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Abstract

We develop new algorithms for the design of non first normal form relational databases that are
in nested normal form. Previously, a set of given multivalued dependencies and those multivalued
dependencies implied by given functional dependencies were used to obtain a nested normal form
decomposition of a scheme. This method ignored the semantic distinction between functional and
multivalued dependencies and utilized only full multivalued dependencies in the design process. We
propose new algorithms which take advantage of this distinction, and use embedded multivalued
dependencies to enhance the decomposition. This results in further elimination of redundancy due
to functional dependencies in nested normal form designs.

1. Introduction

Interest in generalizations of the relational data model has developed rapidly in recent years. Many re-
searchers have observed that first normal form (INF) relations are not appropriate for recent database
applications such as information retrieval systems [Schi, SP], computer aided design [BaKi], forms manage-
ment [SLTC], and statistical databases [00]. Utilizing relational databases for such applications requires
non-first normal form (—=INF) or nested relations, whose tuple components can be sets or even relations
themselves. During the last few years there have been several important results regarding the loosening of
the 1NF restriction on relational databases. Seminal work in this area can be found in [Mak, KTT, I'V,
OY] (extended dependencies and normal forms), [AB, FT, JS, RKS] (extended algebra and calculus query
languages), and [Sch2, D+] (implementations).

The following example illustrates a simple -1NF relation.
Example 1.1: Consider the following —1NF database scheme.

Emp = (ename, Children, Skills),
Children = (name, dob),
Skills = (type, Exams),

Exams = (year, city).

In this scheme each employee has a set of children each with a name and birthdate, and a set of skills, each

with a skill type and a set of exam years and cities, when and where the employee retested his proficiency at
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Employee

ename Children Skills
name dob type Exams
year city
Smith | Sam | 2/10/84 | typing | 1984 | Atlanta
Sue | 1/20/85 1985 | Dallas

dictation | 1984 | Atlanta
Watson | Sam | 3/12/78 | filing 1984 | Atlanta
1975 | Austin
1971 | Austin
typing | 1962 | Waco

Figure 1-1. A sample relation on the Emp scheme.

the skill. Using the terminology of nested relations, we say that an Employee tuple t; has 3 attributes. The
Children attribute of t; is a nested relation whose scheme is Children = (name, dob). Likewise, the Skills
attribute of ¢; is a nested relation whose scheme is Skills = (type, Exams). A tuple {5 in a Skills nested
relation has 2 attributes. The Exams attribute of ¢, is a nested relation. A sample relation is shown in the
relation in Figure 1-1. ]

The benefits of properly structured nested relations can be described in terms of the properties of the
functional and multivalued dependencies that hold. For example, let U be a set of attributes, X, Y, and Z a
disjoint partition of U, and r a INF relation on scheme R = (U). If the multivalued dependency X ——Y|Z
holds in r then consider the relation s with the Z attributes forming one nested relation and the ¥’ attributes
forming another nested relation for each X value. Relation s is a ~1NF relation with several good prop erties.
First, X is a key for s, giving a unique tuple in s for each X .value. Second, the Y and Z nested relations are
independently updatable; adding a value to Z (Y) automatically enforces the underlying MVD by matching
all valuesin Y (Z) with the new value added.

A third benefit of a properly designed nested scheme relates to the properties of the extended relational
algebra operator nest [JS]. The nest operator is a grouping operator that creates nested relations. If in our
example, we start with relation r and wish to form relation s, we need to apply the nest operator twice,
once to form the nested relation on attributes of Z and once to form the nested relation on attributes of
Y. In general the order in which this nesting is performed matters. However, it has been shown [JS] that
if the MVD X ——Y|Z holds in r, then we obtain the same value for relation s regardless of which mest is
performed first.

In this paper, we address the issue of the design of =1NF relational databases by studying an imp ortant
normal form called nested normal form [OY]. Normal forms for —~1NF relations must satisfy two requirernents.
As in the case of 1NF relations, normal forms must reduce redundancy. In addition a nested relatiorz has a
nesting structure which implies certain semantic connections among the attributes. Thus, “a normal form
for nested relations aims not only to group attributes into related sets of attributes, but also to chhoose a
nesting structure which is a good representation of the set of semantic connections that already exist in the
real world among attributes.” [OY; 2]

We present new algorithms for the design of ~1NF databases. Our algorithms produce designs thhat are

in nested normal form (NNF). It is frequently the case that several NNF designs are possible for & given
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database scheme. Previous NNF design algorithms considered only a subset of the set of all possible NNF
designs. This may result in the generation of an intuitively unappealing design despite the existence of a
more attractive alternative. (We will show an example of such a situation.) Our algorithms allow us to find
NNF designs that are both intuitively appealing and that result in less redundancy than those generated
by previous techniques. The power of our techniques derives from that fact that our algorithms are able to
take into account the semantic distinction between functional dependencies and multivalued dependencies,
and allow for the use of embedded multivalued dependencies. The final two sections include proofs of the
correctness of our algorithms along with modifications to our algorithms that offer additional elimination of

redundancy.

2. Definitions

In this section we present some basic definitions regarding multivalued dependencies that we will use in
subsequent sections. Further details can be found in [Mai].

Let r be any relation on scheme R, with X and Y subsets of Rand Z = R— XY Relation r satisfies
the multivalued dependency X ——Y if for every pair of tuples ¢; and {3, in r, if 11[X] = t3[X], then there
exists a tuple 3 in 7 with t3[X] = t:[X], ts[Y] = t1[Y], and 13[Z] = t2[Z].

