of Boolean v-alues
to the variables in X. We will show that there is a B:Y+—{0,1} such that
F(B(X),B'(Y))==0. We will first construct a path o in V,. Clearly, all rules of types 1-4
are always enabled; therefore, we first execute, for each i, 1515111, Vil if B(Xi)=0, or Vi2
if B(Xi)zl. Next, we execute, for each i, 1<i<n,, either v? or V?. At this time, a,=1

and bj=1 for 1<i<n,, 1<j<n,. Thus, we can now execute, for each i, 1<i<n;, and

each j, 1<j<n,, Vi8 and v?. Since now &,=1 and Fj=1, 1<i<n;, 1<j<n,, we can

execute v10. Note that this leaves a;=1, &,=0, bj==1, .t—)-j-—-—-O, o =0, 1<¢, ;<2, and
g, =0, for all 1<i<n,, 1<j<n,, 1<k<3, 1<I<m. ¢,,; will be nonzero iff the

assignment B kills clause C, (1<I<m). Call the resulting vector w.

Now since w€R(V,), we€R(V,) also. Let o/ be a path to w in V,. Since a=1 and
a;=0 in w, ¢/ must contain exactly one occurrence of either Vil or V-z, but not both.
Furthermore, the rules of types 1 and 2 must clearly produce the same values in all the
o i’s as those in w, 1<i<m. Now the remaining rules in ¢ must make all positions ¢, .,
1%i<3 1<j<m, positive. If clause C. is not killed by B, then ¢ jzé =0, and the
only way for any position ¢ , 1<i<3, to become positive is for some type 3 or 4 rule to
increment one of them. Slnce for each i, exactly one of vi or v? must be executed in o,
there must be some B'tY+—{0,1} such that for all j, 1<j<m, if B does not kill Cj, then
B’ does. Hence, (VX)(IY):F(X,Y)==0.

(=) Assume (VX)(TY):F(X,Y)=0. Let w be an arbitrary vector in R(V,). We will
show that weR(V;). Let o be a path to w in R(V,). If o does not use v10, then clearly
wER(V,). Therefore, assume without loss of generality that o uses v10. It is clear from

the proof of Lemma 3.2 that we can assume without loss of generality that some initial
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path ¢ in o uses exactly one occurrence of every rule used by o. Furthermore, it is clear
from the proof of Lemma 3.1 that we can assume without loss of generality that at any
point in ¢/, the next rule to be executed is some arbitrary rule used by o, as long as it is

enabled and has not yet been executed. Now under these assumptions, before viO can

be executed for the first time, it must be the case that a,=1 and F-i:l; i.e., each type 8
and type 9 rule has been executed once. Now before vi8 (V?) can be executed, either V;l
or V? (Vf’ or Vf) must have been executed. We will assume without loss of generality
that exactly one of these two rules has been executed before v10 is first executed. Call

the initial portion of ¢ ending with the first execution of v10 4" and let w' be the vector

produced by o.

We will first show that w'€R(V,); then we will show that there is a path from w' to
w in Vl. We first execute in Vl the types 1 and 2 rules used in o”. Note that since
exactly one of Vil and vi2 is used in ¢", this rule represents the assignment of a Boolean
value to x;. Let B:X+{0,1} represent the assignment induced by these rules. Since
(VX)(IY):F(X,Y)=0, there is a B"Y—{0,1} such that for all j, 1<j<m, if C; is mnot
killed by B, then it is killed by B'. We next execute the rules corresponding to B

Now, the values of 2, 85, bj’ E_j’ Co ) and Eo,k match their counterparts in w/, 1<3 Snl,
1<j<n,, 1<k<m, and for every j, 1<j<m, there is an i, 0<1<3, such that ci,j>0‘
Furthermore, no ¢ pp 1<i<3, 1<j<m, is greater than 1. Thus, rules of types 5-7 can
clearly be used to bring the Ci,j’s equal to their counterparts in w'. Hence, W' is
reachable in V;. We can now simulate the remainder of o as follows. We simulate o
until the next occurrence of v10 is reached, except that we skip all occurrences of rules
of types 8 and 9. Now when v10 is reached, at least one of each type 8 and type O rule
must have been skipped. We therefore simulate one occurrence of each rule of types
8-10 using only rules of types 5-7. We iterate this process until the end of ¢ is reached.
We then execute all rules of types 8 and 9 that have not yet been simulated. It is not

hard to verify that every rule in this simulation is enabled at the proper time. O
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4. Liveness and Fairness

The next problems we would like to examine are the liveness and transition liveness
problems. In [13] an O(n'*®) algorithm was given for determining boundedness for a
conflict-free VRS, where n is the number of bits needed to encode the VRS. One
portion of this algorithm was devoted to determining which addition rules could be wused
infinitely often. Call the set of these rules I. In what follows, we will show that the set
L of all live rules is identical to I. From this result, we will be able to show the liveness

and transition liveness problems to be PTIME-complete.

