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Chapter 1

Introduction

1.1 Motivation and Goals

As research in parallel processing continues, dozens of languages
and environments are being proposed as vehicles for expressing parallel algo-
rithms. We need to establish an organizing framework of thought with which

to approach the evaluation of any particular parallel programming language.

Some reasons for examining a parallel programming language are:

e to determine its suitability for a particular application
e to determine its adaptability to a particular architecture

e to determine its expressive power and general usefulness

The last reason is, of course, the most compelling, and is the moti-
vation for this research. As parallel machines become more common, more
powerful, and less expensive, we can expect the same trend in parallel pro-
gramming languages as was described in [Ambler 78] for operating systems
languages: programs will need to be portable as hardware changes, and soft-
ware economics will overtake hardware economics as the dominating factor
in choosing languages. A high-level language is more portable, and easier to

program. [Ambler 78] defines a “high-level” language as one that programs

1
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algorithms, not machines. We will take this algorithm orientation as the
starting point for developing a set of desirable qualities for a general-purpose
parallel programming language.

The focus for this thesis sprang from experience in developing al-
gorithms to test CSL, the Computation Structures Language developed at
the University of Texas at Austin [CSL 85]. Problems in implementing some
simple parallel algorithms led to the question of what properties are embod-
ied in these algorithms that must be expressible in a general-purpose parallel
programming language. Additionally, it was decided to code these same al-
gorithms in other parallel programming languages for comparison with the

CSL versions.

The goal of this thesis is to develop metrics for evaluating parallel
programming languages, based on a set of simple parallel algorithms that
display different properties of computation graphs. Special emphasis is given
to CSL, and a small set of extensions is proposed to increase CSL’s generality
and usefulness. Other existing parallel languages have been examined, and
clagsified according to the nature of their control constructs for parallelism.
Representative languages have been chosen from each subclass, and the same

algorithms have been coded in these languages.

1.2 Related Work

There have been several comparative surveys and analytical discus-

sions of parallel programming languages and constructs.

Andrews and Schneider [Andrews 83] survey notations for process

creation, synchronization, and communication, and propose a classification



scheme for concurrent languages based on models of process interaction:
procedure-oriented (shared memory), message-oriented, and operation-oriented
(remote procedure call, combining aspects of the first two classes). The lan-

guages they examine include Concurrent Pascal, Modula, CSP, DP, and Ada.

Wegner and Smolka [Wegner 83] do a comparative analysis of the
concurrent programming primitives for process creation and synchronization
in the languages Ada and CSP, and the synchronization construct monitors.
Among the conclusions they draw are: that Ada’s one-way naming communi-
cation construct is more general than CSP’s two-way naming, and that CSP

has a more general nondeterminism construct than Ada.

Bloom [Bloom 79] performs an analysis of classes of synchronization
mechanisms, including path expressions, monitors, and serializers, using a set
of synchronization problems to test their expressive power. Her evaluative

technique is similar to the one adopted in this thesis.

[Stotts 82] enumerates a large number of issues in the design of par-
allel programming languages, among which are synchronization, communica-
tion, process creation, process network topology specification, and ease of use.
He tabulates these features for 13 languages, including Ada, CSP, Concurrent

Pascal, Path Pascal, and Parlance.

The model of parallel algorithms used in this thesis is a simplified

version of the computation graph model described in [Browne 85].
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1.3 Organization

Chapter Two describes the classification scheme for parallel lan-
guages, the set of parallel algorithms used for evaluation, and the metrics
of evaluation. Chapters Three through Six discuss the results of the evalu-
ations for the languages Ada, Occam, Sisal, and CSL respectively. Chapter
Six also proposes a set of extensions to CSL that extend its generality, while
preserving most of its philosophy of separation of parallelism control from

computation. Chapter Seven summarizes and discusses the results.

1.4 About the Codes

The Ada codes in this thesis were executed on a Digital VAX /VMS.
Occam 2 was not available at the time of writing. The Sisal codes have
also not been executed. The unextended CSL codes are legal CSL, but the
Pascal task body codes associated with them have been simplified from what

is required in the first implementation.



Chapter 2

Parallel Algorithm Characteristics and
Language Evaluation Criteria

2.1 Model of Parallel Computation

The model of parallel computation used here to describe both lan-
guages and algorithms is a computation graph model based on [Browne 85].
A parallel algorithm is considered to be a directed graph consisting of nodes
and arcs. The nodes represent schedulable units of computation, which are
sequential code segments, and may be at any level of granularity. The di-
rected edges (arcs) represent dependency relations between the nodes. These

dependencies are either synchronization or data dependencies.

Synchronization dependencies specify either an ordering of node ex-
ecutions, or a mutual exclusion constraint where the nodes may not execute
simultaneously, but no order is specified. Data dependencies specify an or-
dered transmission of data between nodes. Two nodes connected by a data
dependency arc may be executing concurrently on an ordered stream of data
items. Mutual exclusion arcs are a form of data dependency when the con-
nected nodes are accessing a shared data item. In this case, no ordering is

specified.

A node executes only when its activation is enabled by its input arcs

(in the case of arcs joined by an OR relationship, the enabling of one of a set of

(W



arcs is sufficient). A node may or may not have a state which persists between
activations; a node with persistent state is frequently termed a process. After
or during its execution, the node enables its outgoing arcs. This can be a
result of nothing more than its termination or by actual data transmission.

These correspond respectively to synchronization and data dependency arcs.

The set of nodes and arcs describing an algorithm is the computation
graph for that algorithm. Any particular legal partial ordering of execution
of nodes and enabling of arcs is a traversal (execution) of that computation
graph. A coding of a parallel algorithm in a parallel programming language
must express both the structure of the computation graph of the algorithm
and its traversal (and all legal schedules for that traversal). Examples of
computation graphs are given with each sample algorithm below. In the
example computation graphs, solid lines with one arrow head represent a total
ordering between two nodes, as in data dependency or execution precedence.

Dotted lines with two arrow heads represent mutual exclusion constraints.

2.2 A Testbed of Parallel Algorithms
2.2.1 Characteristics of Parallel Algorithms

Three characteristics of parallel algorithms have been used to select
a sample set of problems with which to test the representative languages. The

characteristics are:

1. model of internode communication
2. creation of the computation graph

3. traversal of the computation graph
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Model of internode communication

This thesis uses two basic models of communication between nodes:
the shared memory model and the message model (also called the channel
model). These two models represent endpoints on a spectrum of models,
with shared memory being the most unconstrained method of communica-
tion, and channels being the most constrained. By constraint is meant the
rules enforced in any use of the model for communication. The shared mem-
ory model enforces no rules on the access to data; values need not be written
before being read, any node with knowledge of the variable may read or write
it, and values exist for the duration of their scope. The basic channel model
enforces the rules of read before write, destruction of values after they are
read, and one to one directed transmission of values. Other models can be
built on these two basic models; two such are the mailbox model and the tuple
space of the language Linda [Gelernter 85A Gelernter 85B] They are interme-
diate both in the latitude they provide the programmer, and the amount of
programmer-specified synchronization required to use them. Mailboxes and

Linda tuple space will also be discussed below.

The shared memory model assumes that some subset of the nodes
can access the same globally shared variables, which are assigned to and read
from equally by all of them. Any synchronization, such as priority, mutual
exclusion, or write-before-read constraints must be programmed by the user,
with low-level constructs such as semaphores, or high-level ones such as mon-
itors. This model is attractive in some ways because it corresponds to the
old operating systems model of concurrent processes on uniprocessors, and

is thus familiar, and also because many new parallel architectures actually



use shared memory between processors. There are difficulties with the shared
memory model in that some synchronization problems may be hard to un-
derstand and code correctly. This problem has been discussed extensively in

the literature.

Some algorithms lend themselves particularly well to a formulation
using shared memory, however, regardless of the architectural issues. These
algorithms can be thought of as a set of nodes that operate on a large shared
data structure which has an internal coherency and a relatively permanent
existence with respect to the nodes, as for example, a parallel quicksort,
which sorts an array of numbers. When an algorithm requires a set of nodes
to process repeatedly the same set of data, coding the algorithm using the

alternative message model may be cumbersome, and counterintuitive.

The message model is equivalent to a highly constrained and dis-
ciplined use of shared variables. A message containing data is sent over a
channel (or between “ports”), a one-to-one connection between nodes. The
channel is like a shared variable (or set of shared variables) with the con-
straints that it may not be read until written, and that when read, the value
is removed, and is no longer accessible outside the reading process. The
data in this case can be considered to be created whenever it is written, and
destroyed when it is read. It has no permanent existence outside the execu-
tion of the nodes. A generalization of this one-to-one channel model is the
broadcast channel, which is one-to-many. In this case, the channel is empty
until the source places a value in it, and the value remains there until all
of the destinations have received the value. A broadcast channel can also

be thought of as an array of one-to-one channels. In either the one-to-one
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or broadcast channels, all synchronization is built into the semantics of the
constructs of send and receive, and the burden of programming it is removed
from the programmer, who must, however, work within this context. This is
the basis of the programming language CSP [Hoare 78] and its descendant
Occam [Pountain 86]. It should be noted that parameter passing mechanisms
correspond to channel communication between a procedure or function and

1ts caller.

Message-based communication is more natural for algorithms in
which all communication is one-to-one and there are no permanent data struc-
tures involved. A special case is that of a fixed set of nodes through which a
stream of data is pumped and transformed, corresponding to a systolic type
of architecture (although with no assumptions about lockstep execution of the
nodes). Another, more general, example is the parallel simulation given later,
where the dynamically created set of entities send messages back and forth
to each other; no globally shared data structure is inherent in the problem,

and each entity communicates with at most one other at a time.

The mailbox model is a somewhat looser version of the channel
model. Data is placed in a shared location called a mailbox. After it has
been placed there by a node, other nodes may remove it and use the data.
Unlike the channel model, there is no one-to-one connection implied. Any
node with knowledge of the name or location of the mailbox may access it, so
a mailbox may be considered a many-to-many channel. A mailbox is shared,
but unlike shared variables, mailboxes have the same built-in semantics of
write before read as channels, so the programmer does not have to specify

this synchronization. The mailbox model could be implemented using shared
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memory or channels.

The tuple space of Linda’s generative communication model is a
somewhat more constrained version of shared memory [Gelernter 85B]. A set
of processes have a common space for data, like a giant mailbox. The space
is called tuple space because data items are a set of components with names
and/or values, like a tuple in a relational database. Four primitive operations
are available to the processes for reading and writing tuples and these provide
the synchronization. The operation out() places a tuple into the space, and
the operation in() withdraws a tuple with matching components from the
space. These two operations are like channel send and receive. Another
operation, read(), allows a process to access a tuple without withdrawing
it from the space. This is similar to a shared memory read-only access.
The fourth operation, eval(), places a tuple in the space, just like out(),
except that the tuple may have components that are not evaluated by the
process executing the eval() call. Instead, the components are evaluated
when the tuple is added to the space, with an implicit process performing the

evaluation.

All of the four models discussed are equivalent since any internode
communication can be programmed using them. This thesis will use only
the shared memory and channel models to describe the algorithms, because
they differ most from each other, and because many parallel programming

languages incorporate one or both.



Creation of the computation graph

This may be either static or dynamic, corresponding to compile-
time or run-time creation of the graph. A static computation graph has its
entire set of node and arc instantiations determined before any traversal of the
graph begins. This fixed topology is appropriate when the parallel structure
of the algorithm is unaffected by the actual computation occurring in the
nodes, as for example, in a parallel matrix multiplication. In this case, the
parallel algorithm is unaffected by the contents of the matrices upon which
it operates. All parallel programming languages have the ability to specify a

completely static computation graph.

A dynamic computation graph is created as it is traversed. New
nodes and interconnections are added as the computation progresses, based on
the results of the computation up to that point. This corresponds to defining
types of nodes, and then creating new instantiations of the node types as
needed. A truly general-purpose parallel programming language needs the
ability to define node types, instantiate new nodes, and link them to the rest
of the computation graph by dependency arcs at runtime. An example of an
algorithm with dynamic graph creation is the recursive quicksort given later.
Each execution of a node doing the array partitioning may give rise to two
more identical nodes that operate on subsets of the array, or it may terminate,
when the base of the recursion is reached. A nonrecursive algorithm with
dynamic computation graph creation is the parallel simulation given later: a
number of “patient” nodes come into existence at random intervals, and are

connected to the graph at that time.
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Traversal of the computation graph

Traversal of a parallel computation graph includes execution of nodes
along with association of data with nodes (either message transmission, or al-
location of shared data to a node). Graph traversal may, like graph creation,
be either dynamic or static. Traversal of a computation graph may follow a
fixed pattern regardless of the data or other conditions at runtime; again, the
matrix multiplication example is a case in point. The same steps will always
be followed and the same variables accessed in the same order, or the same

number of messages sent and received.

However, traversal of the computation graph can frequently depend
on intermediate results of the computation; this includes both the execution

of nodes and the enabling of arcs. Some examples of this property follow:

e A schedulable unit of computation may execute for a number of repeti-
tions that depends solely upon its input data, and send a varying num-
ber of messages after each execution. This is the case in the pipeline
example given later, where the central node, SQUASH, transmits some
of the data it has received, either changed or unchanged, and suppresses

other data.

e For a shared memory model algorithm, the extent of access to a parti-
tioned shared variable may depend on the results of the previous oper-
ations upon that data. This is the case in the parallel quicksort, where
the size of the partition of the shared array given to each partitioning

node is not determined until just before it executes.
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e Yet another example is given by the parallel simulation algorithm. A
“doctor” node is not aware of what “patient” it is supposed to commu-
nicate with next, until so informed by the “nurse” node, whose infor-
mation may change with each execution. In other words, the choice of

the data arc to activate is dependent on the computation.

e Another common type of dynamic graph traversal is unprioritized mu-
tual exclusion on shared data. Any of a set of nodes may access the
data in any order, but not simultaneously. One would expect the actual
order of access to vary at run-time in the general case. This example

appears in the block triangular solver given later.

2.2.2 Example Algorithms

Four algorithms were chosen to form the basis for a set of simple
parallel algorithms that would test the capabilities of a parallel programming
language. They were chosen to use varying combinations of the three parallel
algorithm characteristics given above. The algorithms will be described in
their ideal form, with maximum parallelism, minimum constraints, and opti-
mal type of inter-node communication. These descriptions will serve as the
canonical form with which to compare the implementations achieved in the
various languages, and a list of desirable properties of the implementations is

included with the algorithms.

Parallel Block Triangular Solver

Characteristics:
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e static computation graph structure
e shared memory communication

e static computation graph traversal except for unprioritized mutual ex-

clusion on vector blocks as described below.

Algorithm: This algorithm is due to Jack Dongarra and Danny
Sorensen of Argonne National Laboratory. A system Ax=Db is partitioned
into square blocks, and solved for x. The array A and vector b are kept in
shared memory, and the vector x is solved for in place in vector b (so that

the solution vector writes over vector b).

The matrix A is given to be in lower triangular form, so the algo-
rithm corresponds to the back-substitution phase of the solution. The system
is partitioned into square blocks of dimension nxn, 1 < n < N, where N is
the dimension of the original system. Normally, n is an integral divisor of N.
The blocks above the diagonal of the matrix are discarded, and the resulting

block system is solved as follows:

e Each block on the diagonal, A(i,i), comprises a miniature lower trian-
gular system with the corresponding block b(i), and is solved using the
normal sequential method of back substitution. The nodes assigned to

the diagonal matrix blocks are called SOLVE.

e FEach internal block of A is used to modify the blocks of b by normal
sequential matrix vector multiplication: b(i) := b(i)- A(1,])*b(j). The
nodes assigned to the internal matrix blocks are called MATVECT.

e The following execution constraints must be observed between the nodes.

All MATVECTSs in a row of A must complete before the SOLVE for
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Figure 2.1: Computation graph for triangular solver

that row may begin. A SOLVE must complete before the MATVECTSs
in the column below it may begin. The first SOLVE, corresponding
to matrix block A(1,1), may begin immediately. MATVECTSs in a row
must be serialized arbitrarily in their execution, since each modifies the

same block b(i).

Figure 2.1 gives the structure of the computation graph for the tri-
angular solver algorithm. In this figure, solid arcs denote precedence depen-

dencies, and dotted arcs denote mutual exclusion dependencies.

