GCF/19 September 1986

IMPROVED WORLD SPACE RENDERING
Gordon C. Fossum
Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-86-23 September 1986

Abstract

Historically, smooth-shaded curved surfaces with proper shadows
have been difficult to paint (or “render”) even on powerful graphics systems.
For a long time, the only methods available were referred to as “world-space”
techniques, because they operated in the coordinate system where the objects

of interest were described.

The advent, several years ago, of “image-space” rendering tech-
niques, specifically “ray tracing”, enabled beautiful image generation, but
at great computational expense. The conceptual simplicity and high quality
of ray tracing caused interest in previous methods to wane. My claim is that
for some applications, ray tracing represents too much work, and that other
methods can be used to generate equivalently beautiful images with much less
computational expense. Specifically, I propose a novel use of z buffers and
alpha buffers to generate correct curved surfaces with anti-aliased silhouettes,

and correct soft shadows.

Table of Contents

Abstract
Table of Contents
List of Figures

1. Imtroduction
1.1 Background (or Levelsetting)

1.2 Scope of Present Research,

2. The New Idea
2.1 Motivational Recapo 0oL
2.2 The Basic Implementation

2.3 Status, Research Direction and Discussion

3. A Description of the Testbed
3.1 Overview e e
3.2 Detail of Wire-Frame Mode
3.3 Detail of Light-Source Z Buffers
3.4 Detail of the Painting Algorithm

3.5 Efficiency Measurement

BIBLIOGRAPHY

i

ii

i1l

11

13
13
14
15
16

18

List of Figures

1.1 A Column of Pixels that Exhibit Self-Shadowing

3.1 The Screen, in Wire-Frame Mode

i1

Chapter 1

Introduction

1.1 Background (or Levelsetting)

For many years, the quality of images generated by the computer
graphics field has been steadily improving. However, the cost of creating
these images has always been related fairly directly to the “accuracy” of the
image (cost measured both in memory usage and CPU cycles; “accuracy”
meaning both how “good” the image looks, and how faithful it is in repre-
senting reality.) In each of several areas of consideration, there is a spectrum
ranging from blatantly unrealistic hacks to careful (and expensive) modeling

techniques.

For example, there is the problem of trying to determine when a
surface is visible to the eye (that is, when it is not “behind” something that
is closer to the eye, at a given pixel). For a very long time, the most popular
method of accomplishing this was to sort the polygons for distance to the
eve, and in the case of intersecting polygons, chop them into smaller pieces
until an unambiguous sort could be done. Once sorted, the polygons can be
drawn in order, from furthest to closest. This method could not be easily
applied to surfaces that were not polygonal (because the intersection of two

non-polygonal objects was computationally difficult). An alternative method

(W]

involves z buffers. A z buffer is a parcel of memory, either in general-purpose
memory or in part of the frame buffer of a graphics system, which contains
one or more bytes for each pixel of the image. The traditional use of a z
buffer is to store, in some form, the z coordinate of the object point displayed
in each pixel (hence the name). The advantage of this is that as a program
prepares to paint a point on the screen, it can ask whether this point is closer
to the eye than any object point that might already be displayed in the chosen
pixel. If so, then paint the point and update the z-buffer value for that pixel.
If not, throw the point away. This method is a marvelous solution to the

hidden-surface problem.

Another area in which a whole spectrum of methodologies exists is
“how to draw a non-polygonal object.” The cheap way is to compute a num-
ber of points on the surface of this object, and draw the polygons that these
points specify. Unfortunately, the silhouette will be polygonal, and the edges
between polygons can be painfully obvious if too few points are selected. If
you are selecting a color for a polygon based on its orientation vis-a-vis the
light source(s), the edges can be nicely blurred by computing the average
of the orientations of all polygons that meet at a given vertex, and then lin-
early interpolating the intensities that result from these averaged orientations
across the interior of each polygon. This is known as Gouraud shading, after
its inventor; see [Gour 71]. If, instead, you interpolate the orientations them-
selves, instead of the color intensities, (where orientations are represented by
normal vectors) the resulting shadings will be more realistic and less subject

)

to “flattening,” which is the result of the maximum intensity appearing well

in the interior of a polygon, and being lost because the derived intensities

at the vertices are all smaller. This is “Phong shading,”

again, named after
the inventor; see [Phon 73]. Both of these methods still suffer from polygonal
silhouettes, though. The method of choice for many years for proper repre-
sentation of truly curved surfaces has been the bi-cubic patch. This method
was made much more computationally tractable by Edwin Catmull’s subdi-
vision algorithm [Catm 74], in which a coded representation of the 48 degrees
of freedom of a bi-cubic patch can be used to generate four new sets of 48
degrees of freedom, one for each quadrant of the patch. This process can be
done, he showed, using only adds and shifts (assuming integer arithmetic).