An MVD is said to be embedded if the MVD holds on a projection of the relation. Let r be any relation
on scheme R, Z C R,and X C Z,Y C Z. Relation r satisfies the embedded multivalued dependency (EMIVD)
X——Y|Z — XY when the MVD X——Y holds in the projection of r onto Z. If an MVD or EMVD, G,
holds in a relation r with attributes Z, then the projection of that dependency on a set of attributes ¥ C 7,
denoted projy (G), holds in the projection of r onto Y if and only if the left hand side of G is a subset of Y.
A dependency is projected on Y by eliminating all attributes on the right hand side that are not in Y.

Let I/ be the universe of attributes, X a set of attributes, and M a set of multivalued dependencies. A
dependency basis for X, denoted DEPy(X), or DEP(X) when M is understood, is a partition of U/ — X
into sets of attributes Y1,Ys, ..., Yy, such that if Z C U — X, then X——Z if and only if Z is the union of
some of the ¥;’s.

For the MVD-set {X——V; | i = 1,...,n} we shall often write X——V1|V2|...|Vo. If the V; form a
dependency basis for X then X——Vi|V5|...|V, is called full [BFMY] and a set of MVDs containing only
full MVDs is called a full set of MVDs. We use LHS(M) to denote the set of left hand sides of the MVDs
in a set M of MVDs.

For a set M of MVDs, M* denotes the closure of M, i.e., the set of all MVDs that are implied by M.
Given two sets of M and N of MVDs, M is a cover of N if M+ = N*. Many times we want to work with a

minimum cover for a set of MVDs.

Definition 2.1: [OY] Given a set M of MVDs over U, an MVD X——W in M is said to be

(a) trivial if XW=U,W=0o0r WCX,

(b) left-reducible if 3X', X' C X, such that X'——W isin M¥,

(c) right-reducible if 3W’', W’ C W, such that X —— W’ is in M,

(d) transferable if 3X', X' C X, such that X'——W(X — X'} is in M*.

An MVD X ——W is said to be reduced if it is nontrivial, left-reduced, right-reduced, and nontransferable.

A set of MVDs M is said to be a minsmum cover if every MVD in M is reduced, and no proper subset of
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employee
l

r I employee —— name, dob
name, dob type .
{ employee — type, vear, city

year, city employee, type —— year, city
Figure 3-1. Scheme tree and implied MVDs for employee database.

M is a cover of M.

Let M~ be the set of all reduced MVDs implied by M, N be a set of MVDs, and M be a minimal cover
of N. Then elements in LHS(M™) are called keys of N, and the elements in LHS(M) are called esseniial
keys of N. Elements in LH S(M~)— LHS(M) are called nonessential keys of N. Note that we are using the
term key in a nonstandard sense, following [OY]. We shall find that it is desirable to design a —1NF scheme
in which all attributes of a key (in the sense defined above) appear together in one relation scheme, rather

than being split among several. This motivates the following definitions:

Definition 2.2: [BFMY] A MVD X ——Y splits Z if both ZNY and (U - X —Y)NZ are nonempty. A
set M of MVDs is conflici-free if no MVD in M splits a key of M and for all pairs X and Y in LHS( M),
(DEP(X)NDEP(Y)) C DEP(XNY).

A relationship which states that certain projections of a relation must join (natural join) to the original
relation is called a join dependency (JD). Let r be any relation on scheme Randlet R = {R;,Ry,..., Ry} bea
set of schemes which are projections of scheme R. Relation r satisfies the join dependencyv<a (Ry, Ry, ..., Ry)

if » decomposes losslessly onto Ry, Ry, ..., R,,. That is,
r =g, (r) < R, (r) xR (7).

If a join dependency is equivalent to a set of multivalued dependencies then the R is an acyclic set of schemes.
Acyclic schemes have several good properties described in [BFMY, Sac], including the fact that the set of
multivalued dependencies which are equivalent to a join dependency are conflict free. Properties of conflict
free dependencies are described in [AC, BeK1, BeK2, Scil, Sci2, Sci3]. Sciore [Sci2] states that in “real
world” situations, every “natural” set of MVDs must be conflict free. Conflict free sets have the desirable
property that they allow a unique fourth normal form dependency preserving database scheme; moreover,

non-conflict free sets have no such normalization.

3. Nested Normal Form

Ozsoyoglu and Yuan [OY] introduced the first comprehensive approach to normalization for ~1NF relations.
They consider nested relations whose schemes are structured as trees, called scheme trees, and introduce a
normal form for such relations, called nested normal form (NNF). A scheme tree is a tree whose vertices
are labeled by pairwise disjoint sets of non-nested attributes, where the edges of the tree represent M VDs
between the attributes in the vertices of the tree. These MVDs allow a INF relation to be represented
as a —1NF relation with the desirable properties discussed in the previous section. The scheme tree and

associated MVDs for the Emp scheme are shown in Figure 3-1.
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We now introduce the notation we shall use to discuss scheme trees formally. Let U be 8 set of non-
nested attributes, let T be a scheme tree, and let S(T) denote the set of all attributes in T. 5(T) is a subset
of U. Each edge of scheme tree T represents a multivalued dependency on S(T'). Let e = {u,v) be an edge
in T. The MVD on S(T) represented by the edge ¢ is A(u)——D(v), where A(u) is the union of all ancestors
of u (including u), and D(v) is the union of all descendants of v (including v). Since it may be the case that
S(T) is a proper subset of U, the MVD represented by an edge of T’ may be an embedded MVD on U. We
denote by MVD(T) the set of MVD’s represented by the edges of T'.