The requirements for implementing this algorithm are:
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1. The nodes should be structured in a method natural to the problem.
FEach node must correspond to a block in the matrix, and there must
be a convenient way of associating the correct data partition of both
vector and matrix with the correct node. Additionally, one would like
to be able to specify only a lower triangular structure, rather than a

matrix, only half of which is useful.

bo

The synchronization of the nodes should be specified (or implied) so that
maximum parallelism is possible in any execution, regardless of relative
speeds of the processors assigned to the nodes. In this problem, the only
possible variation of activation of nodes is in the interior MATVECT
nodes, where a row of MATVECTs may be arbitrarily serialized in
their access to b(i). Although it does not affect the final outcome of
the algorithm, it is desirable that no constraint not necessary to the
problem be placed in the implementation, so the order of MATVECT

executions in a row should not be predetermined.

3. Shared memory should be used to contain the matrix A and vector
b. Besides seeming natural to the structure of the computation graph,
which corresponds to the structure of the matrix, shared memory is the
easiest way to express the read-only access of a column of MATVECTSs
to a single block of the vector b. Without a shared data structure, the
same data must be duplicated and transmitted to as many MATVECTs

as require it, although they will not change the block of data.

Parallel Quicksort

Characteristics:



e dynamic computation graph creation
e shared memory communication

e dynamic computation graph traversal: assignment of variable-size array

partitions to nodes

Algorithm: This is a simple parallelization of the well-known recur-
sive quicksort algorithm. The nodes are pieces of code that partition an array
into two parts, according to the first value in the array: the section of the
array containing values less than the partitioning value is again partitioned
by another node, and so is the section containing values equal to or greater
than the partitioning value. If a schedulable unit of computation is given
an array segment of size 2 or less, it sorts it, and the recursion terminates.
The size of the array segment associated with any given node instantiation
depends on the contents of the entire array at run-time. Figure 2.2 gives the
structure of a sample execution of the parallel quicksort algorithm. Numbers
in brackets represent array values before node execution. The numbers in

parentheses are the associated indices of the shared array.

The requirements for this algorithm are:

1. Dynamic creation of only the necessary nodes and their dependencies
should be available. Upper and lower bounds on the number of nodes
required can be calculated from the size of the data, but the relation-

ships between them cannot be determined before runtime.

B

Shared memory should be used for the array to be sorted, if possible.
No explicit mutual exclusion synchronization is required on the shared

data, since it is divided repeatedly into disjoint subsets. The other form
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Figure 2.2: Computation graph for an execution of a parallel quicksort
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of internode communication in this algorithm is the transmission of the
start and length of each array segment to its partitioning node, and
message communication, as in the parameters of a recursive call, can

be used.

3. Maximum parallelism between nodes should be allowed. All partition-
ing nodes can be executing at the same time, except for those nodes
which are predecessors on the same set of data (those will have termi-

nated after calling their successors in any case).

Text Processing Pipeline (Conway’s Problem)

Characteristics:

e static computation graph structure
e message based communication

e dynamic computation graph traversal: data-dependent control of mes-

sage transmission

Algorithm: This algorithm is known as Conway’s problem [Conway 63]
which was designed to illustrate the use of coroutines for asynchronous com-
munication between modules. It is patterned on the version in the CSP
definition paper [Hoare 78]. Three nodes process a stream of characters in
the following fashion. The first node (DISASSEMBLE) receives a sequence
of arrays of 80 characters. It sends each character in an array one at a time

to the second node (SQUASH), whose function is to examine the stream of

characters and transmit it unchanged, except for removing all consecutive
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A=Assemble

D=Disassemble

S=Squash

Figure 2.3: Computation graph for text processing pipeline

asterisks “**’, and replacing them with a ‘@’ (‘@’ is used here instead of the |
in the Conway and Hoare papers). The third node (ASSEMBLE) receives a
stream of characters from SQUASH and packs them into arrays of 125 char-
acters, which it passes to a lineprinter, or other external device. Figure 2.3

gives the structure of the computation graph for the pipeline.
The requirements of this algorithm are:
1. Message passing communication is used, since all communication is or-

dered and one-to-one, and is most natural to the visualization of the

computation graph as a pipeline.

b

The SQUASH node must be able to decide whether or not to send a
character between executions. When it has received one asterisk, it
will not transmit the character until the next one is received and exam-
ined; otherwise, it will immediately transmit the character just received.

This is the dynamic graph traversal characteristic described above. In
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particular, SQUASH should not be required to send a dummy filler mes-
sage when it is in decision mode between executions. This is precisely
the reason this algorithm was chosen by Conway to demonstrate the

usefulness of coroutines.

Parallel Simulation

Characteristics:

e dynamic computation graph creation
e message based communication

e dynamic computation graph traversal: message sources and destina-

tions vary at runtime

Algorithm: The following situation is simulated. Three doctors
share an office and a nurse. Any doctor can see any patient when he is free.
A pool of 100 potential patients exists at any time - the number and identity
of the currently sick patients varies randomly. A sick patient checks in with
the nurse who either sends him to the first available doctor or queues him in a
single FIFO queue. Doctors are also queued if no patients are currently avail-
able. A patient, when assigned a doctor, communicates his symptoms to the
doctor, who diagnoses him, and sends back a prescription. The patient then
goes on his way for a random amount of time, until he gets sick again. This
continues indefinitely, and presumably, data can be collected as to average
length of queues, wait time, etc., although this is not germane to evaluation

of the parallel implementation. Figure 2.4 gives a possible snapshot of the
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Figure 2.4: Snapshot of an execution of the parallel simulation

computation graph of the parallel simulation algorithm. Only two patients
are currently ill. Patient(1) has been assigned to Doctor(1). Patient(2) has

not yet received its assignment.

The requirements of the algorithm are:

1. Patient nodes should be created and destroyed dynamically. It is not
essential for this formulation of the algorithm that a patient persist be-
tween visits to the doctor. This implies that the dependencies between
the doctors and patients and between the nurse and the patients are
also dynamic. The nurse and doctor nodes and their dependencies do

persist throughout the simulation.

N

The fairness of the doctor and patient queues should be preserved. In

this formulation of the algorithm, this entails a central bottleneck of
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two queues, centered in the nurse node. Two shared queues could have
been implemented, with each patient and doctor node following a pre-

determined protocol. In any case, fairness is essential to the algorithm.

Message based communication should be used between the nodes, and
message sources and destinations should be dynamically based on the
information supplied by the nurse. That is, no doctor or patient ever
knows which patient or doctor he will be assigned to, until just before

he communicates with the other node.

2.3 Classification of Parallel Languages

2.3.1 Characteristics of Parallel Languages

Here, only the aspects relating to parallelism specification and con-

trol are considered, leaving aside conventional sequential language charac-

teristics such as data types and operations. A parallel language needs the

following capabilities:

N

. define and instantiate a set of nodes (sequential code segments of arbi-

trary granularity)

define their relationships, including data and synchronization depen-

dencies and execution constraints
schedule the execution of the nodes according to their dependencies

control transfer of data between the name spaces of the various nodes.
This may consist of both message transmission and shared data assign-

ment.
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A parallel programming language defines a set of virtual parallel
machines. A program in a parallel language defines a computation graph
constituting a particular virtual machine, and controls its traversal at execu-

tion time.

2.3.2 Classification Scheme

A general classification scheme for parallel languages is adopted,
based on the criterion of implicit vs. explicit parallelism. The parallelism
specification and control is either explicitly under the direction of the pro-
grammer, as in most imperative languages, or is implicit in the semantics of a
higher-level declarative language, such as the functional dataflow languages.
The explicit parallelism group can be subdivided into two classes based on
the degree of abstraction of parallelism control from the computation of the

algorithm.

This classification scheme is not fundamental, and it does not divide
the set of parallel languages into disjoint subsets. It is useful, however, in two
ways. It corresponds intuitively to how a programmer would lump languages
together as being similar to use. It is also useful for the purpose of this thesis:
to analyze the generality and limitations of parallel programming languages

when applied to the given testbed of parallel algorithms.

The three resulting classes of parallel languages are as follows.

Parallelism-Extended Languages

The largest class of languages by far has this set of characteristics:



1. Parallelism is explicitly under the control of the programmer.

o

Node definition and computation graph topology are embedded in the

sequential computation code.

These are standard sequential imperative languages with extensions
for communication, synchronization, and node creation. Nodes are generally
processes with persistent state, large-grain instances of procedures, and are
defined by procedure-type definitions, and created and terminated by ordi-
nary declarations and/or procedure call mechanisms. Communication may
be either message-based (CSP and languages for distributed systems) or al-
low for shared memory as well (Ada and the class of concurrency control
languages designed for operating systems). These languages range from stan-
dard sequential languages with low-level operating system calls added, such as
concurrent FORTRANs and Cs, to the specially-developed, complex virtual
machine defined by Ada.

Abstract Computation Graph Languages

These languages have the following characteristics:

1. Parallelism is explicitly programmed.

bo

The topology of the computation graph is expressed separately from

the code of its component nodes, in special control code.

3. The traversal of the computation graph may also be expressed sepa-

rately from the computation of the component nodes.
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These languages are special-purpose parallel programming languages,
in that their main function is to express parallelism specification and control,
and they may lack a wide variety of data types and abstraction mechanisms.
The nodes are written in another language, and linked to the computation
graph via the abstract parallel program. CSL, developed at the University
of Texas [CSL 85], is a language that specifies both topology and traversal
of a computation graph. Other languages may express only topology: ex-
amples are Parlance [Reynolds 79] and TASK [Schwans 82], two languages
which define a computation graph, but leave the traversal of the graph to the
execution of the nodes, which are written in parallelism-extended languages

of the previous class.

Declarative Languages
These languages have the following characteristics:

1. The topology and traversal of the parallel computation are not explic-
itly programmed, although the parallelism-conscious programmer must
certainly be aware of the underlying philosophy of the language’s im-

plementation.

N

Automated extraction of implicit parallelism is aided by the restriction
of data types and operations, and sometimes by the addition of special

parallel operations on data objects.

These languages include functional languages, such as SASL [Turner
83], and data-flow languages with functional semantics, such as SISAL [Mec-

Graw 85]. For the functional languages, the programmer defines the problem
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in terms of evaluation of expressions. The definition and traversal of the par-
allel computation graph is automated by the compiler. The target machine
is usually a special-purpose non-Von Neumann architecture. The granular-
ity of the nodes is not under the control of the programmer, and is usually
much smaller than that specified by parallel programs written in imperative
languages, such as Ada. In functional and dataflow languages, all operations
are executable as soon as their operands are available, thus, node definition
and scheduling is implicit in the dependency of function compositions and
parameter transmission. Communication is strictly through function results.
The functions have no persistent state, and there is no global state of the
computation graph, hence no shared memory in the form of global variables
is allowed to the programmer, although it may be used to implement passing

of operands.

Notes on the Classification Scheme

There is some fuzziness even in this very general distinction between
languages. For instance, a parallelism-extended language can be programmed
in a disciplined, hierarchical manner to emulate an abstract computation
graph language, by abstracting all parallelism control to the outer level of the
program. As noted, computation graph languages are sometimes associated
with nodes written in parallelism-extended languages; in these cases the com-
putation graph programs are reduced to aids in configuration control, loading
and linking. All but the purest of higher-level languages have constructs that
make the programmer think explicitly of parallelism control, for example, the

cross and dot product FOR statement operations in SISAL. However, the
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areas that have been delineated give a general idea of the approach that a
programmer will take to programming a problem, given a language in that

class.

2.3.3 Choice of Languages

A language has been chosen from each subclass above in which to
code the test algorithms for comparison. The criterion for choosing each
representative language was that it should be well-known and influential, and
likely to be in use for some time to come. Each language will be sketched
below, and more detailed descriptions of its particular parallelism-related

constructs will be given in the appropriate chapters.

Two languages were chosen from the parallelism-extended class.
Ada is the U.S. Department of Defense language for real-time process con-
trol. It is a very complex language that includes mechanisms for explicit
parallelism specification and control, and for both message-based and shared
memory communication. Occam [Pountain 86] is a language based on Hoare’s
CSP. It is a simple language using explicit parallelism specification and con-
trol, and a strictly message-based communication scheme. Ada and Occam
were chosen for their differing models of communication, and to contrast the
tradeoffs of simplicity and ease of use vs. complexity and a rich set of opera-

tions.

CSL is the language chosen for the abstract computation graph class.
CSL stands for Computation Structure Language, and is based on the phi-
losophy of separation of computation from parallelism control. Schedulable

units of computation are coded in an ordinary sequential (not parallelism-
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extended) language, such as Pascal. The topology and traversal of the com-
putation graph are specified in the CSL program, and all association of data

with nodes and synchronization of node execution is coordinated in CSL code.

SISAL has been chosen from the declarative language group. It is
a functional (or applicative) dataflow language. Functions operate on their
arguments and return values. Parallelism is extracted by the compiler. In
general, arguments to function calls can be evaluated in parallel. Additionally,

some explicitly parallel operations on array structures are provided.

2.4 FEvaluation Criteria

Given a coding of a parallel algorithm in a particular parallel pro-
gramming language, the following criteria will be considered to evaluate the

successfulness of the translation.

2.4.1 Expressive Power

Any parallel programming language should have constructs that
conveniently express implicitly or explicitly the structure of the computation

graph, including the definition of nodes and their dependency relationships.

The parallel algorithm should be expressed completely with no un-
necessary constraints. The purpose of parallelizing algorithms is to obtain
maximum speedup, therefore the maximum parallelism inherent in the algo-
rithm description should be exposed in the parallel program. An example
of this is the block triangular solver, which has a fairly complex set of syn-
chronization sequencing rules. A simpler, and computationally equivalent,

version of the same algorithm would process the matrix one column at a
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time. The result would be the same, but some permissible partial orders of
execution of the schedulable units of computation would be excluded, and
we wish to preserve the maximum amount of asynchronicity inherent in the
algorithm. Therefore, the complex synchronization relationship between the
nodes should be expressible in the language, whether it is explicitly specified

by the programmer or extracted by the compiler.

A language should allow a model of communication that is most nat-
ural to the algorithm, or the algorithm will have to be transformed to meet
the limitations of the model of communication that is available. It has been
postulated that the shared memory and message models of communication
are duals [Lauer 78], and that any problem expressible in one is expressible
in the other. However, this may require that other aspects of the algorithm
be changed, or that additional complexity be introduced to maintain the al-
gorithm semantics. Again, an example is the triangular solver. When the
algorithm is changed from a set of nodes operating on a shared data item to
a set of nodes communicating by channels, some of the inherent parallelism
may be lost if an arbitrary order of execution of the interior MATVECT rows
is enforced before runtime. This is because channels are one to one and deter-
ministic. If the shared vector blocks are encapsulated within monitors which
communicate with the MATVECTSs by channels, the nondeterminism of or-
der of access is preserved but additional complexity is created, and duplicated

transmission of data and control messages is introduced.

Another criterion for expressive power is that superfluous code, in
definition of node and activation of arcs, not be necessary in order to main-

tain the semantics of the algorithm. Some method of dynamic feedback for
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the creation and traversal of the computation graph should be available at
execution time, because changing a dynamic algorithm to a static algorithm
frequently introduces such computationally unimportant overhead. This may
cause a reduction in efficiency, since all possible cases must be provided for

at runtime, whether needed or not. Examples are:

e creating at compile time the maximum set of nodes that could possibly
be needed for a computation graph, when only a subset will be needed

at execution time

e executing unnecessary nodes which simply check that they are not

needed and then terminate

e transmission of unnecessary data. This can occur either when it is
necessary to inform a redundant node that it is not needed in order
to force it to terminate, or when control of message transmission is
separated from computation so that an intermediate state which would
result in no data being transmitted cannot be checked for. This also
would add extra code to the receiver, which must check for and throw

away a dummy message.

2.4.2 Understandability

A parallel algorithm should be understandable given the piece of
parallel code that embodies it. The computation graph topology and possible
traversals should be recoverable from the code with as little effort as possible.
Many of the comments about expressive power apply to understandability as
well, since the original structure of an algorithm that has been transformed

to fit the limitations of a language will not be as easily recoverable. The code
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will have to be closely examined to see which dependencies are absolutely
necessary to the correct execution of the algorithm, and which are artifacts
of the translation. Understandability is necessary for maintenance even more
for parallel codes than for sequential ones, especially where the codes are
modules that will be fitted together into a complex system. Problems that
adversely affect understandability include superfluous code and unnecessary

constraints on execution order.

Another factor in understandability is the ability to specify a hier-
archy of computation graphs. A whole computation graph may be abstracted
to a single node in an encompassing graph. This allows a top-down develop-
ment and analysis of large parallel systems, and is a fundamental property
of computation graphs. A parallel language should ideally allow hierarchical
composition of parallel algorithms. The algorithms given do not test this
property, but we will examine it when discussing the example languages in

general.

