REDUCING LINEAR RECURSION TO
TRANSITIVE CLOSURE

Linda Ness
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-86-25 November 1986

Reducing Linear Recursion to Transitive Closure*

Linda Ness
University of Texas and Carleton College

Abstract

When querying a database using a logic program, one sometimes wants (0 phrase the query recursively.
The question of implementing recursive queries, effectively, then arises, since recursion is expensive 1o
implement. Efficiency of implementation might be improved if the query is rephrased before execution. In
this paper, we propose and prove a strategy for evaluating recursive queries defined by an exit rule and a
linear recursive rule, expressed as a Hom clause without function symbols. In the strategy, the recursive
relation sought is computed, by join and union, from a much simpler recursive relation. The simpler rela-
tion is proved to be, in general, the disjoint union of complete simple transitive closure relations. In the spe-
cial cases that the graph is acylic, or consists of only of components containing cycles, the relation is a sin-
gle simple transitive closure relation, or is not essentially recursive, since it can be computed by bottom-up
evaluation in 2 bounded number of iterations. The defining rules for the simpler recursive relation, involve
one new relation, which would have to be computed and cached. The advantage of this strategy is that it
suffices to develop efficient algorithms for computing complete simple transitive closure relations, since
the selections have been pushed through. Much of the work on strategies for evaluating linear recursive
gueries and performance of these strategies focuses on such complete simple transitive closure relations. In
fact, for such relations, a simple variation of bottom-up evaluation, called semi-naive evaluation is optimal,
in the sense that no inference is made twice.

#This research was partially supporied by NSF Granis MCSS-8104017, MCS-8214613, and DCR-8507224 and ONR Con-
wract NOOO14-86-K-0161.

1.Introduction

When querying a data base using a logic program, one sometimes wants to phrase the query recursively.
For example, suppose one represents information about a directed graph in the following two database rela-
tions:

p(X,Z) represents the edge relation,

e(X) represents a subset of nodes of the graph.
Let r(X) denote the relation consisting of nodes X, reachable along some path emanating from a node in the
subset e. In order to query for the relation r(X), one must phrase the query recursively. A set of rules
defining 1 is:
(1a) r(X):-e(X)
(1b) r(X) :- p(X,2)x(Z)
The first rule is a base condition, or an exit rule. It means the relation r contains the relation e.

The second rule means a node X is in the relation t if there exists a node Z such that there is an edge from
7 10 X, and Z is in the relation 1. The second rule is an example of a linear recursive rule since there is only
one occurrence of the recursive predicate r on the right-hand side of the rule; in addition, it is regular since

there is only one nonrecursive predicate.
The predicate on the left hand side of a rule is called the goal predicate.

Example 0: In the directed graph below, the nodes in the relation e are nodes 1 and 2. The relation r con-

sists of nodes 1,2, 3,4, 5.

Another interpretation of the relation defined by the above pair of rules can be given if ¢ is interpreted as a

4.

group of people, and p(X,Z) is interpreted as "X is a parent of Z". Then r(X) is the set of ancestors of peo-
ple in the group €.
Then relation defined by the pair of rules (1) is equivalent to the relation defined by an infinite sequence of
rulesro, 71,72, ..., where the rule r; is obtained by applying the recursive rule i times and then applying the
exit rule. The first few of these rules are:

ro:r{X) - e(X)

ri:1(X) - p(XZ1e(Z1)

ra:1(X) - p(XZ1)p(Z1,22)e(Z2)

ra:1(X) - pX,Z1P(Z1,Z22)p(22 Z3)e(Z)

The relation may be evaluated in a bottom-up fashion, by evaluating r; and adding the results o the resulis
of evaluating the earlier rules. We will call the subset of the relation that has been computed in this manner
Ri(X), so

RoX) Ri(X) R20X)
Since the relations e and p are finite, no new tuples will be found after some iteration, say the kth. Thus Ry
(X) will be the entire relation. The recursion in the in the first pair of rules (1) is not bounded since one

cannot predict a constant k that will work for all relations e and p.

One simple class of recursive relations is that where the relations defined by replacing X and Z in the above
rules by ordered sets X1, X2, ..X» and Z1,Z2, ..Z», where the X;’s and Z;’s are all distinct variables. We

call such relations complete simple transitive closure relations, Their defining rules have the form:

r(X 1 Xa)—b (X1, o Xa)

P (X1 Xn)p X1y s Xn, 21y s ZIr(Z1, on Zn)

These defining rules are especially simple for two reasons:

a) None of the X;’sin the head of the recursive rule appear in the recursive predicate.

-5-

b) None of the X;’s or Z;'s are constants, and there are no repetitions among the X;’s or Z;'s. In

other words, the full relation r is sought.
Fundamentally, our main result is: any non-bounded linear recursive relation, is either the disjoint union of
complete simple transitive closure relations, or is computed by joining an intermediate relation with such a
disjoint union, and then taking the union with a subrelation Rg-1(X), for a constant d, that can be deter-
mined from the recursive rule.
An example of a complete simple wransitive closure relation is provided by the “cousins-at-the-same-
generation” query:

sg (X X)

sg (X1, X2)~p X1, Z1)p (X2, Z2)58 (21, Z2)
The recursive rule here is linear, but not regular, since there is more than one non-recursive predicate. If

one defines the relation s by

s 1,X2.Z1,Z-pX 1, Z0)p (X2, Z2)
the relation sg can be defined by the same base condition, and the regular linear recursive rule

sgX 1, X2)—s(X1,X2,Z1,Z2)58 (Z1,22)
Hence, when the "cousins-at-the-same-generation” relation is defined in terms of the relation s, it is an
example of a complete simple transitive closure relation.

