ILMON: A UNIX NETWORK
MONITORING FACILITY

Lewis Bamett and Michael K. Molloy
Department of Computer Sciences
University of Texas at Austin

Austin, Texas 78712

TR-86-26 November 1986

ILMON: A UNIX Network Monitoring Facility

Lewis Barnett
Michael K. Molloy

ABSTRACT

This report describes ILMON, a network monitoring facility running
under the Berkeley UNIXT (4.3BSD) operating system. ILMON is com-
posed of an instrumented version of the device driver for the Interlan
NI1010 Ethemnet controller [Inte82], a set of programs providing a front-
end interface to the instrumented driver and display and analysis tools.
ILMON allows the user to observe and analyze the traffic on an Ethernet
filtered on criteria which he defines. The features of ILMON will be com-
pared to those of the Excelan Nutcracker [Exce85] and of the network per-
formance tools available on SUN3 workstations. The efficency of
ILMON, in terms of packet loss versus throughput, will be discussed for
various monitoring functions. The current implementation of ILMON
runs on a DEC VAX{} 11/750 equipped with the previously mentioned
Interlan controller.

1. INTRODUCTION

ILMON is a Local Area Network monitoring facility developed in conjunction with
the Local Area Network Testbed (LANT) project [Moll83][Barn85] in the Department of
Computer Sciences at the University of Texas at Austin. ILMON performs promiscuous
reception of network traffic and presents the user with reports on the observed traffic in
various formats. Packet reception may be conditioned on many quantities, including
hardware source and destination addresses, packet length, packet type, and the error
status of the packet. Programs also exist for consolidating data from several monitoring
sessions and for formatting the data for graphical representation.

ILMON runs on a Digital Equipment Corporation VAX 11/750, which is connected
to the main UT Campus Ethernet and an experimental network with Interlan NI1010

+ UNIX is a trademark of Bell Laboratories.
+ DEC and VAX are trademarks of the Digital Equipment Corporation.

22

Unibus Ethernet Controllers. It uses the promiscuous reception and receive-on-error
modes provided by the NI1010 to monitor network traffic. The 4.3BSD UNIX device
driver for the NI1010 was augmented to provide various monitoring modes which the
user configures by constructing a filter for the monitoring session. A filter identifies
which of the available monitoring functions are to be active during a session and under
what conditions a packet should be included in the collected information.

ILMON was originally conceived as the passive monitor for the Local Area Net-
work Testbed. In that capacity it is used to collect information on the throughput and sta-
bility characteristics of a network running various experimental protocols. Other
machines on the experimental network are designated as load generators and produce an
artificial workload on the network during experiments. The monitoring software is, how-
ever, flexible enough to be of use in monitoring the performance of production networks
for purposes of traffic and utilization analysis, and also has possible applications for net-
work fault isolation.

The remainer of the report discusses at greater length the design, implementation,
use, and possible extension of ILMON. Section two discusses the design of the system,
including the method of configuring monitoring sessions using filters, the types of reports
produced, and the practical limitations of the system. Section three discusses the imple-
mentation of the device driver extensions and the user interface for ILMON. Section
four gives some preliminary results on the efficiency of ILMON and presents some utili-
zation figures for the UT Campus Ethernet collected with ILMON. Section 5 discusses
possible extensions to the system.

2. DESIGN

The design of ILMON centers around the notion of using filters to specify the moni-
toring activities which will occur during a monitoring session. The user specifies a filter
with a command interpreter which is loosely based on the UNIX ifconfig utility. The
filter itself is a data structure containing flags indicating whether each of the possible
monitoring activities is enabled for a session. There are also fields in the structure for
various comparison quantities and storage for the data collected during a session.
Appendix A contains a listing of the C structure definition used for filters. Most of the
capabilities of the Excelan Nutcracker are incorporated into this framework; the principal
omissions are analogues to the Nutcracker capability to generate valid and erroneous
packets on the network. All traffic generation in the LANT environment is done by the
designated load generation machines.