2.4.3 FEase of Use

This is a highly subjective metric, but the following points will pro-

vide a focus for discussion.

A parallel language that provides most of the mechanisms for ex-
pression of the inherent characteristics of parallel algorithms will be easier
to use in the general case than a more limited language, since not as much
energy will be spent on transforming algorithms. In some cases, an algorithm
may be impossible to code in a given language, if 1t is totally lacking in some

essential property of the algorithm. However, complex languages have some
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drawbacks in ease of use, since it may take quite a while to learn them, and
subtle errors may continually be introduced. A parallel language should pro-
vide a powerful but simple array of mechanisms for parallelism specification

and control.

Another factor affecting ease of use is the level of the language con-
structs that are available to the programmer. High-level synchronization
constructs in an explicit parallelism language can reduce substantially the
amount of code necessary to express a problem correctly. Another example is
the purpose of declarative languages, to provide the programmer with a high-
level way of defining the required results, without the necessity of specifying

the steps to obtain those results.

Hierarchical composition of graphs is also a factor in the ease of use
of a parallel language, since of course simpler abstractions are easier to code
than large, complex, single-level systems. This is similar to the same issue in

conventional sequential languages.

2.5 Summary

The graph model of computation has been discussed, and the terms
defined. This model is used to describe both algorithms and languages,
since all three (model, algorithms, languages) define virtual parallel machines.
Three characteristics of parallel algorithms have been enumerated, and four
simple but non-trivial algorithms have been created to provide a mix of the
characteristics to test the general-purpose qualities of a programming lan-
guage. A subdivision of types of parallel programming languages has been

given, and four languages have been chosen from the subclasses to code the



34

sample algorithms for purposes of comparison. Finally, several evaluation
metrics have been given with which to judge the successfulness of the trans-

lation of the test algorithms into the representative languages.

2.6 Organization of the Following Chapters

Each language will be briefly described, with emphasis on paral-
lelism specification and control constructs. The language reference manuals
should be consulted for other details. In the section on expressive power, the
codes will be introduced and evaluated. General discussions of the under-

standability and ease of use of the language will follow.



Chapter 3

Ada

3.1 Language Description

Ada is the language developed by the U.S. Department of Defense
for real-time process control [DoD 83]. It has a very complex and rich set of
data types and abstraction mechanisms, plus constructs related to real time
programming. Here, we shall briefly survey those programming constructs
related strictly to parallelism specification and control. See the Language

Reference Manual (LRM) for further information.

The unit of parallelism is the task. A task is defined with similar
syntax to the other modules of Ada, the package and procedure. Ordinary
tasks “depend” on their declaring procedure or task, and are activated at the
same time. The declaring procedure or task does not terminate until all of its
dependent tasks have terminated. This corresponds to the Cobegin/Coend
construct in other languages. Tasks can be dynamically created after the
start of their declaring procedure or task by the use of access (pointer) types.

Tasks may not make directly recursive calls.

Tasks may communicate either through shared variables or a mes-
sage based mechanism called the rendezvous. Shared variables are declared
using ordinary scoping rules. Synchronization of access to shared variables is

not guaranteed, and must be programmed. A compiler pragma “shared” is



36

defined in the LRM as guaranteeing indivisible access to the variable between
synchronization points by any task. This means basically that all local up-
dates of the variable will be written to the shared copy before another task
accesses it. This pragma is not implemented in the VAX Ada implementa-
tion, but instead a pragma “volatile” [Vax Ada 85] which guarantees that the
variable will be accessed only from shared memory, and not placed in high-
speed registers (which might not be equally accessible to all accessing tasks).
In other words, except for simple read-only access to shared variables, and
those few situations where mutual exclusion of readers and writers is unim-
portant, the user must program all synchronization details. Ada’s rendezvous
mechanism allows tasks to communicate through named ports called entries.
The communication is synchronized - the sender and receiver “rendezvous”
at the entry point. The rendezvous is a caller-server model. The caller must
know the entry point of the server model, but the server need not know the
identity of the caller. Multiple callers who attempt to access the same entry
point of a server are automatically queued by the runtime system, so that
their requests are not lost. The rendezvous may pass parameters both ways
between the caller and server. The caller performs the rendezvous by naming
the server module and the particular entry point desired. The server performs

the rendezvous by executing an accept statement on the entry point.

Ada has a mechanism for nondeterminism, the select statement. The
select statement allows the task to accept nondeterministically one of a set
of rendezvous requests that are pending. The rendezvous alternatives within
a select may be guarded by When statements that only allow the rendezvous

to be selected if the condition following the When statement is true at the



time. This form of guarded nondeterministic branching is based on Dijkstra’s

guarded alternatives construct [Dijkstra 75].

Miscellaneous other constructs of Ada related to tasking are the
ability to terminate and abort tasks, to propagate exceptions through the task
calling structure, and to access certain attributes of tasks, such as whether it

has terminated or failed, and its relative priority.

Ada is classified as a parallelism-extended language. All parallelism
is explicit, strictly under the control of the programmer. The structure of
the computation graph corresponds to the declarations and activations of
tasks and the procedures upon which they depend, and to the sequence of
rendezvous calls and shared variable accesses. This structure is embedded in
the program text as the task declarations, the rendezvous statements, and

the shared variable references.

3.2 Expressive Power

3.2.1 Block Triangular Solver

Ada sclution

with text_io;

procedure trisolver is

use text_io;

package fl_io is mnew float_io(float);

use fl_io;

Amatrix : text_ic.file_type;

bvector : text_io.file_type;

xvector : text_io.file_typs;

numblocks : comstant := 6; --dimension of block system
mvlimit : comstant := b; ~~highest index of matvects
sizeblock : constant := 2; --blocking factor
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type matrix is array (1..sizeblock, 1..sizeblock) of float;
type vector is array (1..sizeblock) of float;
type blockmatrix is array (1..numblocks, 1..numblocks) of matrix;
type blockvector is array (1..numblocks) of vector;
type service is (read, write);
4 : blockmatrix;
b : blockvector;
pragma volatile (b); -- informs Ada compiler that vector b
-~ is shared between tasks
task type monitor is
entry start (s : in service);
entry stop_read;
entry lock;
entry release;
entry finish;
end monitor:
monitor_b : array (1..numblocks) of monitor; -- one monitor for
-- each block
task type solve is
entry start (i : in integer);
entry signal;
end solve;

sclves : array (1. .numblocks) of solve;
task type matvect is
entry start (i, j : in integer);
entry signal;
end matvect;

matvects : array (2..numblocks, 1..mvlimit) of matvect;

task body monitor is

readers : integer := 0;
writers : integer := 0;
begin
loop
select
when writers = 0 =>

accept start (s : in service) do
case 8 1is

when read => readers := readers + 1;
when write => writers := 1;
end case;

end start;
or
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accept stop._read;
readers := readers - 1;
or
when readers = 0 =>
accept lock;
or
accept release;
writers := 0O;
or
accept finish;
exit;
end select;
end loop;
end monitor;
task body solve is
sigcount, i, j, index : integer;
begin
accept start (i : in integer) do
index := i; -- discover identity
end start;
for sigcount in 1..(index - 1) loop
accept signal; -- wait for matvects in this
-- row to terminate
end loop;
for i in 1..sizeblock loop
b(index)(j) := b(index) (j) / A(index,index) (j,]j);
for 1 in (j + 1)..sizeblock loop
b(index) (i) := b(index) (i) -
(A(index,index) (i,j) * b(index)(j)J;

end loop;
end lcop;
for sigcount in (index + 1)..numblocks loop
matvects (sigcount, index).signal; -- signal matvects in
-~ this columnto start
end loop;
if index = numblocks -- if this is the final solve,
~-- terminate the monitors
-- and print results
then

for i in 1..numblocks loop
monitor_b{(i).finish;
end loop;
create (xvector, out_file, ‘‘xvector’’);
for i in 1..numblocks loop
for j in 1..sizeblock loop
put (xvector, b (i)(j) );
new_line {(xvector);
end loop;
end loop;
end if;



end solve;
task body matvect is
i1, i2, k, 1 : integer;
begin
accept start (i, j : in integer) do
il = i;
i2 = j;
end start;
if i2 < il then -- if this is a block below diagonal
accept signal;
monitor_b(il).start(write); --synchronize on vector
monitor_b(i2) .start(read);
monitor_b(il) .lock;
for k in 1..sizeblock loop
for 1 in 1..sizeblock loop
b(i) (k) = bGE1 (k) -
(A311,i2)(k,1) * b(i2)(k));
end loop;
end loop;
monitor_b(i2).stop_read; --release vector block
monitor_b(il) .release;
solves(il) .signal;
end if;
end matvect;

begin
open (Amatrix, in_file, ‘‘Amatrix’’);
open (bvector, in_file, ‘‘bvector’’);
for 1 in 1..numblocks loop
for k in 1..sizeblock loop
for j in 1..numblocks loop
for 1 in 1..sizeblock loop
get (Amatrix, A(1,3)(k,1));
end loop;
end loop;
end loop;
end loop;

for i in 1..numblocks loop
for j din 1..sizeblock loop
get (bvector, b(i)(j));
end loop;

end loop;
-- send the tasks their indices
for i in 1..numblocks loop
solves(i).start(i);
end loop;
for 1 in 2..numblocks loop
for j in 1..mvlimit loop
matvects(i,j).start(i,j);
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end loop;
end loop;

end trisolver;

Discussion of Ada solution

In general, the Ada solution manages to meet all the specifications of
the original algorithm. The schedulable units of computation are the arrays
of the task types SOLVE and MATVECT. The synchronization of the tasks
depends on both the rendezvous mechanism and a user-programmed moni-
tor, which encapsulates the shared vector b. The monitor task is adapted
from the readers-writers example in [Barnes 82]. For the rendezvous mech-
anism to work properly here, each task must know its index in the matrix,
therefore the main procedure transmits this information after it starts (it
is the only actual computation that the main procedure does). Each task
performs this self-identification rendezvous as its first act. Using this infor-
mation, each SOLVE task knows which set of MATVECT tasks to notify of
its completion, corresponding to the column beneath it. Each SOLVE task
also knows how many MATVECT tasks must signal it before it can begin
computation (it does not need to know their identities, since it is the receiver

in the rendezvous, although it could calculate them from its own identity).

The vector is kept in a shared array, and a user-programmed monitor
performs simple first-come first-serve queueing synchronization on it. This
requires that each task follow the same discipline of rendezvousing with the
monitor before accessing the variable, and of releasing its access after it

is finished. The SOLVE tasks do not need to synchronize on b, since the
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MATVECT tasks that write the same block will not begin actual compu-
tation until the SOLVE has finished. No two SOLVE tasks write the same
block of b. The matrix is also kept in a partitioned shared variable, but no

synchronization is required, since each task accesses a different partition.

Two criticisms of the Ada solution are mentioned here. One is that
a lower triangular structure of MATVECT tasks is not declarable, since a
standard matrix declaration format is used, and the indices may not refer
to each other. The ‘upper half’ tasks terminate as soon as they receive their
indices. The other criticism is that a substantial amount of code is introduced
by the necessity of programming the task type MONITOR to control the
access to the shared data. This code will be virtually identical in all similar
situations. It does not seem unreasonable in such a rich language to expect

some more high-level shared memory synchronization constructs.

3.2.2 Parallel Quicksort

Ada solution

with text_io;

procedure quick is

use text_io;

package int_io is mnew integer_io (integer);
use int_io;

type intarray is array (integer range <>) of integer;
sortarray : intarray (1..10); --array of integers to sort
pragma volatile (sortarray); --informs runtime system that
--gsortarray is shared between tasks

-- procedure call_son and task quick_sort are mutually recursive,
-- so both specifications are placed before both bodies, as a
-- forward declaration

procedure call_son (lo, hi, mid : in integer);

task type quick_sort is
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entry Partition (L, H : integer);
end quick_sort;

-- the following procedure reads in the unsorted array
procedure get_array (sortarray : out intarray) is
in_sortarray : file_type;
i : integer;

begin
open (In_sortarray, in_file, ‘‘unsorted’’);
for i in 1..10
loop
get (In_sortarray, sortarray(I));
end loop;

end get_array;

-- the following procedure checks the size of two partitioms,
-- calling a new quicksort on each one,

-- if they are of size > 1

procedure call_son (lo, hi, mid : in integer) is

type sibtype is access quick_sort; -- pointer to a task
sib2, sibl : sibtype;
begin
if lo < (mid - 1)
then sibl := new quick_sort;
gibil.partition (lo, mid);
end if;
if (mid + 1) < hi
then sib2 := new quick_sort;
5ib2.partition (mid + 1, hi);
end if;

end call_son;

-~ the following task type performs the quicksort partitioning
-- algorithm on a slice of the unsorted array
task body quick_sort is

lo, hi, mid, i, j, temp : integer;

begin
accept Partition (1, h : integer) do
lo = 1;
hi := h;

end Partition;
if hi > lo then
i = lo;
i .= hi;
mid := lo;
while i <= j loop
if (sortarray(i) > sortarray(j)) -- do swap
then
temp := sortarray(i);
sortarray(i) sortarray(j);
sortarray(j) temp;
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if mid = 1 -- move peinter
then mid := j;
else mid := i;
end 1if;
end if;
if 1 = mid
then j = j - 1;
else 1 := 1 + 1;
end if;
end loop;
call_son (lo, hi, mid);

end if;
end quick_sort;

-- the following procedure starts the sorting
procedure do_sort is

first_pass : quick_sort;
begin
first_pass.partition (sortarray’first, sortarray’last);
end do_sort;

begin -- main module
get_array (sortarray);
do_sort;
for i in sortarray’first..sortarray’last
loop
put(sortarray(i)); -~ print sorted array to terminal
end loop;

end quick;

Discussion of Ada solution

This solution manages to express the problem fairly well. Direct
recursion of tasks is not allowed in Ada, however, which introduces some
redundant coding here: a procedure must call a task which calls the same
procedure. A task is not allowed either to call its own type by recursion, or
to create new instances of its type with access pointers. The amount of code
is increased to get around this peculiarity of the language, which arises from

a distinction between procedures and tasks as objects.

The Ada solution does allow the use of shared memory, however, and
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in this case no extra monitor task need be coded, since no mutual exclusion

is required on the subsets of data due to the semantics of the task creations.

Only those tasks which are needed are created dynamically, due to
the mechanism of access pointers. Since the computation and parallelism
control are integrated, it is possible to check the results of the partitioning
before calling new partitioning tasks, avoiding waste creation of tasks. The
binding of tasks to their array segments is effected by the rendezvous mech-
anism. BEach task is sent the size and starting position of its array segment

before it begins partitioning.

Although tasks are created dynamically, the tree structure of the
calling mechanism means that the intermediate tasks cannot terminate until
all of their dependent tasks have finished. In other words, all the tasks remain
active until the array is completely sorted. This is wasteful here, since they

need do nothing further.

3.2.3 Text Processing Pipeline

Ada solution

with text_io;
procedure pipeline is
use text_io;

cardreader : text_io.file_type; -- input file
lineprinter : text_io.file_type; -- output file

endchar : constant character := ‘#’; -- flags end of input
line : string (1..80); -- input line image

lim : integer;

i,j : integer;

task assemble is

entry pass (ch : character);
end assemble;
task body assemble is

save : character;

i,j : integer;
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line : string (1..125); -- output line image
begin
create (lineprinter, out_file, ‘‘lineprinter’’);
io=1;
loop
accept pass (ch : character) do
save := ch;
end pass;
if save = endchar then -- signals end of input stream
for j in 1..125
loop
line(j) := ¢ ’; -- pad last line with blanks
end loop;
put_line (lineprinter, line); -- print last line
exit; -- exit loop
end if;
line(i) := save;
i=1i + 1;
if i > 125 then
put_line (lineprinter, line); -- print line when full
i = 1;
end if;
end loop;
close (lineprinter);
end assemble;

task squash 1is
entry pass (ch : in character);
end squash;
task body squash is
cleared : boolean; -~ flags empty stages
-- (squash has two stages of the pipeline; when a double
-- asterisk is "squashed", two characters are removed,
-- and both stages are empty)
first, second, -- two stages of pipeline
save : character;
begin
cleared := true; -- stages initially empty
loop
accept pass (ch : in character) do
save := ch;
end pass;
if cleared then
cleared := false;
first := save;
else
second := save;
if (first /= ‘x’) or (first /= second) then
assemble.pass(first) -- pass character if no ‘%%’
first := second;
if first = endchar
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then assemble.pass(first); -- pass end signal w/o
end if; -- further processing
else
assemble.pass(‘Q@’) -= pass ‘@7 if ‘wx’
cleared := true; -~ stages are empty
end if;
end 1if;
exit when save = endchar; -- exit loop at end of stream
end loop;
end squash;
begin
open (cardreader, in_file, ‘‘cardreader’’);
loop
if end_of_file (cardreader) then
squash.pass (endchar); -- pass end of stream signal
exit;
else

get_line (cardreader, line, lim);
for i in 1..l1lim

loop
squash.pass (line(i)); -- unpack card image
end loop;
jo:= 1lim + 1;
for i in j..81
loop
squash.pass (¢ ’); -- pad image with blanks
end loop;
end if;
end loop;

close {(cardreader);
end transfer;

Discussion of Ada Solution

The solution is quite efficient. An interesting note is that parallelism
of three units is achieved, with two of them being tasks that are dependent
on the third, which is a procedure. This is because of the Cobegin semantics
of tasks declared in procedures mentioned above. The rendezvous mechanism
is used for message-passing as required. The central task SQUASH is able

to delay message transmission while deciding whether to suppress the double
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asterisks. No dummy messages need be sent, again because of the close

association of the computation and communication code.

