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Abstract
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[Bun82] and DAPLEX [Shi81], and have an implementation that fits ideally with the modularity required
by extensible database technologies. We explore different implementations of functional operators and
present experimental evidence that they have efficient implementations. We also explain the advantages
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used to process queries on both 1NF and — 1NF relations.
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1. Introduction

Nontraditional database applications, such as VLSI CAD, graphics, and statistical data processing, have
very different requirements than traditional business-oriented applications. Their differences often demand
unusual storage structures and query processing algorithms, and require data models and data languages w
admit new constructs, such as novel data types and operations.

Rather than developing monolithic DBMSs for each specialized application, there is a growing interest in
extensible DBMSs which can be customized by plugging or unplugging modules that provide desired DBMS
capabilities [Sto83, Car84, Car86, Day85a, Sto85, Bai85b, Bat86, Sto86, Sch87]. Customization can be
achieved in a matter of hours or days, rather than the man-months or man-years of effort that are required to
modify existing (nonextensible) DBMSs. To realize an extensible database technology, however, requires a
fundamental alteration in the way DBMSs are presently constructed.

Functional data models and data languages have been proposed as candidates for the logical interface of
extensible DBMSs [Day85]. Functional data languages are more powerful than conventional relational
languages and have characteristics which are ideally suited for nontraditional applications: new object types and
new functions can be introduced, functions can be composed, recursive functions can be defined, and scalar-
valued and sequence-valued functions can be treated uniformily.

The functional data model was first proposed by Sibley and Kerschberg [Ker75, Sib78]. Subsequent
work by Buneman on FQL [Bun79, Bun82] and by Shipman on DAPLEX [Shi81] popularized the functional
approach and clearly demonstrated its significance. Much research based on FQL and DAPLEX has followed
since [Zan83, Gra84, Alb85, Hei85, Day85b, And86, Lyn86, Man86, Fis87]. Despite the potential and growing
interest, there have been few serious attempts to discover how functional DBMSs can be implemented
efficiently. Part of the problem is that implementations of systems in functional programming languages are
notoriously slow; this may have discouraged active research. Possibly in an effort to avoid true functional
implementations, many functional’ data languages that have been built are essentially relational database inter-
faces in disguise; the basic capabilities that distinguish the functional approach from the relational (e.g., new
object types, recursive functions, etc.) are barely present, if not completely absent.

There is, however, a more fundamental reason for the lack of general implementations of functional data
languages. Our research reveals that FQL and DAPLEX, the two most important functional data languages yet
proposed, do not express functional database concepts in their most elementary and extensible form. We
believe their extra complexity frustrates a simple implementation.

In this paper, we present a variation of the functional data model that is based on productions (stream
rewrite rules) rather than mathematical functions. The proposed model GDM and data language GDL are tar-
geted to provide the semantic interface to GENESIS, an extensible DBMS {Bat86-87]. Although the formal
specifications of GDM and GDL are still under design, the basic implementation concepts have been esta-
blished. We explain and develop these concepts in the following sections.

A novel feature of GDL is that computations are expressed as streams of tokens, where a token is either a
database object or a delimiter that signals the end of one computation and the start of another. This intermixing
of objects and delimiters provides a simple and efficient means to standardize the packaging of DBMS algo-
rithms. This standardization is especially important to GENESIS, as it promotes extensibility, module plug-
compatibility, and provides a necessary step toward a building-blocks technology for DBMSs.

We progressively develop concepts that are needed for implementing productions. Basic implementation
strategies are reviewed (eager v.s. lazy evaluation, demand-driven v.s. data-driven evaluation), and experimen-
tal results are presented to show that productions have efficient implementations.

Lastly, GENESIS supports —INF relations. We show how functional models facilitate experimentation
with INF and —1NF databases, and how we are using GDL to evalutate predicates on —1NF tuples. Thus, an
important by-product of our research is a starting point for building a —1NF query processor.



2. A Functional Data Model and Data Language

The GENESIS functional data model {(GDM) and the data retrieval portion of the GENESIS data
language (GDL) are highlighted in this section. GDM closely resembles traditional functional models, with the
notable exception of our replacement of functions with productions’ and its attendant impact on GDL’s model
of computation. A formal definition of GDM and GDL is forthcoming [Bat88].

2.1 Data Model Concepts

A GDM plan of a database can be depicied as an object graph, where nodes denote object types and arcs
are relationships between types. The object graph of Figure 2.1a represents a simple department-employee-
child database. Dept objects are departments, Empl objects are employees, and Sibling objects are children.

OBJECT, INT, FLOAT, BOOLEAN, and CHAR(n) are among the object types that are system-defined.
OBJECT is the set of all objects, and INT, FLOAT, BOOLEAN, and CHAR(n) are subtypes of OBJECT.
CHAR(n) is the set of all character strings whose length is n. User-defined types, such as Dept, Empl, and
Sibling in the department-employee-child database, can be declared as subtypes of system-defined types or as
subtypes of other user-defined types. As a rule, all object types in 2 GDM database belong to a single hierar-
chy, with OBJECT as the root. Figure 2.1b shows the type hierarchy of the department-employee-child data-
base.

Operations that can be performed on objects and relationships between objects are expressed as produc-
tions in GDM. The term ’function’ is the conventional term for relationships or operations in functional data
models, but in GDM it is misleading. Functional data model *functions’ are not mathematical functions but are
actually productions or rewrite rules. The distinction will be made clear shortly.

Associated with every object type is a set of productions. INT, for example, has > and + for comparing
and adding integers. The hierarchical relationship between object types permits subtypes to inherit productions
from their supertypes. Production inheritance via type hierarchies is known as specialization [Shi81].

2.2 Data Language Concepts

Fundamental concepts in the computation model of GDL are sequences and streams. { d; dyd; } is a
sequence of three objects ’d;’, "d,’, and ’d;’, where braces enclose a sequence. A stream is an encoding of a
sequence. The simplest encoding treats objects and braces as tokens. Thus, the sequence { d; d, d; } is a stream
of five tokens: a left-brace, three objects, and a right-brace. The distinction between sequences and streams lies
in their relationship to GDM productions. (We note that the explicit represeniation of braces in streams is 2
novel and essential feature of the GDL computation model).

GDM productions are stream rewrite rules. The simplest productions are generators. They produce the
sequence of all objects of a given type, and are given the same names as their object type. Thus, for an object
type D, there is a generator D:—(*D}. The D production takes no input and produces the stream beginning
with '{’, ending with ’}’, and the stream of all D objects inbetween. (*D denotes a stream of D objects in
D:—{*D]}). Suppose D generates the stream {d; --- d, }.

Consider the production F:D—*R. F transforms a stream by replacing each D object with its stream of
related R objects. F does not rewrite lefi-brace and right-brace tokens; it simply leaves them as is. As an exam-
ple, suppose F maps 4, o the stream r; 1, 13, d5 is mapped 1o 14, and all other D objects are mapped to the null
stream, F would rewrite the stream {d,; --- d, } as { r; 1, 131, }. Figure 2.2 illustrates this rewriting,

inpuf siream: { dy do dg dg - dn
transliation by F: l N\ /
sutputl stream: (r’1 Ty Tz Ty

Figure 2.2 The Rewrite of Stream {d; --- d,} by Production F
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2.1b Object Type Hierarchy in the Department-Employee-Child Database

EMPL_REL DEPT_REL

E# | Sex | Ename | Salary | D# D# | Dname Parts

105 | M Smith | 40K 1 1 Ceramics | {147}
202 | F Jones 43K 1 2 Plastics {1421}
347 | M Blake | 35K 1 3 Pottery {83462}
150 | F Clark 27K 2

251 | M Adams | 36K 2

2.1¢ Partial Contents of Database in Relational Form
(with Set-Valued Attributes)

Figure 2.1 A Department-Employee-Child Database
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Production composition (operator composition) is denoted in GDL by the dot °. operator. D.F is the
composition of productions D and F, and results in the stream {1137, } as we saw above. Note that D.F is a
reversal of the usual functional notation F(D), and is a notation borrowed from FQL. Also note the composition
of the definitions D:—{*D} and F:D—*R is achieved by simple text substitution: F replaces the D in {(*D} with
*R to yield (D.F):—{**R}, which can be simplified to (D.F):—{*R]. The star **’ operator is idempotent; a
stream of streams of R objects is indistinguishable from a stream of R objects.