Thus, it became feasible to recursively subdivide a patch until a patch piece

was “down to the pixel level,” at which point, it can be painted.

In most applications, it is important to be able to compute vectors
from points in the scene to light sources. The cheapest hack is to place a light
source at an infinite distance from the scene, allowing simplified calculation
of the vector from any point in view to the light source (the same vector
suffices in all cases). A more realistic approach places the light source at a
finite distance away from the scene, with a concomitant increase in the cost
of computing vectors from each scene point to the light source. If the light

source is actually part of the scene, additional complications arise.

Determining what points are shadowed is a source of much research
inquiry. In the realm of polygonal scenes, one method in wide use is “shadow
volumes” [Crow 77], in which we calculate the actual volumes in which any
point cannot be seen from the light source. Another method, pioneered by
Lance Williams, uses z buffers for shadow computations [Will 78]. If you scan

a scene with a light source placed at the eye, not painting pixels, just filling

lit
___shadowed E
AN lit ‘
g N ‘\\ shadowed
N\ shadowed
SO S i

= __shadowed
NS\ shadowed
NS \\\ shadowed

N N\ __ shadowed

NN\ shadowed
NN NN Nt

\ \Q\\ shadowed

L
Figure 1.1: A Column of Pixels that Exhibit Self-Shadowing

a z buffer, then the resulting buffer can be used to determine which points
in a scene are visible to that light source. Several drawbacks exist. One is
that you need a separate z buffer for every light source. Another is that the
lights are inherently point-sources. A third disadvantage is that care must
be exercised to prevent the phenomenon known as self-shadowing, in which
several adjacent pixels as seen from the eye and painted on the screen all
belong to the same pixel in the light-source buffer. This results whenever
the normal to a surface is nearly parallel to the vector to the eye, but nearly
perpendicular to the vector to the light source (see figure). Here “E” shows
the direction of the eye, “L” shows the direction to the light source, and “S” is
the surface being rendered. In this circumstance, the classical z-buffer shadow
algorithm will light only one of these visible pixels in each light-source (x,y)
and shadow all others. This is pretty bad. The “fix” for this is to insist that

a bias be added to the comparison which says “am I closer to the eye than

the buffer value?” This bias has been represented as a fixed constant [Will 78],
with the unfortunate result that no matter what the value is, self-shadowing
will still occur as you get close enough to the terminator (the sunset line, if
you will), and if the number is chosen too large, then an object that should

be shadowed by another object close by may be accidentally rendered as lit.

Consideration of proper shadow effects leads us to consider the light
source itself. The easiest model is the “point light source,” but the shadows
that it casts are sharp, having no penumbrae. This effect almost never “looks
good”, and rarely represents reality. Non-point light sources can be modeled

only with considerably increased cost.

An area which causes great increase in cost, and has been the focus
of much research in recent years is “how to model reflective, transparent,
and/or translucent objects.” Success in this area has been largely due to
ray tracing. In ray tracing, the basic idea is to send a ray from the location
of the eye through each and every pixel on the graphics screen (said screen
being located in world-space somewhere between the eye and the scene being
viewed) and on into the scene. If the ray never hits anything, then the pixel
can be painted black (or whatever background color you like). When a ray
hits an object, however, it immediately spawns two children: the reflected
ray, and the refracted ray. For opaque objects, the refracted ray is ignored,
but careful calculations on non-opaque objects lead to realistic images, albeit
at the cost of maintaining a tree of spawned rays cascading from the original
ray through each pixel. One flaw is that the reflected ray is usually computed
to bounce in the direction it would go if the object in question were mirror-

smooth. Thus, classical ray tracing does not model effects such as a spotlight

generating a bright area on a piece of paper, “color-bleeding” from a non-
shiny surface painted bright red to a nearby non-shiny surface painted white,
or soft shadows from non-point light sources. An attempt to model these
effects within the scheme of ray tracing involves shooting several rays, each
equipped with access to a random number generator, to decide exactly where
each ray will go [Cook 84]. This is known as “distributed ray tracing.” As
one might expect, this drastically increases the amount of time required to

create an image.

