THE ELUSIVE ATOMIC REGISTER REVISITED

Ambuj K. Singh*, James H. Anderson,
and Mohamed G. Gouda

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-86-30 December 1986

Abstract

A new construction of a 1-writer/m-reader/n-bit atomic register
using O(m?n) 1-writer/1-reader/1-bit atomic registers is presented.
This construction is more efficient, i.e, uses less registers, than previ-
ous constructions.

*Work supported by NSF Grant ECS 83-04734 and Office of Naval Research Contract
N00014-86-K-0182

1 Introduction

The currently accepted theory of concurrent computing is deeply rooted in
the concept of atomic registers. An atomic register is one that is read or
written by one or more processes according to the following assumption. If
some reading or writing operations of the register are enabled simultane-
ously in different processes, then these operations are executed in sequence,
one after the other, and not concurrently. This assumption strongly sug-
gests the well-known interleaving semantics of concurrent computations.
Therefore, the validity of this assumption is a corner stone in establishing
the validity of the present theory of concurrent computing.

One way to check the validity of this assumption is to start with a more
realistic model of a register, in particular one that admits concurrent read-
ing and writing operations by different processes; and to then show that
an atomic register can be constructed using a number of these registers.
Informally, the construction of an atomic register consists of a set of regis-
ters, along with some programs that access them. Any process that needs to
read or write the constructed atomic register invokes one of these programs.
Different programs can be invoked by different processes concurrently; the
net effect, however, should resemble that of a serial invocation. The pro-
grams are restricted to having no wait statements, and no unbounded loops.
The first restriction guarantees that a process trying to read or write the
constructed register should be able to do so in a finite time, regardless of
the activities of other processes. The second restriction guarantees that no
busy wait statements can be introduced into the construction programs,
for the same reason.

Peterson [Pe 83] was the first to suggest the problem of constructing
atomic registers from safe registers. A safe register is one that can be
read and written concurrently by different processes: a read operation that
overlaps a write operation may return any value from the value domain of
the register. The leap from safe registers to atomic registers is quite large;
fortunately, it can be divided into a number of steps. In order to identify
these steps, the following notation is used in defining registers. A register,
safe or atomic, is defined by the triple k/m/n iff it can be written by &
processes, read by m processes, and can store an n-bit value. When the
number of bits is arbitrary, the third value can be omitted; then, the register

is defined by the pair k/m. Based on this notation, the mést primitive
register is 1/1/1 safe, and the most sophisticated is k/m/n atomic. Figure
1 depicts two chains of register constructions that lead from 1/1/1 safe to
k/m/n atomic registers. (Each construction is labeled by a reference to the
paper in which it is presented.)

1/1/1| [La86] |1/1/n| [ASG86] |1/m/n|IVA 86,Pe 86] |k/m/n
Safe Atomic Atomic Atomic

[ASG 86] [Pe 83]
1/m/1

Atomic

Figure 1: Two Chains of Register Constructions.

The problem of constructing 1/m atomic register from 1 /1 atomic reg-
isters has been mentioned as an open problem by Lamport [La 86] and
Vitanyi and Awerbuch [VA 86]. A solution to the problem was presented
in [ASG 86]. This solution, though easy to explain and understand, has an
exponential complexity. In this paper, a polynomial solution to the problem
is presented.

The rest of this paper is organized as follows. In Section 2, the problem
of constructing 1/m atomic registers from 1/1 atomic registers is formally
defined. In Section 3, the construction of a 1/m atomic register from 1/1
atomic registers is presented. In Section 4, this construction is proved to
be correct. The time and space complexity of the construction is discussed
in Section 5. Section 6 contains concluding remarks.

2 Register Construction

Definition 1: A construction of a 1/m register using 1/1 atomic registers
consists of

e aset of 1/1 atomic registers called internal registers,

2

e (m-+1) 1/1 atomic registers collectively called interface registers and
individually named input, outputy, ... ,outputm,_;, and

e (m-+1) programs named writer, readerg, ... , reader 1,
such that the following three conditions hold.

i. Each internal register has an initial value. Any internal register is
written by exactly one program, and is read by exactly one program.

ii. Each interface register has an initial value. Interface register input is
read only by program writer and written by no program in the con-
struction. Each interface register output; is written only by program
reader; and read by no program in the construction.

iii. Each program has the following structure:
forever do wait; <body> od

such that the following three conditions hold.

a. The program can wait at the wait statement for an arbitrary
length of time, possibly indefinitely.

b. <body> consists of one or more statements, each of which can
access at most one register. <body> has no wait statements
and no unbounded loops.

¢. Program writer reads register input exactly once in its body;
program reader; writes register output; exactly once in its body. I

The following definitions apply to an arbitrary register construction.