In [BMSU], Bancilhon et al. discussed strategies for evaluating linear recursive queries. They asked how
the counting method and the reverse counting method could be generalized from the "cousins at the same
generation example” to arbitrary linear rules. These two strategies both apply well 1o complete simple tran-
sitive closure relations.

Linear recursive rules are, in general, much more complicated, than the linear recursive rules defining com-

plete simple transitive closure relations. Consider the following regular rule:

2) r(X1,X2,X3,Xa,Xs)p(X1,X2,X3,X4, X5, Y, Yor(X2.X1,71,X2,Y2)

-6-

Here the rule for substituting variables into the recursive predicate is much more complicated. One can
easily think of virtually an infinite number of examples of regular, linear recursive rules by just thinking of
examples of substitution rules. If the X;’s are distinct variables, the full relation is still sought. One can
further complicate the example above by seeking only the subrelation where X » has a particular value, say
*John’, and where X ;=X 7 . In other words, the X;’s could be constants or variables, and they need not all
be distinct,

Rule 2 can be rewritten much more simply, if we adopt a few conventions. Namely let X denote

X1, ..,Xs letYdenoteYy,...,Ys and let X,Y denote the concatenation of the two sequences above, SO
X, ¥=X1,..X5.%1,..Y5
Finally,let S(X,Y) denote X2, X1,Y1,X2, Y2, i.e. the argument of the recursive predicate. Then Rule 3 can
be rewritien as:
rXy—pX Y SX.Y)
The essential information is the substitution rule S.
In this paper we will confine our attention o the class of queries consisting of an exit rule or base condition
of the form
32) rX)—eX)

and a linear recursive rule, which we define to be a rule of the form

3b) rX)p X Y)p2X Y) peX Y)r (X X))
where X and Y and X,Y denote the sequences specified above, and where S(X,Y) denotes a sequence of
length n whose entries are selected from the X;’s and Y; ’s. The X;’s and Y;’s may be variables or con-
stants. No Y; , that is a variable, can equal an X; thatis a variable. We will say that the X; variables are
distinguished, and the ¥, variables are nondistinguished variables. There may be repetitions among the
distinguished variables and among the nondistinguished variables. The rule 6 is regular if k=1, so there is

only one non-recursive predicate.

The interpretation of the rules is exactly analagous to that described for 1). The second rule 3b) means that

-7-

a tuple X is in the relationT, if there exists a tuple Y such that the concatenation of the tuples X,Y isinrela-
tions p1, P2, - Pk, and the tuple S(X,Y) is in the relation 1. The tuples X and Y , of course have to satisfy

the specified constant and repetition constraints.

A linear recursive relation defined by a pair of rules in the form of 3a) and 3b) can be evaluated bottom-up
using an infinite sequence of rules 7; defined as in the initial example. In order to obtain the rule r;, the sub-
stitution operation S will have to be iterated i times. The essence of the recursion is captured in these itera-
tions. More notation will have to be established to express this sequence of rules. As before we will let

R:(X) denote the subrelation obtained by evaluating the rules 7o, 71, ..., 7i.

Our main results give a new pair of defining rules for the relation. If one decides to do bottom-up evalua-
tion for j-1 steps, followed by a cache of the relation ,g;(X ,Z), defined by the non-recursive predicates in
the rule r;, one can then redefine the linear recursive relation using the subrelation Rj-; as the new base
relation and the cached relation as the non-recursive predicate in a regular linear recursive rule. The main
observation is that a certain choice of j makes the new recursive rule a simple transitive closure rule, if the
original argument tuple X in the goal predicate was "standard”, in a sense that we will define precisely
later. Even if the original argument tuple X is not "standard”, the argument tuple of the goal predicate of ra,
which we will denote S4(X.Y), will be "standard”, so the relation 7 (S4(X,Y)) can be computed using the

method above, and then the desired relation 1(X) can be computed from r (S4(X .Y)), nonrecursively.

The proper choice of j can be determined from a directed graph determined by the substitution operation S

in the linear recursive rule, and this j will be called the diameter of the graph.

It is interesting to note that Naughton [Nau?] found that the same choice of j was useful in specifying a

new set of rules defining the same relation, which had fewer, if any, redundant predicates.

The new pair of defining rules we found for a linear recursive relation allowed us 1o present a strategy for
evaluating such relations in which the only recursive relations that need to be computed are complete sim-
ple transitive closure relations. As Bancilhon showed [B1], Semi-Naive evaluation, which is an ingelligent
variant of bottom-up evaluation of these relations results in an optimal straiegy for evaluating them, in the

sense that the same inference is never made twice. The nonrecursive computations in the strategy, can be

-8-

done as efficiently as possible, using sideways information passing, for example. Hence we expect our stra-
tegy to be efficient, and feel that we have made significant progress on the problem Bancilhon et al. posed
in [BMSU]. Ioannides’performance results in [12] suggest that our strategy combined with his divide and

conquer algoritms for computing the complete simple iransitive closures, might also perform efficiently.

A quick perusal of the paper shows that much of it is directed to studying the substitation of variables into
the recursive predicate.We did this with great care for several reasons. The graphs describing the substitu-
tion of distinguished variables are interesting in their own right and describe all the patterns of recursion.
Hence one can easily make up interesting examples of recursion. Our use of a graph to deduce information
about the iteration of the substitution operation is certainly not an original idea. The graph we use is
simpler than Naughton’s argument/variable graph. Ioannides also used a graph, [11]. Using the adjacency
matrix of our substitution graph, we can give a precise algebraic formula for the full substitution operation
on distinguished and non-distinguished variables, that Naughton described graphically using weighted

edges.

