THE ELUSIVE ATOMIC REGISTER

James H. Anderson, Ambuj K. Singh*,
and Mohamed G. Gouda

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-86-29 December 1986

Abstract

We present a construction of a l-writer/m-reader atomic regis-
ter using 1-writer/1-reader atomic registers. This construction solves
an open problem suggested by Lamport, and closes the only remain-
ing gap in the chain of constructions that implements a k-writer/m-
reader/n-bit atomic register (the most sophisticated) using 1-writer/1-
reader/1-bit safe registers (the most primitive).

*Work supported by NSF grant no. ECS 83-04734

1 Introduction

The currently accepted theory of concurrent computing is deeply rooted in
the concept of atomic registers. An atomic register is one that is read or
written by one or more processes according to the following assumption. If
some reading or writing operations of the register are enabled simultane-
ously in different processes, then these operations are executed in sequence,
one after the other, and not concurrently. This assumption strongly sug-
gests the well-known interleaving semantics of concurrent computations.
Therefore, the validity of this assumption is a cornerstone in establishing
the validity of the present theory of concurrent computing.

One way to check the validity of this assumption is to start with a
more realistic model of a register, in particular one that admits concurrent
reading and writing operations by different processes; and to then show
that an atomic register can be constructed using a number of these regis-
ters. Informally, the construction of an atomic register consists of a set of
registers, along with some programs that access them. Any process that
needs to read or write the constructed atomic register invokes one of these
programs. Different programs can be invoked by different processes concur-
rently; the net effect, however, should resemble that of a serial invocation.
The programs are restricted to having no wait statements, and no loops.
The first restriction guarantees that a process trying to read or write the
constructed register should be able to do so in a finite time, regardless of
the activities of other processes. The second restriction guarantees that no
busy wait statements can be introduced into the construction programs,
for the same reason.

Peterson [Pe 83] was the first to suggest the problem of constructing
atomic registers from safe registers. A safe register is one that can be
read and written concurrently by different processes: a read operation that
overlaps a write operation may return any value from the value domain
of the register. The leap from safe registers to atomic registers is quite
large; fortunately, it can be divided into a number of steps. In order to
identify these steps, we adopt the following notation in defining registers.
A register, safe or atomic, is defined by the triple k/m/n iff it can be
written by k processes, read by m processes, and can store an n-bit value.
When the number of bits is arbitrary, the third value can be omitted; then,

the register is defined by the pair k/m. Based on this notatién, the most
primitive register is 1/1/1 safe, and the most sophisticated is k/m/n atomic.
Figure 1 depicts two chains of register constructions that lead from 1/1/1
safe to k/m/n atomic registers. (Each construction is labeled by a reference
to the paper in which it is presented.)

1/1/1 [La 86] 1/1/n | [This Paper] |1/m/n [VA 86,Pe 86] |k /m/n
Safe Atomic Atomic Atomic

[This Paper] [Pe 83]
1/m/1

Atomic

Figure 1: Two Chains of Register Constructions.

The only missing construction in either chain is the construction of a
1/m atomic register from 1/1 atomic registers. This is the subject of this
paper. Previously, this problem has been mentioned by Lamport [La 86],
and Vitanyi and Awerbuch [VA 86]. In a related work, Misra [Mi 86] has
presented a consistent and complete set of axioms that guarantee atomicity
without giving any constructions to realize them.

The rest of this paper is organized as follows. In Section 2, we formally
define the problem of constructing 1/m atomic registers from 1/1 atomic
registers Then, in Section 3, we present a construction of a 1/2 atomic
register from 1/1 atomic registers. In Section 4, we extend this construction
to a 1/m atomic register for any m. Concluding remarks appear in Section

5.

2 Register Construction

Definition 1: A construction of a 1/m register using 1/1 atomic registers

consists of

e a set of 1/1 atomic registers called internal registers,

2

e (m+1) 1/1 atomic registers collectively called interface registers and
individually named input, outputy,... ,output,, 1, and

e (m+1) programs named writer, readerq, ... , readery_i,
such that the following three conditions hold.

i. Each internal register has an initial value. Any internal register is
written by exactly one program, and is read by exactly one program.

ii. Each interface register has an initial value. Interface register input is
read only by program writer and written by no program in the con-
struction. Each interface register output; is written only by program
reader; and read by no program in the construction.

iii. Each program has the following structure:
forever do wait; <body> od

such that the following three conditions hold.

a. The program can wait at the wait statement for an arbitrary
length of time, possibly indefinitely.

b. <body> consists of one or more statements, each of which can
access at most one register. <body> has no wait statements
and no unbounded loops.

c. Program writer reads register input exactly once in its body;
program reader; writes register output; exactly once in its body. O

The following definitions apply to an arbitrary register construction.