Definition 8.1: [OY] Let T be a scheme tree, and u1, uz, ..., un be all the leaf nodes of 7. Then the path
set of T, denoted P(T), is {A(u1), A(ug), ..., A(un)}-
Note that, for a leaf node u, A(u) is the union of all the nodes in the path from the root of T to uin 7.
The following proposition gives some properties of a scheme tree.
Proposition 8.1: [OY] If T is a scheme tree, then
1. P(T) is an acyclic database scheme,

2. The set MVD(T) of multivalued dependencies is equivalent to the join dependency pa (P(T)), and
3. MVD(T) is a conflict free set of MVDs. I

Let T be a scheme tree with respect to M, where S(T) C U, and (u,v) be an edge in T. Assume
there is a key X of M such that there exists Z € DEP(X) and D{v) = Z N S(T). Then, v is said to be
a partial redundant in T with respect to X if X C A(u). The MVD, X ——D(v) in the context of S(T7) is
a partial dependency in S(T). Similarly, if there exists some sibling nodes vy, vs,...,v, of v in T such that
W = UL, D(w), X C A(x) UW, and M does not imply XW——D(v) in the context of S(T'), then v is
said to be transitive redundant with respect to X in 7. In this case, the MVD, X——D(v), in the context
of S(T), is said to be a iransitive dependency in S(T').

Partial and transitive dependencies must be removed from scheme trees during the design process. In our
final design, we want each edge (u,v) to represent A(u)——D(v). If a partial dependency holds, it has a LHS
that is a proper subset of A(«) for some u, and thus, edge (u,v) does not represent that (partial) dependency.
Indeed, the partial dependency implies the dependency represented by (u,v). Partial dependencies can be
eliminated by splitting a tree into two or more trees. If a transitive dependency holds in T, then there is a
MVD that holds on the attributes of 7 that does not follow from the MVDs represented by edges of some
subtree of T'.

In order to avoid dividing keys in trees, we will use the notion of a fundamental key. Let M be a set of
MVDs on U and V C U. The set of fundemental keys on V, denoted FK(V), is defined by:

FK(V)={VnX|X € LHS(M) and VN X # 0,
and there isno Y € LHS(M) such that VNX DV NY and VNY # 8}.

Intuitively, the set of fundamental keys on V' consists of those keys that have minimal, nonempty intersections
with V.

It is desirable to design scheme trees in which each node is a fundamental key for its subiree, since it
has been shown [OY] that the path set of such a tree is a fourth normal form design. Given a set Af of
MVDs on attributes U, [OY] gives an algorithm to decompose U into a set of normal scheme trees which
do not have partial or transitive redundancies and do not split keys among nodes in the trees. Formally, a

normal scheme tree is defined as follows.



Definition 8.2: A scheme tree T is said to be normal with respect to a set of MVDs, M, if
1. M implies MVD(T),
9. There are no partial dependencies in T'.
2. There are no transitive dependencies in T

4. The root of T' is a key, and for each other node u in T, if FK(D(u)) # 0, then u € FE(D{u)).

[OY] uses a decomposition technique to construct a NNF design. Decomposition is performed when a
path set is not in 4NF by choosing a fundamental key K on a node V and splitting V into a subtree with root
K and one child of K for each element of the dependency basis of K with respect to V. This decomposition
procedure is repeated until no further non-4NF path set exists. This method uses MVDs and the MVD
counterpart of FDs as input to the NNF decomposition algorithm. In [YO], the authors have combined FDs
and MVDs into an envelope set of dependencies. They propose that this envelope set could be used as input
to a slightly modified NNF algorithm which would then take into account the different semantics of FDs and
MVDs. Using the algorithm in [OY], singleton sets are likely to appear when FDs are used to perform the
decomposition. We propose a new method for achieving nested normal form which takes into account the

different semantics of FDs.

4. Examples of the Nested Normal Form Design Problem

In this section we provide a series of examples to illustrate the problems with prior NNF design techniques
and to show intuitively how our algorithms produce better designs.
Our first example shows that if we ignore FDs and use only their MVD counterparts (ie., X —Y

instead of X — Y, then we may obtain nested relations whose schemes are singleton sets.

Example 4.1: Let U = ELSC and D = {E——S5,E — L}, where E is an employee id, L is the employee’s
location, S is an employee’s skill, and C is an employee’s child. Using the method of [OY], we would use
the MVD E——L implied by E — L and create the =INF relation with scheme tree shown in Figure 4-la.
However, since E — L, each L-set created by this scheme will be a singleton set. Therefore, we should use

the scheme tree of Figure 4-1b. M

E E L

/ \

L S C S C

(2) (b)
Figure 4-1. Scheme trees for Example 4.1 using approach (a) of [0Y], and
(b) modified for different FD semantics.

Although an approach to better handling FDs in an NNF design is being pursued [Ozs], the introduction
of embedded MVDs has not yet been considered. One reason for this is that the implication problem

for EMVDs has not been solved. That is, given a finite set of attributes U, there is no known complete
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Girl BSL

BSL GSL
Boy GSL

Girl Date Dance Boy Date Dance

(2) (b)

Figure 4-2. Two initial scheme trees for Example 4.2,
using (a) BSL, and (b) GSL to decompose.

axiomatization of EMVDs. Furthermore, if the set of attributes is infinite, then there is provably no complete
axiomatization [PP]. There are, however, several sound inference rules for EMVDs and for EMVDs together
with MVDs and FDs. Thus, if we are given that an EMVD should hold in our database, we can use that
knowledge, plus any dependencies derivable from the known inference rules, to improve our database design.
One of the contributions of our new approach to NNF design is to include EMVDs in the set of input
dependencies.