Lemma 4.1: For any kXm conflict-free VRS (VO, U, V), the set I of rules that can be

used infinitely often is the same as the set L of live rules.

Proof: Clearly LCI. Assume IC L, and let we€ NK be such that in some path, wis
the last point from which there exists for each rule in I, a path that enables that rule.

Thus, there are rules v, €V (u1 < w), vy, € I, and a path o in (w,U,V) such that v, is
used in o, but v, can never be used after w+v, is reached. From Lemma 3.1, there is a
path ¢’ enabled at w that uses v, and all rules in I. Note from the proof of Lemm a 3.1
that without loss of generality, we can assume that any arbitrary rule enabled at w is
used first in ¢/; thus, we may assume v, is used first in o'. Since vo€I but v, cannot be
used after w+v, is reached, vo=v,. Now since v2€I, for every position from which vy
subtracts, there must be a rule in I that adds to that position. Since every rule inn I is

executed in o/, v, is enabled by o'--a contradiction. Hence, L=1. N

Theorem 4.1: The liveness and transition liveness problems for conflict-free VRSs are

PTIME-complete. Furthermore, there is an O(n1'5) algorithm to decide each problem.

Proof: Since the set of live rules can be computed in time O(n'®) (see [13]), we can

clearly decide both problems in time O(n!®). The PTIME-hard proofs are similar to
Lemma 4.1 in [13]. The details are left to the reader. O

We now consider the various fair nontermination problems defined in Section 2. It
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is often the case that problems in verification of parallel computations can be phrased
as fair nontermination problems concerning various formal models of computation.
Most work of this sort to date has been concerned with finite-state models (see, e.g.,
[7, 14, 25, 34, 35, 38]). Hence, the reason that we now examine fair nontermination
problems for conflict-free VRSs is that perhaps some of the problems in verification of
parallel computations can be modelled as some type of fair nontermination problern for
conflict-free VRSs. It turns out that some of the fair nontermination problems we
examine have efficient solutions. Therefore, it may be the case that the algorithms
presented here will be useful in the verification of parallel systems. The first three of

these problems we will consider are the impartial, just, and fair nontermination

problems.

Theorem 4.2: The impartial, just, and fair nontermination problems for conflict-free
VRSs are all PTIME-complete. Furthermore, there is an O(nl?®) algorithm to decide

each problem.

Proof: We first claim that there is an infinite impartial path iff the VRS is live. If
there is an infinite impartial path, the VRS is clearly live. Conversely, if the VRS is
live, from Lemma 3.1, there is a path from any reachable marking which contains uses
one occurrence of each rule; hence, there is an infinite impartial path. Thus, from
Theorem 4.1, the impartial nontermination problem for conflict-free VRSs is PIT IME-

complete, and there is an O(n'*%) algorithm to solve the problem.

Next, we claim that there is an infinite just (fair) path iff there is an infinite path.
To see this, note that from any reachable marking, we can execute a path using every
live rule. Now from Lemma 4.1, the set of live rules is exactly the set of rules which
can be enabled infinitely often. Thus, from [13], there is an O(n'*®) algorithm to dlecide
just (fair) nontermination. The lower bound follows immediately from the proof of

Theorem 4.1 in [13]. O

Remark: Prof. Vidal-Naquet has pointed out to us yet another definition of fairness,
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namely, an infinite path o is fair in (v,,U,V) if for every rule VJ-E{‘Vj PV, is live in
(w,U,V) for all wEa}, A is executed infinitely often. See also Queille and Sifakis [33].

Clearly, the above result holds for this type of fairness as well.

Now of the six remaining fair nontermination problems, five are NP-complete, and
one is NLOGSPACE-complete.

Theorem 4.3: The i-fair nontermination problem for conflict-free VRSs is NP-
complete for i€{1,2,2/,3,3'}.

Proof: We first show that all five of the problems are NP-hard by reducing
reachability to each of them. Let (VO,U,V) be an arbitrary kXm conflict-free VRS, and
let w be an arbitrary vector in NX. Let V! (U’) be V (U) with an additional colurnn of
zeros, and let A={{w}}. It is now easy to see that for each i€{1,2,2/,3,3'}, there is an
i-fair path for A in (v, U, V') iff weR(v,,U,V). Thus, from Lemma 3.1, the five
problems are NP-hard.

We now describe an NP algorithm for each problem. Let (VO,U,V) be 2 kXm
conflict-free VRS, and let A be a finite set of finite subsets of Nk,

e 1-fair: Guess a vector w in some set A€A, and verify that weR(v,,U,V).

e 2-fair: Guess a vector w in some set AEA, verify that weR(v,,U,V), then
verify that for some w' reachable in one step from w, weR(w',U,V).

e 2-fair: Guess some set AEA, verify that some element of A is reachable,

then guess a sequence 6 of |A| rules. If every vector reached in executing ¢ is
in A, then there is an infinite 2-fair path.

e 3-fair: Same as 2/-fair, except that each element in A must be reached by 6.

e 3'-fair: Guess some set AEA, verify that the first element of A is reachable,
verify that each successive element of A is reachable from the previous
element of A, and verify that the first element of A is reachable from the
last element of A.