Definition 2: Let P be any program in the construction. An event of P is
a triple, denoted P:::j, where 7 is a natural number and j is a statement
in P. -

Definition 3: A state of the construction is defined by a value for each
register and an event for each program in the construction. The initial siate
of the construction is defined by the initial value for each register and the

2 o ° @
event P:0:wait for each program P in the construction. O

Definition 4: Let s and s’ be two states of the construction, and let
e = P:i:j be the event of program P in state s. State s’ is said to follow
state s over e, denoted s = &', iff the following two conditions hold.

i. The register values in state s’ are the result of executing statement j
of program P in state s.

ii. The event for each program other than P in state s’ is the same as
the event for that program in state s. The event for program P in
state s’ is P:¢':j" where:

if j is the last statement in the body of P then j' is the wait
statement and #' = i + 1, else ;' is the statement following
statement 7 in P and ¢ = ¢. O

Definition 5: A history of the construction is a sequence g s Dsy...
where sg is the initial state of the construction and for each i, state ;41
follows state s; over event e;. O

Definition 6: Let stmig, stmiy, .., stmt,_; denote the sequence of state-
ments in the body of program P. Then, for any natural number i, the
sequence of events P:i:stmto, P:i:stmiy, .., Pri:stmiz, is called an
operation of P, and is denoted P:i. (Informally, an operation P:¢ is the
sequence of events corresponding to the it* execution of program P in some
history.) If P is the writer program then P:1 is called a write operation;
Otherwise, P is a reader program and P:¢ is called a read operation. [

Definition 7: An operation P, :i; precedes another operation P;:¢3 in a
history h if the last event of the operation Pj:i; precedes the first event of

the operation P:t5 in h. O

Notice that from definitions 4 and 7, operation P:i¢ precedes operation
P:i+1, for any program P and any .

Definition 8: A history h is called proper iff the initial write operation,

W : 0, precedes all read operations in h.

Definition 9: Let w be any write operation in a history k. By definition,
w contains exactly one event in which the value of the interface register
input is read; let this value be v. In this case, w is said to assign v to
the 1/m register. Similarly, let r be any read operation in a history h. By
definition, r contains exactly one event in which a value is written to some
interface register output;; let this value be v. In this case, r is said to return
v from the 1/m register. : O

Definition 10: Let h be any proper history of the construction. h is said
to be atomic iff there exists a function ¢ : {all read operations in h} —
{0,1,2...} such that the following three conditions hold.

i. Integrity: For each read operation r in h, if r returns a value from the
1/m register then the write operation W:é(r) assigned that value to
the 1/m register.

ii. Safety: For each read operation r in h, r does not precede the write
operation W: ¢(r) and the write operation W : ¢(r)+1 does not
precede r. This condition ensures that a read operation does not
return a value from the future or the far past.

iii. Precedence: For any two read operations r,7' in h, if r precedes 7'

then ¢(r) < ¢(r'). O

Definition 11: A 1/m register construction is atomic iff all its proper
histories are atomic. O

3 Construction of a 1/2 Atomic Register

In the following sections, we show how to construct a 1/2 atomic register
from 1/1 atomic registers. In Sections 3.1 and 3.2, we describe the archi-
tecture of the construction and its initial state. In Section 3.3 we define the
programs for the writer and each reader. Lastly, in Section 3.4, we prove
that the construction is atomic.

o

WS(old,new,seq,done) S SE(wval)

WW(old)

RS(old,new,seq,same)

EW(new)

RW(seq)

R RE(val)

WR(old,new,seq)

Figure 2: 1/2 Atomic Register Architecture.

3.1 Architecture

The architecture is illustrated in Figure 2. In this figure, programs are
represented by circles, and registers are represented by boxes. An arrow is
drawn from a program to a register to indicate that the program writes to
the register; an arrow is drawn from a register to a program to indicate that
the program reads from the register. For convenience, the writer program
is called W, and the two reader programs are called R and S.

Qur construction has five internal registers, denoted WW, WS, WR,
RW, and RS, one input register, denoted EW, and two output registers,
denoted RE and SE. Each register contains one or more fields. In Figure 2,
register fields are listed in parentheses after the register name. For example,
the register WR has fields old, new, and seq.

Informally, the register fields are used in the following way. The register
fields old, new, and wal have the same type as the register being constructed.
Basically, old contains the value stored in the register before the most recent

write operation; new contains the value written by the most ‘recent write
operation; and val contains the last value read by either R or S.

