AN INCREMENTAL, MECHANICAL
DEVELOPMENT OF SYSTOLIC SOLUTIONS
TO THE ALGEBRAIC PATH PROBLEM

Chua-Huang Huang & Christian Lengauer

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-86-28 December 1986

Abstract

We have recently proposed a method by which systolic designs can be developed in precise steps:
from a program, over a parallel execution, to a systolic architecture. To demonstrate that our method is
practical, we apply it to a complex matrix computation problem: the Algebraic Path Problem. The start-
ing point of our development is a simple imperative (i.e., Pascal-like) program. From it we derive
mechanically a parallel execution. After proposing, in addition, a simple layout of processors (without
connections), we synthesize mechanically the layout and movement of the data travelling through the
network. The processor connections can be inferred from the data flow. An implementation of our method
on the Symbolics 3600 simulates the systolic execution graphically. Simple variations of the input permit
a quick search of the space of possible systolic designs.

This research was partially supported by Grant No. 26-7603-35 of the Lockheed Missiles & Space
Corporation and by Grant No. DCR-8610427 of the National Science Foundation.

Table of Contents
1. Introduction
2. The Problem
3. The Program
4. Traces and Trace Transformations
5. The First Design
5.1. Timing of the Execution: Step
5.2, Processor Layout: Place - Phase §
3.3. Processor Connections: Flow - Phase 0
5.4. Data Layout: Pattern - Phase §
5.5. Elimination of Multiple Input - Phase 0
5.6. Processor Layout and Data Layout: Place and Pattern - Phase 1
5.7. Elimination of Multiple Input - Phase 1
5.8. Processor Layout and Data Layout: Place and Pattern - Phase 2
5.9. Elimination of Multiple Input - Phase 2
6. The Second Design
7. Other Systolic Designs
8. Conclusions
Acknowledgement
References

[
Bq&oww\ac\mwmmu

22

NG AN
0O~ N\ W

1. Introduction
We demonstrate a mechanically supported programming method by which systolic designs can be developed in

precise steps [5, 6]. Roughly, programs are derived in our method in five stages:

Specification The statement of the problem.

Program A correct abstract solution,

Sequential Execution A correct concrete solution.

Parallel Execution A correct and efficient concrete solution.

Architecture A hardware configuration for the efficient concrete solution.

To get from one stage to the next, we employ the following techniques:
Specification
d Refinement
Program
4 Translation
Sequential Execution
l Transformation
Farallel Execution
{ Specification and Synthesis

Architecture

Our method aims at integrating systolic design into a general view of stepwise program development and
implementation. We are concerned about formal precision and correctness at every step. In the presence of
parallelism, correctness is an important issue, even for small programming problems. The method has been used
previously for the derivation of parallel programs without reference to computer architectures [10]. Its application
to systolic design is new.

We shall apply our method 0 a complex matrix computation problem: the Algebraic Path Problem [17]. We
shall develop a number of systolic designs that solve the Algebraic Path Problem - some were known previously and
some are new. We arrive at the solutions by the following sequence of steps. We first develop an abstract program.
The program is translated trivially into a sequential execution. From the sequential execution, we obtain a parallel
execution by a fully automatic transformation that has served us before in the derivation of parallel executions [11].
We have certified mechanically that the transformation is correctness-preserving. After proposing, in addition, a
layout of processors (without connections), we synthesize mechanically the layout and movement of the data
travelling through the network. The processor connections can be inferred from the data flow. (Conversely, one
could propose the data flow and synthesize the layout of processors.) Actually, in this particular application, we will
only have to propose a small portion of the entire processor layout. We will synthesize the rest piece-meal. To each
piece of the layout, we will make incremental improvements that will require modifications in the program. The
power of our method is derived from its incremental nature,

What are the advantages of this approach? Embedding systolic design into a general view of programming
enables us to separate distinct concerns properly. The isolation of the different development stages enables us 1o
change different parameters, one at a time, and observe their influence on the systolic design. The explicit

formulation of a parallel execution provides a precise link between the two components proposed by the human: the
abstract program and the processor layout. Our insistence on formal rigor at every stage of the systolic design allows
a simpler and more reliable implementation of our method.

We have implemented the method with graphics support on the Symbolics 3600. The implementation displays
stylized systolic architectures and simulates systolic executions. This provides for a simple evaluation and com-
parison of alternative designs. The figures in this paper have been reproduced from the Symbolics terminal screen.

In the past, we have studied our method on simpler matrix computation problems like polynomial evaluation
[8], matrix multiplication, and LU-decomposition [7]. The Algebraic Path Problem is our first complex application.
Systolic solutions of it have been described before [16, 17, 18]. Our treatment will prove that their development is
based on a sequence of simple formal decisions. While the whole sequence might appear overwhelming, every
individual decision will be justified by a simple and precise argument.

In the process, we hope to convince the reader that our method is a tool that makes the development and study
of systolic designs precise and convenient.

2. The Problem
A weighted graph G is a triple, (V.E,w), where V={0,1,...,n—1} is a set of vertices, EC VXV is a set of edges,
and w: E — H is a function whose codomain is a semi-ring (H,®,®) of weights. A path p is a sequence of vertices
(Vg 1»men¥y_1-vp), where 120 and (v; _,v) € E. The weight of path p is defined as:
w(p) = w; @w, ® ... ®w,
where w; is the weight of edge (v;_1.v;). The Algebraic Path Problem [19] is specified as follows:
d..= @ w(p)

2 pisapath fromito]

We are asked to compute the sum 4 J of the weights of all paths from vertex i to vertex J, for all pairs (7,/).

By substituting specific semi-rings, many matrix computation problems can be recast as the Algebraic Path
Problem. The following examples are taken from [17]. Substituting the real numbers with ordinary addition and
multiplication, (R,+,*), the Algebraic Path Problem becomes matrix inversion. Substituting the extended reals (the
reals with +e0 and —eo) with minimum and addition, (R*,min,+), the Algebraic Path Problem becomes the problem
of finding the shortest path in a weighted graph. Substituting the Boolean semi-ring with disjunction and conjunc-
tion, ({0,1},v,A), the Algebraic Path Problem becomes the problem of finding the reflexive transitive closure of a
relation.

3. The Program

We shall express the program here in a Pascal-like programming language. In this language, basic statements
are combined by composition (;), alternation (if), or iteration (for). Our basic statements will represent special
operations and will be denoted, like procedure calls, by a name followed by a list of arguments.

Rather than developing the program explicitly, we adopt it from Rote [17]. The Algebraic Path Problem is
solved by Gauss-Jordan elimination. In Gaunss-Jordan elimination, the weighted graph G=(V.E,w) is represented by

an nxna matrix, C, such that, for 0<ijsn—1, matrix element ¢ =w{{i,/)) if)€ E and Ci =0 otherwise. Gauss-
Jordan elimination employs four basic statements:

(1) A(ij*) performs ¢;;i=c;; ®@c;, ®c s,

(2) BOG) performs c;

(3) BI(i,j) performs c;;:

(4) C() performs c;;=c;;".
Here, (*=10¢®(®)®(c®c®c)®..., where 1 is the identity element of the semi-ring. If £~ is not defined, the
Algebraic Path Problem cannot be solved. For example, for semi-ring (R, +,%), the Algebraic Path Problem can only

=i ®

be solved when Icl< 1. Note that the parameters of the basic statements are matrix indices. Since the matrix is fixed,
it suffices to refer to its elements by indices only. The Gauss-Jordan elimination algorithm is divided into three
phases, where n refers to the size of the square input matrix:

Phase 0
1 for i from O ton—1do
2 for jfrom Oton—1do
3 begin
4 for k from 0 to min{ij)—1 do A(i j.k);
5 if j<i then BO(i,))
6 else if ;=] then C(i)
7 end;
Phase 1
8 forifromOton—-1do
9 for jfromOton—1do
10 begin
11 if i<j then BI(i,j);
12 for k from min()+ 1 to max{i,j)— 1 do A(ij.k);
13 if i <j then BO(i,j)
14 end;
Phase 2:
15 forifromOton-1do
16 for jfromOton—1do
17 begin
18 if j<ithen BI(ij);
19 for k from max(i)+ 1ton—1do Alij.L)
20 end.

Actually, we represent this program in a less conventional syntax that is more appropriate for our method [5, 6].