3.2.4 Parallel Simulation

Ada Solution

procedure simulation is
type message is string(l..100);
i, j : integer;

task type patient is
entry assign (doctornum : in integer);
entry diagnose (rx : in message);
end patient;
type patient_ptr is access patient;
patient_roster: array (1..100) of patient_ptr;

task type doctor is
entry complain (symptoms : in message;
patientnum : in integer);
entry getid (doctornum : in integer);
end doctor;
partners : array(l..3) of doctor;

task body patient is
pn,dn : integer;
symptom, prescription : message;

begin
accept getid (patientnum : in integer) do
pn := patientnum;
end getid;

nurse.checkin (pn);
accept assign (doctornum : in integer) do

dn := doctornum;
end assign;
symptom := ‘‘complain’’;

partners(dn) .complain (symptom,pn);
accept diagnose (rx : in message) do
prescription := Ix;
end diagnose;
end patient;

task nurse is
entry checkin (patientnum : in integer);
entry next (doctornum : in integer);

end nurse;



tagsk body nurse is
i, firstd, currd, firstp, currp : integer;
patientq : array(l..100) of integer;
doctorq : array(l..100) of integer;
begin
--initialize queues
firstd = 1;
firstp = 1;
currp := 100;
currd := 3;
for i in 1..100 loop
patientq(i) := -1;
end loop;
for i in 1..3 loop
doctorq(i) := -1;

end loop;
--match up doctors and patients as they enter
loop
select

accept checkin (patientnum : in integer) do

exit when patientnum = 101;

if doctorq(firstd) /= -1 then --doctor is available

patient_roster(patientnum).assign(firstd);

o

doctorq(firstd) := -1; --dequeue doctor
if firstd = 3 then
firstd := -1;
else
firstd := firstd + 1;
end if;
else --no doctor, queue patient
if currp = 100 then
currp := 1;
patientq(currp) := patientnum;
else
currp := currp + 1;
patientq(currp) := patientnum;
end if;
end if;
end checkin;
or
accept next (doctornum : in integer) do
if patientq(firstp) /= -1 then -- patient waiting
patient_roster(firstp).assign(doctornum) ;
patientq(firstp) := -1; -- dequeue patient
if firstp = 100 then
firstp := 1;
else
firstp := firstp + 1;
end if;
else -- no patients, queue doctor

if currd = 3 then
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currd := 1;
doctorq(currd) := doctornum;
else
currd := currd + 1;
doctorq(currd) := doctornum;
end if;
end if;
end next;
end select;
end loop;
end nurse;

task body doctor is
dn, pn : integer;

s, Tx @ message;

begin

rx := ‘‘twoaspirin’’;

accept getid (doctornum : in integer) do
dn := doctornum;

end getid;

loop

nurse.next (dn);
accept complain (symptoms : in message;
patientnum : in integer) do
s := symptoms;
pn := patientnum;
end complain;
exit when pn = 101;
patient_roster(pn).diagnose(rx);
end loop;
end doctor;

begin
for j in 1..1000
loop
i := (j mod 100) + 1;
if (patient_roster(i) = null) or
(patient_roster(i).all’terminated) then
--only activate if not already activated

patient_roster(i) := new patient;
patient_roster(i).getid(i);
end loop;

--terminate nurse and doctors
nurse.checkin(101);

for i in 1..3 loop
partners(i).complain(‘‘?’, 101);
end loop;

end simulation;
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Discussion of Ada Solution

This problem is also coded quite neatly in Ada. The rendezvous
mechanism provides the message passing required. Patient tasks are created
dynamically, using access pointers. Since the patient tasks have no dependent
tasks, they are also terminated dynamically, which is exactly what is required.
The nurse and doctor tasks persist throughout the simulation, and are only
terminated upon receiving a special signal. The dynamic communication
between doctors and patients is achieved by having the nurse match them
up, and transmit the appropriate indices into the arrays to each one. The
patient can use the index to rendezvous with the assigned doctor, and the
doctor similarly knows where to return the diagnosis. Each pair of nodes
could have been synchronized throughout their interactions by use of the
two-way parameter passing mechanism of the rendezvous, but it was decided

to emphasize this by using two symmetric rendezvous’s instead.

3.2.5 Conclusions

Ada passes the test of expressive power well. It allows both mod-
els of communication. The complex synchronization of the triangular solver
problem is easily expressible with the rendezvous mechanism used as a sig-
nalling device. Pointers to task types prove very useful for dynamic task
creation. Ada’s main drawbacks are the lack of a useful high-level synchro-
nization device for shared variables, which causes the programmer to write
extra low-level synchronizing code in some cases, and the lack of a simple
parallel recursion mechanism. A generic monitor package might serve well as

the shared variable synchronization mechanism.
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3.3 Understandability

The next issue is recovering the algorithm’s structure, given the code
it is expressed in. Two of the algorithms given have very simple structures:
the quicksort and the pipeline. The nodes of the computation graph are easily
identifiable from the task declarations. However, the asymmetric rendezvous
helps to obscure the pattern of interactions of these nodes. In the two sim-
ply structured algorithms, this is easy to overcome. In the block triangular
solver, which involves two-dimensional interactions between MATVECTSs and
SOLVEs, the two task types must be considered together to reconstruct their
relationships, since each acts as receiver and sender to the other at different
points. In the parallel simulation example, three task types have two-way
interactions. For example, in the patient nodes, one accept statement ren-
dezvous’s only with the nurse, and the other rendezvous’s with one of the
doctors. This is not obvious from the code, and the two other task types
must be examined to see that each task only calls one entry. In a system
with only a few task types, and symmetric interconnections, the structure
is not really difficult to understand; however, it is easy to imagine large,
arbitrarily connected systems whose structure would become ever more diffi-
cult to recapture from the code. To understand Ada task systems, one must

mentally abstract the parallelism-related statements from each task body.

The issue of hierarchicality in Ada is solved by its uniform use of
abstraction mechanisms and Pascal-like scoping. An entire parallel computa-
tion graph can be embedded in a procedure or package, and linked to a larger

graph through a procedure call or similar mechanism.
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3.4 FEase of Use

Ada is not particularly easy to learn to use, although its dynamic
task creation and two models of communication made it easier to program
the example problems, than with the other languages. Part of the difficulty of
using Ada is learning the multiplicity of rules about the mechanisms available
for parallelism control. Although tasks are in many ways syntactically similar
to procedures, they are semantically different in the lack of recursion as a form
of dynamic task creation. Another factor is that task creation and termination
are usually implicit in the structure of the program text. Only when a task
is allocated by a pointer, is it dynamically created, and only when it has
no dependent tasks of its own, can it be terminated. However, in the long
run, the effort in understanding these implicit, and often not very clearly
documented, concepts is paid off by the ability to express a wide range of

algorithms.

3.5 Summary

Ada meets most of the criteria for general-purpose expressiveness:
static and dynamic graph creation and traversal, and two modes of communi-
cation. It lacks a sufficiently high-level construct for shared memory synchro-
nization, leaving all the work to the programmer every time. Ada managed
to solve each of the example problems as required by their description, with
extra code generated only when a monitor was explicitly programmed for
the triangular solver, and when indirect recursion was implemented with a

procedure and a task.

The nature of Ada as a parallelism extended language, with sequen-
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tial computation mixed in with parallelism control allows dynamic graph
traversal, but can obscure the parallel pattern, making the code difficult to
analyze. The one-way naming of the rendezvous mechanism, although useful

in the caller-server model, also helps to obscure interactions between tasks.



Chapter 4

Occam

4.1 Language Description

Occam is a message-based parallel language developed from CSP
[Hoare 78]. The algorithms have been coded in Occam 2, to be released in
1986 [Pountain 86]. The language is conceptually very simple. There are
three basic types of statements: assignment, send and receive. The send and

‘" and ‘77, respectively. Processes are

receive statements are denoted by
composed out of these basic statements with a set of constructors. The con-
structors include: SEQ, for sequential composition; PAR for parallel composi-
tion (with cobegin semantics); ALT for nondeterministic selection on channels
(Dijkstra’s guarded alternative implemented); IF for deterministic branching;
and WHILE for looping. Composition and hierarchy of statements are indi-
cated by indentation in the program text. There is a replication construct
which allows compact specification of parallel, alternative, sequential, and
conditional processes. Processes may be named as procedures, and substi-
tuted in other places of the text. Procedure processes may take parameters,

including channels. These processes are specified not to allow recursion, how-

ever.

Occam allows only message-based communication of a completely
synchronous type. Two processes executing in parallel that wish to commu-

nicate must synchronize at their respective send or receive statement, and
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execute the transmission simultaneously. Message transmission takes place

through named channels, which are one-to-one and unidirectional.

Occam 2 has been extended over the original definition of Occam
in several ways, including the addition of data typing and multidimensional
arrays. It also requires a rather more complex notation for channel declara-
tions. Fach channel must have an associated protocol that defines the number
and types of values that may be sent over it at one time. A single channel
may have several alternative protocols, and a tag differentiates between them.
From here on, the name Occam will refer to the current definition of Occam

2.

There are other constructs in Occam more related to real-time pro-
gramming and configuration control than to abstract parallelism specification
and control. These include the data type timer (used in the parallel simula-
tion algorithm below in place of a random number generator), and provisions
for placing processes on processors, and associating processes and channels
with other hardware devices. Occam is being developed in conjunction with
the transputer, which uses Occam as its assembly language. However, Occam

has more general potential, which we will examine.

Occam is classified as a parallelism-extended language, although it
was developed primarily for research into parallelism, and its constructs for
other types of computation are rather limited in comparison to Ada. This
classification is because the basic form of Occam is similar to Ada: schedu-
lable units of computation are composed by the programmer, and the com-
munication and synchronization are embedded in the sequential code of the

processes. Occam was chosen in contrast to Ada because its only model of



communication is the message-based one.

One note on the Occam syntax in some of the example algorithms
is in order. Since no Occam 2 translator was available at the time of this
writing, it was not possible to check the acceptability of the program syntax.
Although Occam is simple enough to justify confidence in the codes, in one
case it is not clear that the syntax as written would have the desired meaning.
This is when applying the array slice designator “FROM x FOR x” to a two-
dimensional array. When this designator is applied twice to a two-dimensional
array, it is meant to apply to the two different indices. In the Occam syntax
definition, it appears that this might be applying the slice designator to the
same index twice. If this is the case, the proper array slices can be designated

by the more space-consuming, but equivalent, nested FOR construction.

4.2 Expressive Power
4.2.1 Block Triangular Solver

Occam solution

PROC solve (CHAN input, left, result, down, INT bd)
[1001 [100] INT a:

[100] INT b:
INT 1, j, temp:
SEQ

input ? [[a FROM 0 FOR bd] FROM O FOR bd]
left 7 [b FROM 0 FOR bd]

SEQ j = 0 FOR bd
temp := bljl / aljl [j]
bljl := temp
SEQ i = (j+1) FOR (bd - j)

bli] := blil - (alil [jl*temp)
-- solve for block x[i] (in place in block bl[il)
PAR
down ! [b FROM 0 FOR bd] --transmit result to matvect
result ' [b FROM 0 FOR bd] --transmit result to collector
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PROC matvect (CHAN input, up, left, right, down,
INT rownum,nblocks, bd)
[100] [100] INT a:
[100] INT bi, b2:
INT i,j,temp:
SEQ
input 7 [[a FROM O FOR bd] FROM O FOR bdl
--read in matrix block
up 7 [bl FROM 0 FOR bdl
--read in vector block b[i]
IF
rownum < nblocks - 1
down ! [bil FROM O FOR bdl
--transmit vector block bl[i] (unchanged)
TRUE
SKIP
left 7 [b2 FROM O FOR bdl
--read in vector block bl[jl
SEQ j = 0 FOR bd
temp := bi[j]
SEQ i = 0 FOR bd
b2[i] := p2[i] - (alil [j] * temp)
-~ compute results in place in second vector block
right ! [b2 FROM 0 FOR bd]
-- transmit b[j] to next process in row

CHAN (INT; INT) input:
INT bd, nblocks,i,j,size:
[100] [100] INT a:
[100] INT b, x:
SEQ
input 7 bd, nblocks
-- read block dimension and blocking factor
size := bd * nblocks
CHAN ([size] [size] INT; [size] INT) getdata:
CHAN ([size] INT) output:
IF
size <= 0
SKIP
size > O
SEQ
getdata 7 [[a FROM O FOR size] FROM 0 FOR size] ;
[b FROM 0 FOR size]
[nblocks] [nblocks] CHAN ([bd] [bd] INT) in:
[nblocks + 1] [nblocks + 1] CHAN ([bd] INT) left, up:
SEQ
PAR
solve(in[1][1], in[1]1[1], Teftl[1]1[2], wupl2][1], bd)
PAR 1 = 1 FOR nblocks
-- initiate synchronized tasks
solve (inf{i] [i], left[i]l [i] ,left[il] [i+1],
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upli+1] [il, bd)
PAR i = 1 FOR (mblocks - 1)
PAR 7 = 0 FOR 1
matvect (infil [j1, wplil [j1, Teftl[il [j],
left[i] [j+1], uwpli+1i]l [j1, i, nblocks,

bd)
PAR i = 0 FOR nblocks
PAR j = 0 FOR i
in [i] [j] t [[a FROM (i*bd) FOR bd] FROM (j*bd)
FOR bd]

PAR 1 = O FOR nblocks
left[i] [0] t [b FROM (i*bd) FOR bd]
~--transmit vector blocks to first column
SEQ i = [0 FOR nblocks]
left[i] [i+1] 7 [x FROM (i*bd) FOR bd]
-- read in result vector blocks in order
output ! [x FROM O FOR sizel
-- output entire result vector

Discussion of Occam solution

Since Occam has no shared memory, it is necessary to change the
algorithm to fit the semantics of channel communication. The same set of
parallel processes as for the Ada solution is declared, using the named proce-
dures SOLVE and MATVECT. Each process must read the necessary blocks
of data off the appropriate channels. The channels named input and output
are assumed to be special channels connected to external devices. The ma-
trix blocks are read from an external input channel. Each SOLVE process
receives its block of the vector from its left channel. By parameterizing the
channels, SOLVE(1,1) also receives a copy of the vector block from the first
input channel; therefore it begins execution immediately. Upon completing
execution, a SOLVE transmits the result block of the vector to a collector
channel, which is read by the main process. It also transmits the result block
to the MATVECT directly below it. The MATVECTSs in a column cooperate

by transmitting the block to each other down the column before beginning
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computation. This ensures that some parallelism will occur, even though
the start of execution will be staggered by transmission time. It also elimi-
nates the need for a variable number of channels from each SOLVE to each
MATVECT in its column. The MATVECTS in a row are serialized from left
to right since each must finish computation, then transmit the result vector

block to the right.

The transformation of the algorithm that was chosen corresponds to
a systolic array of processes that pump the vector blocks through, both down
and across. Another version could have been programmed that encapsulated
each block of the vector in a monitor. This solution in Occam however would
have been longer, and more difficult to understand. It would have had more

potential parallelism at the expense of extra processes and data transmission.