The register fields done and same are both boolean. During a write
operation, W writes twice to WS; done is set to true during the second write
to indicate that the write operation is complete. During a read operation
by R, WR is read twice; R sets same to true iff it reads the same values for
old, new, and seq both times.

The register field seq stores a sequence number in the range 0..2.

3.2 Initial State

The initial register values are as follows:

EW = (y), WW = (z),

WR = (y,2,0), WS = (y, z,0, true),
RS = (y, z,0, true), RW = (0),

RE = (z), and SE = (z),

where z and y are arbitrary but distinct values of the constructed register.

3.3 Algorithm

In this section, we describe the algorithm informally. The algorithm is
specified by defining the body for each program. The bodies for programs
W, R, and S are shown in Figures 3, 4, and 5, respectively.

Before describing the algorithm in detail, it is worth pointing out two
constraints imposed by Definition 10. First of all, the condition of safety
implies that a read operation that does not overlap a write operation must
return the most recently written value. Second, suppose that two read
operations, say r; and ry, overlap the same write operation and that r;
precedes rp. Then, the the condition of precedence implies that r; must
return the new value if r; does. These constraints should be kept in mind
when reading the description that follows.

During a write operation, W writes the triple (old value, new wvalue,
sequence number) to both WR and WS. WR is written to once. WS is
written to twice, the first time with the variable done set to false and the

0: read (new) from EW;
1: read (old) from WW;
2: if old # new then

10:
11:
12:

15:
16:

17:
18:
19:
20:

21:

24:

3: read (seq) from RW;

seq 1= (seq + 1) mod §;

write (old, new, seq, false) to W5;

write (old, new, seq) to WR;
{ol
(

00 =1 L b

write (old, new, seq, true) to WS;
write (new) to WV,
Figure 3: <body> of Writer W.
: read (oldy, new;, seq;) from WR;

write (seq;) to RW;

read (olds, news.seqo) from WR;

if old; # olds V new; # news V seq; # seqy then
13: same = false:

else
14: same 1= {rue;

fi

write (oldy, newy,seq;, same) to RS;

write (new;) to RE;

Figure 4: <body> of Reader R.

read (oldq, new;,seq;, doney) from WS;
read (old, new, seq, same) from RS;
read (olds, news, seqq, dones) from WS;
flag := (old; = old = olds A new; = new = newsA
seq; = seq = seqq A done; = doney A same};
if donen V flag then
22: val := news;
else
23: val ;= olds:
fi
write (val) to Sk

Figure 5: <body> of Reader S.

v}

second time with done set to true. W computes its sequence number by
reading the sequence number in RW and then incrementing it. Whenever R
performs a read operation, it copies the sequence number from WR to RW.
Therefore, if the sequence numbers in registers WS and RS are different,
then WS was written to after RS. S uses this information to determine if
a read by R has occurred recently.

Rreads WR twice, and sets the variable same to true if it reads the same
values both times. Between these reads, R writes the sequence number from
the first read to RW..Since W writes to WR only once, R must return one
of the new values that it reads in order to ensure safety. As seen in Figure
4, R returns the new value from the first read. Suppose that R overlaps a
write operation, and that there was a preceding read by S that returned
the new value. Then, the algorithm ensures that the write operation in
question has written to WR before R begins. This is because S returns the
new value only if either done; or flag is true. If done; is true, then WR
has certainly been written to. If flag is true, then there was a read by R
that preceded S and returned the new value, and, therefore, WR has been
written to (Strictly speaking, it is possible for flag to be set to true as a
consequence of a read by R that just finished, but returned a value read in
the past. However, we will ignore this possibility for now.) Therefore, R
must return the new value.

S reads WS twice and always returns either the new or old value from
the second read. In between these reads, S reads from RS. The information
from these three reads is used to compute the boolean variable flag in
statement 20. It can be shown that if S overlaps a write operation and
there was a preceding read by R that returned the new value, then flag
will be true. Also, if S does not overlap a write operation, then done; will
be true. Therefore, if either done, or flag is true, then S returns the new
value. Otherwise, if done, and flag are both false, then S returns the old
value.

3.4 Proof of Correctness
3.4.1 Notation

In this section, we describe notation that will be used in the proofs in the
following section and in the Appendix.

Let f be a field of a register R in the construction. Let s be any state
in some history of the construction. Then, (R.f), denotes the value of
field f of register R in state s. For example, if s is the initial state, then
(WR.old), = y.

Let P:i be any operation in a proper history h and let war be a lo-
cal variable in P. Then, (P:i).var denotes the value of var in the state
immediately following the last event of operation P:7 in h.