Clearly, all of the above algorithms operate in NP; therefore, all five problems are NP-
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complete. O

Theorem 4.4: The 1-fair nontermination problem for conflict-free VRSs is
NLOGSPACE-complete.

Proof: We will first show the problem to be in NLOGSPACE. Let the start vector
initially be the current vector. We first guess a set AEA. Next, we verify that the start
vector is in A. Then we repeatedly guess a rule Vi and a vector wEA, and verify that the
execution of v, at the current vector produces w. w then becomes the current vector. If
this process can be continued for more iterations than there are rules in A, there is an

infinite 1-fair path. Clearly, this nondeterministic algorithm can be implemented wusing

only logarithmic space.

We will now show the problem to be NLOGSPACE-hard. We will use a reduction
from the graph accessibility problem, which is well known to be NLOGSPACE-com plete
[18]. Let G=(Q,E) be a directed graph in which Q={q,,...q }, and q,,q €Q are the
start vertex and final vertex, respectively. We first construct a graph G'=(Q",E’), wwhere
Q={p;; : 4€Q and 1=<j<n} and E'={(p;;py;,,) * (qa)€E or gq=q;,==q,,
1<j<n-1} U {(pn’n,pn,n)}. Clearly, this construction can be done in determimistic

logspace, and there is an infinite path from p, , in G' iff there is a path from q, to q in

2
G. We will now construct a (2n2)X(3n%) conflict-free VRS V and a set ACN?®  such
that there is an infinite path in V that is 1-fair for {A} iff there is a path from q; to q
in G. We will again use variables to denote the positions in the VRS. The variables we

will use are {Xij’yij : pijEQ'}. In the start vector, x, ,==1, and all other positiors are
0. V will have the following rules:
1 7o
° Vi where pi,jEQ :
Xt

Vi ¥yt

2 7
° Vi where pi,jGQ :

X. .+ X,
1, i

3 2

j-—H
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3 1.
® Vi,j’ where pL}EQ :

y

1

Again, all rules superscripted with i will be called type i rules. The set A will contain

=¥yl

2
all 0-1 vectors in N2% that contain exactly one 1, as well as all 0-1 vectors containing
exactly two 1’s such that Y; =%y j,==1 iff (pij,pi,j,)eE’. Clearly, V is conflict-free, and
the construction can be done in deterministic logspace. We will now show that there is

an infinite path in V that is 1-fair for {A} iff there is an infinite path from p, , in G’

(=): Let o be an infinite path in V that is 1-fair for {A}. Then every vector
reached by o is in A. We associate with o a sequence of vertices in Q' as follows: with
each point reached by o in which one x variable is 1 and all other variables are 0,
associate the vertex Pi ; such that Xi,jzl' We will show by induction that for every
h>0, (1) there are at least h vertices in the sequence, and (2) the first h vertices in the
sequence form a path from Py 3 in G/. Clearly, this holds for h=1. Let h>1, and
assume the claim holds for h-1. Suppose the last of the h-1 points has Xi,jzl‘ Now
since OZA and all vectors in A with more than one 1 have a y variable equal to 1, Vil,j
must be executed next in . Now since executing vij would produce O€A, some type 2

rule must be executed. This produces a vector with x, .=y, j==1. Since this wector

3
must be in A, (p; 7Py j,)EE'. Now clearly, the only rule that will produce a vector in A

is v2.. This produces a vector in which X o is the omnly position equal to 1. Since

L]
(pij,pi, j,)GE” and there is a path of h-1 vertices from Py, to P; 52 the claim holds for h.

Thus, it is clear that there is an infinite path from p, , in G

(=): Let o be an infinite path from p,, in G'. Associate with ¢ a sequerice of
vectors such that with each vertex P; ; reached by o is associated the vector with Xi’jzl
and all other variables equal to 0. We will show by induction that for any h>0 there is
a path in V that remains within A and passes in order through the first h points in the
sequence associated with o. Clearly, this holds for h=1. Let h>1, and assume the
claim for h-1. Suppose the (h—l)st vertex reached by ¢ is D ;- Let Py be the next
vertex reached by ¢. Then V can clearly execute vil’j, V?,’j,s and Vij, producing vectors in
A, the last of which has Xi;’j,:‘—‘l and all other variables equal to 0. Thus, the claim
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holds for h. It is now clear that there is an infinite path in V that is 1-fair for {A}.

This completes the proof. 0

Acknowledgment: We would like to thank Prof. Vidal-Naquet for pointing out the

definition of fairness given in [33].
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