In the last couple years, the new buzzword “radiosity” began to
appear in the graphics world [Cohe 86,Cohe 85,Gora 84,Imme 86]. Radiosity
refers to a method in which the output light energy of each surface in the
scene is made a function of its input energy plus the light it generates on
its own (the latter for light sources only). Furthermore, the direction the
output energy takes is a function of the characteristics of the surface, and the
directions of any input energies. So, for example, some surfaces might have
equal energy output in all directions (these being known as diffuse surfaces,
or matte finishes), while others really do reflect like mirrors, giving the output
intensity function a distinctly spiky appearance. Most surfaces end up being
a combination of the two. The radiosity model proceeds to consider the
“form factor” between any two surfaces in a scene. This is the percentage of
output energy from surface one that impinges on surface two. This method is
expensive, but has the benefit of greater flexibility than classical ray tracing.
The most complete work to date in the area of properly rendering an object,
which takes into account both the effects of specular (mirrorlike) and diffuse

reflection, is [Kaji 86].

-

1.2 Scope of Present Research

This thumbnail sketch represents the status of the subfield of com-
puter graphics that specializes in realistic image generation. I include this
introduction in order to allow me to describe where my research area fits in.
I have been deeply exploring an area that was investigated in the mid-1970’s,
but was, for the most part, placed on the “back burner”, so to speak, upon the

advent of ray tracing. I refer to the use of z buffers for shadow computations.

My first minor result is to insist that the bias to control self-shadow-
ing, which I referred to earlier, should be a function of the angle between
the normal to the surface and the vector to the light source. As this angle
approaches 90 degrees, increase the bias, proportionally with the tangent of

the angle, up to some maximum cutoff value.

My major result is to expand on the idea of z buffers for shadow
computations. I use another pre-existing application of the z buffer in a new
way. This application is called the alpha buffer. An alpha buffer stores, for
each pixel, the percentage of that pixel which is covered by the rendered image
[Fium 83,Port 84,Carp 84]. This information is useful as an anti-aliasing tool,
wherein you attenuate the intensity of the color with which you paint a pixel
to account for its alpha buffer value. 1 propose to use a combination of
two z-buffers and two alpha buffers to generate antialiased images with soft

shadows, which are correct and realistic.

The important thing is to note that what we are trying to do is
determine, with some measure of accuracy, how much of the light source is
visible to the point that we are trying to render. If the answer is none, the

object is in full shadow. If the answer is greater than none and less than all,

the object is in the penumbra of the shadow. The difficulty is in ascertaining

this value.

The first step is to render the scene from the point of view of the
light source, taking care to note, for each pixel, the distance to the closest
object point, the distance to the next-closest object point, and the percentage
of the pixel covered by the closest object point. The next step is to consider
each of the two points represented by the two z-values. For some neighbor-
hood around the pixel, see if anyone else’s points come between you and the
light source (noting here that the light source is NOT a point source, and
that its shape is determined by some small, simple formula, as for a sphere,
a rectangle, or a line segment). If such a partial eclipse occurs, the informa-
tion is readily available to determine what percentage of the light source is
eclipsed by that point (here visualizing the point as a small black square of
the appropriate size). The result is that the alpha buffer can be converted
from representing the geometrical notion of what part of a pixel is covered
by an object to representing what percentage of the light source is visible to

the object at that point.

This dissertation proposal explains, in detail, the operation of my
test bed, and the usage of z buffers and alpha buffers to do proper shadowing.
Thus far, I have successfully incorporated the alpha buffer concept into my
test bed to the extent that the bi-cubic patches I render are now anti-aliased.
It remains for me to incorporate the full combined z/alpha buffer concept to

verify its correctness.

Chapter 2

The New Idea

2.1 Motivational Recap

The traditional use of z-buffer concepts to determine shadowing does
not allow for non-point light sources. You need one z buffer (which may run
to 1.5 megabytes or so) for each light emitting point that impinges on your
scene. In a scene with, say, five flourescent light panels in the ceiling, you are
not going to get realistic lighting effects with traditional z buffers until and

unless you are willing to invest in several gigabytes of memory.