Occam’s replication designators make it very easy to specify a lower
triangular matrix of processes, and also to specify any chunk of a vector or
matrix. The parameterized arrays of channels also made it easy to compose

the matrix of processes.

4.2.2 Parallel Quicksort

Occam solution

PROC partition (CHAN fatherinput, lsonoutput, rsonoutput
fatheroutput, lsoninput, rsoninput)
INT x, size, sizel, sizeZ, mid, 1i,j, temp, maxlevels,
valid, level:
[10] INT VALS:
-- local variables:
-- x : index of array vals;
-- size: length of array segment;
-- sizel,size2: lengths of resulting partitions;
-- vals: array of values to be sorted;
~-- maxlevels: maximum depth of this sort tree;
-- level: depth of this sort node;
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-- i,j,mid,temp : indexes into array for partitioning
SEQ
fatherinput 7 maxlevels; level; size; [vals FROM O FOR size]

iF
(size = 0) AND (level = maxlevels)
SKIP
(size = 0) AND (level < maxlevels)
PAR

rsonoutput ! maxlevels; (level + 1); 0;
[vals FROM O FOR 0]
lsonoutput ! maxlevels; (level + 1); 0 ;
[vals FROM 0 FOR 0]
(size >»= 1)

IF
size = 1  -- return ‘‘sorted’’ element back up tree
SEQ
fatheroutput ! size; [vals FROM O FOR size]
IF
level < maxlevels
PAR
lsonoutput ! maxlevels; (level + 1); 0;
[vals FROM 0 FOR 0]
rsonoutput ! maxlevels; (level + 1); 0;
[vals FROM 0 FOR 0]
size > 1 -- partition array, send and collect results
SEQ
i:=20
i = size - 1
mid := 0
WHILE (i <= j)
SEQ
IF

vals[i] > vals[jl
-- do swapping if necessary
SEQ
temp := vals[il
vals[i] := vals[j]
vals[j] := temp

IF
mid = 1
-- if swapped, then move dividing point
mid := 7
IF
-- move index not pointing to dividing value
mid = 1
jo=3 -1
mid = j
i=3+1
PAR

-- transmit in parallel the results of the partitioning
SEQ
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sizel := mid + 1 -- always nonzero
lsonoutput ! maxlevels; (level + 1); sizel;
[vals FROM O FOR sizei]
SEQ
size?2 := size - mid - 1 -- may be zero
rsonoutput ! maxlevels; (level + 1); size?2;
[vals FROM (mid + 1) FOR size2]
PAR -- recelve in parallel the results of the
-- subsorting
lsoninput 7 sizel; [vals FROM O FOR sizel]
rsoninput 7 size2; [vals FROM (mid+1) FOR size2]
fatherinput ! [vals FROM 0 FOR size]

CHAN ([10] INT) input, output:
[10] INT vals:

INT 1,j,size,maxlevels: -~ main process
-~ note: vals has index values 0 to 8
SEQ

input ? [vals FROM 0 FOR 10]

gize := 10

maxlevels := gize - 1

[1023] CHAN ([INT] INT) up:
[1023] CHAN (INT; INT; [INT] INT) down:
PAR i = 1 FOR 511

--maximum complete binary tree
partition (down[il, down[2*i], down[(2*i)+1i],

uplil, upl2*i], upl(2*xi)+1])

-- the following processes feed and collect data
downl[1] ! maxlevels; 1; size; [vals FROM 0 FOR size]
upl[1] ? size; [vals FROM O FOR size]

-- array vals is now sorted

output ! [vals FROM 0 FOR size]

Discussion of Occam solution

The lack of shared memory and of recursion, or other dynamic par-
allel process creation, made this algorithm a candidate for transformation, as
with the triangular solver. A quicksort computation graph can be thought
of as a partial traversal of a complete binary tree, visiting only some of the
nodes for each particular execution. A static process, channel communication
version of quicksort can be formulated by creating the complete binary tree,

and then passing the array partitions as required by the algorithm. In this
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case, the same number of nodes of the tree will do active work, as in the dy-
namic graph version, and the rest will wait until they are notified that they
are not needed. Since there is no shared memory, one way of collecting the

sorted array together is to pass it back up the tree to the root node.

Occam’s flexible declarations and compositions of processes and
channels make this deformation of the algorithm easy to code. The unde-
sirable aspect is the waste creation of processes, which cannot be avoided,
since any one of them might be needed for any execution. Another waste
aspect is the duplication and transmission of data, doubly so, since results
are passed back up the tree. However, the array is successfully sorted in this

case, and the maximum parallelism is allowed, as well.

4.2.3 Text Processing Pipeline

Occam solution

PROC disassemble (CHAN input, charstream)
WHILE TRUE
[80] BYTE line:
INT i:
SEQ
input 7 line
i:=0
WHILE 1 <= 79
charstream ! linel[i]
charstream ! ¢ 7

PROC squash (CHAN raw, processed)
INT first, second:
SEQ
raw 7 first
WHILE TRUE
SEQ
raw 7 second
iF
(first <» ‘%) (R (first <> second)
SEQ
processed | first
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first := second
(first = ‘%?)
charstream ! ‘@’

raw 7 first

éRGC assemble (charstream, output)

WHILE TRUE
[125] BYTE line:
INT i:
SEQ
i:=0
WHILE i <= 124
SEQ
charstream 7 lineli]
i:=41i+1

output ! line
CHAN input ([80] BYTE), tosquash (BYTE), fromsquash (BYTE),
output ([125] BYTE):
PAR -- main process
assemble (input, tosquash)

squash (tosquash, fromsquash)
disassemble (fromsquash, output)

Discussion of Occam solution

This algorithm is trivial to code in Occam, since it already is the
sort of static, message-passing algorithm into which it was necessary to trans-
late the first two algorithms. Since Occam communication and computation
are embedded, the SQUASH process can change and suppress data at its

discretion, and no extra messages are sent.

4.2.4 Parallel Simulation

Occam solution

PROC patient (CHAN tonurse, fromnurse,
[3] CHAN todoctor, fromdoctor,
INT self)
INT dnum, rx, timenow:
TIMER clock:



WHILE TRUE
SEQ
clock 7 timenow
clock 7 AFTER timenow PLUS 1000 -- period of health
tonurse ! self
fromnurse 7 dnum
todoctor [dnum] ! self
fromdoctor 7 rx

PROC nurse ([100] CHAN frompatient, topatient,
[3] CHAN todoctor, fromdoctor)
[100] INT patientq:
INT nextslot, i, firstp, currp, firstd, currd, dnum, pnum:
[3] INT doctorq:

SEQ

SEQ i = 0 FOR 100 -- initializatioms of queues
patientq [i] := -1

SEQ i = 0 FOR 3
doctorg [i] := -1

firstp = 0

currp := 98

firstd := 0

currd := Z

-- Each time through loop, nurse accepts a message from
-- a patient or from a doctor.
-- If a matchup is possible it is dispatched at once,
-~ else the patient or the doctor is queued.
WHILE TRUE
ALT
ALT i = 0 FOR 100
frompatient [i] 7 pnum
SEQ
IF
doctorq [firstd] <> -1
-- a doctor is ready and waiting
SEQ
topatient[i] ! doctorq [firstd]
todoctor[doctorqlfirstd]] ! pnum
doctorq[firstd] := -1
IF
firstd = 2
firstd := 0
firstd < 2
firstd := firstd + 1
currp = 99
-~ all doctors busy, queue patient
SEQ
currp = 0
patientqlcurrp] := pnum
currp < 98
SEQ
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currp := currp + 1
patientqlcurrp] :=
ALT i = 0 FOR 3
fromdoctor [i] 7 dnum
SEQ
IF
patientql[firstp]l <> -1
-- patient ready and waiting
SEQ
todoctor[i] ! patientqlfirstpl
topatient [patientq[firstpl] ! i

pnum

patientq[firstp] := -1
IF
firstp = 99
firstp := O
firstp < 89
firstp := firstp + 1
currd = 2
-- no patients in room, queue doctor
SEQ
currd := 0
doctorq [currd] := dnum
currd < 2
SEQ
currd := currd + 1
doctorq [currd] := dnum

PROC doctor ([100] CHAN topatient, frompatient,
CHAN tonurse, fromnurse, self)
INT i, pnum, symptoms, rx:
SEQ
rx := self
tonurse ! self
WHILE TRUE
SEQ
fromnurse 7 pnum
frompatient[pnum] ? symptoms
topatient [pnum] ! rx
tonurse ! self

[100] [3] CHAN (INT) ptodoc, doctop:
[100] CHAN (INT) ptonurse, nursetop:
[31 CHAN (INT) nursetodoc, doctonurse:
INT 1:
PAR

PAR i = 0 FOR 100

patient (tonursel[i], fromnursel[il, ptodoc[il, doctop [il, 1)

--ptodoc[i] and doctopl[i] are each an array of 3 channels

nurse (nursetop, ptonurse, nursetodoc, doctonurse)
~-nursetop and ptonurse are arrays of 100 channels,
--nursetodoc and doctonurse are arrays of 3 channels



PAR i = 0 FOR 3
doctor (nursetodoc[i], doctonurselil,
[ptodoc FROM O FOR 100] [i],
[doctop FROM 0 FOR 100] [il)
--nursetodoc[i] and doctonursel[i] are each a single channel
--ptodoc, etc. and doctop, etc. are vertical slices,
--arrays of 100 channels

Discussion of Occam soclution

Occam manages to capture the problem rather well, except for the
lack of dynamic process and channel creation. Since an upper level of 100 is
given on the number of patients, an array of patient processes of that size
is created. These patients remain active throughout the simulation, timing
themselves through periods of health before reporting to the nurse. The
nurse process encapsulates the queues for doctors and patients, so fairness is
preserved. Occam’s message-based channels fit the form of the algorithm, and
since the contents of messages received are available to affect the choice of the
next channel upon which to send, the dynamic nature of the communication

is easily captured.

4.2.5 Conclusions

Occam’s optimal expressive power is limited to those algorithms
with static computation graph creation, and message-passing characteristics.
Shared memory semantics can always be obtained at the expense of extra
monitor processes. Occam’s integration of control and computation malke
dynamic computation graph traversal possible, and in some cases, such as
the quicksort algorithm, allows a dynamic graph algorithm to be successfully

transformed to a static graph algorithm. This will usually be at the expense
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of extra processes.

There seems no particular reason, except the current limitations of
the translator, for Occam not to have recursive processes. This would intro-
duce dynamic process creation in some cases, and would make the quicksort
with message passing much more palatable as an alternative, by cutting down

on process waste.

4.3 Understandability

Ada and Occam are similar in that the parallel topology of an al-
gorithm must be extracted from the surrounding code. It is somewhat easier
to extract relationships between processes from an Occam program because
communication is through named channels, which must be specified by both
receiving and sending processes, while the corresponding endpoint of an Ada
rendezvous is only named by the caller. Interestingly, this property of Ada’s
is considered to be more general than the two-way naming of CSP (Occam’s
close relative) in [Wegner 83], so there is a possible tradeoff between power

of expression and understandability here.

4.4 FEase of Use

Occam has a smaller set of constructs with simpler semantics than
Ada, and this makes it easier to learn to write Occam programs. The dif-
ficulty in using Occam comes in having to recast algorithms to fit Occam’s
static, message-passing virtual machine. Since message-passing is accepted

as fundamental to Occam’s philosophy, some form of dynamic process cre-
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ation would be helpful, at least in the limited form of recursion, to make

programming a wider set of algorithms easier.

4.5 Summary

Occam is a simple, easy to learn parallel programming language.
However, it does not have two of the characteristics of parallel algorithms:
dynamic graph creation and shared memory communication. It makes up for
the first lack in part with a capability for dynamic graph traversal, as in the
quicksort example. It was able to successfully code all four of the parallel
algorithms, with some extra process overhead in transforming the dynamic
graph creation algorithms, quicksort and simulation, into static graph algo-

rithms.



Chapter 5

Sisal

5.1 Language Description

Sisal stands for “Streams and Iteration in a Single Assignment Lan-
guage” [McGraw 85]. It is a functional data-flow language that is designed to
allow programmers to ignore issues of explicit parallelism control, and simply
state their program in a very compact and high-level fashion. It is assumed
that data-flow architectures will be developed that will be capable of large
amounts of small-grain parallelism, which the SISAL compiler will extract
from the program. The philosophy behind SISAL and other single assign-
ment functional languages is to eliminate the spurious dependencies between
operations that appear to arise when imperative languages with global vari-
able side-effects are used. In principle, an intelligent compiler will be able to
analyze a SISAL program completely for parallelism, and target it efficiently

to a given architecture.

Functional languages describe a program as an expression to be
evaluated. Parallelism can arise when independent subexpressions can be
evaluated concurrently. The data-flow model corresponds to the computation

graph model with the following restrictions:

e nodes of the graph correspond to function evaluations
e arcs of the graph correspond to function arguments and results (data)

70
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e a node has no state that persists between executions. It receives its
arguments, executes, and produces its results, returning to its initial

state.

A compiler for a functional language, such as SISAL will take the

program, and produce an equivalent data-flow graph.

Some of the constructs of SISAL are:

e function definition

e the introduction of the stream data type for communication between

functions

e the LET construct which defines a scope for value names within which

to evaluate an expression

e the FOR construct, with two forms: non-product (sequential iteration)
and product (cross and dot products of indices which can result in

parallel evaluation)
e a number of special functions defined on data types. The ones used in
the following programs are briefly defined here:
— array_limh - returns highest index of array
— array.setl - sets lowest index of array
— array.adjust - sets bounds of array
— catenate, || - concatenate arrays or streams
— array_size - returns length of array

— array_fill - creates and assigns values to array elements
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— stream_first - returns first element of stream
— stream.empty - tests for empty stream

— gtream_rest - returns all but first element of stream

SISAL is, as stated, a higher-level declarative language, with lit-
tle explicit parallelism, except for the special array operations. The sample
algorithms were coded as if the schedulable units of computation of the algo-
rithms corresponded to the function definitions of SISAL, and the parameters
were data arcs. It is understood that a smaller granularity would probably

be extracted by a compiler targeted to a dataflow architecture.