3.4.2 Proofs

We now prove that our construction is atomic by defining a function ¢ for
each proper history of the construction, and then showing that ¢ meets the
three conditions integrity, safety, and precedence stated in Definition 10.

Suppose that R: m: 9' reads from W:i, S:n: 17 reads from W:j, and
S:n:19 reads from W :k. Then, ¢ is defined as follows.

HR:m) = 1
k if (S:n).done,y
#(S:n) = { k—1 if ~(S:n).done; A(S:n).flag

J if =(S:n).dones A(S: n).flag

Proof of Integrity: We prove that for any read operations R:m and
S:n, (R: m).new; = (W: ¢(R:m)).new and (§: n).val = (W: ¢(S:n)).new.
Suppose that R: m: 9 reads from W :e. Then,

(R: m)new; = (W:i)new since R: m: 9 reads from W :1
= (W:é(R:m)).new by the definition of ¢

Suppose that S: n: 17 reads from W:; and S:n:19 reads from W :k.
In order to show that (S:n)wal = (W: ¢(S:n)).new, we must consider

1When referring to events, statement numbers are used instead of the actual statements
themselves.

10

three possibilities. First, suppose that ¢(S:n) = k. Then, *

(S:n)wal = (S:n)new, by the algorithm for reader §
= (W:k).new since S:n: 19 reads from W:k
= (W:¢(S:n)).new by the definition of ¢

Secorid, suppose that ¢(S:n) =k — 1. Then,
(§:n)wal = (S:n).old, by the algorithm for reader S
= (W:k).old since S: n: 19 reads from W :k

= (W:k—-1)new by the algorithm for writer W
= (W:¢(S:n))new by the definition of ¢

Third, suppose that ¢(S:n) = j. Note that ¢(S:n) = j = (§: n).flag.
Therefore,

(§:n)val = (5:n)new; by the algorithm for reader §
= (S:n).new; since (S: n).flag holds
= (W:j)new since S:mn: 17 reads from W:j

= (W:¢(S:n)).new by the definition of ¢
This completes the proof of integrity. O

Proof of Safety: Let R:m be any read operation for reader R. By the
definition of ¢, R: m: 9 reads from W: ¢(R:m): 9. Therefore, R:m does
not precede W:¢(R:m), and W:¢(R:m)+1 does not precede R:m.

Let §:n be any read operation for reader S. We show that S:n does
not precede W:¢(S:n), and that W:¢(S:n)+1 does not precede S:n.
Suppose that S: n: 17 reads from W:j, and S: n: 19 reads from W:k. By
the definition of ¢, ¢(S:n) < k. Therefore, since S: n: 19 reads from W': k,
S:n does not precede W:4(5:n).

We now show that W :¢(S:n)+1 does not precede S:n. Suppose, to
the contrary, that W:¢(S:n)+1 precedes S:n. Then, since S: n: 17 reads
from W:j, and since S: n: 19 reads from W:k, ¢(S:n)+1 < j < k. Thus,
by the definition of ¢, j = k and ¢(S:n) = k — 1. Hence, (S:n).done; is
false. Therefore, S:n: 17 and S: n: 19 both read from W: ¢(S:n)+1:5.
This implies that W:¢(S:n)+1 does not precede S:n; contradiction. This
completes the proof of safety. O

11

%

Proof of Precedence: Let r and 7’ be two read operations in h such
~ that r precedes r’. In order to prove precedence, we must show that ¢(r) <
#(r"). There are four cases to consider:

Case 1: r= S:mandr' = R:n
Case 2: r=S:mandr = 85:n
Case 3: r=R:mandr' =5:n
Case 4: r=R:mandr' = R:n

The proofs for these four cases use Lemmas 1, 2, and 3, which are stated
and proved in the Appendix.

Case 1: Suppose that S:m precedes R:n. Furthermore, suppose that
S:m: 17 reads from W:i, S:m: 19 reads from W:j, R:n: 9 reads from
W:k, and R: n: 11 reads from W:l. By the algorithms for R and 5,: <
and k < I. Also, since W writes to WS before WR, k> 7 — 1.

By the definition of ¢, ¢(R:n) = k and ¢(S:m) < j. Therefore, if
k > j, the result holds. So, assume that k=7 — 1.