Given that memory continues to get less expensive, it is reasonable
to investigate algorithms which require more memory than would have been
considered wise in years past. The algorithm that I propose here will require
approximately two megabytes per light source, but these will be modellable

as non-point light sources.

2.2 The Basic Implementation

Consider the use of two z buffers and two alpha buffers per non-point
light source. Again, the goal is to understand how much of the non-point light
source is visible at a point on a surface (that is, an entry in a z buffer). Label

the z buffer representing the closest thing to the light source in that pixel

10

as the “upper” z buffer. Label the other as the “lower” z buffer. Then the
“upper” alpha buffer record contains the fraction of the pixel which is covered
by whatever is at the depth recorded in the upper z buffer, and the lower alpha

buffer is initially empty.

Now, note that as you fill the lower and upper z buffers initially, it
is trivial to store the location that is closest to the light source; the minimum
z value in either buffer. Further note that if you know the “radius” of the
light source, and the ratio between my distance from the minimum z and my
distance to the light source, you have a nice upper bound on how many of your
neighbors (the buffer locations with nearby (x,y) values) can possibly block
a piece of your view of the non-point light-source. The size of the bounding
neighborhood differs, depending on how close you are to the minimum z
value. For a light source whose radius takes up 0.25 degrees of sky, like the
sun or the moon, the neighborhood that would need to be considered might
conceivably be a mere 5 x 5 block of (x,y) values with the light-source pixel
under consideration as the center. Of course, a light source like a flourescent
tube could (and should) be handled by a different method, taking advantage
of its shape, and thus limiting in a useful way the shape of the neighborhood

that needs to be considered.

The algorithm will process through the z buffers, skipping those
points with “max” z values, as they are background points, not part of any
object. Having established the neighborhood of (x,y) values that needs to be
considered as potential shadowers, the algorithm will proceed to examine each
neighbor, and, using similar triangles, determine exactly which neighboring

(x,y,2z) locations stored in either z buffer actually do come between your lo-

11

cation and the non-point light source. Note that points which are on the
border of the light source (as seen from the point in question) can contribute
fractional values to this accumulation. The grand simplification comes from
the fact that we can assume that any shadowing is done by a homogeneous
piece, and that, having collected the number of interfering points (say “n”),
we can take their average z value, and then compute how many points, at
that average z value, would be required to obscure the light source completely
(call this “m”). Then the ratio n/m will be an excellent estimate of the re-
quired attenuation of the illumination from the light source in question onto
the patch location in question. This ratio is then stored in the alpha buffer
at that (x,y) location. Recall that this is being done for both the “upper”
and “lower” z value. The novel aspect of this is that points which are clearly
invisible to the center of the light source can still be illuminated by the areas
of the light source other than the center, and the effect is properly reproduced

here.

The result is that now, we have a buffer which tells us, at every light-
source (x,y) pixel, the required attenuation value for illumination of the first
two objects “visible” to the light source at that pixel. Again, this means that
stuff which is invisible to the center of the light source can still be partially

illuminated. This is the essence of soft shadows.

2.3 Status, Research Direction and Discus-
sion

Thus far, I have successfully incorporated the alpha buffer concept

into my test bed to the extent that the bi-cubic patches I render are now

12

anti-aliased. It remains for me to incorporate the full combined z/alpha
buffer concept. My goal over the next year is to demonstrate the validity of
this concept. I shall also measure its efficiency against appropriate existing
implementations which generate soft-shadowed anti-aliased parametric patch
scenes. My proposed method of comparing efficiency is discussed in the next

chapter. Some detailed comments on undecided issues follow:

The simplification in the previous section need not occur. However,
trying to take into account multiple occluding pieces will require some sort of
data structure to accumulate how many points are occluding the light source
at each level, and I do not believe that such a level of care will be useful, even

in a relatively complicated scene.

The notion that only a portion of a neighbor may be present (that
is, the neighbor represents a patch piece that does not cover the entire pixel
at that z value) is not taken into consideration here. I trust that for most
cases this nettlesome detail can be ignored with impunity, but further testing
on my part will be needed to determine whether the effect is satisfactorily
realistic. If not, the number of required buffers may rise from four to six:
two for z values, two for coverage values and two for illumination attenuation

factors.