4. Traces and Trace Transformations

We shall consider finite executions of this program. We call executions also traces. Sequential traces are easily
derived. For example, program S0;S] has sequential trace SO—S1. The arrow is our sequential execution operator.
Let us call the sequential trace that is derived from the previous program fau(n). Tau(4) expands to:

tau(d)

c{0) -» BO(1,0) — A{1,1,0) — C{1) — A(1,2,0) — A{1,3,0)
BO{Z,0) - A(2,1,0) — B0(2,1y — A(2,2,0) — A{(2,2,1) — C(2)
B(2,3,0) — B{2,3,1) — B0(3,0} — A(3,1,0) — BO(3,1}) — A(3,2,0)
A(3,2,1) — B0(3,2) - BA(3,3,0) — A(3,3,1) = A(3,3,2}) — C(3)

NS

Lo

- B1(0,1}) —> BO(0,1) — B1(0,2) — A(0,2,1) — B0{(0,2) — B1(0,3)
- a(0,3,1) — A(0,3,2) — B0(0,3) — B1(1,2) - BO(1,2) — BL(1,3)
- BA(1,3,2) — B0O(1,3) — A(2,0,1) — B1(2,3) - B0O(2,3) — &A(3,0,1)
— A(3,0,2) — A(3,1,2)

- A(0,0,1) — A(0,0,2) — A(0,0,3) — A(0,1,2) — &(0,1,3) — A(0,2,3)
- B1(1,0) — A(1,0,2) — A(1,0,3) — A(1,1,2) - A(1,1,3) — A(1,2,3)
- B1(2,0) — A(2,0,3) — B1(2,1) — A(2,1,3) — A(2,2,3) — BL(3,0)
- B1{3,1) - B1(3,2)

We derived this trace from the program by implementing composition as execution in order. This is not always
necessary. For example, in a programming language with assignment statements, the two assignments
x=x+1c=x+2 could also be executed in reverse order, x:=x+2—>x:=x+1, and the two assignments x:=1;y:=2
could also be executed in parallel, <x:=1 y:=2>. The pointed brackets are our parallel execution operator. Statements
within pointed brackets form a parallel command.

We will justify deviations from or relaxations of the sequential trace by specific properties of the statements
involved. The crucial property for the compression of traces by concurrency is independence. Two statements are
independent if they do not access common variables.! If two statements are independent and are executed in
succession in the sequential trace, their order of application may either be reversed, or it may be relaxed to parallel
execution. If condition B ensures that statements SO and S7 do not share variables, we declare their independence by
writing

B = SOindSI.

For example, A(igJjgkg) accesses Cisgg Cigky’ and ¢ ki and A} j, k) accesses Ci gy Ciky and ¢ ki Therefore,

the declaration of independence of A(iyjykg) and A(i;j k) is:

o2y v jo#ip) A lUp2iy v jo#k) Alg#ky v jp#j) A

(ig#iy v kG;ﬁj})A(i0¢i1 Vo kg#Ek) A g#ky v kg#jp) A

(kg#iy v jozip) ~kg#iy Vv jp#ky) A (kg #ky v jo#ip

= Aligjorko) ind Aliy 1 £;)
As a second example, BO(i,j,) accesses Ci j. and G iy Therefore, the declaration of independence of A(i,jo.ky) and
BO(i,jy) is:

(i0¢i1 vjoijl)/\ (ioséj1 v joatjl),»\

(g#iy v kg#jp) A (ig#j; v kg#j) A

(k0¢i1 ‘\/ jo¢j1) A (k0¢j1 hd jo;&jl)

= A(ig ok ind BOU)

The other mutual independences of our basic statements are declared similarly.

There is a mechanical way of obtaining parallel traces from sequential traces. We can look at it as a function,
transform, that accepts a sequential trace and returns a parallel trace. Trangform has been formally defined else-
where [5]. Here, we ask the reader to accept it without explanation as a "black box". Very roughly, rransform ravels
all basic statements in the sequential trace as much as possible into parallel, as permitted by the declared indepen-
dence relations. We have checked with a mechanical theorem prover [1] that rransform preserves the input-output
behavior of traces.

1This is 2 sufficient but not a necessary condition for independence [9]. It is the only condition we will use.

Let us apply transform 1o the sequential trace rau(4). The result expands to the following parallel trace:

taug g H(4)
<C{0) >
— <B0(1,0) >
- <a(1,1,0) BO{2Z,0) >
- <C{1} A{l1,2,0) A(2,1,0) BO(3,0) >
-> <A{l1,3,0) BO(2,1) A(2,2,0) A(3,1,0)>
- <A{2,2,1) A{(2,3,0) BRO{(3,1) A(3,2,0) BL{0,1) >
- <C(2) A(2,3,1) A(3,2,1) A{(3,3,0) BO(0,1) B1{(0,2) >
- <B0(3,2) A&A(3,3,1) 2(0,2,1) B1{(0,3) A{(2,0,1)>
- <A(3,3,2) B0O(0,2) A{0,3,1) B1(1,2) A(3,0,1)>
— <C{3) A(0,3,2) BO(1,2) B1{(1,3) 2A(3,0,2) A(0,0,1)>
— <B0(0,3) &A(1,3,2) A{(3,1,2) A(0,0,2) B1{1,0) >
- <B0(1,3) B1(2,3) A({0,0,3) A(0,1,2) A(L1,0,2)>
— <B0(2,3) A(0,1,3) A(1,0,3) A(1,1,2) B1(2,0) >
— <A(0,2,3) A{(1,1,3) A{2,0,3) B1{(2,1) >
— <A{1,2,3) A{(2,1,3) B1(3,0) >
- <A{2,2,3) B1(3,1) >
- <B1{(3,2) >

The subscript 0-1-2 of rau™ signifies that the trace represents all three phases of the program. In the development of
a systolic design, we shall also consider parts of this trace. For example, taug will stand for the part that executes
Phase 0, taug | for the part that executes Phases 0 and 1, ete.

In the following section, we shall develop a first systolic architectare for this parallel trace. We shall then make
changes in the program that will lead to improvements in the architecture. The method will also enable us to quickly
derive one systolic design from another. We shall explain the design method as we proceed.

5. The First Design

A systolic architecture is a distributed network of processors with the following properties:

(1) the processors perform simple operations
(but may perform different operations at different times),

(2) processors are connected only to neighboring processors, and

(3) channel communications are synchronized by a global clock.
There is no shared memory.

We specify a systolic architecture by two functions, step and place. The domain of both functions is the set of
basic statements that cccur in the parallel trace. Step determines when basic statements are to be executed, and place
determines where basic statements are to be executed.?

>The concept of a neighbor will be made more precise later in this section.

*In general, we must distinguish multiple occurrences of identical basic statements - by some sort of counter, say. However, we omit this trivial
complication here. Gauss-Jordan elimination leads to traces whose basic siatements are all distinct.

5.1. Timing of the Execution: Step
Step maps basic statements to the integers. The intention is to count the parallel commands of the trace in their

order of execution. In systolic executions, the processors that participate in a parallel command execute in lock step.
Let us assume that each basic operation takes unit time. Then, step must satisfy the following conditions:

(S1) basic statements of the same parallel command must be mapped to the same integer,

(§2) basic statements of adjacent parallel commands must be mapped to consecutive integers.
We are free 1o choose an integer, fs, for the step value of the basic statement in the first parallel command. If szep is
a linear function, it can be derived by equating the step values of all basic statements according to conditions (S1)
and (S2), and then solving these linear equations.

For example, step for argument A(i j k) is derived as follows. We start with the linear equation:
(E) step(A(i,j k) = Opi+ 0]+ 0k+0y

If we choose fs=0, the following equations are obtained by substituting some of the basic statements in faug | 5(4)
into (E):

step(A(1,1,0)) = g+ oy +0, =2

step(A(1,2,0)) = og+204+0g = 3

step(A(2,1,0)) = 20+ 0+ 0y = 3

step(A(2,2,1)) = 20+204 + 0, + 0 = 5
Solving these equations, we obtain oy=0; =0, =1 and o,=0. Unfortunately, this solution is inconsistent for some
other basic statements. For example, A(3,3,1) and A(0,2,1) are in the same parallel command, but step(A(3,3,1))="7
and step(A(0,2,1))=3, in violation of (51). Note that A(3,3,1) and A(0,2,1) belong to different phases of the program:
A(3,3,1) belongs to Phase 0 and A(0,2,1) belongs to Phase 1. Within each phase, the solution is consistent. There-
fore, we modify (E) by varying the constant term between phases:

stepo(AGJR)) = Ogi+ 0L+ 0k +04 ifk<ink<j
step(ALJR)) = Ogi+Clyf+ Ok + 05 4 ifi<k<jv j<k<i
stepy (AL k) = Opi+ 0L+ 0k+0ly 5 ifi<kaj<k