An arc F from object type D to object type R in an object graph is normally represented by two produc-
tions: F:D—*R which replaces each D object with its stream of related R objects, and the reverse production
F:R—*D which replaces each R object with its stream of related D objects. As a general rule, the reverse pro-
duction F’ is not the mathematical inverse of F. Consider the ancestory database of Figure 2.3a.
Children:Person—*Person maps (parent) Person objects to (child) Person objects, and
Children’:Person—*Person maps children to their parents. If p is a Person, p.Children.Children is the stream of
grandchildren of p, and p.Children.Children’ is the stream of parents of the children of p. p usually does not
equal p.Children.Children’ (see Figure 2.3b). Again, this is a consequence of the fact that GDM productions
are stream rewrite rules and not mathematical functions.

D={dy dy ds)

Children DF={ry ry ry}
() DFF = (d) dy d; ¢ dy)
Person
F:D-»*R
F:R=#D
{a) (b)

Figure 2.3 Productions and Reverse Productions

In the following sections, we survey some common productions and show how they can be used to query
the department-employee-child database.

2.2.1 The Tuple, NORMALIZE, and Print Productions and the SELECT Command

Let F, --- F, be productions that map D objects. The production [Fy, ---,F,] is a rewrite rule that
replaces each object d in a stream of D objects with an n-tuple of the form [{d}Fy, -« {d})F) [, -+ ,Tis
called the tuple production.

Consider the expression Dept.[Dname, Emp.Ename]. Each department d in sequence Dept is replaced by
the wple [{d).Dname, (d} Emp.Ename]. Every tuple that is produced is an ordered pair of sequences; the first
sequence contains a single object which is the name of department d and the second sequence contains the
names of employees that work in department d. Figure 2.1c shows a portion of the department-employee-child
database in relational form. DEPT_REL is the department relation and EMPL_REL is the employee relation.
The stream that Dept.[Dname, Emp.Ename] produces is { [{Ceramics}, {Smith Jones Blake}], [{Plastics],
{Clark Adams}], [{Pottery]}, {}] ). Note that the tuples are not in first normal form.

The NORMALIZE production replaces —1NF tuples with their stream of INF tuples. The INF_PRINT
production prints a INF tuple. Thus, executing the expression: '

! {i] is ectuslly 5 higher-order production. Tt takes 8 list of productions 25 its argument and returns a production to replece
objects with tuples as its result.
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Dept.[Dname, Emp.Ename]l. NORMALIZE.INF_PRINT

results in:

Dname Ename

Ceramics | Smith
Ceramics | Jones
Ceramics | Blake
Plastics Clark
Plastics Adams

Note that normalization eliminates tuples that have null sequences (e.g., [{Pottery}, {}1). In cases where the
elimination of these tuples is not desired, we rely on the extensibility of GDL by introducing a new production
NORMALIZE_NV which retains (rather than discards) tuples with null sequences. 2

The above expression is rather ungainly. Henceforth, we will write:

SELECT Dept.[Dname, Emp.Ename]

where SELECT is a macro which appends the NORMALIZE.INF_PRINT to the given expression if tuples are
produced. An example where an expression doesn’t produce tuples (and hence appending
NORMALIZE.1NF_PRINT is not appropriate) is listing the numbers of all employees:

SELECT EmplLE#

In this expression, a .SEQ_PRINT production is appended to "EmpLE#" to print the sequence of employee
numbers. In the case where a SELECT produces a single number or string, a .VAL_PRINT would be
appended. The conditional appending of .NORMALIZE.INF_PRINT, .SEQ _PRINT, or .VAL_PRINT pro-
vides a uniform way for displaying the results of GDL expressions.

2.2.2 The Comparison, EXISTS, and WHERE Productions

Comparison productions map sequences of objects to booleans. As an example, the less-than production
LT(n): (*NUMBER ]} >BOOLEAN maps a sequence of numbers to true if any number in the sequence is less
than n, where NUMBER is INT or FLOAT. Thus, {012 3 4}.LT(3) is true and {5 6 7} LT(3) is false. Other
comparison productions are EQ, NEQ, GT, GEQ, and LEQ. *

We simplify the syntax of comparison productions by dropping the parentheses and renaming the produc-
tion with its symbolic counterpart (i.e., EQ(n) is the same as = n, and LT(n) is < n, etc.). This simplification
allows GDL expressions to resemble their relational language counterparts, thus making them more readable.

A boolean expression produces a boolean result when evaluated. A GDL predicate is a collection of
boolean expressions that are connected by the operators AND, OR, and NOT. Let By, - -+, B, be boolean
expressions, and let P(By, -+ -,B,) be a GDL predicate. An object d satisfies P if P({d}.By, -, {d}.B,) is
true.

2 Another possibility would be to introduce null values or null tokens. Doing so would reguire all productions to under-
stand how 1o process or map them. We do not handle null values in our implementation, and will not examine null values

further in this paper.

3 LT(n) is sctally a composition of two productions: It(n) and ANY. It(n) replaces each number in a sequence with 2
boolean indicating if that numbser is less than n. ANY forms the logical disjunction of a sequence of booleans. In this pa-
per, we will treat LT(n) as a primitive.
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The WHERE(GDL _predicate) production filters objects from a stream that do not satisfy GDL_predicate.
Here are some examples:

Query 1. Print the E#’s of employees whose name is "Smith" and whose salary is greater than $40,000.

SELECT Empl.WHERE( Ename = "Smith" AND Salary > 40000 ).E#

For each employee e, the predicate ({e).Ename = "Smith") AND ({e}.Salary > 40000) is evaluated. For
qualified employees, the E# is printed.

The EXISTS: {*OBJECT]—-BOOLEAN production replaces nonempty sequences with true and empty
sequences with false. Here is an example of its use:

Query 2. Print the names of departments that have at least one employee.

SELECT Dept. WHERE( Emp.EXISTS ).Dname

For each department d, the predicate {d}.Emp.EXISTS identifies departments that have no employees.
Query 3. List the name of department #57 and the names of its employees that earn more than $40,000
and that have a child that is older than 4.

SELECT Dept. WHERE( D# = 57 ).[Dname, Emp.WHERE( Salary > 40000 AND Child.Age > 4 ).Enamc ]

In this example, WHERE productions are used both outside and inside the tuple production. The outside
WHERE qualifies departments, while the inside WHERE qualifies employees.

2.2.3 Statistical Aggregation and the GROUP Production

COUNT, SUM, AVE, MAX, and MIN are statistical aggregation productions.
COUNT: {(*OBJECT}—INT is the rewrite rule that replaces a sequence of objects with the number of objects in
the sequence. AVE:{*NUMBER]}—FLOAT replaces a sequence of numbers with their average, where
NUMBER is INT or FLOAT. The following queries illustrate their use.

Query 4. Print the total number of employees.

SELECT Emp.COUNT

Emp generates the sequence of all employees and COUNT replaces this sequence with its length.
Query 5. Print the name of each department and the total number of its employees.

SELECT Dept.[Dname, Emp.COUNT]

For each department d, a tuple [{d}.Dname, {d}.Emp.COUNT ] is produced. Note that COUNT counts the
number of employees within a single department.

1t is occasionally necessary to nest aggregations. This is accomplished by the GROUP production.
GROUP:OBJECT—{OBJECT]} replaces each object in a stream with the singleton sequence containing that
object. Thus, {d; - - d,}.GROUP equals {{d;} ‘- {d,}}. Here is an example of its use:

Query 6. Find the average salary of all employees in each department and print the maximum of these
averages.