Definition 2: Let P be any program in the construction. An event of P is
a triple, denoted P:i:j, where ¢ is a natural number and j is a statement
in P. O

Definition 3: A state of the construction is defined by a value for each
register and an event for each program in the construction. The initial state
of the construction is defined by the initial value for each register and the

event P:0:wait for each program P in the construction. o O

Definition 4: Let s and s’ be two states of the construction, and let
e = P:i:j be the event of program P in state s. State s’ is said to follow
state s over e, denoted s = &', iff the following two conditions hold.

i. The register values in state s’ are the result of executing statement j
of program P in state s.

ii. The event for each program other than P in state s’ is the same as
the event for that program in state s. The event for program P in
state s’ is P:¢': 3’ where:

if § is the last statement in the body of P then j' is the wait
statement and ¢ = ¢ + 1, else j' is the statement following
statement j in P and ¢ = 1. O

Definition 5: A history of the construction is a sequence so R
where sg is the initial state of the construction and for each 7, state s;4y
follows state s; over event e;. O

Definition 6: Let stmto, stmty,..,stmt,_; denote the sequence of state-
ments in the body of program P. Then, for any natural number ¢, the
sequence of events P:i:stmty, P:i:stmiy, .., Pri:stmiz is called an
operation of P, and is denoted P:i. (Informally, an operation P :i is the
sequence of events corresponding to the ith execution of program P in some
history.) If P is the writer program then P:i is called a wrile operation;
Otherwise, P is a reader program and P:¢ is called a read operation. O

Definition 7: An operation P, :i; precedes another operation P;:4z in a
history h if the last event of the operation P :4; precedes the first event of
the operation P,:iz in h. O

Notice that from definitions 4 and 7, operation P:i precedes operation
P:i+1, for any program P and any .

Definition 8: A history h is called proper iff the initial write operation,
W :0, precedes all read operations in h.

Definition 9: Let w be any write operation in a history h. By definition,
w contains exactly one event in which the value of the interface register
input is read; let this value be v. In this case, w is said to assign v to
the 1/m register. Similarly, let r be any read operation in a history A. By
definition, r contains exactly one event in which a value is written to some
interface register output;; let this value be v. In this case, r is said to return
v from the 1/m register. O

Definition 10: Let h be any proper history of the construction. h is said
to be atomic iff there exists a function ¢ : {all read operations in h} —
{0,1,2...} such that the following three conditions hold.

i. Integrity: For each read operation r in h, if r returns a value from the
1/m register then the write operation W:¢(r) assigned that value to
the 1/m register.

ii. Safety: For each read operation r in h, r does not precede the write
operation W : ¢(r) and the write operation W: ¢(r)+1 does not
precede r. This condition ensures that a read operation does not
return a value from the future or the far past.

iii. Precedence: For any two read operations r,r’ in h, if r precedes r’

then ¢(r) < ¢(r’'). 0O

Definition 11: A 1/m register construction is atomic iff all its proper
histories are atomic. O

3 Construction of a 1/m atomic register

3.1 Architecture

Our construction of 1/m atomic register has the following internal registers.

e A register named WW is written and read by the writer. This reg-
ister stores the value written to the 1/m register by the most recent
write operation.

R

e A register named WR; is written by the writer and read by reader;,

3.2

i =0, .., m—1. The fields of each WR; are old, new, sego, -, 5¢¢m-_1,
and done. Informally, old is the value of the 1/m register before the
most recent write operation; new is the value written to the 1/m
register by the most recent write operation; seg; is the ith sequence
aumber written by the most recent write operation; done is a boolean
indicating if the most recent write operation is completed.

A register named R;W is written by reader; and read by the writer,
i = 0,..,m — 1. Each register R,V stores the ith sequence number
read by the most recent read operation of reader;.

A register named R;R; is written by reader; and read by reader;,
where i < j. The fields of each register R;R; are old,new, seg;,
and flag. Informally, old is the “old” value of the 1 /m register as
read by the most recent read operation of reader;; new is the “new”
value of the 1/m register as read by the most recent read operation
of reader;; seq; is the ith sequence number read by the most recent
read operation of reader;; flag is a boolean indicating if the most
recent read operation of reader; returned the “new” value of the 1/m
register.

Initial State

The initial register values are as follows:

EW=(y) RE=(a)
WW =(z) WR; = (y,z,0,..,0,true)
RW =(0) R;R; =(y,z,0,true)

where x and y are arbitrary but distinct values of the constructed register.

3.3

Algorithm

The body of writer W is as follows:

read new from EW;

read old from WW,;

if old # new then
for &k =0 to m — 1 do read seq; from R, W; seqy := (seqr + 1) mod 3 od:
for k =m — 1 to 0 do write (old, new, seqo,..,5¢qm-1, false)to WR; od:
for k =0 to m — 1 do write (old, new, sego,..,5¢gm-1, true) to WR; od;
write new to WW,;

fi

A write operation assigns a new value to the 1/m register only if the new
value is different from the current value in the register. If so, it computes
a sequence number for each reader; the sequence number for any reader is
the successor of the sequence number read by the last read operation of
that reader. It then writes to the readers in two sweeps with done set to
false in the first sweep and set to true in the second.