For clarity, we index step by phases. The conditions to the right select those instances of A(i,j,k) that belong to the
according phase. Substituting basic statements of all three phases and solving the equations again, we obtain
Og=0y=0y=1, 03 7=0, 03 =4, and 03 ,=8. In general, 05 ;=n, and 0 ,=2n, where n is the size of the input
matrix. Similarly, we can derive szep for basic statements BOGj), BI(i,), and C(§). The derived step function is:

stepo(AGj k) =i+j+k ifk<ink<j

step (A jR)=i+]j+k+n if (<kAk<j) v (j<kAk<i)
step(AGj k) =i+j+k+2n ifi<knj<k
stepg(BOG))=i+2] if j<i

step(BOG) =i+2j+n ifi<y

step(BIG)=2i+j+n ifi<jy

stepy(BI(i,)=2i+j+ 2n if j<i

stepo(C(D))=3i

5.2. Processor Layout: Place - Phase 0

Place maps basic statements to an integer space of dimension 4. For the Algebraic Path Problem, d=2, Le.,
place maps to the two-dimensional integer lattice. We assume that every point of this lattice is occupied by a
processor. The intention is fo assign basic statements to the processors. Processors that are not assigned an operation
at some step simply forward the data on their input channels to the corresponding output channels during that step.
Processors that are at 1o step assigned an operation need not be implemented. Unlike step, place is not derived from
the parallel trace but proposed separately. Every processor can only execute one basic statement at a time. There-

fore, place has to satisfy the following condition:
(P1) basic statements of the same parallel command must be assigned distinct places.

Since the definition of step depends on whether its argument is a basic statement of Phase 0, 1, or 2, and since
we will use step and place in the definition of further components of the systolic design, place is most easily
proposed also separately for different phases.

We shall first deal with Phase O and derive a systolic architecture for it. Let us consider the part of parallel
trace tauy 4 ,(4) that represents Phase 0. This parallel trace, taug(4), is obtained by eliminating all basic statements
that are not executed in Phase 0 from taug | ,(4) and removing parallel commands that are empty as a result:

tau5(4)

<C(0) >
- <B0({1,0) >
-~ <A(1,1,0) BO{(2,0) >
- <C{1) A2(1,2,0) A(2,1,0) BO(3,0} >
— <A{1,3,0) BO(2,1) A(2,2,0) A(3,1,0)>
- <B{2,2,1) A(2,3,0) BO(3,1) A(3,2,0)>
- <C(2) A{2,3,1) A(3,2,1) A(3,3,0)>
- <B0(3,2) A(3,3,1)>
—-> <A{3,3,2)>
~— <C{(3)>

Our first idea of a processor layout is to assign a basic statement to a point whose coordinates match the indices of
the statement’s target variable. This decision is rather arbitrary. At this stage, we do not yet have any information
that might guide us in the choice of a processor layout. As we shall see later, many other layouts are possible.
Statements A(i,j,k) and BO(i,j) have target variable ¢, T and statement C(7) has target variable Cij- We propose:

placey(Aij k) = (@) ifk<ink<j

placey(BOG.)) = (J) if j<i

placey(CE)) = (&)

We observe that the definitions of placey(BO(i,j)) and placey(C(®)) follow from placey(A(ij.k)). To be exact,
placey(BOE) =placey(Alij.h) for i#j=k, and placey(C@))=placey(A{ijk)) for i=j=k. That is, place can be
expressed in terms of a single statement. (By the way, the same is true for step.) In [5], we provide several theorems
for systolic designs with only one type of statement - among them the following sufficient condition that place
satisfies (P1); the determinant formed by coefficients of step and place must be non-zero. In this case, the
determinant is:

1
1
0
The first row contains the coefficients of 4, j, and & specified by step, the second row the coefficients specified by the

first coordinate of place, and the third row those specified by the second coordinate of place. Therefore, place,
satisfies (P1).

1
0
0

1
0
1

@ @ @
@ @ ®
@ @ @
-] > 4 L4

Figure 1. Initial Processor Layout - Phase 0

Figure 1 depicts the processor layout as specified by place. We represent basic statements by geometric
symbols. Symbol e denotes A(ijk), » denotes BO(j), and = denotes C(f). Processors may perform different
basic statements at different times. For example, placey(A(1,1,0))=placey(C(1))=(1,1). Therefore, the processor at
point (1,1) performs basic statement A(1,1,0) at Step 2, and basic statement C(1) at Step 3. In Figure 1, a processor
is represented by the basic statement that it executes first.

In programs, data are represented by variables. In systolic computations, data, i.e., variables travel between
processors. A variable may be accessed by one processor at one step and by another processor at a later step. We
have to specify a layout and flow of variables that provides each processor with the expected inputs at the steps at
which it is supposed to execute its basic statement. In the systolic solutions of the Algebraic Path Problem,
processors will be only connected by unidirectional channels to processors that occupy neighboring points. We say
two points (po.qg) and (py.q4;) are neighbors if 0<ipy—qggl.lp; —g,< 1. For designs with these characteristics, we can
synthesize the input pattern and flow of data from step and place. To this end, we introduce two more functions:
pattern and flow. The domain of both functions is the set of program variables. Flow specifies the direction of data
movement, and pattern specifies the initial data layout.

5.3. Processor Connections: Flow - Phase 0

Flow maps program variables to the two-dimensional integer lattice. The intention is to indicate, for every
processor in the network, which of its neighbors receive its output values at the next execution step, i.e., to which of
its neighbors it must be connected by an outgoing channel. Flow is synthesized from step and place as follows: if
variable v is accessed by distinct basic statements S0 and S7 but not by any other basic statements in between, the
flow of v is:

flow(v) = (place(S1)—place(SON)/ (step(S1)~ step{S0))
Flow will not be qualified by a phase index since it will be identical for all phases. Channel connections are inferred

from flow as follows: if the processor at point (p,g) accesses variable v at some step, then it must be connected by an
outgoing channel to the point (p,q) +flow(v).

Flow must be well-defined, ie., its value must not depend on the choice of basic statements SO and S7.
Unfortunately, the flow that we derive from step and place varies if we choose different basic statements. For
example, €11 is accessed by A(1,1,0), C(1), and BO(2,1) of Phase 0. We obtain two different values for the flow of
SRE

flow(cy 1) = (LD-(1,DY(3E-2) = (0,0)
if §0=A(1,1,0) and S7=C(1), and

flow(cq 1) = ((2,1)—-(1,1D)/(4-3) = (1,0)
if S0=C(1) and S7=B0(2,1). This problem can be circumvented by copying variables. That is, where a variable is
about to change its flow direction, it is copied to a variable with a different name. In all of Phase 0, our derived flow
adopts three values: (0,0), (0,1), and (1,0). We make the following adjustment: where variable c; J has flow (0,1) we
name it a; ; , where it has flow (1,0) we name it b; ;j» and where it has flow (0,0) we retain its name c; ;- We apply
this renaming scheme in all basic statements of the program (in all phases). For example, as demonstrated
previously, the flow of € is (0,0) before the execution of basic statement C(7), and it is (1,0) after the execution of
basic statement C(7). Therefore, the source variable of C(i) retains its name, ¢;;,
b..:

iit

and the target variable is named

C(l): bl,l :=Ci,£*'
The redefinitions of basic statements A{i,/,k) and BO(i,j) are obtained similarly:

A(ZJ,]C): ng :=Cl~J' @ ai’k® ka
We call a, b, and ¢ streams. The elements of a stream at some step are the variables travelling in the direction of the
stream at that step.

After the renaming, flow is well-defined. The derived flow function is:
ﬂOW(a;’k) = (0,1)
ﬂow{bkj) = (10)
ﬁOW(Cl'J') = (0,0)

Mote that the channels specified by flow connect neighbors only.

5.4. Data Layout: Paitern - Phase §

Just like flow, pattern maps program variables to the two-dimensional integer lattice. The intention is to lay out
the input data for the various processors in an initial pattern such that the systolic execution can begin. (Flow
describes the propagation of the data towards and through the network as the execution proceeds.) With constant fs
being the arbitrary step value that we choose for the first parallel command, pattern is synthesized from step, place,
and flow as follows: if variable v is accessed by basic statement S,

pattern(vy=place(S)~ (step(5) —fs)yflow(v)
With pattern specifying the initial data layout, we can derive the data layout for successive steps of the sysiolic
execution: the data layout after & steps is given by pattern(v)+k#flow(v).