Table 1: Recognized Packet Types

Type Code Description

ETHERTYPE_PUP 0x200 PUP protocol

ETHERTYPE_PUPAT 0x201 PUP address transfer

ETHERTYPE_EXP 0x400 LANT experiment packet
ETHERTYPE_IP 0x800 IP protocol
ETHERTYPE_ARP 0x806 Addr. resolution protocol
ETHERTYPE_X75 0x801 X.75 Internet
ETHERTYPE_NBS 0x802 NBS Internet

ETHERTYPE_ECMA 0x803 ECMA Internet

ETHERTYPE_CHAOS 0x804 Chaosnet

ETHERTYPE_X25 0x805 X25Level 3

ETHERTYPE_NSCOM | 0x807 XNS Compatibility

ETHERTYPE_SYMP 0x81C Symbolics Private

ETHERTYPE_DRCS 0x6002 DEUNA Remote Console Server

ETHERTYPE_DNET 0x6003 | DECNET

ETHERTYPE_CRVLN 0x8003 Cronus VLN

ETHERTYPE_CRDIR 0x8004 Cronus Direct

ETHERTYPE_NEST 0x8006 | Nestar

ETHERTYPE_EXCL 0x8010 | Excelan

ETHERTYPE_RARP 0x8035 | Reverse ARP

ETHERTYPE_BR 0x9002 | Bridge Status

9.1. The filter mechanism

In general usage, the word filter suggests the desire to exclude or "filter out” some-
thing. Though ILMON also uses filters in accomplishing other tasks, the principal pur-
pose of a filter is to exclude uninteresting packets from the data recorded during a moni-
toring session. Due to memory constraints and the large disparity between mass storage

access times and the typical interval between network events, it is not practical to record

-4-

all packets in their entirety for later examination and data extraction. Thus, it is neces-
sary to perform some selection during the collection of data. In ILMON, filters provide a
mechanism for specifying a predicate which a packet must satisfy before information
concerning that packet is included in the collected data. The filter also determines which
of several different data collection modes is in use during a monitoring session, and pro-
vides storage for the collected data.

2.2. Filter predicates

ILMON allows packets to be filtered by any combination of several criteria. In the
current implementation, to be included packets must satisfy the conjunction of all the cri-
teria specified in the filter used for a session. The remainder of this section discusses
each of the available criteria for packet inclusion in some detail.

2.2.1. Error status

The user may choose to include only packets received in error, only valid packets,
or all packets. The Interlan NI1010 normally does not pass error packets to the device
driver. However, it is possible to run the interface in "receive-on-error" mode, in which
case error packets are not automatically discarded by the interface.

2.2.2. Hardware addresses

ILMON allows the user to filter packets on Ethernet source and destination
addresses. To do so, a list of source addresses is specified and the source address of all
incoming packets is checked against the list. If the source address does not match any of
the addresses in the list, the packet is discarded. If a match is found, the packet is logged
or summarized. A similar list is specified for destination addresses. If either list is
empty, no checking on the corresponding address is done. This type of checking is use-
ful for monitoring the traffic between two stations, or monitoring the network output of a

troublesome host.

2.2.3. Packet length

The user may specify a constant between the minimum and maximum allowable
packet lengths and one of the relational operators >, <, or =. Packets are included which
are greater than, less than, or equal to the constant respectively. It is also possible to
specify a range of lengths. In this case, packets are included in the totals only if their
length falls within the range specified.

2.24. Packet type

Packets may be filtered according to the value in their header’s type field. The pos-
sible types are shown in Table 1. These types are taken from the most recent "Assigned
Numbers." [Reyn85] Type information is often useful in characterizing the applications
which contribute to network load.

2.3. Collected quantities

Once a packet has satisfied the filter predicate, the storage fields of the filter are
updated with information about the packet. A number of bits in the filter flag are used to
specify what sort of information is kept during a monitoring session. Certain quantities
are kept for every session, regardless of the filter flag value. These quantities are:

1) the number of errors which occurred during the session
2) the number of collision fragments observed during the session
3) the number of packets lost during the session.

These quantities are taken from the NI1010’s onboard statistics registers. The total
reported for number of lost packets by the interface is actually a count of the number of
times one or more packets were lost before the successful reception of a packet, so esti-
mates of actual packet loss using this value are not completely accurate. In particular,
any loss rate above 50% will be reported as 50% -- every packet received will have the
"lost" flag set. The remaining types of data collection are described in the following sec-
tions. The packet loss rate for some of the data collection modes is discussed in section
4.

2.3.1. Packet logging

For short periods of time, it is possible to log the headers of packets as they arrive
for later examination. Memory constraints limit the number of headers that can be
retained at any given time to approximately 5000. This capacity allows roughly 15
seconds of header logging, given an average network utilization of around 1 Mbps. It is
possible, from ILMON, to retrieve and store filters, thus extending the duration of a
packet logging session, but performing this action causes some packets to be missed in
the meantime. The information stored is the arrival time of the packet, the ethernet
header, and the IP header, if the packet has type IP.