Chapter 3

A Description of the Testbed

3.1 Overview

The basic idea is to let the user control the shape of the patch, as a
wireframe diagram, by adjusting the values of any or all of the 48 degrees of
freedom which are available in the specification of a b-spline bicubic patch (x,
y, and z for each of sixteen points). When you have a patch that you would

like to see rendered, a mouse button push starts this process.

First, the z buffers from two different light sources are computed,
and then the painting process actually starts. The patch is recursively sub-
divided until a piece is detected which is “at the pixel level.” This piece’s
visibility to the eye is determined (using a z buffer in the classical way), then,
if visible, its color intensity is computed (using vector calculations, as well as
shadow calculations, with the light-source z buffers), and it is painted on the
screen. This color-intensity part is where the modified z/alpha buffer con-
cept will come into play, when it is perfected. The two z buflers previously

referenced will actually be more complex than they are right now.

On completion of the patch, the program automatically writes 1t to
disk for future display, and offers mouse button control to leave or to repeat

the process with a new wire frame.

13

14

3.2 Detail of Wire-Frame Mode

A b-spline bi-cubic patch represents the warping of a square of (u,v)
parametric space (where u and v are both in the interval [0,1]) into x,y,z space,
using three functions on the independent variables u and v; one function for x,
one for y, and one for z. Each function has sixteen terms, one for each possible
combination of a power of u multiplied by a power of v, from constant (the
zero-th power) up to and including cubic terms. Thus, the sixteen coefficients
of this “bi-cubic” function control where the function goes, as you range over
this unit square in (u,v). With three such functions, you can see where the
48 degrees of freedom come from. The magic of all this is that a few well
chosen matrices can convert the 48 numbers contained in 16 “control points”
into the 48 numbers needed for these three functions. This is the wonder of
b-splines. These 16 control points are the vertices of a convex polyhedron,

and the patch is constrained to lie within this polyhedron.

The way I let a user control these degrees of freedom is to show 48
vertical bars (grouped into 16 clusters of x,y,z values, and all placed in the
rightmost one-quarter of the screen), each of which can vary from -1.0 through
+1.0. The user can choose the value of each bar with appropriate mouse but-
tons (see figure). This representation is not very convenient, ergonomically,

but testbeds are not intended to be marketable.

The way I get a wire-frame representation of a patch is to sequen-
tially process through a bunch of fixed values for u and v, and just draw the
lines on the screen, using standard 3d transformations, from world-space co-
ordinates. (As the system exists now, I actually draw them in stereo, so that

the red-blue 3D glasses give you true depth perception, but this really is not

|

/

l}l I it

Figure 3.1: The Screen, in Wire-Frame Mode

germane to my research.) Besides changing the shape of the patch (in near-
real time) by modifying one of the 48 valuators, the user can, under mouse
control, change the eye position in real time. This, in conjunction with the
stereo representation, permits a very strong perception that you know what

the patch will look like before you commit to start painting.

3.3 Detail of Light-Source Z Buffers

The process described here is the existing version. The description
of the proposed version will come in the next chapter. There are two light
sources that are presently hard-coded into the program. One is located at

(0.0, 17.0, 0.0) in world-space coordinates. This light is colored blue. The

16

other is at (0.0, 0.0, 17.0) and is colored green. The program does the follow-
ing for each of the two light sources: place the “eye” at the light source and
set up the machine’s transformation matrices accordingly; recursively subdi-
vide the patch, and when at the pixel level, decide which pixel (in the 512
by 512 region I have presently allocated for patch display) this patch piece
belongs to. If the z coordinate of this piece is further away than the z value
presently stored in that (x,y) location in the buffer, do nothing. Otherwise,
store the new z value in the buffer. Note that I do not compensate this value
in consideration of the normal vector to the surface when I build the buffer.
These calculations are done at the time that points are actually calculated
for painting. (Recall my discussion of my first “minor” result, in the pre-
vious chapter.) While this buffer-building algorithm proceeds, the program
displays a rudimentary counter on the screen to keep the user informed of the
status. Building the buffers takes anywhere from 20 seconds to 30 minutes,

depending on the size of the patch, as seen from the light sources.