The body of reader; is as follows:

read (old, new, seqo,..,5¢¢m-1, done) from WER;;

write seq; to R,W;

for k = 0 to s — 1 do read (oldy, newy, seqy, flagy) from R, R; od;
read (old, new’, seqy,..,seq,,_,, done’) from WR;;

pi := (old = old') A (new = new’) A (V5 : 0 < j < m: seq; = seq;);
for k=0toi—1do p := p;: A flag A (old = oldy) A (new = newy) A (seq; = seq)) od;
flag :=poVp1 V..V pi_1 V (pi A done A done');

for k =1+ 1 tom—1 do write (old’, new’, seq, flag) to R;R; od;
if flag then retval := new’

elsif p; then retval := old’ else retval :=new fi
write retval to R;E;

A read operation of R; computes the predicates po,..,p;. It will find a
predicate p;,0 < j < i, true if a preceding read operation of some R; has
returned the “new” value of the 1/m register; in that case it will also return
the “new” value. If it does not overlap the most recent write operation,
then it will find predicate p; and booleans done, done’ to be true and will
also the “new” value of the 1/m register.

=3

4 Proof of Correctness

The above construction is proved correct by defining a function ¢ for each
proper history of the construction, then showing that the defined ¢ meets
the three conditions of integrity, safety, and precedence in Definition 10.
But first, some notation is introduced.

Let f be a field of a register R in the construction. Let s be any state
in some proper history of the construction. Then, (R.f); denotes the value
of the field f of register R in state s. For example, if s is the initial state
of the construction then (W Rg.0ld), = y.

Let P::i be any operation in a proper history A and let var be a lo-
cal variable in P. Then, (P:7).var denotes the value of var in the state
immediately following the last event of operation P:¢ in A.

The following definition of ¢ is for any proper history h of the construc-
tion. Let R;:k be any read operation in h. Assume that it reads its first
value of register W R; from the write operation W:u and its second value
of register WR; from the write operation W:v. (This implies that u < v.)
Then define ¢(R;: k) as follows.

v if (R;:k).flag
$(Ri:ky=<{ v—1 if ~(R;:k).flag A (Ri:k).p;i
u if =(R;:k).flag A ~(R;:k).p;

This ¢ satisfies the integrity condition because if R;:k returns a value
from the 1/m register then the write operation W:¢(r) indeed assigned
that value to the register.

To show that ¢ satisfies the safety condition, consider the following.
If ¢(R;:k) = u or v then the read operation R;:k returns a value as-
signed by the write operation W:¢(R;:k); therefore, R;:k does not pre-
cede W:4(R;:k) and the write operation W:¢(R;:k)+ 1 does not pre-
cede the read operation R;:k. Now, consider the remaining possibility, i.e.
#(R;:k) = v — 1. If u < v then, clearly, the read operation R;:k over-
lapped the write operation W:v. If u = v then since, =(R;:k).done Vv
—(R;:k).done, the read operation R;:k overlapped the write operation
W :v. Thus, R;:k does not precede the write operation W:v — 1 and the
write operation W :v does not precede the read operation R;:k. Therefore,
¢ satisfies the safety condition.

Next, it is shown that ¢ satisfies the precedence condition.’ Let r and 7
be any two read operations in h such that r precedes r's then, it is required
to show that ¢(r) < ¢(r'). There are three cases to consider for this proof:

Case 1: r = R;:kand ' = R;:k+1.
Case 2: r = R;:k and v’ = R;:n, where 1 < j.

Case 3: 7 = R;:k and v’ = R;:n, where 1 > j.

Proof of Case 1: Assume that read operation R;:k reads its first value of
register W R; from the write operation W:u and its second value of register
W R; from the write operation W :u'. Assume that read operation R;:k+1
reads its first value of register W R, from the write operation W:v and its
second value of register W R; from the write operation W:v". Then, u < u’
<y <, ¢(Ri:k) < v, and ¢(R;:k+1) = min(v,v’ — 1).

If ' < v then ¢(Ri:k) <v—1< ¢(Rik+1). If v <o’ then ¢(Ri:k) <
v < ¢(R;:k+1). So, assume that uw' = v = v in the rest of the proof.

If (R;: k). flag is true then, by Lemma 1 in the Appendix, (R;:k+1).flag
will also be true; therefore, ¢(R;:k) < (R;:k+1). If (R;:k).flag is
false then either u < v or u = v'. Ifu < u' then, since (R;:k).flag
is false, ¢(Ri:k) <u' — 1. If u = v then (R;:k).p; will be true; therefore,
#(Ri:k) = v'—1. Thus, if (R;:k).flag is false then ¢(R;: k) v/ —1=v-1
< ¢(R;:k+1). This completes the proof. O

Proof of Case 2: Assume that read operation R;:k reads its first value of
register W R, from the write operation W:u and its second value of register
W R; from the write operation W :u'. Assume that read operation R;:n
reads its first value of register W R; from the write operation W:v and its
second value of register W R; from the write operation W:v'. Then, u < u'
< v < v, ¢(R;i:k) < u', and ¢(R;:n) > min(v,v’ —1).