2.3.2. Address histograms

Histograms of the number of packets and bytes originating from or intended for
each hardware address on the network may be collected. Since maintaining the data
structures for such a histograms incurs a large amount of processing overhead, many
packets may be lost while collecting data in this mode. Though not currently imple-
mented, the capability of collecting the same type of histograms on IP addresses is

planned.

2.3.3. Packet length histogram

A histogram on the size of observed packets may be collected. This information
(the number of packets of each size) is also used to calculate the throughput for the net-

work and total number of bytes observed in the monitoring session.

2.3.4. Packet type histogram

A histogram on the types of the packets observed may be collected. The recognized
types are shown in Table 1.

2.4. Comparison to other monitors

Two other network monitoring tools are available at the University of Texas at Aus-
tin, the Excelan Nutcracker and the Traffic monitor utility from SUN. This section
discusses the similarities and differences among these tools and ILMON.

2.4.1, The Excelan Nutcracker

The Nutcracker is an 8086-based workstation with an enhanced network controller
and a 20 megabyte hard disk drive. It is composed of several logical subsystems, each of
which is responsible for some aspect of the network monitoring task, such as filtering the
input stream, or storing the desired portion of a packet to the disk. These subsystems are
hierarchically arranged, and each has an "object” associated with it which specifies the
behavior of a subsystem during an experiment. The user must build the objects for each
subsystem interactively prior to running the experiment, in much the same way that
filters are specified in ILMON. The specification, however, is at a lower level of abstrac-
tion for the Nutcracker.

The filtering performed by the Nutcracker is of a slightly different nature than that

1

done by ILMON. The filter subsystem consists of twelve "receive channels,” each of

which can be monitored independently. Each channel has a filter object associated with

-7 -

it. Four of the channels handle error packets of various kinds. The filter objects for the
remaining eight receive channels can be specified by the user. The filter object consists of
an offset and a string of up to 128 "octet-unions,” each of which can be either a constant
from O to FF (hex), a range of values, or "don’t care” which matches all octets. The filter
subsystem performs an octet by octet comparison of the pattern with each packet, begin-
ning with the octet specified by the offset. Since the Nutcracker considers everything
between the preamble and the CRC checksum to be data, this mechanism allows match-
ing to be done on both header quantities and the data field of packets. This mechanism is
more powerful than the filter mechanism of ILMON because it allows packets to be
fltered on the contents of the data field. However, it is more difficult to specify experi-
ments using the Nutcracker’s method since the user must keep track of where the fields
of interest are located within a packet and what data translation must be done in order to
successfully match the desired quantities.

The data collected is very similar on both systems. Both systems allow packet log-
ging or tracing. ILMON logs only the Ethernet and IP headers, while the Nutcracker
allows an arbitrary "slice” of the packet to be logged, up to and including the entire
packet. The Nutcracker also allows the examination of runt packets and collision frag-
ments, which are automatically filtered by the NI1010 even in receive-on-error mode.
The available statistics are almost identical. In this area, ILMON has one distinct advan-
tage: extensibility. If the user is not satisfied with the statistics provided, the data files
are available to him, and he can extend the analysis package to provide whatever statis-
tics he is interested in.

2.4.2. Monitoring tools for the SUN workstation

The software release from SUN Microsystems, Inc. accompanying their SUN3
workstations includes two network monitoring tools. The program traffic provides a
graphical, real-time display of network behavior. The program etherfind allows the user
to view the headers of packets whose contents have satisfied a logical expression.

Traffic

Traffic allows the specification of one or more filters which packets must satisfy
before they are included in the display. Each filter checks one of the following condi-
tions:

. source/destination of the packet, specified either by host or by network

o IP protocol family to which the packet belongs, e.g. TCP, UDP, ICMP, etc.

-8-

. length of packet within specified range.

Traffic allows more than one filter to be active at the same time. If multiple filters are
defined, packets must satisfy the conjunction of all filters. The address checking is done
on the IP address of the packet, not the hardware address. As previously stated, IP
address checking is not currently implemented in ILMON, nor is filtering on the IP type
of packets.

Traffic displays information about the behavior of the network in a number of win-
dows. Each window contains one of the following displays:

» packet size distribution

» usage of each IP protocol type

o traffic generated by each source (top eight displayed)

« traffic intended for each destination (top eight displayed)
» overall network utilization

Each display is a time varying histogram of either packets per second or percentage of
total packets. The update interval is under user control for each window; the interval may
be varied from 0.1 second to 10 seconds in 0.1 second increments. Larger intervals are
not supported. The network utilization is displayed as a strip chart. If filters are defined,
they apply to all windows. Other than dumping a snapshot of the screen, there is no
mechanism for storing the information presented.