SELECT Dept.GROUPEmp.Salary. AVEMAX

The subexpression Dept. GROUP Emp.Salary.AVE produces a sequence of averages, one average for each
department. (An average represents the average employee salary within a department). The concluding MAX
finds the maximum in the sequence of averages.
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1t is instructive 10 see how streams are fnapped in Query 6. Figure 2.4 lists the type of stream that is pro-
duced at intermediate points in its computation. Note that GDL productions always operate on the innermost
sequences, i.¢., a scream of type {*{*A]} is mapped by F:{*A]}—B to a stream of type {*B].

Intermediate Intermediate
Siream Rewrite Rule Production Composition Sweam Type
Dept:—{*Dept} Dept {*Dept}
GROUP:OBJECT—{OBJECT} | Dept.GROUP {#*{Dept}}
Emp:Dept—*Empl Dept. GROUP.Emp {*{*Empl}}
Salary:Empl—-FLOAT Dept. GROUP.Emp.Salary {*{*FLOAT})
AVE:{*FLOAT}—FLOAT Dept. GROUP.Emp.Salary.SUM {*FLOAT}
MAX:{*FLOAT}—FLOAT Dept. GROUP.Emp.Salary. SUM.MAX | FLOAT

Figure 2.4 A Summary of the Evaluation of the Evaluation of Query 6

2.3 Distinguishing the Computation Models of FQL, DAPLEX, and GDL

The computation model of GDL was designed to capture the best features of the computation models of
FQL and DAPLEX.

The computation model of FQL is based on sequences. No distinction is made between sequences and
streams as is done in GDL. The FQL function F:A—$B replaces an A object with its sequence of B objects,
denoted $B. Unlike GDL, F cannot map a sequence of objects directly. It must first be extended by the extend
operator $. The function $F:$A—$SB maps a sequence of A objects o a sequence of sequences of B objects
by applying F to each A object in the original sequence. This computation model frequently produces
sequences that are nested deeply. For example, consider function G:B—8C. G can be composed with F only if
it is extended. Thus, F.$G is a legal composition in FQL, while F.G is illegal. If F.3G is to map a sequence of
A objects, it must be extended to $F.$$G. The multiplicity of extension operators quickly becomes burdensome
as further compositions are made. GDL avoids extension operators altogether by its distinction of streams and
sequences.

The computation mode!l of DAPLEX handles function composition and extension similar to that of GDL.
However, DAPLEX computations are based on sets, rather than streams or sequences. The ordering and dupli-
cation of objects within a set is permitted under special circumstances, but set nesting (e.g., set of sets) is not
permitted. These restrictions cause difficulties in expressing aggregations. For example, to compute the aver-
age salary of employees in GDL is simple: Empl.Salary.AVE. The DAPLEX expression AVE(Salary(Empl))
does not compute the desired average, but instead computes the average of all distinct salaries. The correct
expression, which retains duplicate salary figures, is AVE(Salary OVER Empl). Taking this one step further,
queries involving nested aggregations, such as Query 6, are even more difficult to express because there is no
simple way in which sets of aggregates can be formed [Yed86]. One way that Query 6 could be written is:

PRINT MAX(iIN INTEGER SUCH THAT
FOR SOME d IN Dept : i = AVE( Salary OVER Empl(d) ) )

In general, DAPLEX expressions become more complicated as the nesting of aggregations increases. Both
GDL and FQL avoid this problem by admitting nested sequences in their computation models.



2.4 INF and —1INF Relational Databases

There is growing interest in —1NF relational databases [Ozs85, Sch86, DadR6, Roi86, Pis86]. —INF
relations are distinguished from their 1NF counterparts in that relation-valued attributes are admitted. These
relations also can have relation-valued attributes, so that the nesting of relations can be arbitrarily deep. Figure
2.5 shows nested and unnested relation schemes for our Department-Employee-Child database. Note that these
are just two of many possibilities.

Making the nesting of relations explicit has its drawbacks. Nesting relations in different orders can
dramatically impact the way queries are expressed. As an example, SQL/NF is an extension of SQL to handle
—1NF databases [Rot87). In the context of INF schemes, SQL/NF reduces to SQL. Figure 2.6a-b shows
SQL/NF expressions of Query 3 over the INF and —1NF schemes in Figure 2.5a-b. Note the dissimilarity in
the way the same query is expressed for both databases.

GENESIS supports —INF relations. One of the primary motivations for choosing GDM and GDL as the
front-end to GENESIS was their ability to make the nesting of relations transparent. This is due to the fact that
a view-like mechanism is embodied in the mapping of GDM databases to INF and —1INF relations. For this
reason, GDM and GDL tend to simplify query formulation (cf. Query 3 with Figures 2.6a-b) and greatly facili-
tate experimentation with INF and —1INF storage schemes. The impact of nesting is confined to the implemen-
1ation of productions, which is the subject of the remaining sections in this paper.

Depi( D# iy
Dname  char(10); )
DPans( D# int;
Parts int; %
Empl( E# int; Dept( D# int;
Sex char; Dname char(10);
Ename char(15); Paris( Part int; Y
Salary float; Emp( E4 int;
D# int; % Sex char,
Ename char{15);
Sibling( E# int; Salary float;
" Cname char(10); Child( Cname char(10);
Age iny; % Age int; Y h ok
g) INF Scheme b) =1NF Scheme

Figure 2.5 INF and —INF Relation Schemes for the Department-Employee-Child Database



SELECT Dname,( SELECT Ename

SELECT Dname, Ename FROM Emp
FROM Dept, Empl, Sibling WHERE  Salary > 40000
WHERE D#=37 AND EXISTS( SELECT *#
AND Salary > 40000 FROM Child
AND Age>4 WHERE Age>4
AND DCPID# = Empl.D# FROM Dept
AND Empl.E# = Sibling E# WHERE D¢ =57
a) INF Query b) —1NF Query

Figure 2.6 SQL/NF Expressions of Query 3 over INF and —1NF Relation Schemes

3. The Big Picture

GDL expressions are not executed as they are writien, but undergo an optimization similar to conven-
tional relational queries. Although we are currently doing the optimization manually, the process can be
automated. In the following, we explain how GDM and GDL fit into the ’big picture’ of GENESIS, and how
the GDL computation model forms a comerstone of the GENESIS implementation.

GDM is an object-based front end to a relational-like storage system. GENESIS stores databases inter-
nally as networks of files and links, where a link is realized either as a CODASYL setor a join algorithm. The
conversion from an object-based to a record-based representation is necessary for performance and comprehen-
dability; algorithms for query processing, storage structures, recovery, €ic. are traditionally expressed (and are
best understood) in terms of records/tples.

Query optimization in GENESIS involves a conversion between these representations and is accom-
plished in three steps: 1) mapping a GDL expression to an equivalent, but not optimized expression on files and
links (henceforth called a record expression or r-expression), 2) optimizing the r-expression, and 3) evaluating
the optimized expression. Figure 3.1 shows these steps and their intermediate results.

unoptimized optimized
GDL expression r-expresision r»expr?ssion

§ 3

§ §

§ 8
object-to-record v r-expression v r-expression
translation optimization evaluation

Step 1 Step 2 Siep 3

Figure 3.1 Steps in GDL Expréssion Optimization

The expression translation process (Step 1) relies on straightforward mappings between a GDM database
and its network database counterpart. Many of the details of these mappings are not essential to this paper.
Those that are important are explained in Section 5.1 where we show how records correspond o trees of
objects. ’

The target of GDL expression translation and optimization is an r-expression which is a composition of
operations on files and links. (The distinction between GDL expressions and r-expressions is similar to the
differences between SQL statements and their relational algebra counterparts). What is significant here is that
file and link operations are fundamentally no different than operations on object types. They too can be
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realized as productions. The only distinction is that file and link operations map streams of records, rather than
streams of objects.