< Loy <,
13 23 33
bps Bz By ® @ ®
[ag [C
1,2 22 32
G2 L0 @ @ @
‘1 1 Sa4
0,7 - L @
%0 10 %20 S30
] B 13 >

Figure 2. Initial Data Layout - Phase 0

The initial data layout in Phase 0, as depicted in Figure 2, is:

patterno(ai’k) = (i,—i—k) if k<i

patterny(by) = (~j=kyJ) ifk<j

patterng(c; J) = (i)
Since ¢, ;, for 0<i, is not accessed by any basic statement of Phase 0, it is not displayed. Furthermore, not all
variables accessed by the basic statements of Phase 0 are displayed in the initial step. For example, g; , need not be
displayed. It is not input but is copied from Cik by BO(i,k). Similarly, since bi,i is copied from € by C(i), it need not
be displayed.

At this point, we have arrived at a first systolic design for Phase 0 of the program. The design is fully described
by the parallel trace taug and functions step, place, flow, and pattern. We may now inspect this design and make
improvements.

5.5. Elimination of Multiple Input - Phase 0

The design requires two input streams: one of b-elements and one of c-elements. But our program solution, the
Gauss-Jordan elimination algorithm, requires only one input stream of c-elements, which represent the initial values
of the input matrix. Even worse, not 2ll b-elements constitute initial values of the input matrix. More precisely, the
input value of b; j is the value of ¢; jatstep 2i+j—1. This is quite unsatisfactory. We cannot expect intermediate data
of the computation as input. Therefore, we will modify the design and eliminate the input stream b.

We must connect the first access of b with the last access of ¢. We have to consider variables b, j and c; o where
i<j. Variable ¢, J is not accessed in Phase 0. For O<i<j, b; J is first accessed by A(i+1,/) at step 2i+j+1,and ¢; ; is
last accessed by A(ij,i—1) at step 2i+j— 1. Therefore, we add a basic statement that copies c; ;10 b; j atstep 2i+].
We also add this copy statement for =0 to replace input data b, J by ¢, i We call the copy statement DO j):

10

DO,y bl—j =C;

and assign it the appropriate step:
stepo(DOG) = 2i+] ifi<j

Since DO(i,j) accesses c; ;, it must be executed at the location of ¢; j atstep 2i+j. We assign the appropriate place:

i
place (DO j)) = patterny(c; J) + step(DOGE J))*flow(c; ,;')
= (1)) +Q2i+/)*(0,0)
= (i /) ifi<y
We can now extend our parallel trace fauy(4) with operation D0, as provided by step:

<C(0) >

-~ <D0{0,1) BO(1,0) >

— <D0(0,2)y A(1,1,0) BO(2,0) >

— <D0(0,3) C(1) A(1,2,0) A(2,1,0) BO(3,0) >
— <D0(1,2) A(1,3,0) BO(2,1) A{2,2,0) A(3,1,0)>
- <D0(L,3y A(2,2,1) A(2,3,0) B0{3,1y A(3,2,0})>
- <C(2) A(2,3,1) A(3,2,1) A(3,3,0)>

- <D0(2,3) BO(3,2) &A{(3,3,1)>»

- <A(3,3,2)>

- <C{3) >

Before signing off on the extension, we must be sure that the added statements do not conflict, i.e, are independent
with the other statements in the parallel commands they have been added to.

We could automate the elimination of multiple input but, at present, our implemented system does not have this
capability. Our present way of displaying the modified design is by incorporating the added reflection statements
into the program, providing additional semantic relations, and letting transform generate the modified parallel trace.
Let us do so now for Phase 0.

We must add DO(i,) to the program. According to the step function, DO(I,)), for i<j, is executed one step after
A(iji—1). In Phase 0, A({,ji—1) is the last basic statement of the inner-most loop (iterating on k), for i<j.
Therefore, we add DO() right after that inner-most loop, i.e., as the else clause of the if-statement at line 6:

Phase O:
1 for i from Oton—1do
2 for jfrom Oton—1do
3 begin
4 for k from O to min{i /) — 1 do A(ij.k);
5 if j<i then BO({)
6 else if i= then C(¥)
& else DO)
7 end;

In order to apply fransform 1o the sequential trace obtained from the extended program, we have to declare the
independence of DO(i,j) with itself and with the other basic statements. The mutual independences of DO(i) and
A(ij.k), BOG.)), and C(f) are still determined by the absence of shared variables. For example, the declaration of
independence of A(iyjy.kp) and DO, .j;) is:

However, declaring the independence of DO(i,.j,) and DO(i,.j,) this way poses a problem. The declaration would be:

11

(2l v jo#iy) = DOy ind DOG,jy)
Since we have already settled on a step function for DO(},j), we must make sure that the result of rransform adheres
to it. Unfortunately, that is not the case when transform is given the previous independence declaration. Condition
(S1) on step functions requires that two basic statements in the same parallel command must have equal step values.
In this case, to be executed in parallel, independent D0(iy.j,) and DO(i;j,) must obey the condition 2iy+j,=2i; +J;.
But

Digtjo=2iy+j; = (ig#iy v joRiy) € Ug#iy Ajo#ly)
Thus, we are permitted to stengthen the independence declaration to:

ig#joniy 2, = DO(ydo) ind DOG, jyp)

With this declaration, applying fransform to the sequential trace obtained from the extended program gives us
the desired parallel trace. We have stated the definitions of step and place. Flow and pattern remain unchanged.
Figure 3 depicts the processor layout and the input data at the initial step. Symbol » denotes DO(,j). Since a;; and
b; j are not input but are initially assigned by BO(i,), C(@), or DO(i,), they need not be displayed. Only c; J is
displayed in the initial input data. Figure 4 depicts the output of Phase 0. In this figure, a processor is represented by
the basic statement that it executes last. Final values of a;, leave the network at the top; final values of b, ; leave the
network at the right.

In our development, we have applied the following sequence of steps.
(1) For an arbitrary fixed input parameter s, obtain sequential trace tau{n) from the program.

(2) Apply transform 10 taw(n) 1o derive parallel trace taug ; ,(n).

(3) Choose a step value fs for the first parallel command. Formulate step as a linear function and obtain a
system of equations, enforcing conditions (S1) and (S2) on the definition of step.

(4) Solve the system of linear equations to obtain function step.
(5) Identify the statements of Phase 0 by extracting taug; from taug ; ,.
(6) Propose place, for the statements of tauy. Placey must satisfy condition (P1).

(7) Obtain flow from step,, and placey, and introduce new variable names in order to make flow well-
defined.

{8) Redefine all basic statements to reflect the new variable names.
(9) Derive patterny from step, place,, and flow.
(10) Eliminate multiple input by adding copy statements and derive step and place for the copy statements.

(11) Add the copy statements to the program and declare their independence relations.
Steps 1 to 4 derive step for statements of all phases. Flow derived in Step 7 and the redefinitions of basic statements
in Step & apply to all phases. Therefore, we only repeat Steps 5, 6, and 9 to 11 for Phases 1 and 2. But rather than
proposing place for Phases 1 and 2, we shall derive it from the already defined step, flow, and pattern. We shall first
extend the systolic architecture to include Phase 1, and then extend the result further to include Phase 2.

iz

S @ e @
¢ [5 c, c

1, 2,2 3,2
2 & & e

Figure 3. Processor Layout and Input Data - Phase 0

a;,e
"’2,0
32,1 a;,o
'3;,1
a;,e
N A b & 53’3-» 52;34 67;3” b0’3-»
N & F > 02,2 TS 01’2 N 00,2-0
[N s » > by, P
B 4 & 4

Figure 4. Processor Layout and Output Data - Phase 0

13

9,

1-0

0,0

5.6. Processor Layout and Data Layout: Place and Paitern - Phase 1
The parallel trace for this phase is obtained from fauy ; ,(4) similarly to the parallel trace for the previous

phase:
taui(4)
<B1(0,1) >
- <BO(0,1) B1(0,2) >
-3 <A(0,2,1) 31(013) A(210/1)>
—> <BO(O,2) A(0r3r1) 31(1!2) A(3/0r1)>
— <A(0,3,2) BO(1,2) B1(1,3) &(3,0,2)>
-~ <B0(0,3) &A(1,3,2) A(3,1,2)>
— <B0{1,3) B1l(2,3) >
- <B0(2,3) >

The output of Phase 0 is the input of Phase 1. The fact that the output of Phase 0 is split into two streams leads
us to consider Phase 1 in two parts, one for each stream. The first part, Phase 1.0, accepts stream ¢; the second part,
Phase 1.1, accepts stream b. Stream ¢ is made up of elements 4 jo where k<i; stream b is made up of elements &, -
where £<j. In fact, Phase 1.0 contains those basic statements which access only the lower-triangle matrix elements,
and Phase 1.1 contains those basic statements which access only the diagonal and the upper-triangle matrix ele-
ments. Therefore, A(i,j.k), for j<k<i, belongs to Phase 1.0, and A(i,j.,k), BO(,)), and BI(i,)), for i<k<j, belongs to
Phase 1.1. We split trace fau](4) into a trace for Phase 1.0:

taui o(4)

<a(2,0,1)>
— <A(3,0,1)>
— <A(3,0,2)>
- <A{3,1,2)>

and a trace for Phase 1.1

tau] 1(4)
<B1{0,1} >
— <BO(0,1} BL1{0,2) >
— <a(0,2,1) B1{0,3) >
- <B0{0,2) &A({(0,3,1) B1(1,2) >
-» <A{0,3,2) BO(1,2) BL{1,3) >
— <B0(0,3) A(1,3,2)>
- <B0{1,3) B1(2,3) >
— <B0(Z,3) >

This splitting is permitted since the basic statements of Phase 1.0 are independent of the basic statements of Phase
1.1.