Etherfind

Etherfind takes an expression on the various fields of a packet header as a command
line argument and displays the header information of all packets which satisfy the
expression. It provides no summary information about packets observed during an exe-
cution, but does allow the collected headers to be dumped to a file by redirecting the out-
put. Such a file could be processed to collect summary information.

The expression used to filter packets is built from a set of "primaries" and logical
connectives, using the UNIX system of flag names followed by values to distinguish the
various primaries. The allowed primaries are:

-dst destination true if the destination of the packet matches destination,
which may be specified as either a hostname or an IP
address.

~STC Source similar to -dst.

-9.

-between hostl host2 true if the packet went from one of the specified hosts to
the other.
-dstnet destination true if the network part of the destination field matches

destination, which may be specified as an address or a

network name.

-srenet source similar to -dstnet.

-dstport port true if the packet is of IP type UDP or TCP and has desti-
nation port value of port.

-SICpOTt port similar to -dstport.

-less length true if the packet’s length is less than or equal to lengzh.

-greater length true if the packet’s length is greater than or equal to
length.

-proto protocol true if the packet is an IP packet of the type protocol.

-byte byre op value true if byte number byte of the packet is in relation op to
value. Legal operators are +, <, >, & and |.

-broadcast true if the packet’s destination address is the broadcast
address.

-arp true if the packet’s type is ARP.

-rarp true if the packet’s type is RARP.

-ip true if the packet’s type is IP.

Primaries may be grouped using parentheses. Juxtaposed primaries are connected by a
logical and. Primaries separated by ‘-0’ are connected by a logical or. While this
method of specifying expressions is fairly comprehensive, it is difficult and confusing for
expressions of any complexity. For instance, checking for a particular hardware address
would require six ‘-byte’ primaries.

Etherfind parses and displays the header of each packet that satisfies the expression.
IP source and destination addresses are automatically converted to hostnames. The
header can optionally be dumped in hexadecimal.

2.5. Limitations

Along with the shortcomings noted in relation to other network monitoring systems,
there are several practical limitations to ILMON’s capabilities. ILMON is not able to log
collision fragments due to the fact that the Interlan controller filters them out automati-
cally. This feature of the controller is not programmable in the way that the filtering of

-10 -

Throughput vs. Packet Loss

30

Loss %
Histogram — 0 T y y T v T
0 0.4 0.8 12 1.6
Header log ---
Throughput (Mbps)

Figure 1. Efficency of packet length histogram collection and packet

header logging. Averaged from observations of the UT Campus network.

error packets is. Being able to examine the fragments themselves is a desirable capabil-
ity in fault diagnosis tasks. In addition to this hardware limitation, the efficiency of the
ILMON software is less than perfect. The instrumentation of the controller device driver
introduced extra code into the time-critical receive interrupt routine. This means than
when monitoring is in progress, some packets are not processed before they are overwrit-
ten in the controller’s buffers. A quantification of this packet loss appears in section 4.

There were also useful features which were considered but not included in the
design of ILMON. Among these are real-time display of collected data and a more flexi-
ble scheme for specifying the "filter predicate.” ILMON is not written for a particular
workstation or graphics device, and thus does not incorporate the visual display of col-
lected data in real time as traffic does. In light of this fact, the further reduction of

-11-

efficiency which would have been incurred by retrieving and displaying the data as it was
collected was deemed counterproductive. As previously stated, the various conditions
specifiable in the filter are connected by logical and. This was convenient and sufficient
for the author’s purposes, but may be expanded in the future to incorporate grouping and
disjunction.

3. IMPLEMENTATION

ILMON is implemented as an instrumented version of the 4.3BSD UNIX device
driver for the Interlan N11010 Ethernet controller and a front end which allows the vari-
ous monitoring options to be selected by the user. There are also several programs for
displaying the filters collected and for consolidating and reducing the data.

3.1. Driver instrumentation

Monitor functions are activated using the UNIX ioctl mechanism to communicate
between the user application and the device driver. Code was added to the ilioctl routine
in the Interlan driver to pass filters in and out of the kernel, to set and clear promiscuous
mode, and to reset and retrieve the on-board statistics registers. Whenever the interface
is in promiscuous mode (as indicated by a bit in the flag field of the ifnet structure for the
interface) code in the receive interrupt routine ilrint is executed to test packets against the
filter predicate. If a packet satisfies the predicate, the filters counters are updated to
reflect the reception of the packet, and the headers are stored if packet header logging is
enabled. Finally, the address of the packet is checked. If the destination is the monitor
station or the broadcast address, the packet is enqueued for the proper higher level proto-
col. Otherwise, the packet is discarded.