In addition to including EMVDs in the design, we take a different approach to the design of NNF
relations, which gives the designer of a =1NF scheme more control over the final outcome. As proved in
[0Y], the design scheme produces nested relations with a unique 4NF path set if and only if the input
dependencies are conflict free. Otherwise, there are several designs which will satisfy the NNF requirements,
not all of which will have 4NF path sets.

In the approach of [OY], different designs are generated depending on the fundamental keys selected to
decompose a set of attributes into several branches of the scheme tree, and depending on the chosen ordering
of all keys used in testing for partial and transitive dependencies and essential dependents. These different

orderings of keys may cause different scheme trees to be split apart.

Example 4.2: Consider a scouting database with attributes BSL (boy scout leader), GSL (girl scout leader),
Boy, Girl, Date (when a Boy and Girl went out to eat), and Dance (when a Boy and Girl went to a dance).
The dependencies which are assumed to hold in this database are BSL —— Boy, GSL —— Girl, (Boy, Girl)
—+ Date, and (Boy, Girl) —— Dance. We also have the EMVD §—— BSL | GSL, however EMVDs are
not considered in the approach of [OY]. Following the approach of [OY] we create an initial scheme tree
by decomposing the entire set of attributes based on the fundamental keys { BSL, GSL, (Boy, Girl)}. The
decomposition algorithm arbitrarily chooses either of these keys to perform the initial decomposition, and
depending on which one is chosen quite different NNF designs result. The two initial decompositions which
result from using BSL or GSL are shown in Figure 4-2.

When BSL is used to decompose the initial scheme tree (Figure 4-2a), the tree has a partial dependency

GSL —— Girl, and so the edge (GSL, Girl) is removed from Figure 4-2a, and a new iree created with the
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Boy, Girl

BSL Date Dance

GSL

(2)

Boy, Girl

GSL Date Dance

BSL

(b)

Figure 4-3. Two alternative trees using (Boy, Girl) to start decomposition,
and using (a) BSL, and (b) GSL to further decompose.

single edge (GSL, Girl). Similarly, when GSL is used to decompose the initial scheme tree (Figure 4-2b),
the tree has partial dependency BSL —— Boy, and so the edge (BSL, Boy) is removed from Figure 4-2b,
and a new tree created with the single edge (BSL, Boy). The scheme trees which result in these two cases
have 4NF path sets (BSL, Boy), (BSL, GSL, Date), (BSL, GSL, Dance), and (GSL, Gizl). Although the
path sets form a 4NF design, in neither case is the particular decomposition very intuitive. Take the trees
which result from starting with BSL. The scheme trees show that for each boy scout leader there is a set of
boys and a set of girl scout leaders. And for each girl scout leader associated with a boy scout leader there
is a set of Dates and a set of Dances. Also for each girl scout leader there is a set of girls. The relationship
between BSL, GSL and Date and Dance is only an indirect one via the leaders associated boys and girls.
Nevertheless, these two schemes are the ones recommended by [OY].

Let us consider the alternative of using (Boy, Girl) as the fundamental key to start the decomposition.
This choice is not allowed by [OY] since the MVDs with left hand sides (Boy, Girl) are split by the other
given MVDs, and this will result in a path set which is not 4NF. However, let us explore what happens if we
do use this fundamental key, primarily to compare later with results achieved by our design approach for this
problem. Using (Boy, Girl) as the fundamental key two alternatives for the initial decomposition are shown
in Figure 4-3. The two alternatives result from a decision to use either BSL or GSL as the fundamental key
when decomposing node (BSL, GSL).

When BSL is used to decompose (BSL, GSL) (Figure 4-3a), we find the partial dependency (BSL, Girl)
—+— GSL in the scheme tree, and so we remove edge (BSL, GSL) and create a new scheme tree with edge
((BSL, Girl), GSL). Similarly, if GSL is used to decompose (BSL, GSL), (Figure 4-3b) we find the partial
dependency (GSL, Boy) —— BSL in the scheme tree, and so we remove edge (GSL, BSL) and create a new
scheme tree with edge ((GSL, Boy), BSL). In both cases the path set is not in 4NF. In the first case, ( Boy,
Girl, BSL) is decomposable by MVD BSL —— Boy, and in the second case, (Boy, Girl, GSL) is decomposable
by MVD GSL —— Girl. However, the resulting scheme trees are in nested normal form. In these cases, the
initial decomposition seems better in that we have the Date and Dance attributes directly associated with

the (Boy, Girl) pair. However, the additional tree that is created to solve the partial dependency presents
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Boy, Girl Boy, Girl BSL GSL

Date Dance Boy Girl

Figure 4-4. Initial scheme trees for each 4NF scheme of Example 4.3.

Boy, Girl BSL GSL

/ \ |

Date Dance Boy Girl

Figure 4-5. Final scheme trees using new approach to design of Example 4.3.

quite an unintuitive grouping of attributes. -

Our design algorithm will start with a 4NF decomposition and will preserve that decomposition through-
out the remainder of the design. Thus, the primary point where different NNF designs will originate is
embodied in the well studied and understood creation of a 4NF decomposition. We note, that when the
input set of dependencies is conflict free there is a unique 4NF decomposition, and, therefore, our approach
also produces an NNF design with a unique path set for this case. Before we present our approach formally,

we show how it can be applied to the database of Example 4.2.