The algebraic formulation immediately leads to a formula for the jth iterate of the full substitution opera-
tion which makes its periocidity properties transparent. It allows easy handling of repeated variables and
constants, in both the tuple X of arguments of the goal predicate and the uple Y of arguments in the nonre-
cursive predicate. Many people have shied away from these more complicated and perhaps, seemingly
unnecessary cases. However, we found that the notion of a standard tuple X was essential to our results,
and such a wple in general must contain repeated distinguished variables. Also, since we could handie con-

stants in the argument tuple X as well, we were able 1o "push selections through".

Once we obtained a concise formula for the substitution operation and understood its properties, the main

results were very easy to deduce.

2.The Substitution Graph and Distinguished Substitution Map for a Linear Recursive Rule

The most important information in a linear recursive rule is the formula for substitution of arguments in the
goal predicate into the recursive predicate and introduction of new arguments into the remaining positions

of the recursive predicate. In the rule

rX)y-pX Yy (SX.Y)
X denotes the argument tuple for the goal predicate; Y represents the tuple of new arguments that are intro-
duced. Then the argument tuple for the non-recursive predicate is the concatenation X,Y and the argument
wuple for the recursive predicate S(X,Y) is obtained by applying the formula § for substitution to the argu-

ment tuple X,Y . The notation was chosen to suggest viewing S as a (linear) map from wples © tuples.

We will call the arguments X of the goal predicate distinguished. The arguments Y will be called non-
distinguished. We will say that a rule is generic in its distinguished (nondistinguished) arguments, if the
distinguished (nondistinguished) arguments are distinct variables.

The substitution map S can be viewed as a combination of a substitution map for the distinguished argu-

ment tuple, and a substitution map for the non-distinguished argument tuple. We will denote the substitu-

tion map for the distinguished argument tuple by s™.
More precisely, suppose T is a linear recursive rule, generic in its distinguished arguments, with n dis-
tinguished arguments. Define its distinguished substitution map by:
S 1, s Xn)=(W, ..., Ws) where
1) W;=0if no distinguished variable is substituted into the ith position.

2) W;=X; if the variable n position i in the goal predicate appears in poston j in the recursive

predicate.

Thus s is a (very simple) linear transformation from n-tuples to n-tuples. The matrix for s” is an nxn
matrix, which has a 1 in the ith row and jth column if W;=X; , and has zeros elsewhere. The matrix for s is
the adjacency matrix for a directed graph, which we will call the substitution graph. In other words we

define the substitution graph for the rule r 1o be the directed graph with

1) a node for each distinguished argument position, labeled by that positon number, and

2) an edge from node i to node j if the variable in position i in the goal predicate is substitned into

position j in i the recursive predicate.

210 -

Below we give some examples. The graph is the substitution graph for the linear recursive rule; the dis-
tinguished substitution map is also given.

Example 1: the recursive rule for transitive closure

rX 1, X2)e X1, Y r{¥1,X2)

1 2
ol |0 o}l
XZ O [Xl

Example 2: the recursive rule for the "cousins at the same generation relation”

sg (X1, X2)—p X1, Zyp X2, Z2sg(Z1, 22

L]
®

]

0 o 6\ X,

-11-

In general, the substitution graph for a complete simple transitive closure relation of arity n consists

or n independent nodes and the adjacency matrix is, therefore, the zero matrix.

Recall that evaluating 2 relation defined by a linear recursive rule and an exit rule, is equivalent to evaluat-
ing the rules obtained by jterating the recursive rule i times and then applying the exitrule, fori=0,1,2, ...
_We denoted these rules 7;. We want to predict the formula for substituting the distinguished arguments
into exit predicate positions in these rules. This is equivalent to predicting the substitution map for the
recursive rule obtained by iterating the original recursive rule i times. We will call this rule 7;, and its dis-
tinguished substitution map s %, $0 s 1 equals the original substitution map ™. When the recursive rule is
iterated, the distinguished argument in position i moves t0 all positions corresponding to nodes which are

successors of node i, or "disappears” if there are no such positions.

The preceding comment implies that the adjacency matrix for s 7 is the jth power of the adjacency matrix
for the original substitution map s "=s L. If the graph is acylic, after some number of iterations, say d, the
distinguished arguments will all have disappeared. In other words the dth power of the adjacency matrix
will be the zero matrix, so in linear algebra terms, s” is nilpotent. If, however, the graph consists of several
directed cycles of length d1 and d>, after any multiple of d;, i=1 or 2, iterations, the distinguished argu-
ments in positions corresponding to nodes on cycle 1, will have returned to their original positons. Thus if d
is the least common multiple of d; and d», after any multiple of d iterations the distinguished arguments

will be in their original positions. In this case s”is a permutation composed of two disjoint cycles.

Example 3:

f(X1,Xz,Xs,Xzz,Xs,Xs)i*'p(Xl,XzeXs,Xa,Xs,Xs,Y1}7(X2,X1,X1,X1,Yl,Xs)

The substitution graph:

The rule obtained by iterating the recursive rule twice is:

.12 -

rX Xep X . X VX2, X1, X0, X0, Y1, X5, Yo)r (X1, X2, X2, X2,Y2,71)
The propagation of the variables is illustrated below. The nodes of the substitution graph are labeled by

the variables that occupy the corresponding positions:

in the goal predicate:

in the recursive predicate of the original recursive rule:

in the recursive predicate of 7/ 2:

S N

S

The definitions of the substitution map and distinguished substitution map can easily be extended to linear
recursive rules, which are not generic in their distinguished arguments. Let X denote the distinguished

argument tuple, in the goal predicate, and let S(X) denote the argument tuple of the recursive predicate.