3.2. User interface

The ILMON user interface is composed of several programs. ILMON is an interac-
tive front end, loosely based on ifconfig, which allows full control of the monitoring
functions. Timedmon is a non-interactive program which allows monitoring sessions of
specified duration to run at a specified time. Finally, there are several programs for
displaying and analyzing data collected by ILMON.

3.2.1. ILMON

ILMON allows the user to specify, run, and save the results of monitoring sessions.
The filter specification process is menu-driven, presenting the user with a list of the pos-
sible monitor functions and predicate conditions. Additionally, the user may define filter

-12 -

Ethernet Utilization -- six minute samples

2

1.2 A

MBPS
08 -

3

}llllmmlnlll“imllllllt | ‘ ‘ ‘ ﬂ llilll i l“ ‘ll

0 OO 4:00 12:00 16:00 20:00 24:00

0.

E=N

l

Interval

Figure 2. 24 Hour Ethernet utilization, six minute samples.

templates, which, once saved, can be reloaded and used in monitoring sessions at later
times. These templates are also used in the non-interactive program fimedmon. Several
other utility functions are available in ILMON, such as retrieving the Interlan’s onboard
statistics, reading the interface flags from the ifnet structure, reading and setting the
driver state flags from the ilsoftc structure, and reading the interface’s control registers.
Many of these functions are left over from an earlier program used to debug the added
ioctl code in the device driver.

-13-

Table 2: Xerox vs. ILMON

Quantity Shoch | ILMON
Packets/day (mil.) 22 8.7
Bytes/day (mil.) 300 3,800
Avg. Utlization 0.8% 3.6%
Peak Utl. (6 min period) 7.9% 11%
Min. Utl. (6 min period) 0.2% 0.7%
Mean packet size 122 439
Avg. inter-packet time {ms) 39.5 7

3.2.2. Timedmon

ILMON can be viewed as needing constant supervision. Timedmon automates the
monitoring process, taking all the information it needs to run a monitor session (or a
series of monitor sessions) as command line arguments. Timedmon requires that a filter
template have been previously defined and saved in ILMON. The syntax for timedmon is
then

timedmon ~iinterface # -ffilter -dduration -sstart time -ooutput file

- rrepetitions
Interface is the unit number for the interface to be monitored. Filter is the name of a file
containing a filter template defined in ILMON which will be used for the monitoring ses-
sion. Duration is a string of the form hh:mm:ss specifying how many hours, minutes and
seconds the monitoring session is to last. Start time is the time (in 24 hour notation) at
which the monitoring session is to begin. Quiput file is a name to be used for saving the
resulting data, or a prefix from which file names will be built should multiple sessions be
requested. Repetitions is the number of times the monitoring task should be repeated.
This program allows monitoring session requests to be set up ahead of time and left in
the background to wait for their specified starting time. It also provides the ability to run
sessions for a specified period of time, a function not provided in ILMON.

3.2.3. Data examination and processing

Data analysis functions are provided by the Experiment Analysis Package (EAP), a
part of the Local Area Network Testbed software. EAP provides some frequently used
plots as well as the ability to specify general plots on any field of the filter’s data. The

- 14 -

standard plots available are: packet length histogram, a raw plot of network utilization
data, and an averaged plot of network utilization data. Definition of the axes and labeling
is under user control. As work on the testbed proceeds, further plots and data treatments
will be added. The general plotting facility allows the user to choose quantities derived
from filter data such as throughput, utilization, packet size, packet loss, etc. for the axes
of a plot. This facility is easily extensible. EAP works on single filters, or can consoli-
date the data from many filters for plotting. All of the figures for this report (except for
figure 4) were generated using EAP.

There are two other programs which are useful for viewing and analyzing filters.
Prfilter simply reads in a filter and prints out the contents in human-readable form. The
output of prfilter is suitable for piping through Ipr, the UNIX print spooler. Logsum pro-
duces a summary of filters containing logged packet headers. The information produced
includes the timestamps of the first and last packets logged, the number of packets
logged, the throughput, the average inter-arrival interval for the logged packets, and a
histogram of the inter-arrival time distribution. Figure 4 was produced by logsum.