Since R:n:9 reads from W:j—1, S:m: 19 must read from W:5: ;.
Therefore, (§: m).done; is false. By the definition of ¢, this implies that
either ¢(S:m) =i or ¢(S:m) =7 —1. If ¢(S:m) =7 — 1, then #(S:m) =
#(R:n). Otherwise, $(S:m) = i, and, by the definition of ¢, (S: m).flag
is true. Then, by Lemma 1, ¢(S:m) =1 < j = ¢(R:n). O

Case 2: Suppose that §:m precedes S:n. Furthermore, suppose that
S:m: 17 reads from W:i, S: m: 19 reads from W:j, S: m: 17 reads from
W:k, and S: m: 19 reads from W:l. By the algorithm for reader S, and
since S:m precedes S:n,1 < j <k <L

Assume that j < [. By the definition of ¢, ¢(S:m) < j, and ¢(S:n) 2
min(k,1—1). Therefore, ¢(5:m) < ¢(S:n). For the rest of the proof,
assume j =k = 1.

If (S: n).done; is true, then ¢(S:m) < j = #(S:n). If (S:m).done; is
true, then (S: n).done; is also true, and ¢(S:m) = j = ¢(S:n). Consider
the remaining possibility; i.e., (S: m).done, and (§: n).done; are both false.

12

If (§:m).flag is false, then ¢(S:m) = 7 —1 < #(S:n)." Otherwise,
(S:m).flag is true and ¢(S:m) = i. If ¢ = j, then S:m:17, §:m: 19,
S:n:17, and S:n:19 all read from W:1:5. Therefore, by Lemma 2,
(S: n).flag is also true and ¢(S:m) = i = ¢(S:n). Otherwise, 2 < j, and
#(S:m)=:<3j-1<¢(5:n). 0

Case 3: Suppose that R:m precedes S:n. Furthermore, suppose that
R:m: 9 reads from W:i, R: m: 11 reads from W:j, S: n: 17 reads from
W:k,and S: n: 19 reads from W :I. By the algorithm for reader R, ¢ < j,
and by the algorithm for reader S, k¥ < I. Also, since R:m precedes S:n,
and since W writes to WS before WR, j < k. Therefore, : < j <k <.

Ifi < I, then ¢(R:m) =1 < min(k,l-1) < ¢(S:n). Also, If (§: n).done,
is true, then ¢(R:m) = ¢ < | = ¢(S:n). Therefore, we are left with
only one case; namely, ¢ = j = k = [and (S:n).done; = false. In
this case, S: n: 17 and S: n: 19 both read from W:i: 5, and R: m: 9 and
R:m: 11 both read from W :i: 6. Therefore, by Lemma 3, (S: n).flag is
true. Hence, by the definition of ¢, ¢(S:n) is equal to either k or [. There-
fore, ¢(R:m) = ¢(S:n). O

Case 4: Suppose that R:m precedes R:n. Furthermore, suppose that
R:m: 9 reads from W:i, and R:n: 9 reads from W:j. Then, since R:m
precedes R:n, i < j. Therefore, by the definition of ¢, dRm)y=1<3=
#(R:n). O

4 Construction of a 1/m Atomic Register

We now show how to extend the construction given in the previous section
to m > 2 readers. Qur construction relies on the following observation:
since reader S does not write to any internal register, we can replace it by
(m — 1) readers So, ..., Sm-2, a8 depicted in Figure 6, without introducing
any multiple writer registers. Registers WS and RS now become 1/(m -
1) atomic registers, which can be constructed recursively using 1/(m - 2)
atomic registers.

The body of program S;,i = 0,...,(m — 2), is the same as the body

13

0 SEq(val)
WS(old,new,seq,done)
——@:__,SE,H_Z(M)
EW(
= RS(old,new,seq,same)
RW (seq)
R RE(val)

WR(old,new,seq)

Figure 6: 1/m Atomic Register Architecture.

for S depicted in Figure 5, except that SE is replaced by SE; in statement
24. The bodies of programs W and R are the same as in the original
construction. The proof of correctness for this construction is essentially
the same as that given for the two reader construction.

Let us now examine the complexity of our construction. The metric
we will use is the number of 1/1 atomic bits used in the construction.
Let B(m,n) denote the number of 1/1 atomic bits required to construct a
1/m/n atomic register. Then, referring to Figure 6, we have the following.

e Register WW uses n 1/1 atomic bits.

e Register WS uses B(m — 1,2n + 3) 1/1 atomic bits if m > 2, and
(2n + 3) 1/1 atomic bits if m = 2.

e Register RS uses B(m — 1,2n + 3) 1/1 atomic bits if m > 2, and

14

(2r2 + 3) 1/1 atomic bits if m = 2.)
e Register RW uses 2 1/1 atomic bits.
e Register WR uses (2n + 2) 1/1 atomic bits.
Therefore, B(m,n) can be defined as follows.

B(m,n) = 2B(m—-1.2n+3)+3n+4 ifm>2
T T4+ 10 ifm=2

The solution to this equation is
B(m,n)=2""(n+3)-2""* —n42

That is, it takes O(n4™) 1/1 atomic bits to build a 1/m/n atomic register.