If o' < v then ¢(Ri:k) <v—1< ¢(R;:n). If v <o then ¢(Ri:k) <
v < ¢(R;:n). So, assume that v’ = v = v’ in the rest of the proof.

If (Ri:k).flag is true then, by Lemma 2 in the Appendix, (R;:n).flag
will also be true; therefore, ¢(R;:k) < ¢(R;:n). If (Ri:k).flag is false
then, by reasoning as in Case 1, ¢(R;:k) Suv' —1=v—-1< #(R;:n). This
completes the proof. O

Proof of Case 3: Assume that read operation R;:k reads its first value of
register W R; from the write operation W:u and its second value of register
WR; from the write operation W:u'. Assume that read operation E;:n
reads its first value of register W R, from the write operation W:v and its
second value of register W R; from the write operation W:v'. Then, u < v/
<v4+1<v+1, ¢(R;:k) <u and ¢(R;:n) > min(v,v —1).

If u' < vthen ¢(R;: k) <v—1< ¢(R;:n). The remaining possibilities,
u' = v or v = v+ 1, are considered next.

Consider the first possibility, i.e., v’ = v. If v < v/ then ¢(R;:k) < v
< ¢(R;:n). So, assume v = v'. If (R;:k).flag is false then, by reasoning
as in Case 1, ¢(Ri:k) < v’ — 1 < ¢(R;j:n). If (Ri:k).flag is true then,
by Lemma 3 in the Appendix, (R;:n).flag will also be true; therefore,
#(R;: k) < ¢(R;:n).

Consider the second possibility, i.e., ' = v 4+ 1. By Lemma 4 in
the Appendix, (R;:k).flag is false; therefore, by reasoning as in Case
1, o(Ri:k) < v. Ifv < v then ¢(Ri:k) < v < ¢(R;in). Ifov =7
then (R;:n).p;, (R;:n).done, and (R;:n).done’ will all be true; therefore,
#(R;:n) = v > ¢(R;:k). This completes the proof. O

5 Construction Complexity

We measure the space complexity of a 1/m/n atomic register construction
by the number of 1/1 atomic bits used to construct the internal registers.
The number of 1/1 atomic bits used in our construction is summarized
below.

e Register WW uses n 1/1 atomic bits.

e Register WR;, 0 <7 < m, uses 2m + 2n + 1 1/1 atomic bits.
o Register R;W, 0 <7 < m, uses 2 1/1 atomic bits.

e Register R;R;, 0 <i < j < m, uses 2n + 3 atomic bits.

Thus, the space complexity of our construction is O(m?n).
Any 1/m/n atomic register construction must have a register between
any two readers in order to satisfy the precedence condition. Also, the size

10

of any such register should be O(n) in order to distinguish between different
write operations. This means that the lower bound on the space complexity
of 1/m/n atomic register construction is O(m?n) which is the complexity
of our construction.

The time complexity of a construction is measured by the number of
statements executed by each program in the construction. In our construc-
tion, each program executes O(m) statements.

In any 1/m/n atomic register construction, the writer must write to
every reader; therefore, the lower bound on the time complexity of the
writer program is O(m). Also, any reader must read to, or write from,
every other reader; therefore, the lower bound on the time complexity of a
reader program is also O(m). The programs in our construction meet these
lower bounds.

6 Discussion

In our construction, each program has about 10 statements, yet, its proof
of correctness occupies about 10 pages. This is because a construction has
to be proved atomic for all histories any of which may contain an arbitrary
interleaving of read and write operations. In fact, the correctness proof
would have been even more complex if we focussed on the actual times
at which events occurred. Using the function ¢, which refers only to the
relative ordering of read and write operations, made the proof manageable.
Our definition of atomicity is equivalent to that given by Misra in
[Mi 86]. His axioms for atomicity in essence require that all read and write
operations be shrunk to a point; such a shrinking of operations is possible
iff a function ¢ that meets the three conditions of our definition exists.
Atomicity is similar to the condition of serializability as defined in
database literature; the only difference between the two is one of parlance.
A transaction is usually assumed to consist of a number of operations; the
equivalent serial schedule for serializability preserves the relative ordering
of transactions in the same way the equivalent serial schedule for atomicity
preserves the relative ordering of operations. As observed by Lamport in
[La 86] the distinction between serializability and atomicity vanishes if we
view a transaction as a ‘higher-level’ operation on the ‘atomic database.’

11

After developing the constructions in this paper, it came to dur attention
that Kirousis, Kranakis, and Vitanyi [KKV 86] have developed another
construction of a 1/m/n atomic register. There construction, however, is
completely different from ours; in fact its space complexity is O(m® +m?n)
which is greater than the space complexity of our construction.