5.2 Expressive Power
5.2.1 Block Triangular Solver

Sisal solutions
define Triangle

type vector = arraylreall;

type matrix = arraylvector];

type blockmatrix = arraylarray[matrix]l];
type blockvector = arrayl[vector];

function Solve (Ablock : matrix; Bblock : vector returns vector)
let
Blockdim := array_limh(Bblock)
in
for initial
J = 0;
Iblock := Bblock;
Newblock := Bbloc:;
while J <= Blockdim

repeat
J = 01ld J + 1;
Wewblock[J] := old Xblock[J] / Ablock[J,JT];

Iblock:=
for initial



I :=J;
Nwblk := Newblock;
while I <= Blockdim
repeat
I :=01d I + 1;
Nwblk[I] := old Nwblk[I] -

(Ablock[I, J] * Newblock[J]);

returns value of Nwblk

end for
returns value of Zblock
end for
end let

end function

function Matvect (Ablock : matrix; BblockI, BblockJ
returns vector)

let
Blockdim := array_limh(BblockI)
in
for initial
Xblock := BblockI;
J =0
while J <= Blockdim
repeat
J = 0ld J + 1;
Saveblock := old Xblock;
Xblock :=
for initial
I :=0;
Svblk := Saveblock;
while I <= Blockdim
repeat
I :=0ld 1 + 1;
Svblk[I] := old Svblk[I] -
(Ablock[I,J] * BblockJ[J1);
returns value of Svblk

end for
returns value of Xblock
end for
end let

end function

function Transform (4 : matrix; B : vector; Numblocks
returns blockmatrix, blockvector)

let

Vectorsize := array_limh(B);

Blocksize := Vectorsize / Numblocks
in

for I in 1,Numblocks

Lo := {(I-1)#%Blocksize+i;

vector

integer



Hi := Lo + Blocksize - 1;
VectBlock := array_setl(array_adjust(B, Lo, Hi),1);
Ablockl := array_setl(array_adjust(4,Lo,Hi),1);
Matrow :=
for J in 1,Numblocks
Lo2 := (J-1)*Blocksize + 1;
Hi2 := Lo2 + Blocksize - 1;
Ablock2 := array_setl(array_adjust
(ABlocki[J],Lo2,Hi2) ,1);
returns value of catenate Ablock?2
end for
returns value of catenate Matrow,
value of catenate Vectblock
end for
end let
end function

function Triangle (A : matrix; B : vector;

Blocksize : integer returns vector)
% Blocksize = dimension of blocks
% return value is solution vector X

let
Vectorsize := array_limh(B);
Numblocks := Vectorsize / Blocksize;
Blkmatrix, Blkvector := Transform (4, B, Numblocks)
in
for initial
J = 0
X := Blkvector
while J <= Numblocks
repeat

J = 0ld J + 1;
NewXblock := Solve (Blkmatrix[J,J]1, X[J1);
NewXsubcol :=
for I in (J+1),N¥umblocks
NewXblk := Matvect (Blkmatrix[I, J1, X[IJ], XLJ1);
returns array of NewXblk
end for
First := array_adjust(X,1,J-1);
X := First || NewXblock |] HewXsubcol;
returns value of X
end for
end let
end function ¥ Triangle

The following solution is another version of the same problem, but

with a blocksize of 1 assumed (all operations are on scalars).



define Triangle

type vector = arraylreall;
type matrix = arrayl[vector];

function Triangle (A : matrix; B : vector; Size : integer
returns vector)

%Y Size = dimension of & and B

Y return value is solution vector X

function Solve (Ael, Vel : real returns real)
Vel/Ael
end function % Solve

function Mult (Ael, Vell, Vel2 : real returns real)
Vell - (Ael * Vel2)
end function % Mult

for initial

J = 0;

X := B;
while J <= Size
repeat

J = 0ld J + 1;
NewXel := Solve (4[J,J], old X[J1);
NewXcol :=
for I in J+1,Size
NXel := Mult (A[I,J], old XI[I], old X[J]);
returns array of NXel
end for
First := array_adjust(X, 1, J-1);
X := First || NewXel || NewXcol;
returns value of X
end for
end function % Triangle

Discussion of Sisal solutions

The first solution represents an attempt to translate the algorithm
exactly as described, with blocks of arbitrary dimension. Function Triangle
takes a matrix, a vector, and an integer indicating block size for input pa-
rameters, and returns a vector (solution vector x). It does so by repeatedly

transforming its input vector by one column of the matrix at a time with
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the sequential FOR construct. This corresponds to producing a block of the
solution vector at each iteration, and concatenating it onto the original vec-
tor, while at the same time changing the rest of the original vector through
the Matvect function. Function Transform is an extra function introduced to
transform the matrix and vector into a matrix of matrices (blocks) and a vec-
tor of blocks. These “blocked” data structures become the arguments to the
Solve and Matvect functions. This solution attempts to create a static graph
with message passing semantics similar to the Occam solution. Since it did
not seem possible to compose two function types so that each produced input
for the other, some of the parallelism was eliminated by processing the ma-
trix of functions one column at a time. The only parallelism now observable
is the subcolumn of Matvect functions (the FOR/IN construct in function

Triangle). All other expressions are the sequential loops type.

Since the solution to this parallel problem attempting to force a
block structure (and thus a given granularity of parallelism) onto the solu-
tion was as long as the imperative versions, and much harder to understand,
a second solution was attempted with the same computation graph structure
and traversal, but an assumed block size of one. That is, each Solve and
Matvect function operated upon integers, not blocks, but the same execution
order was kept of one column at a time. The result is the second, simpler ver-
sion of the problem. The outer loop of function Triangle is still a sequential
processing of columns, but the extraneous code for block operations has been
removed, and the structure is much clearer. The code is much more compact;
in fact, the functions Solve and Matvect resolve to one line apiece, and could

be substituted in line for even shorter code. This represents a surprisingly
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elegant translation of the algorithm, despite the introduction of ordering be-

tween the rows of Matvects, and the removal of the block semantics.

5.2.2 Parallel Quicksort

Sisal solution
define Quicksort
type Info = arrayl[reall
function Quicksort (Data : Info returns Info)
function Split (Data : Info returns Info, Info, Info)

for E in Data
returns

array of E when E < Datal1i]
array of E when E = Datali]
array of E when E > Datalll

end for
end function % Split

if array_size(Data) < 2

then Data
else
let L, Middle, R := Split(Data)
in
Quicksort(L) || Middle || Quicksort(R)
end let
end if

end function % Quicksort

Discussion of Sisal solution

The solution to this problem is an example in the back of the Sisal
Language Reference Manual. This problem is ideally suited to the recursion
of functional languages. Each invocation of function Quicksort splits the
data (using a special parallel FOR/IN array processing construct) into two

partitions and a middle, and then calls itself recursively on the two partitions.
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This solution does violate the requirement of the algorithm that the array be
stored in shared memory, and so presumably the segments of the array will be
duplicated and transmitted in accordance with dataflow semantics, but this is
simply the price paid for this model of computation. This is the solution that
Occam would be able to encode as well if it had recursion of processes, and
represents an advance over the “complete binary tree” formulation, despite

the overhead of data copying.

5.2.3 Text Processing Pipeline

Sisal solution

define Transfer

type Charstream : stream[character];
type Lineimage : arrayl[character];
type Linestream : stream[Lineimagel];

function Disassemble (Inlines : Linestream returns Charstream)
for I in Inlines
returns
for initial
Image := stream_first(Inline);
UpperBound := 80;
I :=20
while I <= UpperBound
repeat
I :=01ld 1 + 1;
Sendchar :=
if I <= UpperBound
then Imagel[I]
else ¢ 7
returns stream of Sendchar
end for
end for
end function

function Squash (Instream : Charstream returns Charstream)
for initial
Asterisk := ‘%7
while 7 stream_empty(Instream)
repeat



Firstchar := stream_first(Instream);
Sendchar :=
if Firstchar "= Asterisk
then Firstchar
else
let
Nextchar := stream_first(stream_rest(Instream))
in
if Firstchar = Nextchar
then ‘@’
else Firstchar
end let
Instream :=
if Sendchar = ‘@’
then stream_rest(stream_rest(old Instream)
else stream_rest(old Instream);
returns stream of Sendchar
end for
end function

function Assemble (Instream : Charstream returns Linestream)
for initial

Newline := array Lineimage [I;
while ~ empty_stream(Instream)
repeat
Newline :=
for initial
J = 0y
UpperBound := 125;
Nline := array Lineimagel];
while (J <= UpperBound) & (Tempty_stream(Instream))
repeat
J = 0ld J + 1;
Wextchar := stream_first(Instream);
Nline[J] := Nextchar;
Instream := stream_rest (old Instreanm);
returns Nline
end for
Sendline :=

if array_limh(Newline) = 125
then Newline
else Newline ||
array_f£il1(1, (125 - array_limh(Newline) + 1), 7)
returns stream of Sendline
end for
end function

function Transfer (Inlines : Linestream returns Linestream)
Assemble(Squash(Disassemble(Inlines)));
end function

=3

)

.
3
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Discussion of Sisal solution

This was an opportunity to use streams as the method of commu-
nication between functions. A single stream is defined that threads through
the three function definitions. Each function accepts a stream and returns
a stream, and the entire pipeline is neatly captured as a three-deep nesting
of function invocations. The parallelism, if any, rests in the semantics of
streams. If an element of a stream is available to its consumer as soon as it
is produced, then the three function invocations will execute in parallel on
successive stream items. If a stream must be completely produced by a func-
tion before it can be consumed, then the pipeline will in fact be a sequential
program. Even without assuming the greedy stream consumption implemen-
tation, the remaining requirement of this algorithm is met in that the middle
function Squash is at liberty to create its own stream of values based on the
stream it is receiving (in other words, there is no need to append a dummy

value to the output stream in between reading successive input values).

5.2.4 Parallel Simulation

No Sisal version of this algorithm has been coded. The difficulty lies

in two factors:

1. the necessity of maintaining state in the nurse node in order to keep

the fairness of the queues

2. the difficulty of composing functions that each produce input for each
other. This was the same problem that arose in the triangular solver

algorithm above. It was possible to constrain that algorithm to allow for
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lesser parallelism, and produce the same arithmetic results. However,
the value of the parallel simulation algorithm is its emulation of a system
of interacting modules with persistent state, not the production of an

arithmetic value.

5.2.5 Conclusions

Although the flavor of functional programming is simply to define
a value, and not to impose a form or order of evaluation, it has been an
interesting exercise to translate these algorithms into functional form, using
the naive assumption that the function definitions of SISAL constitute the
schedulable units of computation. In all cases but the parallel simulator, it
has proven possible to capture the spirit of the algorithm to some degree.
Interestingly, attempting to impose a specific granularity of data introduced
more complexity into the code of the triangular solver than the attempt to

enforce an order of evaluation.

The main result of the exercise is that two-directional forms of mod-
ule interaction are difficult to encode, given function composition as a means
of defining a problem. There may be a way to get around this difficulty using

streams, but it is not clear from the language definition.

5.3 Understandability

The constructs of SISAL that limit parallelism are few and clearly
defined, so that after some practice, it is possible to see what evaluations
are capable of proceeding in parallel. Reconstructing a possible dataflow

graph from the code simply requires a knowledge of dataflow and functional



semantics.

It should also be mentioned that the hierarchical nature of module
definition and function composition in Sisal would make coding a large system

manageable.

5.4 FEase of Use

The ease of use of any functional language depends on how familiar
the programmer is with the notion of defining values rather than specifying
sequences of steps. It proved not too difficult to code all of the examples,
except for the parallel simulation. This may be because the notion of persis-
tent state which is fundamental to the simulation is foreign to a functional
language. The first triangular solver solution demonstrated the difficulty of
forcing a granularity of data upon the problem. However, it must be noted
that the approach taken here to programming the algorithms is counter to
the philosophy of high-level programming; the ease of use should come from

abandoning granularity choice and execution control to the compiler.

5.5 Summary

One apparent limitation to Sisal’s expressive power for parallel com-
putation was the inability to define function modules so that two different
modules could provide input to each other. This resulted in limiting the par-
allelism of the triangular solver algorithm, and in not being able to code the
parallel simulation. It has been duly noted however, that declarative lan-

guages are not meant to be programmed in such an explicit fashion; rather,
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one is meant to define the required value and allow the compiler to extract

the implicit parallelism in its evaluation.



Chapter 6

CSL (Computation Structures Language)

6.1 Language Description

CSL is a language for parallelism specification and control, devel-
oped in the context of the Texas Reconfigurable Array Computer [Sejnowski
80, CSL 85]. CSL is based on the philosophy of abstraction of parallelism
specification and control from the sequential computation of an algorithm.
CSL is special-purpose in the sense that its sole purpose is to describe ab-
stract parallelism, but general-purpose in that it is desirable that any parallel

algorithm be expressible in CSL.

A CSL program describes an abstract parallel computation graph
and its traversal. The actual computation of the schedulable units of compu-
tation is encapsulated in programs written in ordinary sequential program-

ming languages. These programs are linked into the CSL program at runtime.

The current version of CSL has the following capabilities:

e configuration of a computation graph.

The programmer can specify the schedulable units of computation (called
tasks) and their communication topology in the Construct statement.
Both the shared memory and channel models of communication are

provided for. Shared variables are associated only with the subset of

84
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tasks that may actually access them; they are listed in brackets after
the name of the file containing the task’s object code. Channels are
defined as unidirectional FIFO queues between tasks, and the degree
of buffering on the channels may be specified by the programmer (the
default is one). Each task may have one boolean task condition which

is also named in the Construct statement.

Example:

CONSTRUCT
SHARED
SVi, SVZ;
TASKS
TASK1 : TASKiOBJ [SVi, SV2] CONDITION TASK1COND;

TASK2 : TASK20BJ [SVi, Sv2l;

CHANNELS
CHAN1TC2 = DATACHANNEL FROM TASK1 TO TASKZ BUFFERS 3;
CHANZ2TO1 = DATACHANNEL FROM TASK2 TO TASKI1;
END;

This Construct statement sets up a computation graph with two nodes,

two channels, and two shared variables. No traversal is expressed.
traversal of a computation graph.

A Construct statement has a scope in which executable statements can
affect its components. Ordinary Pascal-like looping and conditional
constructs are provided. The programmer specifies when a task should

execute, or should send or receive variables on a channel. The With
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statement associates a shared variable with a particular execution of a
task according to one of two disciplines: read-only, and read-write. An

example is:

WITH X : Y

DO EXECUTE TASK1

The meaning of this is: acquire variable X in read-write mode, and
variable Y in read-only mode; associate them with TASK1’s data space;
and then execute TASKI1 once. Then the variables are released from

TASKI.

The With statement can rename a shared variable from the globally
known name to a task-local name using the With/As form; this behaves
as a parameterization of the task execution. The runtime system of CSL
enforces the necessary mutual exclusion. Access to shared variables can
be guarded by a When/With statement, where access is granted only if
a condition expression is true, and the variable is available (not being

accessed read-write by some other task).

Nondeterminism can be programmed with the When Condition Is state-
ment, another form of Dijkstra’s guarded commands. Parallel execution
is achieved with the Cobegin statement, which can be nested arbitrarily.

The separate arms of a Cobegin statement are denoted by *//’.

The elements of a Construct statement and some executable statements
may be ranged with the Range statement. The Range statement repli-

cates the Construct element or executable statement within its scope
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with the values of the range variable of the Range statement. For ex-

ample, the declaration

SOLVE (I) : Ci1 [A(I,I), X(I)] RANGE I = 1 TO NBLOCKS

has the same meaning as:

SOLVE (1) : C1 [A(1,1), X(1I;

SOLVE (2) : C1 [A(2,2), X(2)];

up to the current value of the variable NBLOCKS. When a Cobegin
statement is enclosed in a range, the semantics is of replicated parallel

streams.

The tasks are coded as ordinary sequential programs (shown in the
examples in Pascal). Each program consists of two procedures: an init, that
will be executed the first time that a task is activated, and a body, that will be
executed once each time a CSL Execute statement is encountered. Variables
that are global to the program (not local to the init and body procedures)

retain their values between executions.

The only form of interface between the task code and the CSL pro-
gram is a single boolean task condition for each task. If the task condition
is in use, it will be listed as a CONDITION clause following the name of the

task in the Construct statement. The convention is that task conditions are
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false before activation of the task, and can only be set to true by the task
code itself. The CSL program can only access, not assign, the value of the

task condition.

6.2 Expressive Power

6.2.1 Block Triangular Solver

CSL Solution
JOB TRI;

CONST NBLOCKS = 6;
END;

BEGIN

CONSTRUCT
SHARED
A(I,J) RANGE I
X(I) RANGE I =

= 1 TO NBLOCKS, J = 1 TO I;
1 TO NBLOCKS;
TASKS
INITARRAY : INITBIN [A(I,J), X(I)]
RANGE I = 1 TO NBLDCKS, J = 1 TO I;
SOLVE (I) : ¢1 [A(I,D),%X(1)]
RANGE I = 1 TO NBLOCKS;
MATVECT (I, J) : €2 [A(I,J), X(I), X(1)]
COEDITION MATCOND(I,I)
RANGE I = 1 TO WBLOCKS, J =1 T0 (I - 1);
END; (% end comstruct *)

WITH A[I,J], X[I] RANGE I = 1 TO NBLOCKS, J =1 T0 I
DO EXECUTE INITARRAY: (*initialize X, A %)
COBEGIN
(// BEGIN
COBEGIN
(// WAIT MATCOND (J,I) DRANGE I= 1 TD J-i;
COEND;

WITH X[J] AS XBLOCK: A[J,J] AS ABLOCK
DO EXECUTE SOLVE (J);
COBEGIN
(// WITH X[I] AS XBLOCKI : X[J] A4S XBLOCKJ,
A[I,J] AS ABLOCK
DO EXECUTE MATVECT (I,J))
RANGE I = (J + 1) TO NBLOCKS;
COEND;
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END;
) RANGE J = 1 TO NBLOCKS;
COEND;
END.

program init (input, output);
var blockmatrix : array[1..6,1..6] of
array [1..100,1..100] of real;
blockvector : arrayl[l..6] of
array [1..100] of real;

procedure init;
begin end;

procedure body;
var i, j, k, 1: integer;
begin
for i := 1 to 6
for j := 1 te 1
for k := 1 to 100
for 1 = 1 to 100
read (blockmatrix[i,j,k,1]1);
for i := 1 to 6
for j = 1 to 100
read (blockvectorl[i,jl);
end;
begin
end.

program solve (input, output);
var xblock [1..100] of real;
ablock [1..100, 1..100] of real;
procedure init;
begin
end;

procedure body;
var i, j : integer;

begin
for j = 1 tc 100 do
begin
xblock[j] := xblock[jl/ablock[j,jl;
for i := j+1 to 100 do
xblock[i] := xblock[i] - ablock[i,jl*xblock[j];
end;
end
begin
end.

program matvect (input, output);
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var xblocki, xblockj : array [1..100] of real;
ablock : array[1..100,1..100] of real;
procedure init;
begin
end;
procedure body;
var i,j : integer;
begin
for j := 1 toc 100 do
for i := 1 to 100 do
xblockil[i] := xblocki[i] - ablockl[i,jl*xblockjljl;
end ;

begin
end.