5 Discussion

We have shown that it is possible to construct a 1/m atomic register from
1/1 atomic registers. With this result, we now know that it is possible to
build a k/m/n atomic register from 1/1/1 safe registers. Previously, it was
not known whether such a construction existed.

The construction that we have presented is relatively simple in the two
reader case. Also, the two reader construction can elegantly be extended to
m > 2 readers through a recursive construction. Therefore, to understand
how the construction works, it is necessary only to understand the two
reader case. However, this simplicity comes at a high price. Namely, the
number of 1/1 atomic bits required to construct a 1/m atomic register
is exponential in m. In [SAG 86] we show how to extend the two reader
construction to a 1/m/n construction that requires only O(m?n) 1/1 atomic
bits.

After developing the constructions in [SAG 86], it came to our attention
that Kirousis, Kranakis, and Vitanyi [KKV 86] have developed another
construction of a 1/m/n atomic register. There construction, however, is
completely different from ours; in fact, its space complexity is O(m*+m?n)
which is greater than the space complexity of the construction presented in

[SAG 86].

15

Appendix: Lemmas and Propositions:

* In this section, we state and prove three lemmas and one proposition. The
three lemmas are used in the proof of correctness in Section 3.4. The
proposition is a safety property that is used in the proofs of the first two

lemmas.
The following notation is adopted in the proofs that follow:

P(s) denotes the predicate [(WS.new), # (WR.new),] =
=[(WS.old), = (RS.old), N(WS.new), = (RS.new),A
(WS.seq)s = (RS.seq)s A (RS.same),].

Q(s,1) denotes the predicate (S: 7).0ld = (RS.old),A
(S:i).new = (RSnew), A(S:t).seq = (RS.seq),A
(S:i).same = (RS.same);,.

V(s,1) denotes the predicate (S: 7).0ld; = (S:1).0ld; = (WS.old);A
(S:1).new; = (5: 1).new, = (WS.new);A
(S:i).sequ = (S:i).seqy = (WS.seq)s,.

8p < 81 denotes that state so precedes state s; in h.

80 = 81 denotes that state so precedes or is the same as state s; in h.

fas) denotes modulo 3 addition.

e denotes modulo 3 subtraction.

Let h be any proper history of the construction. Without loss of gener-
ality, we assume that for every write operation w in h, (w).old # (w).new.
The following discussion is in the context of h.

In order to avoid special cases in the proofs, we assume that the hypo-
thetical operations W:—1, R:—1, and S:—1 occur “before” the intial state.
Furthermore, we assume that W :—1 precedes R:—1, and that R:—1 pre-
cedes S:—1. Tobe consistent with the initial state defined in Section 3.2, we

16

assume that (W: —1).0ld = y, (W: —1).new = —1, and (W: ~1).seq = 0.

Lemma 1 Suppose that S:m, R:n, W:k, and W:k+1 are operations in
h, and that S:m precedes R:n. Furthermore, suppose that S:m: 17 and
S:m: 19 both read from W: k+1:5, and that R: n: 9 reads from W: k: 6.
Then, (S: m).flag must be false.

Proof: Let sy denote the state following the occurrence of W: k+1: 5,
let s; denote the state following the occurrence of S: m: 18, let s, denote
the state following the occurrence of R: n:9, and let s3 denote the state
following the occurrence of W: k+1: 6.

Since S:m precedes R:n, s; < $,. Since §: m: 17 reads from W: k+1: 5,
3p < 81. Since R: n: 9reads from W: k: 6, s, < s3. Therefore, s < 51 < s3.

By the algorithm for reader S, Q(s1,m) must be true. Also, since
S:m:17 and S:m: 19 both read from W: k+1: 5, and since sg < 83 < 83,
V(sy,m) must be irue.

Since sp < 81 < 83, (WS.new),, # (WR.new),,. Therefore, by Propo-
sition 1, we have —~[(W S.old),, = (RS.old),, A(W S.new),, = (RS.new),, A
(W S.seq)s, = (RS.seq)s, A (RS.same),,]. This implies that (S: m).flag is
false. O

Lemma 2 Suppose that S:m, S:n, and W:k are operations in h, and
that S:m precedes S:n. Furthermore, suppose that S:m:17, §:m: 19,
S:n:17, and S:n:19 all read from W:k:5. Then (S:m).flag =

(S:n).flag.

Proof: Let us assume that (5: m).flag is true. Then, we must prove
that (S: n).flag is also true.