Example 4.8: (Continuation of Example 4.2.) We saw that it seemed best to ensure that Date and Dance
were associated with the key (Boy, Girl) and so in the 4NF decomposition we use the key (Boy, Girl) to
make the first split. Thus, we decompose into schemes (Boy, Girl, Date), (Boy, Girl, Dance), and (Boy, Girl,
BSL, GSL). Now we can use the other two MVDs in any order to decompose (Boy, Girl, BSL, GSL) into
(BSL, Boy), (GSL, Girl), and (BSL, GSL). Considering just the MVDs, this decomposition is in 4NF. If we
consider the EMVD, as we propose to do, then the scheme (BSL, GSL) is decomposed into BSL and GSL,
and these two schemes are eliminated since they are proper subsets of other schemes. Our method will then
proceed to create a scheme tree for each scheme in the 4NF decomposition, as shown in Figure 4-4.

Then we combine scheme trees when the common attributes of two trees form the same root to non-leaf
path in both trees. In this example, we combine the two trees with root {Boy, Girl) and our final design is a set
of three scheme trees as shown in Figure 4-5. This design more clearly depicts the intended relationships and
came about partially due to the fact that we carefully selected the 4NF decomposition that was appropriate
for this case. In the approach of [OY], this kind of decision making can only go into the choice of fundarmental
key selection, and there is no way to produce the scheme trees of Figure 4-5, no matter what choices are
made. We note that if we did not allow the EMVD to influence our 4NF decomposition, then we would have
had an additional edge relating BSL and GSL in either the BSL-Boy tree or the GSL~Girl tree. These trees

would still be more intuitive, and are equally unattainable using [OY]. !
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VANEEVAN

/ \E B,‘D '

(2) (b)
Figure 5-1. Scheme tree (a) T1, and (b) T3.
5. Fundamentals of Our NNF Design Algorithm

The first procedure we will need for our algorithm is a 4NF decomposition procedure. Several have been
proposed, however we require one that deals with both FDs and MVDs and does not treat FDs as MVDs in
the design, thereby ignoring the different semantics that FDs impose. Two approaches are available, one by
Beeri and Kifer [BeK1] and Katsuno [Kat], and the other by Yuan and Ozsoyoglu [YO]. In the first approach,
given a set D of FDs and MVDs, a new set M’ of MVDs is formed by first obtaining the full version of the
MVDs in D, and then replacing the left-hand side X of each MVD in the full version by the closure of X
with respect to D.

In the second approach, given a set D of FDs and MVDs over a set U of attributes, a new set E(DJ) of
MVDs, called an envelope sei, is created, so that E(D) represents the structural dependencies in D relevant

to the design process.

Definition 5.1: The envelope set E(D) of a set D of FDs and MVDs is
E(D) = {X——W|X € LHS(D) and W € DEPp(X)and D# X — Wi

If a database scheme is 4NF with respect to E(D) then it is also 4NF (BCNF if D has FDs only) with respect
to D. Thus, a database scheme for D can be obtained by using E(D) as input to any 4NF decomposition
algorithm [Fag, Lie, GR, LT], without considering the FDs and MVDs separately.

We must consider which of these two approaches to the design of flat databases will help us most in
forming better =1NF designs. As shown in Example 4.1, in an NNF design FDs cause singleton sets to appear
if the MVD represented by an edge in a scheme tree is also an FD. In general, nesting is not necessary when
for some edge (u,v), u — v holds. Consider the scheme tree Ty shown in Figure 5-1a. If B — D holds,
then each B value will have a single D value associated with it. Therefore, there is no need to nest D values
allowing the tree T3, shown in Figure 5-1b, which has a smaller structure and is consistent with 7} in that
MVD(Ty) = MVD(T3).

In the first approach described above, a similar operation takes place in the closing of the left hand
sides of the MVDs. Attributes in the dependency basis of a left hand side X, which are functionally
determined by X are moved to the left to form the closure of X. Looking at T3 and T3 we see that
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MVD(T}) = {A——BDE|C, AB-D, AB——E}. If we make the MVDs full and close the left hand sides
according to the FD B — D, then we get the set M' = {A——BDE|C, ABD——E|C}. Clearly, these MVDs
are the MVDs found in MVD(T}). Thus, the closure has the effect of associating functionally determined
attributes with keys used to create the =1NF hierarchies.

In the second approach, the envelope set of MVDs is used to represent the FDs and MVDs. Here,
components of full MVDs are eliminated if those components are also FDs. There is no attempt to associate
functionally determined attributes with the keys and so the envelope set does not help in eliminating singleton

sets from our designs. For the above example,
E(MVD(T1)U{B — D}) = {A——BDE|C, AB——D|\E|C,B——ACE},

and this set of MV Ds would not help us in achieving T3. Therefore, we adopt the first approach and use the
set of MVDs obtained by closing the left hand sides of the MVDs implied by the given set of dependencies
+o obtain our initial decomposition. We use M’ to represent the set of MVDs produced by this approach.