Appendix: Lemmas and Propositions

The proof of correctness of the construction is based on 4 lemmas; these
are stated and proved in this appendix. The proof of these lemmas is, in
turn, based on 5 propositions; these propositions are also stated and proved
here. The following discussion and proofs are assumed to be in the context
of a proper history h.
The following notation is adopted in the proofs that follow:
Q(k,%,7,s) denotes the predicate (R;R;.flag)s A (W:k).old = (R;R;.0ld) A
(W:k).new = (RiR;.new), A (W :k).seq; = (RiR;.seq)s;.

[s0, 51] denotes an interval of successive states in k that starts with
state sg and ends with state s;.

[s0,51) denotes an interval of successive states in h that starts with
state s and ends with the predecessor of state s;.

8p < 81 denotes that state so precedes state s; in h.
8p = 51 denotes that state sy precedes or is the same as state s; in h.
® denotes modulo 3 addition.

Lemma 1 Let R;:k and R;:k+1 be two read operations in proper history
h. Assume that read operation R;:k reads its second value of register WER;
and read operation R;:k-+1 reads both its values of register WER; from the
same write operation. If read operation R;:k evaluates its flag to true then
read operation R;:k+1 also evaluates its flag to true.

12

Proof: Since (R;:k).flag is true, (R;:k).done’V Ju < 1 = (Ri:k).p,. If
(R;:k).done’ then (R;:k+1).done A (R;:k+1).done and R;:k+1 will eval-
uate its flag to true. So, consider the other case i.e., (Ri:k).p, Au < i.
Let W :v be the write operation referred to in the lemma.

Let so be the state immediately following the event in which write opera-
tion W :v reads sequence number from reader R,.

Let s, be the state immediately following the event in which write opera-
tion W :v writes to reader R, for the second time.

Let s, be the state immediately following the event in which write opera-
tion W :v+1 writes to reader R, for the first time.

Let s3 be the state immediately following the event in which read operation
R, : k writes sequence number to writer.

Let s4 be the state immediately following the event in which read operation
R;: k reads from reader R,.

Let s5 be the state immediately following the event in which read operation
R;:k+1 reads from reader E,.

By the programs of writer and reader, sp < 81 < $2 and s3 < 84 < 8s5.
By assumption, s5 < s;. Since read operation R;:k evaluates its flag to
true, Q(v,u,t, s4) is true.

By Proposition 2, sg < s3; therefore, so < s4. By Proposition 3, s4 does
not occur in the interval [so, 51]; therefore, s; < s4. Thus, s1 < 84 < 85 < 53
and Q(v,u,1,84) is true; therefore, by Proposition 4, Q(v,u,1,s5) is true.
Therefore, read operation R;:k+1 will evaluate its flag to true. O

Lemma 2 Let Ri:k and R;:n be two read operations in proper history
h such that read operation R;:k precedes read operation R;:n and i < j.
Assume that R;: k reads its second value of register W R; and read operation
R;:n reads both its values of register WR; from the same write operation.
If read operation R;:k evaluates its flag to true then read operation R;:n
also evaluates its flag to true.

Proof: Let W:v be the write operation referred to in the lemma.

Let sq be the state immediately following the event in which write operation
W :v reads sequence number from reader R;.

Py

13

Let s; be the state immediately following the event in which write operation
W :v writes to reader Ry for the second time.

Let s, be the state immediately following the event in which write operation
W :v-+1 writes to reader R; for the first time.

Let s be the state immediately following the event in which read operation
R, : k writes sequence number to writer.

Let s4 be the state immediately following the event in which read operation
R;: k writes to reader R;.

Let ss be the state immediately following the event in which read operation
R;:n reads from reader R;.

By the programs of writer and reader, so < 81 < $2 and s3 < 84 < Ss.
By assumption, s5 < s;. Since read operation R;:k evaluates its flag to
true, Q(v,1,J,84) is true.

By Proposition 2, sq < s3; therefore, s < s4. By Proposition 3, s4 does
not occur in the interval [so, s;]; therefore, s; < s4. Thus, 81 < 54 < 85 < 52
and Q(v,1,7,84) is true; therefore, by Proposition 4, Q(v,i,j,8s) is true.
Therefore, read operation R;:n will evaluate its flag to true. O

Lemma 3 Let R;:k and R;:n be two read operations in proper history h
such that Ri:k precedes Rj:n and j < 1i. Assume read operation R;:k reads
its second value of regisier WR; and read operation R;:n reads both its
values of register WR; from the same write operation. If read operation
R;:k evaluates its flag to true then read operation R;:n also evaluates its
flag to true.