Since S:m:17,5:m:19, S:n: 17, and S: n: 19 all read from W: k: 5,
it is required to prove that (S:m).old = (S:n).old, (§:m).new =
(S: n).new, (S:m).seq = (5: n).seq, and (S: m).same = (S: n).same.

Assume that S: m: 18 reads from R:7: 15, and that S: n: 18 reads from
R: §:15. Then, since S:m precedes S:n, 1 < j.

IfR:::9, R:4:11, R: : 9, and R: j: 11 all read from the same write
to WR, then (§: n).flag must be true. We now prove that this must be
the case.

17

Let so denote the state following the occurrence of W': k: 5,det s, denote
the state following the occurrence of W: k: 6, and let s, denote the state
following the occurrence of W: k: 7.

Let s3 denote the state following the occurrence of S: m: 18 and let s4
denote the state following the occurrence of S: n: 18. Since S:m precedes
S:n, s3 < s4. Since S: m: 17 reads from W: k: 5, o < $3. Since S:n:19
reads from W: k: 5, s4 < s5. Therefore, sg < 83 < 384 < 82.

Let ss denote the state following the occurrence of R:::15. Since
S:m: 18 reads from R::: 195, s5 < s3.

We now claim that s; < ss. This can be justified as follows. Assume
to the contrary that ss < sp. Recall that so < ss. Therefore, s5 < s < $a.
Since S: m: 18 reads from R: i: 15, Q(s¢, m) must be true. Since S:m: 17
and S: m: 19 read from W: k: 5, V(sg, m) must be true. Therefore, since
(S: m).flagis true, [(WS.old),, = (RS.0ld) sy A(W S.new),, = (RS.new)s, A
(W S.seq)s, = (RS.seq)s, A (RS.same)s,| is true. However, this contradicts
Proposition 1, since (WS.new),, # (W R.new)s,-

We have thus far established that s < 85 < 83 < 84 < $3.
We can also show that s; < ss as follows. Since S:m:18 reads
from R:i:15, Q(ss,m) must be true. As noted previously, V(so,m)
must be frue. Since sg < 85 =< 82, (WS.old),, = (WS.old),,
(WS.new),, = (WS.new),,, and (WS.seq)s, = (WS.seq),,. Therefore,
since (S:m).flag is true, [(WS.old),, = (RS.old)s A (WSnew),, =
(RS.new)s, A (WS.seq)s, = (RS.seq)s; A (RS.same),,] is true. Therefore,
by Proposition 1, (WS.new),, = (WR.new),,. This implies that s; < ss.
Therefore, we have established that so < 51 < 85 < 83 < 84 < 2.

Let se¢ denote the state following the occurrence of R: j: 11. Note that
i < j = s5 < sg. Also, since §:n: 18 reads from R: j: 15, sg < s4. There-
fore, sp < 81 < S5 < S < 84 < s3. This implies that R:%:9, R:2:11,
R:j:9,and R:j:11 all read from W: k:6. As noted above, this implies
that (S: n).flag is true. O

Lemma 3 Suppose that R:m, S:n, and W:k are operations in k, and that
R:m precedes S:n. Furthermore, suppose that R: m: 9 and R:m: 11 both
read from W: k: 6, and that S:n: 17 and S: n: 19 both read from W:k:5.
Then, (S: n).flag must be true.

18

Proof: Since S:n:17 and S:n:19 both read from W: k¢35, it is re-
quired to prove that (S:n).old = (W: k).old, (§: n).new = (W: k).new,
 (S:n).seq = (W:k).seq, and (S: n).same = true.

Let so denote the state following the occurrence of W: k: 5, let s; denote
the state following the occurrence of W: k: 6, and let s, denote the state
following the occurrence of W: k: 7.

Let s3 denote the state following the occurrence of R: m: 9, let s4 denote
the state following the occurrence of 5: n: 18, and let s; denote the state
following the occurrence of S:n:19. Since R:m:9 reads from W:k:6,
s < s3. Since S:n: 19 reads from W: k: 5, s5 < s2. Since R:m precedes
S:n, sz < 84. Therefore, sp < 81 < 83 < 84 < 85 < 59.

Suppose that S:n:18 reads from R:::15. Let sg denote the state
following the occurrence of R:i:9, let s; denote the state following the
occurrence of R:4: 11, and let sg denote the state following the occurrence
of R:1: 15.

Since S: n: 18 reads from R: 7: 15, and since R:m precedes S:n, 1 > m.
Therefore, s3 < sg. The fact that S: n: 18 reads from R: ¢: 15 also implies
that sg < s4. Thus, we have established that sg < $1 < 83 = 56 < 87 < 88 <
84 < 85 < S3. Therefore, R: i: 9and R:1: 11 bothread from W: k: 6. Since
S:n: 18 reads from R:i: 15, this implies that (S:n).0old = (W: k).old,
(S: n)new = (W: k).new, (S:n).seq = (W:k).seq, and (S: n).same =
true. O

Proposition 1 P(s) is true for each state s occurring in h.