As mentioned above, the correspondence of records 1o trees of objects permits GDL expressions to be
applied directly to records. For this reason, it is common for file and link operations of r-expressions to use
GDL expressions as arguments for record selection and attribute projection.

Consider the file retrieval production RET{F,Q,T). RET generates the sequence of records from file F
that satisfy GDL. boolean expression Q, and each qualified record is trimmed of unnecessary fields by the GDL
tuple expression T. (This latter point is consistent with —1NF query languages where expressions, not attribute
lists, are needed 1o express projections over —1NF relations [Rot87]).

To illustrate, recall the —1NF Dept relation of Figure 2.5b and consider the query to list the names of
departments with the names of their employees that earn more than $30,000. The following are equivalent
expressions:

GDL expression: Dept. WHERE(D#=57).[Dname, Emp.WHERE(Salary>30000).Ename] NORMALIZE

r-expression: RET(Dept, D#=57, [Dname, Emp. WHERE(Salary>30000).Ename] NORMALIZE)

That is, the r-expression realizes the GDL expression by selecting all Dept records that have D#=57 and apply-
ing the expression [Dname, Emp. WHERE(Salary>30000).Ename]. NORMALIZE to the selected records.

Now consider the join production JOIN(F1,F2,J,T). JOIN generates the sequence of records that resnlt
from the join of record sequences F1 and F2 over join predicate J. For each record produced by the join, the
GDL tuple expression T is applied to produce a stream of trimmed records. As an example, recall the 1NF data-
base of Figure 2.5a and the query considered above. The following are eguivalent expressions:

GDL expression: Dept. WHERE(D#=57).[Dname, Emp. WHERE(Salary>30000).Ename] NORMAILIZE
r-expression: JOIN( RET(Dept, D#=57, [Dname, D#].NORMALIZE),
RET(Emp, Salary>30000, [Ename,D#].NORMALIZE),
Dept.D#=Emp.D#,

[Dname, Ename] )

The r-expression realizes the GDL expression as a composition of RET and JOIN productions. The RET pro-
ductions generate sequences of records from the Dept and Emp files, and the JOIN production joins these
sequences to produce the desired result.

Three comments. First, the use of functional/production concepts to express both queries and internal
DBMS computations provides a unifying theme to GENESIS; productions are a cornerstone of the GENESIS
implementation effort.

Second, because r-expressions are similar to relational algebra expressions, they can be optimized (in
Step 2) by traditional means (e.g., the System R algorithm [Sel79]) or by recently proposed rule-based optimiz-
ers (e.g., the EXODUS optimizer [Gra87]). Thus, our use of productions is consisient with existing research
and enables us to build upon known results in query optimization.

Third, some productions take multiple streams as input to produce a single output stream. The JOIN pro-
duction is an example. In principle, productions with multiple input streams are no more complicated than the
single input stream productions illustrated in Section 2. (For example, one can define a MERGE production
which merges two or more streams of objects. This production could be used to express the concatenation of
streams resulting from several different GDL expressions).

1t is worth noting that there are a few operations, such as join, that seem to require the rereading of por-
tions of their input streams. For example, the join of two files over nonkey fields will ofien pair several records
of one stream with multiple records of the other. Permitting portions of streams 0 be reread introduces
significant inefficiencies and complications to the GDL computation model. We avoid this problem by requir-
ing such productions to internally or exiernally buffer records/objects that might need to be reread. In this way,
the mechanics for all but a handful of productions are kept simple. 4

4 Hash join algorithms read their input streams without rersading, but might require buffering of some portions of these
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Finally, the last step (Step 3) in GDL expression opiimization is to evaluate the resulting r-expression.
The remaining sections in this paper deal with this topic. We show that it is easy 1o package algorithms as pro-
ductions and to compose algorithms by hooking productions together. Although our discussions and examples
are cast in terms of processing streams of objects, it is important to remember that algorithms that process
streams of records (e.g., join and retrieval) can be implemented in a similar manner.

sirearns if multiple passes are needed [Sha86]. Sort merge joins would require buffering to avoid rereading. Nested loop
joins don’t require buffering st all. For each outer file record, an expression is evaluated 1o retrieve all inner file records
that have the same join value as the outer file record. The same inner file record may sppear in different streams
{corresponding to different execution instances of the inner expression), but gll streams are read sequentially, and "backing
up n records” is never performed.



212

4. Implementation Concepts

We explain in this section how productions can be implemented in software and their compositions exe-
cuted on a single processor. We note that one of the potential advantages of functional (or production) data
languages is the ease with which expressions can be mapped to a parallel, multiprocessor or multithreaded pro-
cess environment. Each production of an expression, for example, could be executed on (or implemented by) a
different processor/process. Although the potental for distributed and parallel implementations of GDL
expressions is present, the first step toward more sophisticated realizations is to understand their implementa-
tion in a conventional setting.

We begin by presenting an encoding of GDL sequences which simplifies computations on streams. We
show how productions can be realized as stream translators, and how translators can be linked together to
evaluate GDL expressions. We then survey different strategies by which productions can be implemented.
Finally, we present templates for packaging algorithms of stream translators.

4.1 Another Sequence Encoding

A GDL sequence contains elements of a single rank. An element can be an object (rank 0), a sequence of
objects (rank 1), a sequence of sequence of objects (rank 2), and so on. Thus, sequenceslike { {a} {bc ]} { ]}
} are legal, as each element is a sequence of zero or more objects. Sequences like { { a } b ], where elements
are either sequences or single objects, are disallowed. The reason for this restriction lies in the definition of
productions: they replace all elements of a common rank with zero or more elements of another.

As we noted in the Section 2, GDL sequences can be encoded as a stream of objects and braces. It turns
out that there is a more convenient way (o encode streams which takes advantage of the above-mentioned regu-
larity. The benefit of this encoding is slightly shorter streams and simpler translation algorithms, both of which
lead to more efficient implementations.

The encoding we use replaces brace tokens with initialization and separator tokens. A stream begins with
an initialization token '#’ to indicate the start of a stream. Start-of-sequence braces ’{” are eliminated entirely.
Each end-of-sequence brace '}’ is replaced by an indexed separator ° I, whose index i indicates the nesting
depth of the end-brace. The innermost sequences are assigned index 0, while outer-level sequences have incre-
mentally larger values. Indexing is required to differentiate null sequences from the end of an outer-level
sequence. Here are some examples:

[abcd} is encoded as #abcdly
[{a){bec}{}id}} is encoded as #algbecliglgdiy Iy

{{{ab}{C}}({d}{}}} is encoded as #abl()C'o ‘ld'ﬂ '0 '1‘2

4.2 Stream Translators

A stream translator is a procedural definition of a production. It lists the actions that are taken to pro-
cess a token (object, initialization, or separator) on an input stream. Figure 4.1 shows the stream translator for
the production F:A—*B. Initialization and separator tokens are transmitted directly and A objects are replaced
by their stream of B objects. ‘

An overview representation of F is shown in Figure 4.2a. F translates a primary input stream of tokens
to a primary output stream. This representation of F, as we will see in the following section, is useful in
describing how different translators can be hooked together.

Many productions have stream translators that are similar to F. GROUP, aggregation productions (e.g.,
COUNT), generators (e.g., Ai—>{*A}), EXISTS, and comparison productions (e.g., EQ(n)) are examples.
Their translators are shown in Figure 4.2b, all of which have straightforward interprefations.