Since we desire to include EMVDs in our design algorithm, we must perform some additional steps to
achieve our final decomposition. Let U be the set of attributes to be used in the design, D a set of given FDs
and MVDs, and F a set of given EMVDs. First, using the known inference rules, we generate all FDs, MVDs,
and EMVDs that are implied by the EMVDs or the EMVDs together with any known FDs or MVDs. The
new FDs and MVDs are added to the original set D and the new EMVDs are added to the original set F.
We compute M, the set of MVDs obtained by making the MVDs implied by D full and closing the left hand
sides. We also close the left hand sides of the EMVDs in F using the FDs in D. We then use M’ as input
to one of the usual 4NF decomposition algorithms. This results in a set of schemes R = {R1,Ra,..., R}

We now have a set of schemes R which is in 4NF with respect to the MVDs M’. However, each scheme
in R may have one or more FDs implied by D embedded within it. In their flat database design, [BeK1] use
these FDs to synthesize a set of schemes for each scheme of R, further eliminating redundancy by achieving
a 3NF decomposition with respect to the MVDs M * and FDs in D. We do not want to take the additional
step of synthesizing 3NF schemes when designing —1NF relations since organizing these schemes in a scheme
tree will only introduce singleton sets. However, when we allow EMVDs to influence our design, we will
have to consider further decomposition based on the FDs in each scheme of R. The reason for this is that
we can not use an EMVD in the design process unless at some stage in the decomposition it becomes a full
MVD. For example, if U = ABCDE, then we can not use the EMVD A——B|CD until U is decomposed
into a scheme which does not have E in it. Thus, we perform two checks for the EMVDs in F following
our decomposition into R with respect to M /. First, if an EMVD, Fj, becomes a nontrivial MVD when Fj
is projected onto some scheme in R, say R;, then F; is used to decompose R, and we replace R; with its
decomposition in R. This process is repeated until no more EMVDs can be used to decompose schemes in
R. Second, for each scheme R; in R we perform a temporary 3NF synthesis on R; obtaining the schemes
S = 5:,5,...,5. If an EMVD, Fj, becomes a nontrivial MVD when Fj is projected onto some scheme
in S, say §;, then we use F; to decompose S and add the decomposition to R. This continues until all
schemes in S have been considered. If any schemes remain in § then we take the union of those schemes and
replace R; with this union. If all schemes still remained in § then we replaced R; with R; and no change
was made to R. The remainder of the —=1NF design uses M’, F, and R.
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Figure 5-2. Scheme trees for Example 5.1 using (a) our approach,
and (b) [OY].

Example 5.1: [Ull] Let U = SPYC, D ={SP —Y}, and F = {C——5|P}, where C is a course taken
by a student S, and the course has prerequisite P taken by the student in year Y. There are no nontrivial
FDs or MVDs implied by the EMVD, so we find M’ = {SPY——C}. Using this set as input to a 4NF
decomposition algorithm, we get the scheme SPY C. Since this is the orginal set U, the EMVD is still an
EMVD for this scheme. In the next step, we perform a synthesis on this scheme and get the decomposition
{SPY,SPC}. Since, the EMVD in F is an MVD for scheme SPC, we use it to decompose SPC into C'S
and CP. The final decomposition is {CS,CP, SPY}, and using our NNF algorithm we get the scheme trees
shown in Figure 5-2a. In comparison, the scheme tree produced by the NNF algorithm of [OY] is shown in
Figure 5-2b. , [

Once we have a decomposition R with respect to U and M’'UF', we start the process of designing ~1NF
relations which are in nested normal form. We start by forming the trivial NNF design consisting of a single
scheme tree for each 4NF scheme in R. Each scheme tree is trivial since it will consist of a single path and,
therefore, its edges will specify trivial EMVDs. In a later step, we will combine scheme trees to to achieve a
nontrivial design.

In order to maintain NNF, even in a trivial design, we can not decompose each 4NF scheme arbitrarily.
This is due to the requirement that only fundamental keys be used as the non-leaf nodes of a scheme
tree. Thus, we use a simplified version of the DECOMP procedure in [OY] to perform the decomposition.
The procedure is much simpler since the input is a set of attributes forming a 4NF scheme and there is no
possibility of a split key appearing among these attributes (a condition checked for in the original procedure),
and there is exactly one dependent in the dependency basis of any attribute set which is a subset of a 4NF
scheme. We first provide a new definition for “fundamental keys,” since we also need to deal with the set
F of EMVDs which hold in the database. We also improve the definition by preferring fundamental keys
which are not projections of some essential key. For example, if A and BC are essential keys and if we are
finding the fundamental keys of ABD, then we would prefer to decompose based on the fundamental key A

rather than B, since A represents a more complete relationship than B which is a projection of BC.

Definition 5.2: Given a set M’ of MVDs, a set F of EMVDs, and a set U of attributes with V C U, the
set of candidate fundamental keys of V, denoted CFK (V), is defined as follows:

CFE(V)={W|W e LHS(M') v (W € LHS({F'}) A F' € F A projv(F") is a nontrivial MVD for )}
Out of CFK(V) we prefer those keys that are minimal subsets of V and if there are none, we use the
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minimal intersections of those keys with V. The preferred fundamental keys of V, denoted PFK(V), and all
fundamental keys of V, denoted FK(V), are defined as follows:

PFE(V)={X|X € CFK(V) A X CV A BY suchthat Y e CFK(V)AY C X}
FE(V)={W|X eCFK(V) AW=X0V AW#0A BY such that ¥ € CFK(VYAY NV CW}.