Proof: Since (R;:k).flag is true, (Ri:k).done’V Ju < i = (Ritk).p. If
(R;:k).done’ then, by the writer program and the assumption that j < ¢,
(R;:n).done A(R;:n).done’. Therefore, R;:n will evaluate its flag to true.
So, consider the other case i.e., u < 7 A (R;:k).p,. Let W:v be the write
operation referred to in the lemma.

Let so be the state immediately following the event in which write operation
W :v reads sequence number from reader R,.

Let s; be the state immediately following the event in which write operation
W :v writes to reader Ry for the second time.

Let s, be the state immediately following the event in which write operation

14

W:v+1 writes to reader R, for the first time. .

Let s3 be the state immediately following the event in which read operation
R;: k writes sequence number to writer.

Let s4 be the state immediately following the event in which read operation
R;: k reads from reader R,.

By the programs of writer and reader, sg < 81 < 32 and 83 < s;. By
assumption, s4 < s;. Since read operation R;:k evaluates its flag to true,
Q(v,u, 1, s4) is true.

By Proposition 2, s < s3; therefore, sp < 4. By Proposition 3, s4 does
not occur in the interval [so, s;]; therefore, s; < s4. Thus, 81 < 84 < 52 and
Q(v,u,1,54) is true; therefore, by Proposition 3, (WRj.done),, V3t < j.
Q(v,t,7,84) is true.

If (W R;.done),, then (R;:n).doneA(R;:n).done’ and R;:n will evaluate
its flag to true. So consider the other case i.e., Q(v,t,7,84) is true At < J.

Let s5 be the state immediately following the event in which read operation
R;:n reads from reader R;.

Let s¢ be the state immediately following the event in which write operation
W:v4+1 writes to reader R, for the first time.

By the writer and reader programs and by assumption 84 < sz < Sg.
Thus s; < 84 < 85 < s and Q(v,t,4,54) is true; therefore, by Proposition
4, Q(v,t,j,ss) is true. Therefore, read operation R;:n will evaluate its
flag to true. O

Lemma 4 Let Ri:k and R;:n be two read operations in proper history
h such that read operation R;:k precedes read operation R;:in and j < 1.
Assume R;: k reads its second value of register W R; from the write operation
W:v+1 and R;:n reads its first value of register WR; from the previous
write operation W:v. Then read operation R;:k does not evaluate 1ts flag
to true.

Proof: Since the succeeding read operation R;:n reads its first value of
register in register WR; from an earlier write operation, (R;:k).done’ is
false. Thus, it is required to show that Vu:0<u<z:~{R:k)p, To
the contrary, assume that (R;:k).p, is true for some u.

Let sp be the state immediately following the event in which write operation

15

W :v+1 reads sequence number from reader R,.

Let s; be the state immediately following the event in which write operation
W :v-+1 writes to reader Ry for the second time.

Let s, be the state immediately following the event in which read operation
R;: k writes sequence number to writer.

Let s3 be the state immediately following the event in which read operation
R;: k reads from reader R,.

Since it has been assumed that (R;:k).p, is true, Q(v+1,u, ¢, 53) is true.
By Proposition 2, sp < s3; by reader program s; < $3; therefore, s < s3.
By Proposition 3, s3 does not occur in the interval [sg, s1]; therefore, s; < s3.
But then, read operation R;:n coming after read operation R;:k cannot
read from an earlier write operation W:v. This is a contradiction. O

Proposition 1 Let W:v and W:v+1 be two write operations in proper
history h. Let sy be the state immediately following the event in which write
operation W:v reads sequence number from reader R;. Let s1 be the state
immediately following the event in which write operation W:v+1 writes to
reader R; for the first time. Assume Q(v,1,5,8),¢ < j is true for some
state s in the interval [sq,s1]. Let R;:k be the read operation that wrote the
values appearing in register R;R; in state s. If sy is the state immediately
following the event in which read operation R;:k writes sequence number to
writer then sg < ;.

Proof: Assume, to the contrary, that s; < s,. Then the write opera-
tion W :v reads the sequence number written by read operation R;:k,i.e,
(R;:k).seg;, or the sequence number written by read operation R;:k+1jie.,
(R;:k+1).seq;. Next, we show that (R;:k+1).seq; is either (R;:k).seq; or
(R;:k).seq; @ 1.

A write operation reads the sequence number in register R;W, incre-
ments it by 1, and writes it to the field seq; of register WER;. A read
operation of R; reads the sequence number in the field seg; of register
WR; and writes it to register R;W. Therefore, (WR;.seq:), = (RiW),
V(WR;.seq;)s = (R;W), & 1 for all states s in h. In particular, let s
be the state immediately following the event in which the read operation
R;:k+1reads from the writer for the first time. In that case, (WR;.seq;)s =

16

(R;:k+1).seq; and (R;W), = (R;:k).seq;. Therefore, (R;:k+1).seq; is ei-
ther (R;:k).seq; or (R;:k).seq; ® 1.