The GROUP translator directly transmits initialization tokens. Each object "a’ that it receives is mapped
10 'a lo’, an encoding of *{ a }*. Level i separators are mapped (o level i+1 separaiors 1o indicate an increase in
the level of nesting.
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Figure 4.1 A Stream Translator for F:A—*B
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Figure 4.2 Stream Translators Without Secondary Streams

The COUNT translator, as another example, clears an accumulator (S) on reception of an initalization
token and transmits the token. Each object *a’ that it receives increments the accumulator; no tokens are placed
on the primary output stream. On reception of a level 0 separator, the contents of the accumulator are transmit-
ted and the accumulator is cleared. Level i (i>0) separators are translated to level i-1 separators to indicate a
decrease in the level of nesting.

Some productions, such as WHERE(), are more complicated as they allow expressions (rather than con-
stants) as parameters. Figure 4.3a shows an overview representation of a production F that has n expression-
valued parameters. Consider the expression A.F(E;, --- ,Ej). For each object a of type A, the expressions
{a}.E,, - -+ , (a).E, are evaluated before F can evaluate a. This means that when an object a is received by F-
on its primary input stream, a is placed (along with a level 0 separator) on its secondary output stream in
order for it to be received by all arguments of F. The results of evaluating {a} E;, - -+ , {a} E are returned to F
along F’s secondary input stream. 5 On the basis of the returned results, F places its result on the primary out-
put stream. Figure 4.3b shows the translators for WHERE, TUPLE, AND, and OR.

3 Actually, there is ope secondary input stream and one secondary output siream for each argument of F that is
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Figure 4.3 Stream Translators With Secondary Streams

expression-valued. This level of implementation detail is discussed in Section 4.5.
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4.3 Pure Expressions and Translator Networks

As mentioned in Section 2, SELECT operations are abbreviations of GDL expressions that are actually
evaluated. Specifically, we noted the implicit reliance on NORMALIZE, INF_PRINT, SEQ PRINT, and
VAL_PRINT productions, and the use of abreviated names for EQ (=), LT (<), etc. A GDL expression in
which all productions are explicit, abbreviated names are excluded, and boolean expressions involving ANDs
and ORs are written in operator form (i.e., A OR B OR C is written as OR(A,B,C)) is called pure.

A pure expression is a list of productions. A translator network of a pure expression is the linking of
stream translators in the order in which their corresponding productions appear in the expression. Figures 4.4a-c
show a simple GDL expression, its pure expression counterpart, and its translator network.

@ SELECT A.WHERE(B=4 OR D<7 }.[EF]

() A WHERE( OR( B.EQ(4), D.LT(7)) ).[ E, F L.NORMALIZE.INF_PRINT

© A WHERE TUPLE NORMALIZE INF
L PRINT
= |
]
1 B EQ4) F
- D LT(7)

Figure 4.4 Pure Expressions and Translator Networks

4.4 Evaluation Methods

Translators can evaluate their input streams in an eager or lazy manner. Eager evaluation is used in
APL and LISP where each function (translator) computes its output result (stream) in its entirety before execu-
tion passes to the next function (translator). Because there is considerable overhead in maintaining large lists in
main memory and the attendant difficulties of garbage collection, eager implementations of translators for data-
base processing do not seem practical.

Lazy evaluation, on the other hand, is more appropriate. Only the tokens of a stream that are actually
needed are computed, and computations occur only on request. § The ubiquitous GET_FIRST and GET_NEXT
in procedural or embedded database languages are the means by which records of a sequence are produced in a
lazy manner.

Lazy evaluation can be achieved in a data-driven or demand-driven manner. Computations are triggered
in data-driven implementations by the reception of a token [Rit74], whereas computations are triggered by the
request for a token in demand-driven implementations [Hen80]. When implemented by a single-threaded pro-
cess, both methods are quite similar as the following example shows. '

5 There are, of course, productions which cannot exploit lazy evaluation. The SORT production, which soris 2 seq
of objects, may require the entire primary input siream $o be present before sorting can proceed.



- 16 -

Consider the translator network for expression A.B.C. In a data-driven implementation, execution begins
at translator A, A’s output tokens flow, one at a time, to B. For each A token, B computes its output tokens,
and they flow, one at a time, to C. Once C completes its computation on a B token, control returns to B for it to
output its next token to C. When B no longer can output tokens, control returns to A.

In a demand-driven implementation, execution begins at translator C. C requests a token from B, which
in turn, requests a token from A. As A produces tokens, B consumes them and outputs its tokens, on demand,
to0 C. Once A has produced all of its tokens, and B has consumed them, control returns to C.

As this example suggests, data-driven and demand-driven computations are similar. In a functional con-
text, A.B.C is equivalent to C(B(A)). Data-driven corresponds to an inside-to-outside evaluation of the expres-
sion; demand-driven corresponds to the usual functional (outside-to-inside) evaluation. We will see later that
data-driven and demand-driven implementations generally have a comparable performance. Their primary dis-
tinction appears to be the difficulty or ease with which they handle multiple input streams and common subex-
pressions.

Consider the MERGE production which merges two sequences A and B (see Fig. 4.5a). Demand-driven
implementations have no problem here; MERGE alternately demands tokens from A and B. In a data-driven
context, scheduling difficulties arise when A and B should be executed. The problem is evident when a single-
threaded process executes the network of Figure 4.5a. Either A or B begins execution, but not both. Before
MERGE can process its input, both A and B must be executing. So in processing multiple streams, demand-
driven has a simpler implementation.

Ar—>  TUPLE e A TUPLE | S,
MERGE s
B =1 B DI D
(@) ® ©

Figure 4.5 Limitations of Demand-Driven and Data-Driven Computations

A second difference, this one in favor of data-driven translators, concerns expressions that involve redun-
dant computations. In the expression A.[B.C, B.D, B.E], the subexpression {a].B is computed three times for
each a in A (see Fig. 4.5b). Networks for data-driven translators can be rearranged so that redundant computa-
tions are eliminated (see Fig. 4.5c). That is, the result of the expression {a}.B is broadcast to the networks for
C, D, and E. Networks for demand-driven translators cannot be rearranged in this manner; eliminating redun-
dant computations in demand-driven implementations is known to be a difficult problem. The most common
technique involves maintaining a list of tokens, and reclaiming tokens (nodes) on the list afier all translators
have processed it [Tur79]. As mentioned earlier, processing in-core lists is not appropriate for efficient data-
base processing. For this reason, we do not attempt o eliminate redundant computations in demand-driven
implementations. 7

7 Atthe time of writing this paper, we believe that it is possible to avoid redundan ions without retaining in-core
lisis. A paper describing the technigue is forthcoming.
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Although it may not be immediately apparent, common subexpression problems do nor arise in a
demand-driven evaluation of the expression X.[Y, Z, W]. Each time TUPLE gets an x object, it evaluates
expressions {x}.Y, {x}.Z, and {x}.W in succession. TUPLE never demands another x object until all three
expressions have been evaluated. Further, the result of each of these expressions is either a single object
(resulting from an aggregation) or a sequence of objects (which is terminated by a |, token). In either case,
TUPLE knows when to stop demanding tokens from each expression. The key to solving the common subex-
pression problem in a demand-driven environment is synchronizing the broadcast of objects and making certain
that each subexpression is prepared to receive that object. A demand-driven TUPLE solves a simple subprob-
lem of the more general problem.

These observations do not rule out or favor a data-driven or demand-driven implementation of stream
wranslators. In Section 5 we explore their differences and efficiencies further by experimental means. Before
we proceed to these results, we briefly describe the coding templates that we are using to implement translators.

4.5 Translator Templates

Lazy evaluation can be realized by coroutines [Knu73, Hen80]. Each translator is a coroutine. It
receives tokens on its primary input stream from its supplier and sends tokens on its primary output stream t0
its consumer. Again consider the network for A.B.C. The supplier 10 B is A, and the consumer of Bis C. A
has no supplier and C has no consumer.