These modifications to the definition of fundamental keys allow for the fact that an EMVD could have been

used to form a scheme with attributes V. Procedure DECOMP can now be specified as follows:

Procedure DECOMP(V, T')
{V is a set of attributes which is a node in scheme tree T}

begin
If V has 2 or more elements and FK(V) # 0 then
begin
(1) If PFK(V) # 0 then let Vo € PFK(V) else let V5 € FE(V);
QW=V-V;
(3) Change V into Vg in T}
(4) Attach W as a son of Vg;
(5) DECOMP(W, T);
end
end.

The final procedure we need for our design algorithm is a method for combining scheme trees while
maintaining NNF and the original 4NF decomposition. We can combine scheme trees if the attributes that
are in common to both trees form the same path, u to v, in each tree, where u is the root and v is a non-leaf
node in both trees. If we have two trees that meet this requirement then we can temporarily merge them into
a single tree. If the merged tree is free of transitive dependencies, then we let the merge become permanent.

After making all possible merges, we have our final NNF design. The MERGE procedure is as follows:

Procedure MERGE(T, T3, T3)
{T1, T, are the two scheme trees whose common nodes form the same
root to non-leaf path in both trees. T3 is the merged tree.}
begin
T3 := Ti;
For each edge (v,w) in T3 do
if (v, w) is not in T3 then add (v,w) and (if necessary) nodes v and w to T3
end
end.

6. The NNF Design Algorithm

Using the procedures developed in the previous section, we can now specify our NNF design algorithm as

follows:

Algorithm 1
{ input: a set of attributes U, a set of MVDs and FDs D, and a set of EMVDs F.
output: a set of scheme trees 71,T3,...,Tn in NNF. }
begin
(1) Find a 4NF decomposition of U with respect to DU F'
(a) Add to D any FDs and MVDs which can be inferred from D U F using the EMVDs in F'.
(b) Add to F any EMVDs which can be inferred from D U F using the EMVDs in F.
(¢) Find a 4NF decomposition R = (Ry1, Rz,..., Ry) with respect to M'.
(d) Decompose schemes in R according to any EMVDs in F
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which project as nontrivial MVDs on some scheme in K.
Replace the decomposed schemes in R with their decomposition.
(¢) For = 1 tok do
begin
(i) Synthesize a 3NF decomposition of R, § = (51,52, .., Sm).-
(il) Decompose schemes in S according to any EMVDs in F'
which project as nontrivial MVDs on some scheme in S.
Remove any decomposed scheme from & and add the decomposition to R.
(iii) Replace R; in R with the union of the remaining schemes in §.
end
(2) Prepare initial scheme trees.
(2) Initialize k scheme trees T1,T3,..., T} with no edges and
single nodes labeled Ry, Ry, ..., R, respectively.
(b) For i := 1 to k do DECOMP(R;, Ti) end.
()Let T = {T1,Tn,... Tk}
(3) Merge trees.
Until no more changes can be made to 7 do
begin
(a) Select T* € T and T2 € T, T* £ T?,
such that 77 and 72 have not been considered together.
(b) If the common attributes of T* and T? from the same root to
non-leaf path in both trees then
begin
(i) MERGE(T, T2, T9).
(ii) If there are no transitive dependencies in T then
T:=T - {T",T?}u {73}
end
end
end.

7. Correctness of Algorithm 1

In this section we show that the =1NF design produced by Algorithm 1 is in nested normal form. To do this

we need to show that the four requirements of NNF hold for each relation in the design. Fach scheme tree

T of the design must satisfy the following four properties:

(1) Inference property: D UF = MVD(T), where D is the input set of MVDs and F is the input set of
EMVDs.

(2) PD property: There are no partial dependencies in T

(3) TD property: There are no transitive dependencies in T'.

(4) FK property: The root of T is a key, and for each other node w in T if FEK(D{(u)) # 0, then u €
FE(D(u)).

In the FK property, key refers to LHS(M’).
We will prove these four properties hold after each major step of Algorithm 1 in which scheme trees are

created or modified.

Proposition 7.1: The four properties of NNF hold after step 2 of Algorithm 1 where the initial scheme

trees are created.

Proof:

(1) Inference property: Since all MVDs and EMVDs in M VD(T) are trivial for the single path trees which
procedure DECOMP produces, this property holds trivially.
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(2) PD property: Assume there is a partial dependency in T. Then the path set of T' can be decomposed
using the partial dependency, and therefore is not in 4NF. This contradicts the fact that we start with
all path sets being in 4NF as a result of step 1 of Algorithm D.

(3) TD property: Trivially true, since the definition of transitive dependency requires sibling nodes to exist
in the tree, and there are none in a single path tree.

(4) FK property: Procedure DECOMP creates non-leaf nodes which are fundamental keys of the subtrees
with those nodes as root. Thus, this property holds by design. -

Proposition 7.2: The four properties of NNF hold after step 3 of Algorithm 1 where scheme trees are

merged.

Proof: Assume there are m trees Ty, T3, ..., Tn at some stage of step 3. We show that each property holds

after two trees T) and T3 are permanently merged into tree 7.

(1) Inference property: Figure 7-1 shows two general trees 77 and T3 with common attributes uy, 4z, ..., Un
forming the same root to non-leaf path in both trees. Subtrees are summarized by the union of all nodes
in the subtree (e.g., Y%, Z1). Each of these trees is assumed to be in NNF. Given that these trees are

in NNF and the path sets are in 4NF, the following JD holds:

1 1 2 2 n n

N(ulZl,...,ulel,uluzZl,...,uszk?,...,ulug---unZl yee Uy UL
1 1 2 2 7

ui Yy ,‘..,ulY}-l,ulung ,...,u1u2sz,...,u1u2---unY1 ,‘..,uluzw-un}/ﬁ,

S(Ta): . 9S(Tm))

This JD implies
ug——S(u2)|Y7 |- YA 2] - 128,

holds in 7" which is the EMVD representing edge (u1,u2). Similarly, the JD implies each edge {u;, ug),
1<i=£-1<n-1 Also, the EMVDs represented by each edge in the Y and Z subtrees are still
implied by this JD. Therefore, M VD(T") holds and the inference property is maintained.