Discussion of CSL solution

The CSL program code proper is in all capitals, and the task code
is given for completeness. CSL expresses this algorithm completely as spec-
ified. The matrix and vector are stored in shared memory. The set of tasks
corresponding to MATVECT and SOLVE are structured to correspond to
the matrix indices. A combination of mutual exclusion and task conditions is
used to express the complex synchronization relationships in a compact form.
A number of parallel streams are started off corresponding to the number of
blocks in the problem (the RANGE after the outermost cobegin statement).
After the array is initialized, each SOLVE waits for the MATVECTs in its row
to signal they are finished by turning on their task condition, MATCOND.
Since the first SOLVE has no predecessor MATVECTSs, the range statement
enclosing it evaluates to a negative, and it begins execution immediately. Af-
ter it finishes, all the MATVECTSs in the column beneath it begin executing,

if they can gain mutual exclusion access to the correct block of the vector.
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When a MATVECT finishes, it turns on its task condition, and eventually,
the next SOLVE task will be triggered, and the next parallel stream will be

activated.

This solution meets the requirements of the algorithm: the tasks
are properly structured without waste; shared memory is used for the data
structures; and maximum parallelism is exposed, since no arbitrary order
is imposed on the MATVECTSs in a row (the mutual exclusion is without

priority).

6.2.2 Parallel Quicksort

There is no way to express parallel quicksort in CSL, because of its
central property, separation of computation from control. CSL does not have
recursion of tasks, but even the complete binary tree solution (see Chapter
Four) is impossible for CSL, since the information about the length and po-
sition of the resulting array partitions is embedded in the task code, and the
only method of associating data with a task is abstracted in the CSL code.
The task condition is inadequate as a means of communication here, because
it may only take on two values, true or false, and what needs to be commu-
nicated to the CSL program is a set of integers indicating size and location

of the two partitions.

6.2.3 Text Processing Pipeline

CSI. Solution

JOB TRANSFER;
VAR

4, B : INTEGER;
END;
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BEGIN
A = 80;
B := 12b;
CONSTRUCT

TASKS
DISASSEMBLE : DBIN CONDITION DQUIT;
SQUASH : SQBIN CONDITION SQUIT;
ASSEMBLE : ABIN CONDITION AQUIT;

CHANNELS
DTOSQ = DATACHANNEL FROM DISASSEMBLE TO SQUASH
BUFFERS = 4;
SQTOA = DATACHANNEL FROM SQUASH TO ASSEMBLE
BUFFERS = B;
END CONSTRUCT;
COBEGIN
// REPEAT

EXECUTE DISASSEMBLE;
SEND X TO DTO3Q;
UNTIL DQUIT;

// REPEAT
RECEIVE Y FROM DTO0SQ;
EXECUTE SQUASH;
SEND Z TO SQTOA;
UNTIL SQUIT
EXECUTE SQUASH;
SEND Z TO SQTCA; (% clear pipeline *)

//  REPEAT
RECEIVE Z FROM SQTOA;
EXECUTE ASSEMBLE:
UNTIL AQUIT;
COEND;
END.

program disassemble (input, output);
var line : arrayl[l..80] of char;
X : char;
dquit , nextline: boolean;
i : integer;
procedure init;
begin
i = 1
nextline := true;
end;
procedure body;
begin
if nextline
then begin
readln{line);



nextline := false;
end;
if eof
then begin
dquit := true;
x 1= ‘g0 (* end signal character *)
end
else begin
if 1 = 81
then begin
x = 7,
i:=1;
nextline := true;
end
else begin
x := line[i];
i =1 + 1;
end;
end;
end;
begin
end.

program squash (input, output);
var y, z ,first : char;

squit, clear,flush : boolean;
procedure init;

begin

clear := true;
flush := false;
squit := false;
end;

procedure body;

begin
if flush then
z = first
else
if clear then
begin
first := y;
clear := false;
if first = ‘#7
then begin
z := first;
squit := true;
end
else z := ‘%’; (* send dummy
end
else

begin

character *)



if
then Dbegin
z := first;
first := y;
if first = ‘#°
then begin
squit
flush
end;
end
else begin
z 1= ‘Q7;
clear :=
end;

true;

end;
end;
end;
begin
end.

program assemble (input, output);
var line : arrayl[i..80] of char;
z : char;
aquit: boolean;
i : integer;
procedure init;

(first <> ‘x’) or (first <> y)

true;
true;

LI

begin
i =1,
aquit := false;
end;
procedure body;
begin
if z = ‘#7
then begin
aquit := true;
for j := i to 125 do linel[i] := ;
writeln(line);
end
else begin
if z <> ‘Y’ then begin
line[i] := z;
i=1+ 1;
if i > 125
then begin
i:= 1;
writeln{line);
end;
end;
end;
end;

begin
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end.

Discussion of CSL Solution

CSL is able to express the problem only with some waste, again
because of the too-complete separation of computation and control. CSL
can define the pipeline units and interconnections perfectly well, and uses
channels. It is when it attempts to control the transmission of data on the

channels, that problems arise.

The main problem is how the SQUASH task makes its decision as to
whether there are two consecutive asterisks or not in the input stream. The
pipeline within SQUASH has two stages, to hold the two consecutive char-
acters for comparison. If the pipeline has been cleared by a previous squash,
and the first character received happens to be an asterisk, then SQUASH
must wait to receive the next character before transmitting either the as-
terisk or an ‘@Q’. The CSL program has no way of knowing this condition
because the task condition is already being used to signal the need to flush
the pipe, because of end of input. In other words, there are three conditions
that SQUASH may be in: normal (one stage full), pipeline clear, and end
of input. There is a way to work around this, and that is to send a dummy
value to ASSEMBLE when, one that it will know to ignore. Then on the
next execution of SQUASH, the pipeline will be filled again, and the decision
to squash can be made. Thus, a receive is always followed by a send, but
the principle of abstracting computation from control has been violated by

placing more intelligence about the global state of the CSL graph inside the

task body.



6.2.4 Parallel Simulation

There is no CSL code for this algorithm either. The problem again
lies with CSL’s separation of computation from control. CSL can specify all
the necessary task types and the channels between them. Although it cannot
create tasks at random, CSL can specify an array of tasks and execute them at
random, the same approach taken in the Occam solution. However, to effect
the communication on the correct channels, CSL must know the identity of
the task with which each doctor and patient task needs to communicate.
These identification numbers are what the nurse uses to queue the doctors
and patients and to make assignments. When the nurse sends the id number
to a task, there is no way that it can be communicated from the task body to
the CSL program, which needs it immediately to index the correct channel
for the next message send or receive. This is another case where the task

condition is simply inadequate for communication.

6.2.5 Conclusions

CSL in its current definition has been found not to be general-
purpose enough to express this set of algorithms adequately. CSL does have
the two models of communication, but it does not have dynamic graph cre-
ation or dynamic graph traversal (as defined in chapter two). It should be
noted that the ranging of Construct statements represents a sort of parame-
terized static graph creation, not true dynamic graph creation. The complete
separation of task computation from parallelism control, except for a single
task condition, leads to problems in three of the four algorithms, and it is

apparently important, in that two of the algorithms could not be expressed at
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all, even poorly. It is possible to “get around” lack of dynamic graph creation
by creating more graph than is necessary to start with, but it is very difficult

to fix a lack of dynamic graph traversal.

6.3 Understandability

CSL rates high on the criteria of understandability, since the parallel
structure of the algorithm is completely abstracted into the CSL code. All
nodes and interconnections are explicitly spelled out in the Construct state-
ment, and the graph traversal actions are in the executable statements. It
is part of the design philosophy of CSL that a task be ignorant of its place
in a computation graph. However, we have seen a situation in the text pro-
cessing pipeline, where the lack of knowledge of the CSL program about the
tasks forced the tasks to be programmed with more knowledge of the CSL
program. To understand the essential nature of the SQUASH task, which is
to selectively suppress some data, it is necessary to examine the task code.
The CSL code simply describes a task which receives one character, executes,
and sends one character every time through the loop. It is only in the task
code that we see that some of the characters sent are unnecessary. This un-
dermines understandability because an algorithm’s computation graph must

now be reconstructed from the CSL program and the task codes together.

6.4 Fase of Use

CSL is easy to program on the limited class of algorithms for which
it 1s suited: completely static graph creation and traversal. It does have one

dynamic graph traversal mechanism, a high-level mutual exclusion constraint
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on shared variables. This is an improvement over Ada, where the programmer
must reprogram this mechanism every time it is needed. CSL is also easy to
learn and understand because of its limited domain of parallelism control,

and its small set of mechanisms.

Currently, CSL lacks hierarchical definition of computation graphs,
which means any large system must be coded at a single level, making it more

difficult to express and to understand.

6.5 Suggestions for Extensions to CSL

Two relatively simple extensions to CSL would help it address more
general-purpose algorithms. More improvements could be suggested, but
these have been chosen as the smallest extensions that can be added to in-
crease CSL’s power, and as the simplest changes to implement in the current

run-time system.

1. The task condition mechanism should be expanded into task variables.
These task variables would define all the conditions that a task could
be in after a single execution. In the case of the pipeline, there were
three separate conditions. A single variable of type integer could have
been declared for the task, and then assigned a value of 1, 2, or 3,
which would be interpreted by the CSL program as the three conditions.
Alternatively, three boolean variables could be defined, each set to true
or false after each execution. This would be more useful in situations
where the conditions are not disjoint. It is more reasonable to program

a certain amount of knowledge of what is required of it by the CSL
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program into the task, than to program around known deficiencies of
the CSL system in the task. The task variable solution would fix all of

the problems causing the two algorithms to be inexpressible:

e The quicksort algorithm could define a quadruplet of integer task
variables, startl, lengthl, start2, length2, to embody the infor-
mation about the results of the partitioning to the CSL program,
which would then decide whether to activate more partitions, and

what subset of shared data to associate with them.

e The parallel simulation algorithm could define an integer task vari-
able for patient and doctor tasks which holds the id number of the
matching task. Then the CSL program could send the data on the

correct channel.

2. The ability to make dynamic additions to the task configuration de-
fined by the Construct statement would improve expression of some
algorithms. Actually, in the case of CSL, defining more tasks than are
going to be used is not as inefficient as with Occam, since the tasks will
never be activated if an Execute statement is not encountered. How-
ever, it is closer to the spirit of a dynamic graph creation algorithm

only to mention as many tasks as are needed.

Since tasks that are dynamically created at runtime are very likely
to be referred to by a common name with a unique index, an addition to the
Construct statement could define a dummy task type with an unevaluated
index variable, along with associated object code file name, shared variables,

and task variables. During the executable part of the program, a Create
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statement could instantiate one of the dummy task type by specifying the
name and a value for the index variable. Channels could also be the argument

for a Create statement.

Example:

CONSTRUCT
TASKS
DUMMYTASK(I) : DUMMY0OBJ INTEGER DUMMYVAR(I);
CHANNELS
DUMMYCHAN(I) = DATACHANNEL FROM DUMMYTASK(I) TO

DUMMYTASK(I+1);

BEGIN

CREATE DUMMYTASK(10); (* automatically creating and associating
DUMMYVAR(10) for the task *J
CREATE DUMMYTASK(11);

CREATE DUMMYCHAN(10);

Extra care would have to be taken by the programmer that channels

are not created that have no actual endpoints.

6.6 Extended CSL

An extended CSL has been designed, but not implemented, and used
to code the three algorithms that gave ordinary CSL some trouble: pipeline,

quicksort and simulation.
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6.6.1 Definition of the extensions

The extended CSL has these specific extensions:

1. A Create statement for channels and tasks has been added with the

same syntax and semantics as described above.

2. A task may now have any number of task variables of type CONDITION
or INTEGER. These variables may be subscripted. If a task variable
name has only one subscript in the Construct statement, it corresponds
to an unsubscripted variable of the same name in the task body. If
a task variable name has more than one subscript in the Construct
statement, it corresponds to an array of contiguous variables with the
same name in the task body. The subscripts in the Construct statement
need not be contiguous; the correspondence to the task variable array
will be made in the order in which the subscripted variables are declared
in the Construct. There is an example of this in the parallel quicksort

code below.

3. Another extension to task variable semantics is that at the start of the
CSL program, all task variables are zeroed out (integers set to zero,
and conditions set to false) with respect to the CSL program. When a
task is first initialized, the value of the task variables that exists within
the CSL program at that time is placed in the corresponding variables
within the task. This has the side-effect of task to task communication
when two tasks share the same subscripted task variable, and one sets
its value before the other task is initialized. An example of this is the

setting of GO flags in the parallel quicksort below.



6.6.2 Parallel Quicksort

Extended CSL Solution

JOB
VAR
1,3
NUM
ERD

BEG

(*

QUICKSORT;

INTEGER; (* range variables *)
ELS, NUMNODES, NUMPARTS : INTEGER;
I
NUMELS := ...; (* no. elements in array *)
NUMNODES := (2 %% (NUMELS - 1)) - 1; (* no. nodes in tree %)
NUMPARTS := NUMELS; (* count partitions of size 1 *)
CONSTRUCT
SHARED
SORTARRAY(I) RANGE I = 1 TO NUMELS;
TASKS
PARTITION(I) : PARTOBJ
[ SORTARRAY(J) RANGE J = 1 TO NUMELS]
INTEGER SIZE(I), SIZE(2*I), SIZE((2%I)+1),
START(I), START(2*I), START((2*I)+1)
CONDITION GO(2*I), GO(2*I + 1)
RANGE I = 1 TO NUMHNODES;
END;
CREATE PARTITION(1); (* do first partitioning *)

WITH SORTARRAY(J) RANGE J = 1 TO NUMELS
DO EXECUTE PARTITION(1);
the following parallel streams wait for the signal to execute
or the signal that the sorting is finished *)
(// WAIT (GO(I) OR (NUMPARTS = 0));
IF GO(I)
THEN BEGIN
CREATE PARTITION(I);
WITH SORTARRAY(J)
RANGE J = START(I) TO (START(I)+SIZE(I)-1)
DO
EXECUTE PARTITION(I);
(* subtract partitioning value *)
NUMPARTS := NUMPARTS - 1;
(% if partitions have 1 element, subtract®)
IF (SIZE(2*I) = 1)
THEN NUMPARTS
IF (SIZE((2xI) + 1
THEN NUMPARTS
END;
) RANGE I = 2 TO NUMNODES;

NUMPARTS - 1;
:1>
NUMPARTS ~ 1;

0o~ 0

END.
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program partition (input, output);

const

numels = ...; (* same size as in CSL program *)

var

size, start: array [1..3] of integer;

go : array [1..2] of boolean;

sortarray : array [1..numels] of integer;

procedure init;

begin

end;

procedure body;

begin

(* partitioning logic on sortarray, using size and start
as guidelines %)

start[1];

j := start[1] + sizell] - 1;

mid := start[i];

while 1 <= j do

i

Hou

begin
if sortarray[i] > sortarraylj]
then begin
temp := sortarrayl[il;
sortarray[il] := sortarrayljl;
sortarraylj] := temp;
if mid = i
then mid := j
else mid := 1i;
end;
if i = mid
then j = j - 1
else 1 = i + 1;
end;

(* after partitioning, set limits for next processes *)
if start[i] < (mid - 1)

then begin
start[2] := startl[i];
gol[1] := true;
end;
sizel[2] := (mid - 1) - start[i] + 1;
if (mid + 1) < (start[i] + sizell] - 1)
then begin
start[3] := mid + 1;
gol2] := true;
end;
sizel[3] := (start[1] + sizel[1] - 1) - mid;
end;
begin

end.
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Discussion of Extended CSL Solution

Since the simple extensions of CSL that were proposed do not in-
clude recursive tasks, it is necessary to create the complete binary tree of
tasks and find some way of signalling the unnecessary tasks that they should
not execute. One way is the Occam solution of sending messages, but this
requires the tasks to be loaded and executed to process the message. An
alternative is to use a global condition within the CSL program that signals
the end of the sorting. A global counter is used to count the number of parti-
tions of size 1 that are created. Every partitioning task creates a mid section
of size 1, so every execution decrements the counter by 1. Additionally, the
partitions that are created may be of size 1. If one or both of the partitions is
of size 1, then an additional subtraction is made. This makes use of the fact
that during the sorting process, every element will either become a partition-
ing element (mid), or wind up in a partition of size 1, which is the base case
causing recursion to terminate. When all such elements have been counted,
the sorting is completed. It should be noted that CSL statements are atomic
with respect to each other, so that no synchronization is required on CSL job

variables between parallel streams.