Let us first add a systolic architecture for Phase 1.0. We already know the step function for basic statements of
Phase 1 (see Sect. 5.1). Let us derive place. Statement A(i,j,k) accesses a; which is input from Phase 0. The value
of pazzem@(ai’k) depicts the location of a; , at the initial step of Phase 0. Statement A(i,j,k) must be executed at the
location that ¢, y occupies at step number step,(A(i,j.k)). We assign the following value for place; ((A(L./.0):

14

place ((AGjK)) = paftemg(ai’k)+s:epl(A(ich))*ﬂaw(ai‘k)
= ({f,~i—-kby+{+j+k+n*0,1)
= {ij+n) if j<k<i

Place, is a plane translation of place,. For any basic statement S:
place, o(S) = placey(S)+0,n)

That is, the processor network for Phase 1.0 is located at the top of the processor network of Phase 0. This is to be
expected since Phase 1.0 accepts as input what Phase O ejects to the top.

We have already established flow for all phases (see Sect. 5.3). We can now derive pattern, o from step,,
place, g, and flow:

pattern, o(a;) = (i,~i—k) ifk<i
pazternl.{)(bkj) = (~j—k—n,j+n) ifj<k
pattern; (c; ,;‘) = (i j+n) if j<i

FPattern, ,, defines the layout of input data of Phase 1.0 at the initial step of the entire execution (i.e., the initial step
of Phase 0). The input patterns of all phases must be defined for the same initial execution step, because we will
want to combine all phases into one composite layout later on. Pattern; o(a;) is identical 10 patterny(a, ;) because
Phase 1.0 accepts g, , as the input from Phase 0.

Now, let us turn to Phase 1.1. It contains a new basic statement, B1(ij). With the renaming scheme explained in
Sect. 5.3, we can determine new variable names for BI(i;)) as follows:

BIG € :=a‘-’£® b;;

In Phase 1.1, A(i,j.,k) accesses b, T BO(i.j) accesses bj o

Again, we can derive place, | from step,, flow, and patterny:

place, ((A(i,jk)) = patierny(b, j) +step (AGjL))xflow(b kJ)
= (—j—kN+E+j+k+n)=(1,0)

and BI(i,) accesses b; it Stream b is output by Phase O.

= (i+ny)) ifi<k<j
place, (BOG /) = (i+ny) ifi<j
place, ((BI(i) = (i+n) ifi<j

Again, place, , is a plane translation of place,. For any basic statement S:
place, ((S) = placey(S)+(n,0)

That is, the processor network for Phase 1.1 is located at the right of the processor network for Phase 0. This is to be
expected since Phase 1.1 accepts as input what Phase 0 ejects to the right.

We can now derive patiern, , from step,, place, ,, and flow:

patternlll(ai,k) = {+n,~i—k—n) %fisk
patrernl_l(cij) = {i+ny) ifigj

Patterny (b, J-) is identical to patterny(b, J-) because Phase 1.1 accepts b, jas the input from Phase Q.

Figures 5 and 6 depict the processor and data layout at the initial step of Phases 1.0 and 1.1, respectively.
Symbol = denotes BI{ij). There are two input streams, b and ¢, to Phase 1.0, apart from stwream a from Phase 0,

15

be, i @
bz’ o 51’0 {%O Ci,c
2,1
a.;,?
%,2

Figure 5. Initial Data Layout - Phase 1.0

byg+ Gpgr Pz g 2 2 4
b0 Lo Bp & &

bm + Bhga
0,0

Figure 6. Initial Data Layout - Phase 1.1

16

and there is one input stream, a, to Phase 1.0, apart from stream & from Phase 0. Again, we are faced with the
problem of multiple input.

5.7. Elirnination of Multiple Input - Phase 1

In Figure 5, there are input streams g, b, and ¢ to Phase 1.0. Stream ¢ is supplied by Phase 0. We would like 1o
eliminate streams » and c¢. As for Phase 0, the elimination is achieved by adding basic statements that copy
variables.

We shall proceed in the following manner. We shall first introduce a statement that copies variables a to
variables ¢, thereby eliminating input stream ¢. We shall also employ our previously introduced statement that
copies variables ¢ to variables & to eliminate input stream b.

Let us describe the elimination of input stream ¢. We must connect the first access of ¢ with the last access of a.
Phase 1.0 deals with lower-triangle matrix elements. Thus, we have to consider variables Cij and ;s where j<i.
Variable Ciie1 is not accessed in Phase 1. For j<i~1, ¢; J is first accessed by A(i,jj+1) at step i+2j+n+ 1. This
basic statement is part of Phase 1.0. For 0=j<i-1, g; J is last accessed by A(i,n—1,) at step i+j+n—1. This basic
statement is part of Phase 0. For 0<j<i~1, g; J is last accessed by A(ij—1,) at step i+2j+n—1. This basic
statement is part of Phase 1.0. We add a basic statement that copies a; j 10 c;;at step i+2j+n. We also add this
statement to copy 4, ; L0 ¢;;, for j=i~1, at step i+2j+n. Asaresult, all g J from Phase 0 are copied o ¢; J in Phase

1.0. We call this copy statement DI j):

D1y C;j=0a;;

and assign it the appropriate step:
stepy o(DIG)) = i+2j+n if j<i

The location at which DI{i,j) is to be executed is derived from the location of g; jatstep i+2j+n
place, o(DI1(i.,j)) = patterny(a; J) +stepy o(DIE)*flow(a; J)

= {{,~i—D+{E+2j+n)+(0,1)
= (i+ny) if j<i

Next, we eliminate input stream b. Since DI(i,j) copies g; jloc;, we need a basic statement which copies ¢; .

tj? B
to bij .For j<i<n—-1,0; J is first accessed by A(i+1,,0) at step 2i+j +Jn+ 1, and for some of these indices, c; J is lasi
accessed by A(¢,j,i— 1) at step 2i+j+n~ 1. Therefore, the copy statement must be executed at step 2i+/+n. Again,
we add this copy statements for all indices / and j such that j<i. For j<i, the fact that step; ((D1(i,))) is less than
2i+j+n supports the copy order from a; j0¢ ;. and then to b, i Basic statement DO(i,j) introduced in Sect. 5.5
copies ¢; j 1o b; i Iis step is assigned to:

step, (DOG) = 2i+j+n if j<i
Similarly, since statement DO(Z.j) accesses ¢; ; of Phase 1.0, we can derive its place function as follows:

place; o(DOG)) = (+ny) if j<i

In Figure 6, streams g and b are input to Phase 1.1. Stream & is supplied by Phase 0. We would like to eliminate
stream . ‘We need a basic statement which copies b; ; to 4, ;. Since g, ; is first accessed by statement BI(7,i+1) of
Phase 1.1 at step 3i+n+1, and b, ; , for 0<{, is last accessed by BO(i— 1,i) of Phase 1.1 at step 3i+n~1, and by 5 is

17

last accessed by BO(s—1,0) of Phase O at step n—1, we add the copy statement at step 3i+n. We call the copy
statement E(i):
E(@): a;; :=bt~,i
and assign it the following step function:
stepy ((E(@) = 3i+n
We derive place of E(i) as previously and obtain:

place; ((E(D) = (i+n)

To overcome the present limitations of our system, we again incorporate the added operations also into the
program. This time, we must add DO(,), DI{,), and E(@F). According to the step function, DI{i,j), for j<i, is
executed one step before A(j,j+1). In Phase 1, A(ij,j+1) is the first basic statement of the inner-most loop
(iterating on k), for j<i. Therefore, we add DI(ij) right before that inner-most loop, i.e., as the else clause of the
if-statement at line 11, but guarded with the proper condition j <. According to the step function, DOG,j), for j<i, is
executed one step after A(f/,i—1). In Phase 1, A({,j,i—1) is the last basic statement of the inner-most loop, for j<i.
Therefore, we add DO(,j) right before that inner-most loop, i.e., as the else clause of the if-statement at line 13, but
guarded with the proper condition j<i. For the complementary condition i=j§, we add E(#). According to the siep
function, E(i) is executed one step before BI({,i+1). BI(i,i+1) is the first basic statement of the second inner loop
(iterating on j), for j=i+1. After adding DI1(i), DO(i,j), and E(3), the extended program of Phase 1 is:

Phase 1:
8 for i from O ton—1do
9 for jfromOton—1do
10 begin
11 if i<jthen BI(i)
11 else if j<i then DI1(i,j);
12 for k from min{iy)+ 1 to max(i,j)— 1 do A(ij.k);
13 if i<j then BO(i,))
13’ else if j<i then DO(i))
137 else E(i)
14 end;

Again, we have to declare independence relations of DO(@)), DI, and E({) with themselves and with the
other basic statements. The independences with the other basic statements A(i.j.k), BO(i.j), BI(i,j), and C(i) are easy.
They are determined by the absence of shared variables. The independences of DO(,)), DI(i), and E() with
themselves and each other require more stringent conditions. We had a similar problem with DO(i.j,) ind DOGjp)
in Phase 0 (Sect. 5.5). So let us deal here with this independence first. It will turn out that the condition established
in Sect. 5.5 is also the appropriate condition here.

If DO(ig,j) and DO(ij;) belong to Phase 1, we sirengthen their independence condition to iy#i; A jy#j; for
the same reasons as in Sect. 5.5. If they do not belong to the same phase, say, D0(i,,j,) belongs to Phase 0 and
DO(i,j,) belongs to Phase 1.0, and both are to be executed in the same parallel command, they must have the same
step value: step(DO0(igo)) =step; (DO 1)), that is, 2iy+j,=2i, +j, +n. We show that

2g+jo=2i v ji = (g#Fiy v jo#i) e (pEip Ao
If ig=i; A jo#j;, we know jy=j; +n. However, since 0<i,,/n.i;,/; $n—1, we know that liy—7,/<n and o—Jil<n.
This falsifies condition jo=j; +n. If iy#i; A jo=j;, we know 2iy=2{, +n. However, D0(i,j,) in Phase 0 applies

18

only when iy<j,, and DO(ij;) in Phase 1.0 applies only when j, <i;. Thus, we conclude iy<j,=j,<i;. This
falsifies condition 2= 2i; +n. Therefore, iy=i; v jy#j, is equivalent to iy#i; A j;#J;.

Our overall declaration of independence for D0(iyj) and DO(i ;) in Phases 0 and 1 is:
ig#iy Ajo#f; = DO(igjg) ind DO, ;)
Basic statements DI{iq,.j,) and DI(ij;) belong to Phase 1.0 only. A similar line of reasoning produces:
ig#ziy Ajo#f; = DIy ind DI, j)
Now, we consider E(j;) and E(,): if they do not share variables, ie., ig#i;, we can conclude

stepy (E(ip) # step; 1(E(i})), i.e., they cannot belong to the same parallel command. Since they are never executed
in parallel, our first attempt is not to worry about their independence:

false = E(iy) ind E(i)
In this particular case, this (very weak) declaration suffices; but in other applications we may have to be more

careful. The remaining independence conditions are derived by similar reasoning:

ig#iy vV jo#j1 = DOlyjy) ind DI ;)
ig#iy Ajo#iy = DO(iyjg) ind E(iy)
ig#iy Ajo#iy = DI(iyjg) ind EGEy)

Combining Phases 0 and 1, we apply transform to the sequential trace, for n=4, and obtain the following
parallel race:

tauy (4
<C{0) >
— <D0(0,1) =BO(1,0) >
— <D0(0,2) &A(1,1,0) B0{2,0) >
- <D0{0,3) C(1) A(1,2,0) A(2,1,0) BO(3,0) >
-y <D0(1,2) A{1,3,0) B0(2,1) &A(2,2,0) A(3,1,0) E(D >
— <D0{1,3) A(2,2,1) A(2,3,0) BO(3,1) A(3,2,0) B1(0,1) D1(1,0) >
- <C{(2) 2(2,3,1) A(3,2,1) A(3,3,0) BO(0,1) B1(0,2} DO0(1,0) D1(2,0) >
— <00(2,3) BO(3,2) A(3,3,1) A(0,2,1) B1(0,3) E(L) A(2,0,1) D1(3,0) >
— <A(3,3,2) B0O(0,2) A(0,3,1) B1{1,2) DO0(2,0) Di(2,1) &A(3,0,1}>
— <C{3) A(0,3,2) BO(1,2) B1{1,3) DO0(2,1) B&(3,0,2) D1{3,1) >
— <B0(0,3) A(1,3,2) E(2) DO(3,0) A(3,1,2)>)
— <B0{1,3) B1(2,3) DO0(3,1) D1(3,2) >
- <B0(2,3) D0(3,2) >
~» <E{3) >

With respect to this parallel trace, step and place, as we defined them, satisfy conditions (S1), (§2), and (P1),
respectively. Figure 7 depicts the processor and data layout at the initial step for this parallel race. Processors are
represented by the statement that they execute first. Symbol ~ denotes DI(if), and « denotes E(F). This network
ejects two streams, as shown in Figure 8 which depicts the processor and data layout after the final execution step:
stream a moves 1o the top and stream & moves to the right. Both streams meet at the upper-right corner of the
network. In Figure 8, processors are represented by the statement they execute last.

A A g

%3 13 %23 33

B @ @ L & a 4 @
‘o2 12 S22 B2

'Y ® @ & & @
%1 11 21 31

& @ & L] a @
0 S0 20 a0

@ ES » » L4

0,0
%
30}1
4 ?
%2 %41
¢ 4
3 12
LS b3,2 -’¢ 81
%3 2.2
N b3, Po1”
%3
N N = 03,047 Bo* %07
%3
& & » B > > > ®
a » ® v > ¥ ¢
B] 4 » * ®
F B L > ¢

Figure 8. Processor Layout and Output Data - Phases O and 1

20

5.8. Processor Lavout and Data Layout: Place and Patfern - Phase 2
Eliminating basic statements that belong to Phases 0 and 1 from tau ; ,(4) and removing empty parallel
commands, we obtain the parallel trace for Phase 2:

tas(4)

<A{0,0,1y>

<A (0,0,2y B1{(1,0} >

<B(0,0,3) A(0,1,2) A{1,0,2)>
<A(0,1,3) A(1,0,3) A(1,1,2) BL(2,0) >
<A(0,2,3) A(1,1,3) A(2,0,3) BL(2,1} >
<A{1,2,3) A(2,1,3) B1(3,0) >
<Aa{2,2,3) B1(3,1) >

<B1(3,2) >

LddLlld

We now add a systolic architecture for Phase 2. Step,(A(i,j k) and step,(B1(i,j)) have already been defined in
Sect. 5.1. We have to derive place for basic statements of Phase 2. The output of Phase 1 is the input of Phase 2.
Statement A(i,j,k) accesses a; , input from Phase 1.1, and BI(i,j) accesses a; ; input from Phase 1.1. We can derive
place, from step,, flow, and paitern, ;:

placey(AGij k) = patterny 1(a;)+ stepy(AGj L) *flow(a; ;)
= {i+n,—i—k—n)++j+k+2n)%(0,1)
= (i+nj+n) ifi<knk<j
placey(B1(i))) = (+nj+n) if j<i
Since statements A(Z,/,k) and BI(i,j) also access b-elements input from Phase 1.0, we can derive the same place,
from step,, flow, and patiern; . Again, place, is a plane translation of place, and, therefore, also of place, , and
place, ;. For any basic statement S
placey(S) = placey(S)+ (r,n)
= place; o(8)+(n,0)
= place; ((8$)+(0,n)
That is, the processor network of Phase 2 is located at the right of the processor network of Phase 1.0, and on the top
of the processor network of Phase 1.1. This is to be expected since Phase 2 accepts input stream b that Phase 1.0
ejected to the right, and input stream a that Phase 1.1 ejected to the top.

‘We can now derive pattern, from step,, place,, and flow:

paiterny(a;) = (i+n,~i—k—n) ifi<k

patternz(bkj) = {~j—k—nj+n) ifj<k

patterny(c;) = (i+nj+n)
Patterny(b, ;) is identical to pattern; (b, ;) because Phase 2 accepts input stream b from Phase 1.0. Patterny(a;) is
identical to pattern, 1(a;) because Phase 2 accepts input stream from Phase 1.1.