4. PERFORMANCE

The extra processing required in the network interface device driver for collecting
data often causes the interface to miss some packets. The penalty thus incurred is inves-
tigated for packet histogram collection and header logging.

4.1. Packet loss for various monitoring functions

Figure 1 shows the percentage of packets lost during the collection of packet length
histograms and packet header logging. Packet length histogram collection is the minimal
monitoring task performed by ILMON, requiring only that one array element be incre-
mented, along with the overhead incurred by any of the monitor functions. This overhead
consist of several flag comparisons and at most two Ethernet address comparisons to
determine whether a packet should be discarded or passed on to the higher level proto-
cols. On the other hand, header logging requires that the packet header be copied into a
log structure, and may require additional copying depending on the packet type. The
data plotted in figure 1 was averaged from one minute samples, with bins of 100,000 bits
and, where possible, with 20 samples per bin. No users were logged in to the monitor
computer while most of the samples were collected, though the computer was operating
in multi-user mode. Packet loss for histogram collection remains under 10% for
throughput levels up to 1.2 Mbps. At higher throughput, more serious degradation
occurs. However, since throughput levels greater than 1.2 Mbps for one minute intervals

- 15 -

Packet Length Histogram

50

404 |

30]

20 -

Pct of Pkts
104
0 : . . 3 . £y o] . r
0 300 600 900 1200 1500
Length

Figure 3: Packet length vs. percent of total packets.

were rarely observed, complete sets of samples for these levels were not collected. Trials
of LANT artificial load generation software indicate that the effective resolution of the
Interlan’s loss reporting mechanism (50% reported packet loss) is reached at throughput
levels of approximately 3.0 Mbps. The loss percentage for header logging was, as
expected, consistently greater than for histogram collection, exceeding 10% at a
throughput of about 1.0 Mbps.

4.2. Utilization of the UT Campus Ethernet

ILMON has been used to collect utilization data on the University of Texas campus
Ethernet. The network connects some 80 nodes, including mainframes, minicomputers,
workstations, fileservers, laser printers and terminal concentrators. Many other machines
reside on subnets and contribute to the network’s traffic. Several higher level protocols,
such as the DOD/ARPA protocol suite, DECnet, and CHAQOSNET, are used.

The network was monitored for a 24 hour period, with samples summed over six

minute intervals. During this period, 8.7 million packets were transmitted, containing 3.8

- 16 -

Packet Interarrival Time

40

304

20+

Pct. of total
10

0 10 20 3 40 50
Interval (msec)

Figure 4. Inter-arrival time distribution. Taken from one

thirty second packet logging sample.

billion bytes of information, not including the Ethernet headers, preambles and frame
check sequences. The average throughput was 0.358 Mbps, for a utilization of 3.58%.
The peak utilization was 11.03%, and the minimum utilization was 0.7%. The results of
this observation are shown in figure 2. Figure 3 is a histogram of observed packet
lengths. This figure shows the classic bimodal distribution, with a large percentage of
small packets carrying terminal traffic, and a smaller percentage of very large packet
associated with file transfers. The second group is somewhat exaggerated in the UT
environment by the presence of a cluster of diskless SUN workstations and their file
server on the backbone network. The SUN Network Disk (ND) protocol has a block size
of 1072 bytes. Most of the traffic with packet sizes larger than 1072 are generated by
various applications using the User Datagram Protocol. [Post80] Figure 4 is a histogram
of the observed interval between packet receptions for the monitor node.

A comparison to a similar set of observations reported in [Shoc80] is shown in table
2. The Shoch data was collected on the Xerox PARC experimental Ethernet, which ran at
a rate of 3 Mbps, while the UT Campus Ethernet is a 10 Mbps network. Though this is a

-17 -

less than perfect comparison, the average utilization, peak utilization, and minimum utili-
zation figures are of interest. These quantities indicate that though the two networks
were of roughly similar size at the time of the measurements, the UT network was
significantly busier. Though the small average packet size for the Xerox experiments is
partly an artifact of the PUP protocol in use there, the difference also indicates that sub-
sequent protocol designs have used the medium more efficently. The observed differ-
ences between the two networks also reflect the growing dependence of a broad spectrum
of computer tasks on Local Area Network communication.

5. EXTENSIONS

Though ILMON is a useful and powerful tool in its present form, several possible
extensions have been identified. These extensions fall into three categories: more
powerful address checking, more flexible filter predicate specification, and further
development of the data reduction and presentation facilities.