Definition: Suppose U=(U1, ..., Un) and V=(V 1, ..., V) are tuples whose arguments are variables or con-
stants. The tuples U and V are isomorphic if all of the tuples ¥, have the same patiern of repetition of vari-

abls, and the same constants in the same positions. U is a specialization of V, if U is obtained from V, by

-13-

making selections, i.e. if U is obtained from V by setting some variable to be a constant, or by setting

pair(s) of variables in V equal.

Specialization determines a partial order among argument tuples.

Now, if the argument tuple S(X) is isomorphic 1o a specialization of X, there is at least one distinguished
substitution map s~, which satisfies the definition. If S(X) is not isomorphic w0 a specialization of X, there
are two cases to consider. If X and S(X) have different constants in the same positions, then the recursive
relation defined by the rules only consists of the base relation. Otherwise, there is a unique tuple S’(X),
which is maximal with respect to the following two propertes:

a) S’(X) is a specialization of S(X), and

b) $(X)isisomorphictoa specialization of X.
Since the relation r(X) is also defined by the original rules where S'(X) replaces S(X), it suffices to con-

sider rules where S(X) is isomorphic to a specialization of X.

Example 4: The pair of recursive rules is:

XX Y A—e(X X Y4
rX X ZA-pX X ZW)(ZWAaX)

The same relation is defined by the exit rule and the new recursive rule

rXXZA-pX X ZWy(Z.Z44)

3.Substitution Graphs and Their Diameter fP

Since the substitution graphs determine all possible patterns for linear recursion, it is useful io clearly

understand them, It also provides a simple graphical way to generate "all examples”.

Lemma 1: A directed graph with nodes labeled 1,....n, for some integer , is a substitution graph for some

linear recursive query if and only if every node has at most one immediate predecessor.

Proof: In a linear recursive rule which contains distinct distinguished variables in distinct positions, each

distinguished variable which appears in the recursive predicate comes from exactly one position in the goal

.i4-

predicate. Thus each node in the substitution graph determined by a linear recursive relation has at most
one predecessor. Conversely, given a directed graph, with nodes labeled by 1, ..., n, in which each node has

at most one predecessor, One can construct a linear recursive rule, with that graph as its substitution graph.

In fact, every node in a substitution graph has at most 1 kth predecessor, for every positive integer k. For

by a kth predecessor we mean a node reached by going backwards along k edges.

This characterization determines a convenient restriction on the structure of the connected components of
the underlying undirected graph. Since we are considering connectedness properties of the underlying
underected graph, one might initially think that such a graph might contain a (undirected) cycle, which, in

fact, was

Lemma 2: A connected component of a substitution graph contains at most one (undirected) cycle. Any

undirected cycle is, in fact, a directed cycle.

Proof: Suppose the component contains an undirected cycle; if the cycle were not a directed cycle, some
node on the cycle would have 2 edges entering it, which is impossible by the characterization of substitu-
tion graphs. Now suppose a component contained 2 directed simple cycles. If both cycles contain node j,
they must both contain a predecessor of node j. Since there is only one such predecessor, both cycles con-
tain the unique predecessor of node j. Continuing this argument, we see both cycles contain each other. If
the 2 cycles do not intersect, there is an undirected path from one to the other, since they are contained in
the same component. We may assume the path contains exactly one node n1 and n2 from each cycle. The
edges on the path must be directed away from the cycles so that neither n1, nor n2 has more than one enter-
ing edge. Hence the path contains some node with 2 entering edges, which again contradicts the fact that

each node has at most one predecessor.

Naughton, in [Nau2], stated a result, equivalent to Lemma 2, for his argument/variable graphs.

Lemma 3: A component of a substitution graph is either a rooted tree or the union of a simple directed

cycle with 0 or more trees rooted at nodes of the cycle, but otherwise disjoint from the cycle.

-15-

Proof: If a component is acyclic in the undirected sense, we must show there is a unique node with no
predecessors. If there were 2 such nodes, there would be an undirected path from one node to the other
node. The end edges would be directed away from the end nodes. Hence some node on the path would
have 2 immediate predecessors, a contradiction. If the component contains a cycle, then deleting the edges
in the cycle must leave an acyclic graph by Lemma 2, which as we have just shown is a union of rooted

trees. The roots must be on the cycle since the original component was connected.

Lemma 3 implies that there are 2 natural subclasses of substitution graphs to consider: namely those with
only acyclic components and those consisting of components which contain a cycle. We shall define the
latier to be cyclic substitution graphs.

Remark: If no distinguished variable is repeated in the recursive predicate, then no node has more than one
successor, so the components are either a single node, a nontrivial path, or a simple cycle.

Example 5: The substitution graph for the rule

rXi, ... Xwu)-pX, YV (Y1,X5,X2,X3,X4,X2,X6.X4,X2,X9,X9,Y2,X12,X12)
where X=(X1, ..., X 14)and¥=(¥1, Y 2) is:

\s 14

Finally we define the diameter of a substitution graph to be the smallest integer d such that

1) dis amultple of the length of every cycle, and

-16-

2) the dth predecessor of every node either is on a cycle or does not exist.

Example 6: The diameter of the substitution graph below is 6.

g

q

J i0
v |

The diameter of a substitution graph will be a crucial piece of information, If the graph is acyclic, d <= n,
otherwise a crude bound on d is: where the product is over primes p less than n, and where the exponent of

p gives the largest power of p which is smaller than n.