Proof: Assume to the contrary that —P(s) holds for some state s in A.
Note that =P(s) = (W S.new), # (WR.old), A (WS.0ld), = (RS.0ld), A
(WS.new)s = (RS.new), A (WS.seq), = (RS.seq), A (RS.same)s.

Let W :n denote the last write operation to write to WS before state s.
Let R:m denote the last read by R to write to RS before state s.

Suppose that (W:n).old = u, (W:n)new = v, and (W:n).seq
g. Then, =P(s) = (R:m).old; = u,(R: m)new; = v,(R:m).seq; =
g,and(R: m).same = true.

Assume that R:m: 9 reads from W:¢:6 and R:m: 11 reads from
W:j:6, where ¢ < j. Let 3o denote the state following the occurrence

19

of W:n: 6. Then, the first conjunct of ~P(s) implies that s « so. There-
fore, since R: m: 11 reads from W: j: 6 and since R: m: 15 is the last write
" to RW before state s, § < n.

Since (R: m).same = true, (W:i).old = (W:j).0ld = u, (W:i).new =
(W: j)new =v, and (W:4).seq = (W: j).seq =gq.

Since (W: j).old = (W:n).old = uand (W: j).new = (W: n).new = v,
and since j < n, W:j+1 exists and (j + 1) < n.

Let s; denote the state following the occurrence of R: m: 11, and let
s, denote the state following the occurrence of W: j41: 6. Since R: m: 11
reads from W: 5: 6, 51 < s3.

Let s; denote the state following the occurrence of R: m: 10, and let s4
denote the state following the occurrence of W: n: 3. Note that s3 < s;.
Also, since (j + 1) < n, s; < s4. Therefore, since s; < s, it follows
that 33 < s4. This implies that W: n: 3 cannot read from R: k: 10, where
E<m.

Suppose that R: m+1: 15 occurs in k, and let s5 denote the state fol-
lowing the occurrence of this event. Since R:m: 15 is the last write to
RW before state s, s < s5. This implies that W: n:3 cannot read from
R: k: 10, where k > m + 1. Therefore, we have shown that W: n: 3 must
read from either R: m: 10 or R: m+1: 10.

Suppose that W: n: 3 reads from R: m: 10. Then, since (R: m).seq; =
g, (W:n).seqg = ¢ @ 1. But, this contradicts the fact that (W: n).seq = g.

Suppose that W: n: 3 reads from R: m+1:10. Since (W: n).seq = g,
it follows that (R: m+1).seq; = ¢ 651 = ¢ ®2. Note that a write operation
reads the sequence number in register RW, increments it by 1, and writes
it to the field seq of register WR. Also, a read operation of R reads the se-
quence number in the field seq of register WR and writes it to register RW.
Therefore, (W R.seq), = (RW.seq)s V (W R.seq)» = (RW.seq)y @ 1 for all
states s’ in h. In particular, let s¢ be the state immediately following the
occurrence of R: m+1:9. In that case, (WR.seq)s, = (R: m+1).seq; and
(RW.seq),, = (R: m).seqy. Therefore, (R: m+1).seq; is either (R: m).seq
or (R: m).seq; ® 1. That is, (R: m+1).seq; # ¢ D 2; contradiction. O

References

[KKV 86] Kirousis, L.M., Kranakis, E., and Vitanyi, P., “Atomic Multi-
reader Register,” detailed abstract, 1986.

[Pe 83] Peterson, G. L., “Concurrent Reading while Writing,” ACM Trans-
actions on Programming Languages and Systems, Vol. 5, pp. 46-55,
1983.

[Pe 86] Peterson, G.L., private communication, 1986.

[La 86] Lamport, L., “On Interprocess Communication, Parts I and II,”
Distributed Computing, Vol. 1, pp. 77-101, 1986.

[Mi 86] Misra, J., “Axioms for Memory Access in Asynchronous Hardware
Systems,” ACM Transactions on Programming Languages and Sys-
tems, Vol. 8, pp. 142-153, 1986.

[SAG 86] Singh, A., Anderson, J., and Gouda, M., “The Elusive Atomic
Register Revisited,” Technical Report, Department of Computer Sci-
ences, University of Texas at Austin, 1986.

[VA 86] Vitanyi, P., and Awerbuch, B., “Atomic Shared Register Access
by Asynchronous Hardware,” FOCS, 1986.

21