Translators communicate via tokens, object descriptors, and signals. A token is an output of a translator,
and is one of the values #, obj (for object), lg, 14, ..., ;- When a translator produces an object, it outputs the
obj token and an object descriptor, which is a pointer to a buffer that contains the actual object. (Passing
pointers to objects is much more efficient than passing the objects themselves). A signal is a value that is
transmitted from a translator o its supplier; valid signals are NEXT and SKIP. NEXT requests the production
of the next token. SKIP causes the remaining objects in the current level § stream to be skipped, causing the
supplier to produce |g as its next output token.

SKIP is needed for lazy evaluation. Recall that EQ(n): (*NUMBER]->BOOLEAN maps a sequence of
numbers to true if the sequence contains value n. Suppose value n appears in the sequence. The result of
EQ(n) will be true, no matter how many values come after n in the sequence. By not generating these values, a
substantial savings of unnecessary computation can result. Productions like EQ(n) can take advantage of this
optimization by using the SKIP signal. Note that SKIP is useful for both data-driven and demand-driven trans-
lator implementions.

Tokens, signals, and object descriptors are exchanged between translators via mailboxes. A mailbox is a
shared variable that has one reader and one writer. As shown in Figure 4.6a, a translator uses six mailboxes;
three are used 1o communicate with its supplier, the other three with its consumer. A translator receives tokens
and object descriptors from its supplier in its in_token and in_obj_des mailboxes, and signals from its consumer
in its in_signal mailbox. The out_token, out_obj_des, and out_signal mailboxes are used to send tokens, object
descriptors, and signals.

Mailboxes are shared among translators of a network (as indicated in Figure 4.6b) in the following way.
When a network is initially created, each translator is allocated an activation record which contains its three
input mailboxes (in_token, in_obj_des, and in_signal), local variables, and state information. Activation
records are then connected via pointers to refiect the supplier/consumer relationships of the network. The out-
put mailboxes of a translator are then found in the activation records of its supplier and consumer translator.

Every translator network has an activation record. This record contains the supplier mailbox (out_signal)
for the first translator of the network, and the consumer mailboxes (out_token and out_obj_des) for the last
translator. These mailboxes enable entire networks to be referenced as individual translators. Translators that
have secondary streams (such as WHERE and TUPLE) use this arrangement (0 communicate with their subnet-
works. In general, if 2 production has n expressions as parameters, its translator will manage n activation -
records, one for each of the n expressions (subnetworks) that are to be evaluated. The results of computations
for different subnetworks will thus appear in different mailboxes.

When a network is evaluated, translators communicate by placing their results in mailboxes, and transfer-
ring control to the supplier or consumer translator to process its contents. Transfer of control is accomplished
via input and output statements. Input transfers control to the mranslator’s supplier; output transfers control t©
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Figure 4.6 Translator Mailboxes

the consumer.

The internal structure of translators is quite simple: it is a single loop that encompasses a switch state-
ment. Each cycle through the loop processes an input token. The switch directs translator execution to an
appropriate action, based on the token received. There is one case for each token type. Figure 4.7 shows the
templates for demand-driven and data-driven translators with one input stream and one output stream. Note
that their only difference is the placement of the input statement (which requests input from the supplier).
When a demand-driven translator is first called, it immediately demands input from its supplier. In contrast, a
data-driven translator is already given its input (in its mailbox) and must process it before requesting additional
input.

Templates for translators that process two or more primary input streams are not very different from the
above, Figure 4.8 shows the translator for the MERGE(A,B) production, which merges ordered streams A and
B into a single ordered stream. (We’ve simplified the MERGE code by eliminating the additional logic for pro-
cessing SKIP demands). In the general case, each primary input stream has its own set of mailboxes. The
number of cases within a switch statement equals the number of legal combination of states that different
streams can be in. The definition of MERGE in Figure 4.8 requires it to operate on pairs of sequences. Thus,
an illegal state is for a sequence to be present on one stream (i.e., the current token is an object) while no
sequence present on the other (i.e., its current token is 14). ‘

Three comments. First, singleton sequences {a)} arise frequently in transiators that have secondary input
and output streams. A way (o process these streams efficiently is by pairing the obj and | tokens to form a sin-
gle token obj_1,. The action associated with this token is a concatenation of the actions for obj and {,.
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demand-driven translator template data-driven translator template
translator() translator()
[ <local variables and local mailboxes> { <local variables and local mailboxes>
foop | foop {
out_signal = in_signal;
input; /* demand next token ¥/
switch( in_token ) { switch{ in_token ) {
case #: /* initialize translator */ case#:  /* initialize translator */
case obj:  /* process object */ case obj: /™ process object ¥/
case lgr /¥ process lg%/ case lg: /¥ process l4 %/
case I,;  /* process |, */ case l,:  /*process |, */
}: /* end switch */ }: /* end switch ¥/
out_signal = in_signal;
input; /* wait for next token */
}; /* end loop */ }; /endloop ¥/
}; /* end wanslator */ }; /* end translator ¥/

Figure 4.7 Demand-Driven and Data-Driven Coding Templates

Second, packaging algorithms within translator templates is straightforward. Separators and initialization
tokens merely serve as computation delimiters. The benefit of this packaging is a standarized interface and
communication protocol for DBMS algorithms. As we will explain in Section 6, this standardization simplifies
DBMS extensibility.

Third, the code that defines the structure of transiator templates (¢.g., 2 loop and a switch) introduces very
little overhead. For computations whose run-times are in tens of milliseconds, the overhead imposed by tem-
plates is negligible. Certainly, productions that involve i/o, such as retrievals, joins, sorts eic. should exhibit the
same performance as non-translator-packaged implementations of these algorithms. It is only in the case of
very lightweight computations, such as those involved in GDL predicate evaluation where contents of indivi-
dual fields are read and compared, will the overhead be noticable. In the next section, we experimentally meas-
ure these overheads in evaluating predicates.
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MERGE() /¥ a demand-driven translator 1o merge ordered input streams A and B #/

{ define A input stream mailboxes: in_token_A, in_obj_des_A;
define B input stream mailboxes: in_token_B, in_obj_des_B;
define output stream mailbox: in_signal;

out_signal_A = NEXT; /* demand a token from stream A and stream B #/
input_A;

out_signal B = NEXT;

input_B;

loop {

switch{ in_token_A, in_token_B) {

case (#, #): out_token=4#;
output;
out_signal_A = NEXT;
input_A;
out_signal_B = NEXT;
input_B;
break;

case {obj, obj): if (contents(in_obj_des_A) < contents(in_obj_des_B))
out_obj_des =in_obj_des_A;
out_token = obj;
output;
out_signal_A = NEXT;
input_A }
else { out_obj_des = in_obj_des_B;
out_token = obj;

output;
out_signal_B = NEXT:
input_B };

case (obj, lg): out_obj_des = in_obj des_A;
out_token = obj;
output;
out_signal_A = NEXT;
input_A;
break;

case (lg obj):  out_obj des = in_obj des_B;
out_token = obj;
output;
out_signal B = NEXT;
input_B;
break;

case (I, I;):  out_token= 1
output;
out_signal_A = NEXT;
input_A;
out_signal_B = NEXT;
input_B;
break;

default:  /* error: illegal state ¥/

}; /* end switch #/

}: /# endloop ¥/

}: /* end ranslator */

Figure .10 A Demand-Driven MERGE Translator
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5, GENESIS-Specific Implementation Resulis

We begin this section with a discussion of how records are currently represented in GENESIS. We then
present preliminary experimental results on the performance of data-driven and demand-driven translator
implementations, and compare the results to a more conventional means of implementation. Finally, we com-
ment on the possibilities and advantages of compiling, rather than interpreting, GDL expressions.

5.1 Record Representation

A GENESIS record is essentially a COBOL record; the contents of scalar and repeating fields are con-
catenated to form a contiguous sequence of bytes. Every GENESIS record is conceptually viewed as an ordered
tree of fields [Smi8S], which in turn corresponds (o a tree of object types in GDM. The root of a tree represents
an entire record. Its siblings are the record’s fields, their siblings are their subfields, and so on. The ordering of
nodes refiects the ordering of the fields in the record. The leaves of a tree are scalar fields of a primitive type,
such as CHAR, INT, and FLOAT. Non-leaf nodes correspond to repeating groups, where elements are treated
as subfields.