(2) PD property: Holds as in Proposition 8.1, since we have not modified the 4NF path sets by merging 73
and T3.

(3) TD property: By design, we specifically test that this property is not violated before we merge trees
permanently.

(4) FK property: Even though some of the non-leaf u; nodes may have a new set of descendants consisting of
the Vi and Z° subtrees at that level, u; will still be a fundamental key of V = w;Y{Y§ --- Y} 2125 --- Z} .
If u; was a minimal intersection of a subset of V’ and the keys of M’, then it will be minimal for V. [

By Propositions 7.1 and 7.2, we know that relations designed using Algorithm 1 will be in nested normal

form with respect to M’ and F. Since D = M’, and M'UF = MVD(T), we have a good representation of

the original dependencies in our design.

8. Further Normalization of NNF Relations

Algorithm 1 produces a set of =1NF relations which is in NNF with respect to a set of MVDs (M') and a set
of EMVDs (F). M’ was derived from a set D of MVDs and FDs in step one of the algorithm. Later steps
deal only with M’ and F, and ignore the FDs that existed in . This was appropriate since we incorporated
the FDs by closing the left hand sides of the MVDs in D to obtain M’. This eliminates the possibility of
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Figure 7-1. General trees T} and 75.

getting nested relations which will only have a single tuple in them. However, there is still a place where

redundancy due to FDs arises in our —INF design. The following example will illustrate this problem.

Example 8.1: Consider the following university database taken from [Lie]. We have attributes Class, Day,

Hour, Tutor, Office, Student, Major, and Exam. The dependencies which hold are
Class —— Day

Student — Major

Tutor — Office
Class, Student —— Exam
Class, Tutor —— Hour

Following Algorithm 1, we make the MVDs full and close their left hand sides giving M":
Class —— Day | Hour, Tutor, Office, Student, Major, Exam

Class, Student, Major —— Exam | Day | Hour, Tutor, Office
Class, Tutor, Office —— Hour | Day | Exam, Student, Major

The only 4NF decomposition consists of the following five schemes:
Class, Day
Class, Student, Major, Exam
Class, Tutor, Office, Hour
Class, Tutor, Office, Student, Major
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Class Class

/N 1

Day Student, Major Tator, Office
Exam Tutor, Office Hour

Figure 8-1. Scheme trees produced by Algorithm 1 for Example 8.1.

Class Class
/ \ Student, Major
Day Student Tutor
/ \ Tutor, Office
Exam Tutor Hour

Figure 8-2. Scheme trees produced by Algorithm 2 for Example 8.1.

One of the two symmetric choices that Algorithm 1 produces for this set of schemes is shown in Figure 8-1.

Although this design is in NNF with respect to M, there are some obvious redundancies involving the
nodes Tutor, Office and Student, Major. Since the FD Student — Major holds, each time a Student value
is repeated for different Class values, the same Major value is also repeated. The situation is worse for
Tutor, Office. Since the FD Tutor — Office holds, each time a Tutor value is repeated for different Class
and Student values in one relation, and for different Class values in the other relation, the same Office value
is also repeated. O

The problem with designs, such as those in this example, is that groups of attributes which are nested
will introduce redundancies if a subset of that group functionally determines some other part of the group.
Note that this problem does not occur if the group is at the root of the scheme tree, since these are the
atomic attributes of the relation and their values will occur only once in the relation.

The solution is to examine each scheme tree produced by Algorithm 1 for nodes N that exhibit the
above behavior, replacing each N with the smallest set of attributes which functionally determines NV, and
creating a new relation with a single node containing the attributes involved in the redundant FD as root
and no branches. For Example 8.1, the new design would consist of the four scheme trees shown in Figure
8-2. Below we give a new algorithm to implement these changes.

Tt is straightforward to show that the scheme trees produced by Algorithm 2 are still in NNF with
respect to M’, and if we consider the FDs used to change the trees then the path sets are still in 4NF, and

so the join dependency among the path sets continues to hold.
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Algorithm 2
{ input: a set 7 of scheme trees produced by Algorithm 1

and the set of FDs G used as input to Algorithm 1

output: a new set T of scheme trees in NNF

begin

with redundancies due to FDs removed. }

Until no more changes can be made to 7 do

end.

begin
If there exists T € T, where T contains a node N such that
X — N is implied by G, with X C N then
begin
(a) Let Z C N where G = Z — N, and
forno W C Z doesG=W — N.
(b) Let Y C Z where G=Y — N - (Z ~Y), and
fornoWcCY doesG==W —-N—-(Z2-7).
(c) Modify T by replacing node N with Z.
(d) Add a new tree to 7 with the single node N — (Z —Y') and no edges.
end
end

9. Conclusion

We have given new algorithms for nested normal form which take into account the different semantics of func-

tional and embedded multivalued dependencies, while preserving the good properties of the original nested

normal form proposed in [OY]. Furthermore, by utilizing an initial decomposition into fourth normal form,

we believe the database designer is given more control over the objects and relationships to be emphasized

in the final hierarchical design.
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