5.1. Address checking

As previously noted, address checking will eventually be expanded to include
checking IP addresses as well as hardware addresses. Currently, the hardware address
checking works only on complete Ethernet addresses; that is, all six bytes of the address
must be specified. Ethernet addresses are assigned by Xerox such that all interfaces
manufactured by a vendor have addresses which fall within some range. In most cases,
the first two or three bytes of the interface address will identify the vendor. (For exam-
ple, addresses of Interlan controllers begin with 02.07...) Extending the address checking
to work on subsets of the hardware address would allow the user to take advantage of
such knowledge to check on machines using the same type of network interface
hardware. In the case of IP addressing, the benefits are even greater for this type of
address checking; checking only a portion of the IP address (as traffic does) would allow
the user to isolate traffic from specific subnets connected to a backbone network.

5.2. Filter predicate specification

The flexibility of ILMON’s filtering method would be greatly improved by allowing
the user to specify the grouping and logical connectives for multiple filter conditions. In
the current application of ILMON, the use of the conjunction of all filter conditions is
adequate; however, this extension would greatly enhance ILMON’s value as a general
network monitoring tool. In addition, the type checking will be extended to break down

- 18 -

IP packets by the protocol they belong to, e.g. TCP, UDP, etc.

5.3. Data reduction and presentation

The current data reduction and presentation facilities consist of a program which
collects the data from multiple filters and produces reports of averages and data files for
graphs. The graphing facility allows any of several reduced quantities (throughput,
packet rate, loss rate, etc.) to appear on either axis and produces a data file for a plotting
package that generates plots in pic [Kern82] format. This is very convenient for including
graphs in documents. Currently, the reduction program performs only simple smoothing
on data for plotting. The addition of various types of curve fitting and extrapolation is
planned.

6. SUMMARY

This paper has presented a description of ILMON, a tool for configuring and run-
ning network performance monitoring sessions, and several utility programs connected
with the use of ILMON. ILMON allows a user to collect information about network
traffic which satisfies a filter predicate on the form and contents of the packet. Several
programs for the display and analysis of data thus collected are provided. Comparisons
to the Excelan Nutcracker and the Sun3 traffic and etherfind utilities were given. The full
implementation of ILMON performs well for network loads up to approximately 1.2
Mbps. At higher loads, packet loss due to monitoring overhead reaches unacceptable lev-
els. For most normal network monitoring activity, this performance is sufficient. How-
ever, for use in the Local Area Network Testbed environment, where protocol behavior
at extreme loads is of interest, further optimization will be necessary. This optimization
will consist of paring down the code in the Interlan device driver to provide only those
functions necessary to performance studies. Features such as address checking, packet
type histograms, etc. will be eliminated.

-19-

7. REFERENCES

Barn8&5

Exce85

Inte82

Kerng&2

Moll&3

Post80

Reyn85

B. Lewis Barnett and Michael K. Molloy, "Local Area Network Testbed
Design," Technical Report TR85-25, Department of Computer Sciences,
University of Texas at Austin, May 1985.

Nutcracker User Manual, Excelan, Inc., San Jose, California, 1985.

NI1010 UNIBUS Ethernet Communications Controller User Manual, Inter-
lan, Inc., Chelmsford, Massachusetts, 1982.

B. W. Kernighan, PIC - A Graphics Language for Typesetting, revised edi-
tion, March 1982. (online UNIX documentation)

Michael K. Molloy, "Experimental Evaluation of New CSMA Protocols,”
Proceedings of the National Communications Forum, October 24 - 26, 1983,
pp. 350 - 354.

J. Postel, "User Datagram Protocol," RFC 768, Information Sciences Insti-
tute, August 1980.

J. Reynolds and J. Postel, "Assigned Numbers," RFC 943, Information Sci-
ences Institute, April 1985.

-20-

APPENDIX A: FILTER STRUCTURE DEFINITION

/*
* 8tructure for selective packet monitor feature in interface driver.