Figure 5.1a shows a —1NF representation of a Dept record, and Figure 5.1b shows its tree representation.
The schemes for both were defined earlier in Figure 2.5b. Beside each node in the tree representation is the
name of the corresponding field and its ordinal number in parentheses. Under each leaf node is the data value
that is contained in the field. The depicied record has Dname="Ceramics” and two employees, neither of which
have children.

(8) (*®1,Ceremics™, { 147 )},{ [ ®247,°M, "Jones”, 40K, {} ],
[ #576,F', “adams™, 43K, {}1})

() Dept (1)

D® (1) Dname (2) Parts (3) Emp (4)

&1 “Ceramics”
3
PD@OE 0 @

Child (5) Child ()
e RN g
E® (1) Sex (2) Ensme (3) Selery{4) E# (1) Sex (2) Ename (3) Selery{4)
& é % ~ o 4 % ~
#247 Kl “Jones” 40K #8576 F “adems” 43K

Figure 5.1 —INF and Tree Graph Representations of a GENESIS Record

A trace is a GENESIS run-time data structure. It is used to identify the path from the root of a record 10
the node in question. The ordinal trace to the field containing "Jones” in Figure 5.1b is (1,4,1,3). Traces serve
as cursors to fields of records in GENESIS.

Operations such as UP, DOWN, LEFT, and RIGHT, enable a trace 0 be repositioned on different felds
within a record. Once positioned, a field can be read, updated, and in the case of a repeating field, new ele-
ments can be added and old elements deleted.
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Each Dept object is identified with a Dept record in Figure 5.1. Applying the production
Dname:Dept—»CHAR(10) to a Dept object yields the name of the object’s department. In terms of trace opera-
tions, the Dname production takes a trace that points to the entire Dept record and repositions it to the Dname
field. Similarly, applying Emp:Dept—*Empl to a Dept object yields the stream of employees associated with
that department. In terms of traces, this production takes a trace over the entire Dept record and repositions it to
each element of the Empl repeating field, one element at a time. There is, in general, a straightforward imple-
mentation of stream translators that use traces and trace operations to navigate through fields of GENESIS
records. It is this implementation that we evaluate in the next section.

5.2 Predicate Evaluation Experiments

As mentioned earlier, the runtime overhead incurred by a translator template packaging of algorithms is
negligible for all but the simplest of computations. The computations that are most influenced are those involv-
ing the evaluation of predicates, where the contents of individual fields are examined. With this in mind, we
built data-driven and demand-driven siream translators to evaluate GDL predicates over INF and —1NF
GENESIS records. As a benchmark for these experiments, we also implemented parse trees which are used in
some DBMSs to evaluate predicates on INF records.

We generated a set of predicates over the Department-Employee-Child database to examine the behaviors
of the parse tree (PT), data-driven (DD), and demand-driven (DM) methods. Table 5.1 lists a representative
sampling of these predicates. As targets of the experiment, INF Empl records and —1NF Dept records were
used. (The schemes for these records were listed in Figure 2.5).

Pred. # Predicates PT method | DM method | DD method | # of translators
Al Sex="x" (& character) 0.10 0.10 0.10 1
A2 Salary=10.0 (& double prec. fi. pt. number) 0.11 0.11 .12 H
A3 D#=0 {(an integer) 0.10 0.10 0.10 1
A4 Ename="xxxxxouxxx”  (a string of 9 characters) 0.22 022 0.23 1
B: Sex="x' AND Ename="x" 032 0.33 0.41 3
B2 Sex="x' OR Ename="x" 0.30 0.32 0.38 3
B3 Ename="x" AND Ename="x" AND Ename="x" 0.54 0.55 0.63 4
B4 Ename="x" OR Ename="x" OR Ename="x" 0.51 0.53 0.60 4
BS Ename="x" AND (Ename="x" OR Ename="x") 0.54 0.58 0.72 5
B6 Ename="xxxxoxxaxxa” OR 0.76 0.79 092 5
(Ename="xxxxxxxxx” AND Ename="xxxxxxxxx"}
C1 Paris=10 2.20 2.30 3
2 Emp.Ename="xx" 2.88 3.20 4
C3 Emp.Child.Cname="xx" 5.67 6.03 5
D1 Emp.Eno>10 OR Emp.Ename="xx" 5.70 5.53 6DD 7DM
D2 Emp.Child.Age>10 OR Emp.Child.Cname="5x" 1141 9.10 7DD 9DM
D3 Paris=10 OR Emp.Ename="xx" 5.23 5.78 6

Note: Times measured in milliseconds.

Table 8.1 Predicates and Experimental Results

Predicates in Table 5.1 are organized into four groups. Groups A and B are predicates over INF Empl
records. Group A deals with primitive data types (integer, float, character, string) and group B deals with con-
junctions and disjunctions of Group A predicates. Groups C - D are predicates over —1NF Dept records.
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Group C tests for element membership in repeating groups and nested repeating groups, and group D involves
conjunctions and disjunctions of Group A and Group C predicates. The number of translators used to express
each predicate is listed in the left-most column.

The experiments were conducted on a dedicated VAX 750. Table 5.1 lists for each predicate the meas-
ured evaluation times. For Groups C and D, no times are listed for the PT method, as PTs apply only to INF
queries. All measured times are given in milliseconds per evaluation.

Consider first the results of 1NF predicates on Empl records (Groups A and B). As expected, the DM and
DD methods exhibit a comparable performance. DD is slightly slower only for the reason that we implemented
a broadcasting capability to handle subexpression optimizations, whereas the DM implementation was not bur-
dened by this extra overhead. (This required the introduction of a list of primary output stream mailboxes, cne
set of mailboxes for each translator to receive the broadcast). As can be seen from Table 5.1, the differences
are rather small even under this biased case. More importantly, note that the performance of the DD/DM
methods is virtually identical to the PT method. This equality was achieved by a simple optimization: transla-
tors that always produce a constant output are removed from the network. In our experiments, translators that
computed constant offsets to fields were eliminated.

The predicates in Groups A and B certainly do not form a ’comprehensive set’ of experiments for INF
queries. As it is debatable whether any set is in fact comprehensive, we developed and validated an analytic
model in [Leu86] to show that there is virtually no difference in execution times in PT and DM methods for a
large class of 1NF predicates, which include those in Groups A and B.

Now consider the —1NF predicates on Dept records (Groups C-D). A cursory comparison of the INF
and —1NF query run-times in Table 4.1 makes it tempting to conclude that —INF implementations are too slow
to compete with INF implementations. This would be wrong. On close inspection, two factors significantly
inflate —1NF predicate timings. First, timing measurements on —INF queries are record dependent. ¢ For
example, the more elements a repeating field has, the longer it will take for a predicate on that field to be
evaluated.

Second, and most important, our implementation of stream translators relied on a prototype and unoptim-
ized implementation of trace operations. This inflated the runtimes substantially. As both DM and DD methods
call exactly the same trace operations (albeit in different orders), it is the difference in their run-times that is
important. And these differences are marginal. The only known exception, as mentioned in Section 4.4, is
when DD networks are rearranged to eliminate redundant computations of common subexpressions. The predi-
cates D1 and D2 are such examples; "Emp” is the common subexpression for D1 and "Emp.Child" is the subex-
pression for D2. Note that D2 required 7 DD translators or 9 DM translators, and D1 used 6 DD or 7 DM trans-
lators.

The experiments confirm that both demand-driven and data-driven implementations of translators are
suitable for database processing. We have chosen to use demand-driven translators as the basis for further
research in GENESIS.