Thus, (W :v).seq; is either (R;:k).seq; ® 1 or (Ri:k).seq; @ 2. In either
case, (W:v).seq; # (Ri:k).seq;. Therefore, Q(v,4,7,8) is false. Thisis a
contradiction. 0

Proposition 2 Let R;:k be a read operation in proper history h that reads
the same set of sequence numbers in both its reads from register WR; and
reads its second value of register W R; from the write operation W:v. Let so
be the state immediately following the event in which write operation W:v
reads sequence number from reader Ry, u < i. If s; is the state immediately
following the event in which read operation R;:k writes sequence number to
writer then sg < s1.

Proof: Assume, to the contrary, that s; < so. Then write operation W:v
reads the sequence number from reader R; after read operation R;: k writes
sequence number to writer and before read operation R;:k+1 writes se-
quence number to writer (due to the writer and reader programs). There-
fore, (W:v).seq; = (Ri:k).seq; ® 1. Since read operation R;:k reads its
second value of register WR; from the write operation W:v, (Ri:k).seq;
= (W:v).seq; = (Ri:k).seqi @ 1, which contradicts our assumption that
read operation R;:k read the same set of sequence numbers in both its
reads from register W K,. O

Proposition 3 Let W:v be a write operaiion in proper history h and let
R;R; be any register in the construction. Let sg be the state immediately
following the event in which this write operation reads sequence number
from reader R; and let s; be the state immediately following the event in
which this write operation writes to reader Ro for the second time. Then
Q(v,4,j,) is false for all states s in the interval [sq, 31].

Proof: If v = 0 i.e., W:v is the initial write operation, then Q(0,1,5,s) is
false for all states s in the interval [so, 51]. Otherwise, v >0 and the proof
is by induction on :.

Base Case: i = 0. Assume, to the contrary, that Q(v,0,5,s) is true
for some state s in the interval [sg,s;]. Let Ro:n be the read operation

17

that wrote the values appearing in register RoR; in state s'. Assume read
operation Rg:n read its second value of register W R, from the write oper-
ation W :u. Clearly, u < v. Let s, be the state immediately following the
event in which read operation Ry:n writes sequence number to writer. By
Proposition 1, sg < s3; thereforeu =v—-1Vu =v.

Ify = v —1then (Ry:n)new = (W:v—1).new. But, (W:v—1).new #
(W :v).new. Therefore, (Ro:n).new’ # (W:v).new. This contradicts the
assumption that Q(v,0, 7, s) is true; therefore u # v — 1.

If u = v then (Ry:n).done’ will be false because s < s;. This implies
that, Q(v,0,7,s) is false; therefore u # v. This contradicts the assumption
that Q(v,0,j,s) is true.

Induction Step: Assume the proposition is true for all positive integers
less than 7. It is shown to be true for i. Proof is by contradiction.

Assume that Q(v,i,4,s) is true for some state s in the interval [so, $1]-
Let R;:n be the read operation that wrote the values appearing in register
R;R; in state s?. Assume read operation R;:n read its second value of
register W R; from the write operation W:u. By reasoning as in the base
case it can be shown that u = v A =(R;:n).done’. Since Q(v,1,7,s) is true,
there exists k < ¢ such that (R;:n).p; is true.

Let s, be the state immediately following the event in which write operation
W :v read sequence number from reader Kj.

Let s3 be the state immediately following the event in which read operation
R;:n writes sequence number to writer.

Let s4 be the state immediately following the event in which read operation
R;:n reads from reader Rj.

By the writer and reader programs, s; < s¢ < §; and s3 < s4. By
assumption, s; < s < s; and Q(v, k, 1, s54) is true. By induction hypothesis,
s4 does not occur in the interval [s;, s1]; therefore s4 < s2. Thus, s3 < s4
< s5 < 8g. But, by Proposition 1, so < s3; this is a contradiction. O

Proposition 4 Let W:v be a write operation in proper history h and let

11f such a read operation Ry:n does not exist in k then (W:v).seqo = (RoR;j.5e9); © 1
and therefore, Q(v,0, j,5) cannot be {rue.

21f such a read operation R;:n does not exist in h then (W:v).seq; = (R;R;.5eq); © 1
and therefore, Q{v, 1,4, s) cannot be irue.

18

R.R; be any regisier 1n the construction. Let so be the state®immediately
following the event in which this write operation writes to reader Ry for the
second time and let s; be the state immediately following the event in which
the next write operation W:v+1 writes to reader R; for the first time. If
Q(v,1,4,8) is true for some state s in the interval [s0,51] then Q(v,%,5,5")
is true for all states s' in the interval [s,51].

Proof: If v = 0 i.e., W:v is the initial write operation, then Q(0,1,J, s) is
false for all states s in the interval [sg, s1]. Otherwise, v >0 and the proof
is by induction on :.

Base Case: i = 0. Assume Q(v,0,7,s) is true for some state s in the
interval [sg,s1]. Let Ro:n be the read operation that wrote the values
appearing in register RoR; in state s. Assume that read operation Rp:n+1
writes to register RoR; in the interval [s, s1]. Let s’ be the state immediately
following this write event. It required to show that Q(v,0,7,s') is true.