*/

#define HOSTMAX 32 /* # of selectively monitorable hosts */
#define NUMTYPES 19 /* Number of Ethernet packet types */
#define TREEMAX 2048/* Array for binary tree of hgram ptrs */
#define HGMAX 140 /* Maximum size of histogram */

#define LOGMAX 5000/* Maximum size of packet log */

#define QUALMASK 0x7£c00 /* Any qualifiers set? */

#ifndef NS
#define ETHERTYPE NS 0x0600
#endif

/* Types not used by UNIX but present on ocur net. (From CC documents) */
#define ETHERTYPE CHAOS 0x804 /* Chaosnet */

¥define ETHERTYPE EXCL 0x8010 /* Excelan */

#define ETHERTYPE RARP 0x8035 /* Reverse ARP */

struct filter |{

int fil flags; /* Action flags & gualifiers - n.b. */

struct timeval f£il tsin; /* Time monitor session started */
struct timeval fil tsout: /* Time monitor session ended */

int f£il ensacnt; /* Size of Enet source addr cklist */

char fil ensa[HOSTMAX] [EASIZ]; /* Addresses to check for */

int £il endacnt; /* Size of Enet dest addr cklist */

char £il enda[HOSTMAX] [EASIZ]; /* Addresses to check for */

int fil ipsacnt: /* Size of IP source addr cklist */

struct in_addr fil ipsa[HOSTMAX]; /* IP addresses to check */

int £il ipdacnt; /* Size of IP dest addr cklist */

struct in _addr £il ipda[HOSTMAX]; /* IP addresses to check */

int £il type: /* Packet type to monitor */

int fil lengt: /* Lower bound of lengths to monitor */

int £il lenlt; /* Upper bound of lengths to monitor */

int fil leneg; /* Monitor only pkts of this length */

int f£il_errcnt; /* Total errors from is_stats */

int £il fragent; /* Total frags from is_stats */

int £il dropent; /* Packets dropped during session */

int £il framecnt; /* Total frames during session */

int £il lenhg[ETHERMTU+1]; /* Packet length histogram */

struct exp hgram fil typhg[NUMTYPES+1];/* Packet type histogram */
int £il ensatr[TREEMAX+1]; /* Binary tree pointers for ensahg */
int fil ensatop; /* Next free element of ensahg */

struct exp hgram fil ensahg[HGMAX+1]: /* Hgram on Enet src addrs */
int fil endatr[TREEMAX+17; /* Binary tree pointers for ensahg */
int £il endatop: /* Next free element of ensahg */

struct exp hgram f£il endahg[HGMAX+1]; /* Hgram on Enet dst addrs */
int £il ipsatr[TREEMAX+1]; /* Binary tree pointers for ensahg */
int f£il ipsatop: /* Next free element of ensahg */

struct exp hgram fil ipsahg[HGMAX+1]: /* Hgram on IP src addrs */

int fil ipdatr[TREEMAX+1]: /* Binary tree pointers for ensahg */

int f£il_ipdatop;
struct exp hgram fil ipdahg [HGMRX+1]:

int £il logtop:

b

struct

struct
struct

shortlog {

union {

struct

} in hdr;

b

/-k

* fil flags bits.

*/

timeval
il rheader

ip

221 -

/* Next free element of ensahg */

/* Hgram on IP dst addrs */

/* Next free element in pkt log */

timestamp;

hea

der:;

iphdr;

/* Action flags -- determines the type of monitoring to be done */

#define
#define
#define
#define
#define
#define
#define

/* Qualifiers ~- determines what filtering will be done on

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

FLT_PKTLOG
FLT_ ENSAHG
FLT_ENDAHG
FLT_IPSAHG
FLT IPDAHG
FLT_PLENHG
FLT_PTYPHG

0x00001
0x00002
0x00004
0x00008
0x00010
0x00020
0x00040

/*
/=
/*
/*
/*
/*
/*

Retain log of packets filtered */
Histogram on Ethernet source addresses */
Histogram on Ethernet dest addresses */
Histogram on IP source addresses */
Histogram on IP dest addresses */

Packet length histogram */

Packet type histogram */

monitored pkts */

FLT_ERRS 0x00100 /* Count error packets */
0x00200 /* Count valid packets */

FLT_VALID

FLT_ENSA 0x00400 /*
FLT ENDA 0x00800 /*

FLT_IPSA
FLT_ IPDA
FLT LNGT
FLT LNLT
FLT_LNRN
FLT LNEQ
FLT PTYP

0x01000
0x02000
0x04000
0x08000
0x10000
0x20000
0x40000

/*
/*
/*
/'k
/*
/*
/*

Count pkts
Count pkts
Count pkts
Count pkts
Count pkts
Count pkts

w/
w/
w/
w/
w/
w/

Lengths > fil

Count pkts w/ﬁlength =

* /
*/

addr in fil ensa
addr in fil _enda
addr in f£il ipsa */
addr in fil dipda */
length > £il _lengt */
length < f£il lenlt */
lengt && < £il lenlt */
£il leneqg */

Count packets of a specific type */