5.3 Interpretation v.s. Compilation

Executing a translator network is akin to an interpretive execution of an expression. If the functions of an
expression involve little computation, it is well-known that a compiled version of the expression will run faster.
(The reason, again, is that the overhead for crossing function boundaries is large compared to light-weight com-
putations; compilation eliminates these boundaries and their overheads). If heavy computations are involved,
the differences are negligible. The absolute run-times reported in our experiments indicate that interpretation is
indeed expensive at the predicate evaluation level; a method of compiling a GDL expression/predicate into a
single translator is needed. This is in line with standard implementations of high-performance DBMSs where
predicates are compiled into machine code to gain an advantage in execution speed [Cha81].

8 e records used in these experiments had a static form: the Parts repeating field had six elements; the Empl repeating
field had three elements: one with no children, the second with one child, and the third with three children.
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It is beyond the scope of our research o investigate the difficulties and merits of compiling a GDL
expression (or subexpression) into a single stream translator. However, we note that a considerable body of
relevant research exists on compiling functional programs [Hen80], and advanced compiler techniques are
being studied which interweave the executions of composed functions to significantly decrease execution times
[Fre86a-b]. Although we leave this problem open, whether an interpretive or compiled execution of translation
networks is used does not diminish the usefulness of productions as the basis for a database computation model.

6. Extensibility Issues

As mentioned in the introduction, adding new data types and operators will be an essential featre of
future DBMSs. GDM and GDL are well-suited for this task because they are ‘open-ended’; ie., there is no
fixed set of data types and productions to be supported, and all data types and all productions are treated unifor-
mily.

We envision that a library of stream translators will be maintained. New translators are added to the
library as they are written. When a customized DBMS is to be assembled, selected translators are copied from
the library and are INCLUDEGC directly into the target system software. Our approach is to hardwire new types
and operators into GENESIS, thereby gaining a measure of efficiency over more dynamic means of
type/operator registration [St083]. This implies that the addition or removal of data types and operators will
require the recompilation of some GENESIS modules. As the introduction of new types or operators should be
infrequent given a careful specification of the target DBMS and applications, recompilation should be cost-
effective.

To illustrate the power and extensibility of GDM and GDL, consider the following example from com-
puter graphics. Suppose we have a Graphics database, where Graphics objects are described by line images.
(For example, a box is described by twelve lines that outline its shape). Lines can be rotated, scaled, and
translated by matrix multiplication, which can be handled by a stream translator Mm which transforms line
objects into other line objects. Clipping lines to a viewing screen can be accomplished by a stream translator
Clip, and displaying visible lines on a video output device can be done by a Display translator. Thus, the GDL
expression:

Graphics.Lines.Mm.Clip.Display

could be used to display the contents of a graphical database. More conveniently, a DRAW macro could be
defined which appends .Mm.Clip.Display onto an expression, thus customizing the "display-database’ operator
as:

DRAW Graphics.Lines

It is through the introduction of nontraditional database operators such as Mm, Clip, and Display that the attrac-
tiveness and extensibility of a functional approach is evident. By introducing macros such as DRAW, it is pos-
sible to customize the GDL interface so that it need not resemble a traditional DBMS interface.

Taking this one step further, it is possible to add new productions (e.g., IF_THEN) that conditionally
evaluate GDL expressions. Rule systems could then be expressed. With few extra additions, a LISP-like
language could be supported and general-purpose data processing algorithms (e.g., sorting) could be expressed
in terms of GDL productions. Although this leap from a DML to a general-purpose programming language is
possible, there are some very difficult engineering and efficiency problems that must be solved. We explain our
point with an example.

Consider the database of Figure 6.1 which contains graphs where nodes are cities and edges are labeled
with the distance separating cities. To compute the minimum distance between two cities would require an.
invocation of Dijkstra’s algorithm [Dij59, Aho74]. As mentioned above, it is possible to express Dijksira’s
algorithm in terms of IF_THEN productions and substituting main-memory references with DML calls. How-
ever, the resulting algorithm would be horribly inefficient. Like many algorithms, Dijkstra’s algorithm was
designed for main-memory databases; for it to work efficiently requires all of its data to be main-memory
resident. Instead of retrieving a node at a time from secondary storage, a better solution t0 this query would be
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10 retrieve the entire graph (i.e., a stream of [cityl, city2, distance] tuples) and use that as input 10 a stream
translator D_A which stores these tuples in main-memory structures prior 0 invoking Dijkstra’s algorithm.

Thus, the query:

SELECT Edge. WHERE( Gname=g ).[Start’.Cname, End’.Cname, Dist].D_A{clc2)

would output the minimum distance between cities c1 and c2 on graph g.

Although it is an admirable goal to be able to express algorithms without knowledge of whether data is
main-memory or secondary-storage resident, it is likely that performance will force a distinction as illustrated
above. (We note that numerical analysts, for example, addressed this topic long ago. Numerical algorithms, in
general, are quite different if data (e.g., matrices) are main-memory or secondary-storage resident [For77]).
How the distinction is to be made is an important research issue in extensible DBMSs. 9

Node
cher(10) int cher(12) Cname = Node
* * /P Edge
Cneme Dist Gname Dist @ Edge
Stert g:mntue . Edge
ert : Edge
Node Edge
N End k End  : Edge
Stert’ : Node
End’ . Node

Figure 6.1 A City-Distance Graph Database
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® We note that there are two approaches that are now being investigated, although no definitive results are yet availsble.
One way is 1o provide hints 10 lower-level software 1o prefetch data that is likely to be referenced in the future [Carg6,
Row86]. Anocther way (perhaps related 1o the first) is 10 package and retrieve data in semantically meaningful units [Has82,

Bat85, ZdoB7].



6. Conclusions

Among the more interesting research topics in databases today are the support of —1NF relations, new
data types and operators, and extensible database systems. Seemingly disparate, these topics are strongly
related and functional data models and functional data languages bring them to a focal point. Functional
models and languages are candidates for the semantic interfaces of extensible database systems. Not only can
these models and languages accommodate new data types and operators, they provide the means by which
operations on 1NF and —1NF databases can be expressed.

We have outlined 2 functional data model (GDM) and data language (GDL) that are targeted for the
semantic interface 10 GENESIS, an extensible DBMS. GDL is an outgrowth of FQL and DAPLEX, and exhi-
bits some of their best features. Specifically these are the support of nested aggregations in FQL and the
absense of extension operators in DAPLEX. The combination of these features is achieved by treating func-
tions and operations as stream rewrite rules called productions. Computations are represented by streams of
tokens, where a token is either a database object or a delimiter which signals the end of one computation and
the start of another. The novelty of our approach is making delimiters explicit in streams; not only does it lead
1o a conceptually simple model, but also one that is easy to implement.

We have explored various ways of realizing productions, and have noted that both data-driven and
demand-driven implementations based on lazy evaluation are suitable for database computations. Our
representation of streams requires the packaging of DBMS algorithms within standardized templates. There is
virtually no run-time overhead for this packaging if the algorithms involve a considerable amount of computa-
tion. For lightweight compuiations such as predicate evaluations, experimental results show that predicates
could be evaluated as fast as parse-trec methods. Further increases in processing efficiency will be gained if
expressions are compiled.

In a wider coniext, the utility of functional/production languages is not limited to posing querics 10 a
DBMS. We have briefly noted that such Janguages can also be used to express the composition of algorithms
that define the internals of DBMSs [Bat87]. These productions {and their implementations) are identical to
those that are presented in this paper, with the exception that streams of records, not objects, are mapped, and
reentrancy mast be supported. Thus, the GDL computation model is a corerstone of the GENESIS implemen-
tation effort.

Future research in production data models includes: compilation techniques, query optimization,
muliiprocessor/multithreaded implemeniations of wanslator networks, translation of GDL expressions to opera-
tions on files and links, and solutions to the common subexpression problem for demand-driven translators and
the multiple stream problem for data-driven translators,
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