We are now in a position to formally summarize the discussion of iterations of the substitution mapping at

the end of the previous section.
Lemma 4: Assume we are given a linear recursive rule. Let r'; denote the rule obtained by iterating it j
times. Let s7j denote the distinguished substitution map for r;", j = 1, 2, Set 5 =s 1. Suppose that the
substitution graph is of diameter d and has n nodes.

a) The matrix of s 7 is the jth power of the matrix for 5™

b) The map s % is defined by s *&:, ..., Xo)=(W1, .., W,) where W;=X; if the jth node of the

substitution graph is the (unique) kth predecessor of the ith node of the substitution graph.
c) If the substitution graph is acyclic, then s @ is the identically zero map.
d) If the substitution graph is cyclic, then
i) 5 d4j=s d+jmodd
ity if every componentisacycle s 9=s5"
Proof: Only part i of d needs a proof. The diameter d is defined so that the dth predecessor of a node on a

cyclic substitution graph is on a cycle. Since d is a multiple of the length of the cycle, and since the d+jth

predecessor is on the same cycle for all j, the d+jth predecessor is the (d+jmod d)th predecessor.

4.The Substitution Map and Standard Argument Tuples

-17-

We must now extend the definition of the distinguished substitution map s~ to nondistinguished arguments
as well, so that every argument positon in the recursive predicate of the rule 7;°, j = 0,1,2,..., obtained by

iterating the original recursive rule j times, is filled in 2 prescribed way.

The argument tuple of the recursive predicate or 7;’ is obtained from the original distinguished argument
tuple X By iterating the substituton map S j times. The formula for the map S itself is given in the original

recursive rule. We will now precisely define the jth iteration, which we will denote Si.

Each iteration of the substitution map S requires one new argument for each acyclic component of the sub-
stituton graph. For by definition of the graph, no distinguished argument is substituted into the argument
positions corresponding to nodes which have no predecessors; these nodes are precisely the root nodes of
the acyclic components. Order the acyclic components 1, ..., a and let a; denote the argument position
corresponding to the root node of the ith acyclic component. We will denote the tuple of (non-
distinguished) arguments introduced in the jth iteraton by Yi=(¥jas, .. ., Yja, The ith argument of Yj will
be assigned to the position ;, the position corresponding to the root of the ith acyclic component. Thus it is
convenient to define a map u from a-tuples to n-tuples, where n is the number of arguments in the recursive
predicate, by

W(Z, . Za)=W1, ..., Ws) where

Wa=Z; and
W =0 if some distinguished argument is substituted into the the jth position.

To make the notation cleaner, assume that the original non-distinguished argument tuple Y = Y1. Note that
the original substitution map S, defined by the original recursive rule, is the vector sum

SX .Y)=s X yru).
The arguments, in the tuple Yj, introduced in the jth iteration, will, in the next iteration propagate 1o posi-
tions which are successors of the "root positions" into which they were introduced. The arguments in Y},
will in the j+kth iteration move into positions which are kth successer positions of the "root positions” into

which they were introduced. After the arguments are introduced, they can be viewed as distinguished argu-

ments, and the distinguished substitution map can be applied. Thus a precise formula for the jth iteration of

-18-

S, S/, ist

SXY)=s iX s i u@ D))+ +s (u ¥ G-y+ult))

Here s/ is the jth iterate of the distinguished substitution map and addition is vector addition.

In general, the tuples of non-distinguished arguments Yj which are introduced, need not consist of distinct
variables. The arguments can be constants, and variables can be repeated. We will assume that all of the
tuples Yj are isomorphic.

Note that the isomorphism class of the tuples Yj of non-distinguished arguments is determined by the linear
recursive rule. If the rule is not generic in its distinguished arguments X, there may be several substitution
graphs which determine the same wple S(X,Y). In this case, just choose one of the compatible substitution
graphs. Let d denote its diameter. Let S denote the substitution map determined by such a substitution
graph.

As the substitution operation S is iterated on a distinguished argument tuple X, the taples § /(X ,Y') fall into

various isomorphism classes. A stable pattern emerges after a finite number of iterations.

Lemma 5: Suppose S is the substitution map determined by a linear recursive rule and a substitution graph

of diameter d. Suppose s~ is the distinguished substitution map determined by the substitution graph.
a) If the substitution graph contains only cyclic components, Sj+(X)=s d+imodd(X) for j =
0.1,....

b) If the substitution graph is acyclic all of the argument tuples §/(X,Y) are isomorphic for j >=d
and the argument tuple Sj+d(X,Y) has no variables in common with the argument tuple

SiXY)forj=0.1,...

¢) The argument tuples $d+j(X,Y) and §d+imodd(X,Y) j=0, 1, ... are isomorphic.

Proof: For part a), note that S = s7, since there are no non-distinguished variables, if the substitution graph
is cyclic. Hence Part d) of Lemma 4 implies part a). If the substitution graph is acyclic, Lemma 4 implies

that s~ to any power, d Or greater, is zer0, so the definition of &+ , for k =0,1,..., reduces to:

Sk+d(X Y)=s d-1(u (Y (k+1))+ - - +ulY (k+d)).

-19 -

Since each of the tuples u(Y(k+i)), i = 1,...,d, are isomorphic, all of the tuples S+, k= 0,1,..., are iso-
morphic, so part b) is proved. Part c) follows from parts 2) and b), since the substitution operation is deter-

mined component by component.

Corollary 1: Equate argument positions with the nodes of the substitution graph to which they correspond.

Suppose j >= d. After j iterations of the substitution operation S:

a) The positions in an acyclic component contain none of the original distinguished arguments in
X. The argument positions in the ith acyclic component at distance k from the root, are all

filled with the same argument ¥ (j—k)a .

b) The positions in a cyclic component contain the distinguished argument which appears in the
jth predecessor position, which is on the cycle in that component. If j is a multiple of d all of
the positions on the cycle are filled with their original distinguished argument. If j is a multiple
of d which is greater than d, all of the positions in the cyclic component contain the same argu-

ment that they contained after the dth iteration.

Proof: This follows directly from Lemma 5, the definition of the diameter, and the fact that arguments pro-
pagate to successor positions in each iteration of the substitution operation.