Figure 9 depicts the processor and data layout at the initial step of Phase 2. There is one input siream, ¢, to
Phase 2, apart from streams a and b from Phase 1. Again, we are faced with the problem of multiple input.

21

55,22 e @ & &
b0 50% P :%O a & 4
%,1
‘%,2 821
‘%,3 a;,z
8;,3 s;,z
82,3
ag,a

Figure 9. Initial Data Layout - Phase 2

5.9. Elimination of Multiple Input - Phase 2

Since the multiple input involves the diagonal and the upper triangle matrix elements, we need a basic
statement that copies a;; 1o ¢;; , for i<j. We must connect the first access of ¢ with the last access of a. Variable
C; -1 is Mot accessed in Phase 2. For j<n—1, ¢; j is first accessed by A(i,jj+ 1) at step i+2j+ 2n+ 1. Variable 4y is
last accessed BI(0,n—1) at step 2n—1. For 0<i, a;; is last accessed by BI(i,i—1) at step 3i+2n—1. For i<}, a;; is

last accessed by A(i,j— 1)) at step i+2j+2n~ 1. Therefore, we add the basic statement which copies a; jtoc;;, for

i
iSj<n-—1,atstep i+2j+2n. Again, we add this copy statement for all indices ; and j such that i< J. Basic statement
D1(i,j) introduced in Sect 5.3 copies g; jc;. Its step is defined as:

stepo (DI) = i+2j+2n ifigy
Since DI(i,j) accesses g; J of Phase 1.1, its place function turns out to be:

place,(DI(i)) = (i+nj+n) ifigy

Again, we must add DI(i,j) to the program. According to the step function, DI1(;,j) is executed one step before
A(ijj+1). Basic statement A(Zf,j+ 1) is the first one in the inner-most loop (iterating on k). Therefore, we may add
DI1{i,j) right before the inner-most loop, i.., as the else clause of the if-statement at line 18:

Phase 2:
15 forifromOton—1do
16 for jfrom Oton—1do
i7 begin
18 if j<i then BI(i)
18’ else DI{i)
19 for & from max(i/)+ 1 to n—1 do A(i,j k)
20 end.

The independence of DI(i,j) with itself and with the other basic statements holds under the conditions that we
declared in Sect. 5.7. The parallel trace derived from the entire program, for n=4, is:

22

taug 1 (%)

<C {0}

>
— <D0(0,1) BO(1,0) >
-3 <D0(0,2) A(llllo) B0(270> >
- <p0(0,3) C(1) A{1,2,0) A(2,1,0) BO(3,0)>
— <D0(1,2y &A(1,3,0) BO{(2,1) &a(2,2,0) A{(3,1,0) E(D) >
— <D0{1,3) A{(2,2,1) A{(2,3,0) B0O(3,1) A(3,2,0) BL{0,1} D1(1,0) >
- <C{2) A{2,3,1) A(3,2,1) A(3,3,0) B0O{0,1) BL{0,2)y DO{(1,0y D1(2,0) >
— <D0{(2,3) BO(3,2) A(3,3,1) A(0,2,1) B1(0,3) E(1) A{2,0,1) D1(3,0) >
— <A(3,3,2) BO(0,2) A(0,3,1) B1(1,2) DO(2,0) D1(2,1) A(3,0,1) DL(0,0} >
— <C{3) A{0,3,2) B0O(1,2) BL(1,3} D0(2,1y A{(3,0,2) D1(3,1) B&A(D,0,1L)>
— <B0(0,3) 2&(1,3,2) E(2) DO(3,0) A(3,1,2) A2(0,0,2) D1(0,1) BL(1,0} >
—> <B0(1,3) B1{2,3) DO(3,1) D1(3,2) &(0,0,3) a(0,1,2) A(1,0,2) D1(1,1) >
— <B0(2,3) DO0(3,2) A(0,1,3) D1(0,2) A(1,0,3) A(1,1,2) BL(2,0) >
— <E{3) A(0,2,3) A{(1,1,3) D1(1,2) A(2,0,3) B1(2,1) >
— <D1(0,3)y A(1,2,3) A(2,1,3) D1{2,2) BL{(3,0) >
> <D1{1,3) A(2,2,3) B1(3,1) >
- <D1(2,3) B1(3,2) >
- <D1{3,3) >

Taug ; , and the defined functions step, place, flow and pattern completely describe our first systolic architec-
ture for the Algebraic Path Problem. Figure 10 depicts the processor and data layout at the initial step of parallel
trace taufy ; ,(4). Figure 11 depicts the processor and data layout after the final step of parallel trace taug ; ,(4).
Stream ¢ is the only required input and the only produced output. Copy operations generate and absorbe the
intermediate streams « and b. In Figure 12, hand-drawn lines represent the data flow: the flow of ¢; j 18 represented
by a dotted line for i<j, by a solid line for i=/, and by a broken line for i>j. The circles around the processors
represent stationary data. We can simulate the data flow with our system by a step-by-step display of the processors’
operations and the data layout.

The number of steps of raug_; ,(n) is Sn—2. The number of processors of this architecture is 37%. We shall now
derive other architectures which execute precisely the same paraliel trace, i.e., take identical execution time but have
fewer processors.

6. The Second Design

The first design requires three data streams (including the stationary data stream, i.e., of flow value (0,0)). In
fact, a systolic implementation of the Algebraic Path Problem requires at least three data streams because A(i,j,k)
accesses three matrix elements. The three data streams g, b and ¢ must move in three different directions. Therefore,
in order to require the least number, four, of channel connections to a processor that performs A(j,4), we must make
one of the three streams stationary. Furthermore, pfacel‘é, place, | and place, are plane translations of place;, - the
plane translations in the direction of streams from which they draw their input. If we let stream g or & stay
stationary, the plane translation is in one coordinate 0. For example, if stream « stays stationary, the plane trans-
lations in the direction of stream a is eliminated, i.e., place, 5 will be identical to place, and place, will be identical
to place ;. In other words, the processor networks of Phase 0 and Phase 1.0 are partly overlapped, and the processor
networks of Phase 1.1 and Phase 2 are partly overlapped. Therefore, the number of processors is reduced.

Let us propose a place function whose coordinates are the indices of element « accessed by a basic statement,
such that stream ¢ will stay stationary. Stream ¢ is indexed by { and k. Thus, we propose:

%] _ A &
2 G = L] & &
2 =2 q Al & & &
%3 3 %3 a3
& & @ a & A @
2 S22 %22 T2
& ® ® ® & ES 3
%1 %41 %21 %39
1N @ L] @ & L3
%0 %0 %0 a0
= -4 » » Ed

Figure 10. Processor Layout and Input Data - the First Design

0,3 1,3 25 ‘33
< < < <
%2 12 %2 %32
B D 2 @ &
%1 11 21 37
b B @ 2 L] &
%0 10 %0 30
B N (9 & ® @ &
[N [N S 2 » » & @
LN N B » > > @
Y 2 E » & %
B & & 1 4 %

Figure 11. Processor Layout and Output Data - the First Design

24

& @,
I)
9 - . s, a
~ I AN
(A .—:‘-——-—‘a————\é(& ’ &
T 5 e
T ‘
K ‘ = 2 & &
| :
B L] & @ 3 i' & &
' 2
- "‘
° N | l’ \‘
N ? @ ke@eo-c@- -l A& &
‘-o' l ‘.o'
N
£ @ & L] 4 ®
o/
L
El 2

Figure 12. Data Flow - the First Design

B » > » 2
2 & » 2 L
2 13 B B L3
? i3 » » %
0,0
C;, 7 C;,a
Cg,z c:; 7 C.Z:,o
€? Cf C’ C?

% t
28 a2
?
3,3

Figure 13. Processor Layout and Input Data - the Second Design

25

placeG{A(ij,k)} = (i.k) ifk<ink<j

The rest of place and all of flow and pastern can be derived as before.

Figure 13 displays the processor and data layout at the initial step. This design corresponds to the rectangular
architecture of Robert and Trystram [16]. The number of processors in the network is 72+ 7, which is less than that
of the first design. In both designs, a processor which performs A(i,j,k) requires four channels: two input and two
output channels.