3.4 Detail of the Painting Algorithm

Again, the program recursively divides the patch, and when the
piece under consideration is determined to fall in an area comprising a square
on the screen which is two pixels on a side, the computation begins. First, the
piece’s z value is compared to that currently in the viewer’s z buffer. If the
point is not visible, go on to another patch. Otherwise, proceed to compute
how much area in each of the four pixels in the box is covered by the piece
under consideration. Add these values to the alpha buffer entries for those

pixels. Compute the normal to the patch. Determine if the patch is visible as

17

seen from each light source, taking into account the variable bias discussed
earlier. If so, using vectors again, determine how much blue intensity and/or
how much green intensity to assign to the affected pixels (those which are
partially covered by the piece in question) above the background ambient
color intensities (presently a dull charcoal gray). Paint each affected pixel
with the indicated intensities, attenuated by the values in the alpha buffer.
When the recursive algorithm is complete, write the image to disk. The
painting algorithm takes anywhere from 30 seconds (for a patch of one square
centimeter on the screen) to about 40 minutes for a good-sized patch. The

time required to write to disk is approximately 10 seconds.

3.5 Efficiency Measurement

There are many examples of parametric patches in the literature.
There are also many examples of images with soft shadows in the literature.
There are not very many examples of parametric patches with soft shadows.
There may be some difficulty in finding a test image that has been previously
published which has parametric patches and soft shadows; given that I find
one, I will generate a similar image, and see which image takes longer (taking
into consideration the relative computing power of the competing host ma-
chines), and include these results in my final dissertation. If I cannot find a
suitable test image, I shall resort to a ray-traced image involving parametric
patches, even though it may not have soft shadows, to see if my method is
computationally competitive with this. Of course I shall have to attempt
to put a cost on the additional memory I shall require, as opposed to the

memory requirements of previous methods.

[Carp 84]

[Catm 74]

[Cohe 86]

[Cohe 85]

[Cook 84]

[Crow 77]

[Fium 83]

[Gora 84]

BIBLIOGRAPHY

Loren Carpenter. The A-buffer, an Antialiased Hidden Surface
Method. Computer Graphics, Vol 18 No 3, July 1984.

Edwin Catmull. A Subdivision Algorithm for Computer Display of
Curved Surfaces. PhD Dissertation, University of Utah, December
1974.

Michael Cohen, Donald Greenberg, David Immel, Philip Brock.
“An Efficient Radiosity Approach for Realistic Image Synthesis,”
IEEE Computer Graphics and Applications, Vol 6 No 3, March
1986.

Michael Cohen, Donald Greenberg. A Radiosity Solution for Com-
plez Environments. Computer Graphics, Vol 19 No 3, July 1985.

Robert Cook, Thomas Porter, Loren Carpenter. Distributed Ray
Tracing. Computer Graphics, Vol 18 No 3, July 1984.

Franklin Crow. Shadow Algorithms for Computer Graphics. Com-
puter Graphics, Vol 11 No 3, July 1978.

Eugene Fiume, Alain Fournier. A Parallel Scan Conversion Al-
gorithm with Anti-Aliasing for a General Purpose Ultracomputer.

Computer Graphics, Vol 17 No 3, July 1983.

Cindy Goral, Kenneth Torrance, Donald Greenberg, Bennett Bat-

taile. Modeling the Interaction of Light Between Diffuse Surfaces.

18

[Gour 71]

[Imme 86]

[Kaji 86]

[Phon 73]

[Port 84]

[Will 78]

19

Computer Graphics, Vol 18 No 3, July 1984.

Henri Gouraud. “Continuous Shading of Curved Surfaces,” [EEE
Transactions on Computers, Vol 20 No 6, June 1971.

David Immel, Michael Cohen, Donald Greenberg. A Radiosity
Method for Non-Diffuse Environments. Computer Graphics, Vol
20 No 4, August 1986.

James Kajiya. The Rendering Equation. Computer Graphics, Vol
20 No 4, August 1986.

Phong Bui Tuong. Illumination for Computer Generated Images.
PhD Dissertation, University of Utah, July 1973.

Thomas Porter, Tom Duff. Compositing Digital Images. Computer
Graphics, Vol 18 No 3, July 1984.

Lance Williams. Casting Curved Shadows on Curved Surfaces.

Computer Graphics, Vol 12 No 3, August 1978.