Recall that the argument tuple produced by applying the jth iteration of S o the distinguished tuple X and
the non-distinguished tuple Y is the argument tuple of the recursive predicate r;" obtained by iterating the
recursive rule j times. Thus Lemma 5 can be viewed as a statement of the periodicity properties of these
argument tuples, and as a statement about the standard patiern that emerges after d iterations.

We will need to refer often to this standard pattern of arguments which emerges after no more than d itera-
tions.

Let a.....a. denote the argument positions corresponding to nodes of the substitution graph, which are
roots of acyclic components. Let Xa=(Xa,....Xaa). Thus Xa contains the arguments which are replaced by

non-distinguished arguments in the substitution operation S.

Definition: An argument twple X is standard for a linear recursive rule if

290 -

a) all argument positions, which are at the same distance from a node, contain the same argument, and
b) XaisisomorphicioY.

Example 7: If a recursive rule has the following substitution graph, a standard tuple is obtained by filling

the argument positions corresponding to the nodes, with the arguments labeling the nodes, as shown.
X
A A
VAR y

Lemma 6: For any argument tuple X, the argument tuple §4(X.Y) is standard.

Proof: The lemma follows immediately from the remark above.

The property of standardness is preserved under iterations of the substitution operation; that is, if X is stan-
dard for a substitution map S(,Y) determined by a linear recursive rule, then $(X,Y) is also standard. Thus
if X is standard, the original linear recursively defined relation can be redefined by a linear reursive rule
whose substitution graph contains only paths and cycles. the relations appearing in the new definition are

obtained by projections and selections from the original relations.

Example 8: An example of a redefinition which results in a substitution graph consisting of only cycles
and paths: Consider the recursive rule
rX)- pXY)r(S(X)) where X=(X1, X2 X 3 X3 X4 Xs,Xsy and where S is the substitution operation

determined bythe graph below.

1

Thus S =X 3 X1, X2, X2 Y,X4 X 4. Then X and S(X) are standard. Let X'=(X 1 X 5. Define

221 -

7 (X - (X)
P, (X’ 9Y):"'p (X sY)

Then 1’ is defined by

P X)=p X (X))

where S’ is the substitution operation determined by the graph:
' 3
/ 5 ‘L 5

505 (X')=(X3X1,X27Y,X4. Notethatr’ isa projection of r, and r is recoverable from .

L0

5.A Strategy for Evaluating Linear Recursive Queries and its Optimality

Suppose the relation r(X) is defined by one exit rule and one linear recursive rule. Then the following steps

give a strategy for evaluating the relation r(X). Initially set r(X) to be the empty relation.

Step 1:Construct the edge relation for a substitution graph,and compute its diameter d. Renumber the
nodes, and the comresponding argument positions, so that the nodes on componenis containing a
cycle precede nodes on acyclic components. Let Xc=(X 1, ..., X.) denote the arguments in positions
corresponding to nodes on components containing a cycle.Then Xa=(X 41, ..., X») denotes argu-
ments in positions corresonding to nodes on acyclic components.
Step 2:1f X is a standard argument tuple
Step 2a:
Compute the relation Ry—1(X) and add it to the relation r(X), which is being computed. If the
substitution graph is cyclic, that is, if every component of the graph contains a cycle, then stop,
else continue

Step 2b:
Choose a subset of "acyclic” argument positions, £ 1, ..., im, 80 that the twple X =(X;), ..., Xim)
contains each variable in Xa exactly once.

Step 2¢c:
Let Z denote the argument tuple of the rule 7'z, obtained by iterating the recursive rule d
times. Compute and cache the relation ¢4(X ,Z) obtained by computing the join indicated by
the nonrecursive predicates in r'¢, and then projecting onto the arguments X and Z.

Step 2d:
If the graph is acylic, so X = Xa, do the following steps. If the graph is not acylic, for each
instantiation of the argument tuple Xc, or if the graph is acyclic so X¢ is empty and X = X3, do
the following steps.
Step 2d1:

Compute the relation, Rg—1(X"), which is the projection of the relation Rg-1(X).

-23.

Step 2d2:
Let Z'=(Z:1, ..., Zw). Compuie the relaton, ¢4(X’,Z"), which is the projection of
ga(X .Z).
Step 2d3:
Compute the relation defined by the rules:
7 (X)y—Raa(X")
X)—qaX" 2 yr (X7)
Step 2d4:
Undo the projection mapping and add the resulting relation to 1(X), the relation being

computed.
Step 3:If § is not standard, then do

Step 3a:
Compute the relation r (S 4(X)), which is defined by the original pair of rules, with §4(X) sub-
stituted for X, using Step 2.
Step 3b:
Compute the relation r(X) from the relation 7 (§4(X)} using the rules:
r{(X)~Rg(X)
r(X)—gaX Z)r(S4(X))
where the tuple Z is empty, if the substitution graph is cyclic.
Thus the only recursive relations that need to be computed are complete simple transitive closure relations.
These can be computed by the following Semi-Naive Evaluation algorithm, presented in [B1]. This algo-
rithm uses two intermediate relations, New and dr, of the same arity as the relation (X}, Initially r(X) is the
empty relation.
dr:-e

repeat

Z9% .

adddrior
New(X) :- p(X,2)dr(Z)
dr = New - 1{X) /* set difference */

pntil dr is empty

Bancilhon in [B1] observed the following:

Lemma 7: Semi-Naive Eavluation of complete simple transitive closure relations are optimal in the fol-
jowing sense:

No inference is made twice.