7. Other Systolic Designs

We have performed an exhaustive search of linear place functions with coefficients of Z, j, and % taken from the
set {—1,0,1}. 456 of the 729 (3%) different place functions are consistent with the parallel execution. If we factorize
by the number of processors, we obtain eleven equivalence classes. Table 1 lists one representative of each class. It
reveals the rectangular architecture of Robert and Trystram, here called Appl, as minimal in the number of
processors. The class of which Appl is a member comprises all designs in which streams a or b are stationary. Each
processor has four channel connections.

place, Siow Number of
Design Ak a b ¢ Procs. Conns. Dsgns.
Appl (k) 0,0) 1,0) O, n+n 4 96
App2 (i-kj—k 0,1) (1,0) (=1,-1) |n?+2n 6 24
App3 (i—jk) (=10 (1,0) 0,1 2n? 6 48
App4 (i—k) 0,1) (1,0) (-1,0) {22%2+2n-1 |6 112
AppS) 0,1 1,0 (0,0) 3n? 4 48
App6 (i+]jj+k) (1.1 (1,0) ©.1) 3n2+2n-2 |6 48
App7 (i+j-ki+k) (1,0 (1,D (-1,1) [4n%-1 6 16
App8 G+j-ki-p |(,-1 an (-1,00 |4n? 6 8
App9 (i+kj+k) (0,1) (1,0) (1,0 5n2-3n+1 |6 24
Appl0 (i—j+kj+k) |(~-1,1) (1,0) (1,0 6n*-5n+2 |6 16
Appll G-j+ki+) [(-11) 1D (1,0) 6n2—4n 6 16

Table 1. Alternative Designs of the Algebraic Path Problem

App?2 represents Rote’s hexagonal architecture [17]. Figure 14 depicis the processor and data layout at the
initial step. In App2, since streams a, b, and ¢ do not stay stationary, a processor executing A(i,j.k) requires six
channel connections. Every processor of App2 only performs one type of basic statement. Rote has also related

26

designs Appl and App2 by transformation [18]. Our method simplifies, generalizes, and formalizes this relation-
ship.

3,3

o 23
I ¥ w32
w03 v e w82
¥ v h2 v ¥ w 1
C
o 0.2 o ¥ 21
ki A A
' o BT e W 50
B @ @ 9 &
w 01 v 4 v 20
[N @ @ @ &
v 10
EN @ ® [] &
~0.0
2 1 4 - > &

Figure 14. Processor Layout and Input Data - App2

The other designs in the table are less desirable - our original design is listed as representative of class AppS.
We can also dismiss the designs derived from definitions of place not covered by our search. Coefficients whose
absolute value is greater than 1 only generate differently skewed versions of designs in the table. Non-linear place
coordinates result in wavy flows, which is undesirable in conjunction with a linear step function. The only way
which might lead to a more efficient design than Appl1 is by alteration of the program. We do not pursue this avenue
here.

8. Conclusions

We have succeeded in mechanically deriving a large number of systolic solutions of a complex matrix com-
putation problem. We believe this demonstrates that our method is a tool that makes the study of systolic designs
precise and convenient. Once we had derived the first design, our table of alternative designs was derived in the
course of an afternoon. Through graphical display and simulation, the properties of a design are easily assessed.
Each design is displayed in a few (one to five) minutes. The derivation of the initial design may take longer. In our
case, the main challenge of the initial design was to identify a way to eliminate multiple input - and we were greatly
assisted in that by Rote’s previous work.

27

The Algebraic Path Problem is the first application in which we had to derive systolic designs for a composi-
tion of non-nested loops - following Rote [17], we call them phases. It turned out that, once a design for the first
phase had been determined, the extension of this design to the rest of the phases followed mechanically. We hope
that this will prove to be a useful technique for the systolic implementation of other programs with non-nested loops
ag well.

Many researchers have investigated methods of systolic design in recent years, e.g., [2, 3,4, 8, 12, 13, 14, 15].
All these methods require two kinds of input: one component that can be thought of as a program, and one
component that gives some clue about the structure of the systolic architecture. In our approach both these inputs
need not be cleverly chosen. We can start with a simple proposition that looks promising and, after evaluating the
result, make incremental improvements. In the case of the Algebraic Path Problem, the program was the standard
abstract solution without regard to architectural considerations, and the first processor layout was the simplest place
function we could think of. The other processor layouts were derived by simple variations of the place function.
These variations may be random, or they may be carefully selected. For example, the fact that Phase 0 is, essentially,
LU-decomposition suggests a place function that works well for LU-decomposition [5]: (i—k,j—k). The result is
Rote’s hexagonal design [17].

One interesting result of our exercise is a precise way of enhancing a systolic architecture with reflection
operations. As of now, we have not automated the generation of reflections, although it proceeds completely
mechanically. We are not sure how big the class of problems is for which this technique works. Since we did not
implement the enhancement, we had to add the reflection operations to the program and derive the enhanced
execution via ransform. This involved some non-trivial reasoning,.

Most other approaches do not embed systolic design into a general view of programming and do not address
questions of correctness. The formal precision of our approach is demonstrated by the fact that we were able 10
reason about it mechanically. The simplicity of our approach is attested by its short implementation time: it took the
first author one month to become familiar with the graphics facilities of the Symbolics and write the program.

Acknowledgement
We are grateful to Thomas Lengauer for suggesting the problem.

References
1. Boyer, R. S., and Moore, J 5. A Computational Logic. ACM Monograph Series, Academic Press, 1979,

2. Cappello, P. R., and Steiglitz, K. Unifying VLSI Array Design with Linear Transformations of Space-time. In
Advances in Computing Research, Vol. 2: VLSI Theory, F. P. Preparata, Ed., JAI Press Inc., 1984, pp. 23-65.

3. Chandy, K. M., and Misra, J. "Systolic Algorithms as Programs”. Distributed Computing 1,3 (1986), 177-183.

4. Chen, M. C. Synthesizing Systolic Designs. YALEU/DCS/RR-374, Department of Computer Science, Yale
University, Mar.,, 1985.

5. Huang, C.-H., and Lengauer, C. The Derivation of Systolic Implementations of Programs. TR-86-10, Depart-
ment of Computer Sciences, The University of Texas at Austin, Apr., 1986.

28

6. Huang, C.-H., and Lengauer, C. An Implemented Method for Incremental Systolic Design. TR-86-17, Depart-
ment of Computer Sciences, The University of Texas at Austin, July, 1986.

7. Kung, H. T., and Leiserson, C. E. Algorithms for VLSI Processor Arrays. In Introduction to VLSI Systems,
C. Mead and L. Conway, Eds., Addison-Wesley, 1980. Sect. 8.3.

8. Lam, M. 8., and Mostow, J. "A Transformational Model of VLSI Systolic Design”. Computer 18, 2 (Feb. 1985),
42-52.

9. Lengauer, C., and Hehner, E. C. R. "A Methodology for Programming with Concurrency: An Informal
Presentation”. Science of Computer Programming 2, 1 (Oct. 1982), 1-18.

10. Lengauer, C., and Huang, C.-H. The Static Derivation of Concurrency and Its Mechanized Certification. In
Seminar on Concurrency, S. D. Brookes, A. W. Roscoe, and G. Winskel, Eds., Lecture Notes in Computer Science
197, Springer-Verlag, 1985, pp. 131-150.

11. Lengauer, C., and Huang, C.-H. A Mechanically Certified Theorem about Optimal Concurrency of Sorting
Networks. Proc. 13th Ann. ACM Symp. on Principles of Programming Languages, 1986, pp. 307-317.

12, Li, G.-H., and Wah, B. W. "The Design of Optimal Systolic Arrays”. IEEE Trans. on Computers C-34, 1 (Jan.
1985), 66-77.

13. Miranker, W. L., and Winkler, A, "Spacetime Representations of Computational Structures”. Computing 32, 2
(1984), 93-114.

14. Moldovan, D. I, and Fortes, J. A. B. "Partitioning and Mapping Algorithms into Fixed Size Systolic Arrays™,
IEEE Trans. on Computers C-35, 1 (Jan. 1986), 1-12.

15. Quinton, P. Automatic Synthesis of Systolic Arrays from Uniform Recurrent Equations. Proc. 11th Ann. Int.
Symp. on Computer Architecture, 1984, pp. 208-214.

16. Robert, Y., and Trystram, D. An Orthogonal Array for the Algebraic Path Problem. Research Report 553,
IMAG, Laboratoire TIM3, Grenoble, July, 1985. To appear in Computing.

17. Rote, G. "A Systolic Array Algorithm for the Algebraic Path Problem (Shortest Paths; Matrix Inversion)".
Computing 34,3 (1985), 191-219.

18. Rote, G. On the Connection Between Hexagonal and Unidirectional Rectangular Systolic Arrays. In VLS/
Algorithms and Architectures, F. Makedon, K. Mehlhom, T. Papatheodorou, and P. Spirakis, Eds., Lecture Notes in
Computer Science 227, Springer-Verlag, 1986, pp. 70-83.

19. Zimmermann, U. Linear and Combinatorial Optimization in Ordered Algebraic Struciture. Annals of Discrete
Mathematics 10, North-Holland, 1981,

29