The advantage of this solution is that it actually solves the problem,
which could not be done with ordinary CSL. The disadvantage is that the
overhead of extra task execution has been moved into the CSL program as

extra parallel stream execution.
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6.6.3 Parallel Simulation

Extended CSL Solution

JOB SIMULATION;

VAR I, J : INTEGER; (* range variables *)
END;

BEGIN
CONSTRUCT
TASKS
PATIENT(I) : POBJ INTEGER DN(I), PSELF(I)
RANGE I = 1 TO 100;
DOCTOR(I) : DOBJ INTEGER PN(I), DSELF(I)
RANGE I = 1 TO 3;
NURSE : NOBJ CONDITION QUIT, MATCH
INTEGER PNUM, DNUM;
CHANNELS
PTON(I) = DATACHANNEL FROM PATIENT(I) TO NURSE
RANGE I = 1 TO 100;
PTOD(I,J) = DATACHANNEL FROM PATIENT(I) TO DOCTOR(J)
RANGE I = 1 TO 100, J = 1 TO 3;
DTON(I) = DATACHANNEL FROM DOCTOR(I) TO NURSE
RANGE I = 1 TO 3;
DTOP(I,J) = DATACHANNEL FROM DOCTOR(I) TO PATIENT(J)
RANGE I = 1 TO 3, J = 1 TO 100;
NTOP(I) = DATACHANNEL FROM NURSE TO PATIENT(I)
RANGE I = 1 TO 100;
NTOD(I) = DATACHANNEL FROM NURSE TO DOCTOR(I)
RANGE I = 1 TO 3;
END;
(* broadcast identity numbers to each task *)
EXECUTE WNURSE;
FOR I = 1 TO 100
DO BEGIN
SEND PID(I) TO NTOP(I);
RECEIVE SELF FROM NTOP(I);
END;
FOR I = 1 TO 3
DO BEGIN
SEND DID(I) TO NTOD(I);
RECEIVE SELF FROM NTOD(I):
END;
(* each task stores its identity number *)
COBEGIN
(// EXECUTE PATIENT(I)) RANGE I = 1 TO 100;
(// EXECUTE DOCTOR(I)) RANGE I = 1 TO 3;
// EXECUTE NURSE;
COEND;



(% start the simulation *)

COBEGIN

// (REPEAT
EXECUTE PATIENT(I); (* not withdoctor #*)
SEND SELF TO PTON(I);
RECEIVE ASSIGNMENT FROM NTOP(I);
EXECUTE PATIENT(I); (% withdoctor *)
SEND SYMPTOM TO PTOD (PSELF(I), DN(I));
RECEIVE RX FROM DTOP (DN(I), PSELF(I));

UNTIL QUIT;) RANGE I = TO 100;

// (REPEAT
SEND SELF TO DTON(I);
RECEIVE ASSIGNMENT FROM NTOD(I);
EXECUTE DOCTOR(I); (* seenext *)
RECEIVE SYMPTOM FROM PTOD (PN(I), DSELF(I));
EXECUTE DOCTOR(I); (* diagnosing *)
SEND RX TO DTOP (DSELF(I), PN(I));
UNTIL QUIT; ) RANGE I = 1 TO 3;

// REPEAT
COBEGIN
( // IF NOT EMPTY (PTON(I))
THEN RECEIVE PID(I) FROM PTON(I))
RANGE I = 1 TO 100;
(// IF NOT EMPTY (DTON(I))
THEN RECEIVE DID(I) FROM DTON(I))
RANGE I = 1 TO 3;
COEND:
EXECUTE NURSE;
IF MATCH THEN BEGIN
SEND PASSIGNMENT TO NTOP(PNUM);
SEND DASSIGNMENT TO NTOD(DNUM) ;
END;
UNTIL QUIT;
COEND;
END.

program nurse (input, output);

const maxiterations = ...;

var

passignment, dassignment, pnum, dnum, i,
numiterations : integer;

pid : array [1..100] of integer;

did : array [1..3] of integer;

match, quit, first, second : boolean;
procedure init;

begin
numiterations := 0;
first := true;

second := false;
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end;
procedure body;
begin
if first
then begin
for i := 1 to 100 do pidlil] := 1i;
for i := 1 to 3 do did[i] := 1i;
first := false;
gsecond := true;
end
else if second
then begin
(* zero out pid and did arrays *)
second := false;
end

else begin
(* examine pid and did arrays, queueing non-zero entries

*)
(* zero out pid and did arrays *)
(* if there is at least one entry in each queue ... *)
passignment := pqueue[phead];
dassignment := dqueue[dhead];
match := true;
(* adjust queues *)
(% if there is no match, set match to false *)
numiterations := numiterations + 1;
if numiterations > maxiterations
then quit := true;
end;
end;
begin
end.

program doctor (input, output);
var

selfidentify, (* true before doctor knows own id number *)

seenext : boolean; (* true when waiting for next patient *)

dself, {(* task variable %)

self, (* channel variable *)

pn, (% task variable *)

assignment, (* channel variable *)

symptom, rx : integer;
procedure init;
begin

selfidentify := true;

seenext := true;
end;
procedure body;
begin

if selfidentify (* store own identity number *)

then begin
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dself := self;
selfidentify := false;

end
else if seenext (¥ find out next patient *)
then begin
pn := assignment;
seenext := false;
end
else begin (* diagnose patient *)
(* rx := some function of symptom *)
seenext := true;
end;
end ;
begin
end.

program patient (input, output);
var
self, (* channel variable *)
pself, (x task variable *)
assignment, (* channel variable *)
dn, (* task variable *)
symptom, rx : integer;
withdoctor, selfidentify : boolean;
procedure init;

begin
withdoctor := false;
selfidentify := true;
end;
procedure body;
begin
if selfidentify  (* obtain own identity number *)
then begin
pself := self;
selfidentify := false;
end
else if withdoctor (* obtain doctor assignment *)
then begin
dn := assignment;
withdoctor := false;
end
else begin (* be well, then get sick x)
(* delay = some function of rx *)
symptom := (* some random number *);
withdoctor := true;
end;
end;
begin

end.
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Discussion of Extended CSL Solution

The extended CSL solution for the parallel simulation problem is
fairly straightforward, and similar to the Occam solution. One thing that
should be mentioned is that task variables may not be sent on channels. In
the simulation, a task variable is used to index a channel, and the value of
the variable is based on what has been sent to the task on a channel from the
nurse. An extra execution is required simply to assign the channel variable

to the task variable.

The doctor and patient tasks each have three different phases of
execution: self-identification at the first, and then alternation between com-
munication with the nurse, and communication with the assigned task. This
is a good example of how the extensions have somewhat eroded the isolation
of the task code from the CSL program. Each task must now know the states
it can be in with regard to the CSL computation graph, and perform differ-
ent actions between each state transition. The task 1s divided up into three

sections with a set of actions for each different state.

The advantage of using the task variables is that the problem is
now expressible. The disadvantage is that task code and CSL code must
be considered together to get a complete picture of the parallel algorithm.
However, this correspondence is done in a very disciplined manner. The
problem of multiple states did not arise with the quicksort, even though it

used task variables, because each task executed once only.



6.6.4 Text Processing Pipeline

Extended CSL Solution

JOB TRANSFER;
VAR

A, B : INTEGER;
END;

BEGIN
A 80;
B := 125;
CONSTRUCT
TASKS
DISASSEMBLE : DBIN CONDITION DQUIT;
SQUASH : SOBIN CONDITION SQUIT, CLEAR, DECIDING;
ASSEMBLE : ABIN CONDITION AQUIT;
CHANNELS
DTOSQ

o

DATACHANNEL FROM DISASSEMBLE TO SQUASH
BUFFERS = 4;

DATACHANNEL FROM SQUASH TO ASSEMBLE
BUFFERS = B;

i

SQTOA

END;

COBEGIN
//  REPEAT
EXECUTE DISASSEMBLE;
SEND X TO DTOSQ;
UNTIL DQUIT;

// REPEAT
RECEIVE Y FROM DTOSQ;
EXECUTE SQUASH;
IF NOT DECIDING
THEN SEND Z TO SQTOA;
UNTIL SQUIT;
IF NOT CLEAR
THEN BEGIN
EXECUTE SQUASH;
SEND Z TO SQTOA;
END;

//  REPEAT
RECEIVE Z FROM SQTOA4;
EXECUTE ASSEMBLE;
UNTIL AQUIT;
COEND;

program disassemble (input, output);
var line : arrayl[l..80] of char;
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x : char;

dguit , nextline: boolean;

i : integer;
procedure init;

begin
i o= 1;
nextline := true;
end;
procedure body;
begin
if nextline
then begin
readln(line);
nextline := false;
end;
if eof
then begin
dquit := true;
x = ‘47 (* end signal character
end
else begin
if i = 81
then begin
X = 7y
i = 1;
nextline := true;
and
else begin
x := linelil;
i =1 + 1;
end;
end;
end ;
begin
end.
program squash (input, output);
var y, z ,first char;
squit, clear, deciding : boolean;

procedure init;

begin

clear := true;
deciding := false;
squit := false;
end;

procedure body;

begin
if clear then
begin
first

=Y
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clear := false;
if first = ‘#’
then begin
z := first;
squit := true;
clear := true;
end

else if first = ‘%’
then deciding
else deciding
end
else
begin

won

true
false;

if (first <> ‘%’) or (first <> y)

then begin
z := first;
first := y;
if first = ‘#’

then begin
squit

true;

clear := false;

end ;
end
else begin
z 1= ‘@7,
clear := true;
end;
end;
end;
end;
begin
end.

program assemble (input, output);
var line : array[i..80] of char;
z : char;
agquit: boolean;
1 : integer;
procedure init;
begin
i = 1;
aquit := false;
end;
procedure body;
begin
if oz = ‘@
then begin
aquit
for j
end
else begin

true;

o

i to 125 do lineli] := ¢
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linelil := z;
i =1+ 1;
if i > 125
then begin
i = 1
writeln(line);
end;
end;
end;
begin
end.

Discussion of Extended CSL Solution

Only a few minor changes were made in the text processing pipeline
code, to show how the unnecessary sends and receives could be avoided. The
SQUASH task now can express the three states it can be in after an execu-
tion (see discussion for ordinary CSL version). A Send can be suppressed
when necessary. The SQUASH task now stands in the same hybrid relation
to the CSL program as the doctor and patient tasks did in the parallel sim-
ulation. However, it was possible to remove some of the extra code from the
ASSEMBLE task. Formerly, ASSEMBLE had to know when it was receiving
a dummy character, and ignore it. In this version, the task never receives
such a dummy message, and so it has become more isolated from the paral-
lelism control. Additionally, using the three states of SQUASH as divisions
in the task code makes the code more understandable with relation to the

CSL program.

6.7 Summary

CSL, as originally defined, was found to have too static a structure

to code a wide variety of algorithms. CSL had no method of dynamic task
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creation outside the Construct statement, and no method of dynamic graph
traversal because of its separation of computation code from parallelism con-
trol code. The only method of communication between task and CSL codes
was through a single task boolean-valued condition, which did not cover the
number of states a task could be in after a single execution. However, CSL
does have the virtue of capturing a parallel computation graph abstractly
and compactly. A set of extensions was defined that allowed the remaining
algorithms to be expressed in CSL; these extensions were dynamic task cre-
ation, and extension of the task condition to a task variable. These are not
the only extensions possible, but the ones that seemed simplest to implement.
The task variable construct has been shown to erode the isolation of the task
code from the parallel graph somewhat, but in a disciplined manner that is
preferable to the cases (such as the pipeline) where extra task and CSL code
is necessary to execute the algorithm correctly, and to the cases where an

algorithm (quicksort, simulation) is completely inexpressible.



Chapter 7

SUMMARY AND CONCLUSIONS

7.1 Summary

A set of characteristics of parallel algorithms was defined, and a set
of algorithms that embody all of the characteristics in varying combinations
was formulated. A classification of languages based on explicit vs. implicit
parallelism control and the degree of abstraction of this control was drawn
up, and a representative language chosen from each subclass. The sample
languages with which to compare CSL were chosen on the basis of their
influentiality, and likeliness to survive the test of time. The languages chosen

were Ada, Sisal, and Occam.

7.2 Conclusions

The testbed of algorithms was chosen to contrast models of com-
munication with dynamic/static graph creation. The idea of dynamic graph
traversal was brought out by the failure of CSL to express two of the four
algorithms, the quicksort and the parallel simulation. Both of the algorithms
had dynamic graph creation as a characteristic, but that was not the deciding
factor, since both of them were programmable in Occam, which has an even
less dynamic node creation mechanism than CSL. In addition, CSL was able

to express a third algorithm, the pipeline, but only poorly, and for the same
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reagon. This is a weakness in the definition of CSL, which fortunately can be
remedied in a way that is relatively simple and relatively undamaging to the
concept of separation of parallelism control from computation. This is the
extension of the task condition to a set of task variables. This corresponds
nicely to the CSL concept that a task completes one execution before com-
municating with the CSL control program again. The task can be left in a
number of states after each execution, and this information can be coded into
the task variables. This seems preferable to coding around CSL’s deficiency
in the task bodies, and infinitely preferable to being unable to express an

algorithm at all.

CSL has a quality worth preserving, and that is the ability to see
clearly, almost at a glance, the structure of the parallel computation. In
parallelism-extended languages like Ada and Occam, this structure is em-
bedded in code modules that must be analyzed together to determine the
existence of relationships. In extended CSL, the CSL program and the task
bodies must sometimes be analyyzed together to obtain the whole picture
of the computation graph, but the relationship is very disciplined, based on
the notion of a finite number of task states that are captured in the task
variables. In Sisal, the structure of the computation is not really a concern
of the programmer, as long as he defines it correctly. This is fine for certain
purposes, but does not encourage experimentation in developing new parallel
algorithms.

Of the languages surveyed, Ada has the most expressive power,
based on its ability to program abstract algorithms with little transforma-

tion. This is balanced, however, by Ada’s complexity and sometimes con-
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fusing semantics. Ada has both models of communication available to the
programmer. Shared memory was used for the triangular solver and quick-
sort algorithms, and channel communication for the pipeline and parallel
simulation. It was noted that a higher level synchronization construct than
the shared pragma would be convenient for the programmer, to avoid having

to program simple mutual exclusion every time.

Occam is easier to use when the algorithm is already cast in its
channel model of communication, but has no dynamic graph creation capa-
bility. It required rethinking of the quicksort algorithm to recast it into a
fixed binary tree version that entailed some waste creation and execution of
processes. Occam has simpler syntax and semantics than Ada. Since, like
Ada, intertask communication is embedded in the algorithm code, dynamic
graph traversal is possible. This capability made it possible to transform the

quicksort algorithm into the static version.

The Sisal discussion emphasized the difficulty of programming against
the philosophy of implicit parallelism. Sisal would be easiest to use for a
programmer who wished to avoid the complexity introduced by thinking ex-
plicitly about parallelism. When attempting to use Sisal to program the
triangular solver and simulation algorithms, it was found impossible to com-
pose functions in a way that allowed for two-way communication between two

function modules.

CSL, as currently defined, has severe limitations, but if extended
would have this advantage: the parallelism control is abstract and easy to
program, while non-parallelism related issues, such as data types and opera-

tions, are buried in the task code. A task body language may be chosen that
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best suits the computation (or the programmer) and, in some cases, recast

slightly to fit into the CSL program.

An ideal explicit parallel language would achieve a workable balance
between power and simplicity. A starting point would be to provide language
constructs designed to embody the characteristics of parallel algorithms listed
in chapter two. Both models of communication should be allowed, possibly in
the form of an intermediate model, such as Linda’s tuple space, that allows the
programmer to use the characteristics of both as needed. The synchroniza-
tion constructs should be sufficiently high-level to avoid continual recoding
of common synchronization requirements. Finally, hierarchical definition of

computation graphs should be available in the language.

Further work can be done on extending CSL. The extensions given
were the simplest possible that would allow the algorithms to be expressed.
Introducing hierarchy into CSL is necessary and fundamental to its computa-
tion graph model. Some mechanism of abstracting a CSL graph into a single

task should be introduced.
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