If a tuple is inferred that is already in the relation, it is not used in any more inferences.
As explained in the introduction, if we view the relation p(X,Z) as the edge relation in a directed graph, and
if we view the base relation e(X), as a subset of marked nodes of the graph, the simple transitive closure
relation computed by the Semi-Naive algorithm is the set of nodes, reachable by some path from a marked
node. Since there may be more than one path from a marked node to another node, it is difficult not to infer
some tuples twice, but at least they are not used 1o repeat previous inferences.
Another feature of Semi-Naive Evaluation is: the arity of the intermediate relations is ths same as the arity
of the relation sought, and not any larger. The performance resuits of Bancithon and Ramakrishnan, {BR],

suggest that this significantly improves efficiency of evaluation.

Thus the only recursive linear relations that have to be computed recursively, are complete simple transi-

tive closure relations.

6.Proof of the Strategy

We now prove that the strategy just given computes the relation defined by the original pair of rules.
It will be convenient to use the following notion.

Definition: A relation r(X) is a simple transitive closure relation if it can be defined by an exit rule and a

regular recursive rule

2925

1(X) - e(X)
(X) :- X 2)r(Z)
where the argument tuples X and Z are isomorphic and have no variables in common.

In other words, selections are pushed through in a simple mansitive closure relation.

Lemma 8: A simple transitive closure relation can be viewed as a complete simple transitive closure rela-
tiorn.

Proof:Suppose we have a simple transitive closure relation defined by the pair of rules above. Define rela-
tions 1’, €', and q’, by projecting out the constant arguments, and enough other arguments to eliminate
repetition of variables. Then 1", and q’, satisfy analagous rules, and define a complete simple fransitive

closure reladon.
Theorem: The strategy is correct.

Proof: The main point is to show that the relation r(X) can also be defined using the rules in Step 2, if X is

a standard argument tuple, and using the rules in Step 3, otherwise.

Let g;(X ,Z) denote the relation obtained by first computing the join of the nonrecursive predicates in 7,
and then projecting out the non-distinguished arguments which do not appear in the argument tuple of the
recursive predicate of 7;. Recall that the argument tuple of the recursive predicate of 7; is /(X ,Y), where
Y is the non-distinguished argument tuple in the recursive predicate of 7, the original recursive rule. Thus
7 denotes the non-distinguished arguments of the tuple §/(X.Y).
For any j = 1,2, ... the relation r(X) can be defined by the following exit rule and regular linear recursive
rule.

rX)~R;a(X)

r(X)-q;i(X Z)r (§i(X.Y))
One can easily convince oneself, using bottom-up evaluation for both the original set of defining rules and
the new pair of defining rules that the new pair of rules defines the same relation as the original set. Furth-
ermore, if the relation 7 (SJ(X,Y)) has been computed, the rules above can be viewed as a nonrecursive

way to define r(X) in terms of r{Si(X. YY)

-6 -

Thus, the rules in Step 3 are correct, if the rules in Step 2 are correct, since, by Lemma 6, the argument
tuple §4(X ,Y) is standard.
Next, suppose that X is a standard tuple. Lemma 4, part d), and Lemma 5, imply that the relation is defined
by the rules

r(X):=Ra-1(X)

r(Xc Xa)—qgd Xc Xa, Zyr (Xc Z)
where Z is an argument tuple isomorphic to Xa, which has no variable arguments in common with Xa.

Denote the relation determined by the instantiation Kc by r'(Xa), so r’(Xa) :- r(Kc,Xa).

Define ¢'a(Xa Z):—qa(Kc, Xa, Z).Define R’ y-1(Xa):~R41(Xc , Xa). Then r’ is defined by
7 (Xa)—R a1(X)
7 (Xa)—q'¢Xa .Z) (Z).
Thus 1’ is a simple transitive closure relation. Finally, apply Lemma 8, o obtain the rules in Step 2. This

completes the proof that the strategy computes the original relation.

Corollary 1: If the substitution graph is acylic, the relation r(X) is a simple transitive closure relation, and

hence can be viewed as a complete simple transitive closure relation.

Proof:By hypothesis, the tuple Xc is empty, so X = Xa. Thus the loop in Step 2 is performed only once.
Each time the loop is performed, a simple transitive closure relation is computed, by computing a complete

simple transitive closure relation, obtained by projecting the original relation.

Recall that a recursive rule is strongly data independent, if for all possible exit rules, the recursive rule/exit

rule pair can be replaced by a fixed, finite set of rules.
The correcmess of the strategy implies the
Corollary 2: Assume the substitution graph contains only cyclic components. Then the relation r(X) has a

non-recursive definition.

2} r{X)~Ru-(X)

.97

b} If X is a standard tuple, 7 (X =Rz (X)
Hence the relation is strongly data independent.

Proof:Since there are no acylic components, 1(X) can be defined by
the rules:
r(X):-Ra-1(X)
(X)i—qa(X)Hr(X)
if X is standard. But the second relation will generate no new tuples in a bottom-up evaluation, so the
relation is completely defined by the exit rule. In general r(X) can be computed from 7 (§4(X)) by

the rules
r(X)y—Ra1(X)
r(X)=qa(X)r (S4X)).
Since §4(X) is standard, 7 (S4(X))=Rq-1(S 4(X)). Thus the second pair of rules defines R 24-1(X). Thus the

relation has a non-recursive definition. Since the substitution graph is the same for all exit rules, the relaton

has the same non-recursive definition for all exit rules, and hence is strongly data independent.

The corollary gives a sufficient condition on the substitution graph for strong data independence for linear
recursive queries. Naughton in [Naul] previously obtained a different sufficient condition on the
argument/variable graph for strong data independence. His result is more intricate . Prior to Naughton,
Sagiv [S], Minker and Nicolas [MN] and Ioannides [I1] obtained test for strong data independence whose
hypotheses have more restrictions on the placement and repetition of the distinguished variables in the
recursive predicate of the recursive rule body, i.e. restrictions on the substitution rule, and hence on the
substitution graph. Our bound when the tuple is standard is new. Ioannides [I1] , previously obtained the

other bound. The corollary, for us, was just a by- product of the main result, the correctness of the strategy.

7.The Strategy Applied to An Example

To illustrate the strategy, we apply the strategy to an example query, whose substitution graph con-

tains both an acylic component, and a cyclic component.

.28 -

Suppose messages are communicated between transmitters. The transmitiers can be in one of a finite
number of states or modes. A transmitter in a particular state cannot necessarily send a message to another
transmitter, when it is in some state. For example, no transmission is allowed between transmitters which
are in the same states. The possible communication channels are stored in the relation p. A tuple in the rela-
tion p(S1,82.7T1,72) represents the fact that transmitter 71, when it is in state §1, can send a message 10
transmitter T2, when it is in state S2; each tuple in the relation p is called a channel. Now suppose that
some of the channels are special; perhaps they are heavily used, or blocked, or connect transmitters in dif-
ferent countries. These special channels are stored in a relation e. We want 1o query for the channels which
are connected to a special channel, via a succession of channels in aliernating states. Messages transmitied
over these channels might fail to be transmitted successfully to their destination, or might have a higher
probability of being intercepted. The alternating state requirement is just another constraint on the message
transmissions.

The query for the relation 1(§1,52,71,T2) of channels, which lead to special channels, through

transmitters in alternating states is given below:

r($1,82T1.T2)—e(51.82T71T2)
r(S182.T1.T2):=p(S1.852.T1,T)p (2.5 1,T2.T3)r (S 2.51,72.73)

The substitution graph is shown below. Note that its diameter is 2, and the state variables correspond

to nodes on cyclic components, while the transmitter variables correspond to nodes on acyclic components.

Ozg__/;

Since the diameter is 2, the relation to be cached, ¢, is just the join of the nonrecursive predicates in

the second iteration of the recursive rule. Hence, it is defined by:

g2(81,5 2T 15 Tay=p(§1.52,T1,T2)p (525 1, T2.T3)p (S 1.82.7T3.T 4

A new set of defining rules for the relation ris:

(51,852,717 2R 1(8§1.82.T1.72)

229 -

r(§1.52T1.T20—q 28 1.52.T 1,....Tr (§ 1.82.T73,T 4)

The new recursive rule is simpler since at least some of the selections can be pushed through to the
recursive rule, namely the selections made in the state variables. Selections made in the transmitter vari-

ables, can only be pushed through to the nonrecursive predicate.

The strategy for evaluating the full relation is: for each instantiation S 1=s1, § 2=52, of the state vari-
ables, evaluate the resulting subrelation, using the new defining rules. The full relation is the disjoint union

of the subrelations.

The same strategy can be used to evaluate subrelations of the full relation specified by setting certain
variables to be constants, and possibly repeating other variables, since it is very clear, in the new rules, how

far these selections can be pushed through.

7. Conclusion

In this paper, we have proposed a strategy for evaluating a linear recursive relation, defined by one exit
rule, and one linear recursive rule. We proved that the strategy compuies the correct relation. The main
feature of our strategy is: the only recursive relations that need to be computed, are complete simple transi-
tive closure relations. Thus we were able to avoid computing recursive relations, which involved selec-
tions, since in our strategy, the selections are "pushed through." Our strategy can handle repeated variables,

and constants, in the goal predicate of the recursive rule. Hence, it is quite general.

We took advantage of an underlying periodicity, which appeared when the substitution operaton was
iterated. It was helpful to view the substitution operation as a linear transformation, and to understand the
relation between the iterates of the substitution operation and the graph, which was the adjacency matrix of
the restriction of the substitution operation to distinguished variables. We focused our attention on the sub-

stitution operation, rather that on the non- recursive predicates.

We are currently trying to apply these ideas and techniques to develop strategies for relations defined by

sets of mutually recursive linear rules, and relations defined by non-linear recursive rules,

230 -

8.References

[B1]1 BancilhonF., On Knowledge Management Systems, Brodie and Mylopoulos, Editors, Springer Ver-
lag 1986,pp. 165-178.

[BMSU]
Bancilhon, F., D. Maier, Y. Sagiv, J. Ullman, "Magic Sets and Other Strange Ways to Implement
Logic Programs,” Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Principles of

Database Systems, 1986, pp.1-15.

[BR] Bancilhon, F., R. Ramakrishnan, "An Amateur’s Introduction to Recursive Query Processing Stra-
tegies, Proceedings of ACM SIGMOD International Conference on Management of Data 1986, pp.
16-53.

[I1] lIoannides, Y.E., "Bounded Recursion inDeductive Databases,” Technical Report UCB/ERL M85/6,

UC Berkeley, February 1985.

[12]1 loannides,YE. "On the Computation of the Transitive Closure of Relational

Operators,"Memorandum No. UCB/ERL M86/51, May 1986.

[MN] Minker, J., and J.M. Nicolas, "On Recursive Axioms in Relational Databases,” Information Systems,
8(1):1-13,1982.

[Naul]Naughton, J.,"Data Indipendent Recursion in Deductive Databases," Proceedigs of the Fifth ACM

SIGACT-SIGMOD Symposium on Principles of Database Systems 1986, pp.267-279.
[Nau2]Naughton, J.,"Optimizing Function-Free Recursive Inference Rules,” preprint.

[S] Sagiv, Y., "On Computing Restricted Projections of Representative Instances,” Proceedings of the

Fourth ACM SIGACT-SIGMOD Symposium on Principls of Database Systems 1985, pp 171-180.