Let s, be the state immediately following the event in which write operation
W :v reads sequence number from reader Ry.

Let s3 be the state immediately following the event in which read operation
R, :n writes sequence number to writer.

Let s4 be the state immediately following the event in which read operation
Ry:n writes to RoR;.

By the writer and reader programs, 3 < so < $1 and s3 < s4 < . By
assumption, s’ < s; and Q(v,0,7,54) is true. It is required to show that
Q(v,0,7,8") is true.

By Proposition 1, s; < s3; therefore s; < $4. By Proposition 3, s4
does not occur in the interval [sq, sg]; therefore so < s4. Thus, the read
operation Rp:n+1 reads both its values of register Who from the write
operation W :v and finds both (Ry:n+1).done and (Ro:n+1).done to be
true. This implies that (Ro:n+1).flag is true; therefore Q(v,0,7, s') is
irue.

Induction Step: Assume the proposition is true for all positive integers
less than 3. It is shown to be true for i. Assume that Q(v,1,J,s) is true for
some state s in the interval [sq,s;]. Let R;:n be the read operation that
wrote the values appearing in register R;R; in state s. Assume that read
operation R;:n+1 writes to register R;R; in the interval [s,31]. Let s’ be

19

the state immediately following this write event. It is required to show that
Q(v,1,3,8') is true.

Since Q(v,1,4,s) is true, (R;:n).done’ VIk: 0 <k < i (Riin)pe If
(R;:n).done’ then the proof is analogous to the base case. Consider the
other case ie.,, 0 <k <iA(R;:n).ps. ‘

Let s, be the state immediately following the event in which read operation
Ry:n writes sequence number to writer.

Let s; be the state immediately following the event in which read operation
Ry:n reads from reader Ry.

Let s4 be the state immediately following the event in which read operation
Ro:n+1 reads from reader Rj.

Let s5 be the state immediately following the event in which write operation
W :v reads sequence number from reader Rj.

Let sg be the state immediately following the event in which write operation
W : v reads sequence number from reader R;.

By writer and reader programs, s5 < sg < Sp < 81 and sz < 83 < 84 < s
By assumption, s’ < s; and Q(v, k,¢,s3) is true.

It is required to show that Q(v,, 7, s") is true. By Proposition 1, s¢ < s2;
therefore s5 < ss. By Proposition 3, s3 does not occur in the interval [ss, so);
therefore so < 83. Thus, sg < 83 < 54 < 81. Q(v,k,1,s3) is true; therefore,
by the induction hypothesis, Q(v, k, 1, s4) is true. Therefore, Q(v,1,7,s') is
true. O

Proposition 5 Let W:v be a write operation in proper history h and let
R;R; be any register in the construction. Let so be the state immediately
following the event in which this write operation wriles to reader Ro for
the second time and let s; be the state immediately following the event in
which the next write operation W:v+1 writes to reader R; for the first
time. If Q(v,1,7,8) is true for some state s in the interval [so,s1) then
Vk < j i [(WRg.done), VIp < k :: Q(v,p, k, s) is true].

Proof: If v = 0 i.e., W:v is the initial write operation, then Q(0,¢,7,s) is
false for all states s in the interval [sg, s;]. Otherwise, v > 0 and the proof
is by induction on .

Base Case: i = 0. Assume Q(v,0,7,s) is true for some state s in the

20

interval [s9,81). Let Rg:n be the read operation that wrote the values
appearing in register RoR; in state s. Let k < j. It is required to show
that Q(v,0,k,s) is true.

Let s, be the state immediately following the event in which write operation
W :v reads sequence number from FRp.

Let s3 be the state immediately following the event in which read operation
Ry :n writes sequence number to writer.

Let s4 be the state immediately following the event in which read operation
Ro:n writes to reader Ri.

Let s5 be the state immediately following the event in which read operation
Ry:n writes to reader R;.

By reader and writer programs, s; < so < $; and s3 < 84 < Ss. By
assumption ss < s < sy and Q(v,0,k, s4) is true.

By Proposition 1, s, < s3; therefore s, < s4. By Proposition 3, s4 does
not occur in the interval [s,, so]; therefore sg < s4. Thus sp < 84 <5 < 1.
Q(v,0,k, s4) is true; therefore, by Proposition 4, Q(v,0,k,s) is true.
Induction Step: Assume the proposition is true for all positive integers
less than 3. It is shown to be true for 7. Assume that Q(v,1,J,s) is true for
some state s in the interval [so,s;). Let k < j. It is required to show that
(W Ry.done), V 3p < k :: Q(v,p, k, s) is true.

Ifi < k < j then the proof is analogous to the base case. The two
remaining cases, i = k < j and k <i < j, are considered separately.

Case 1: (i = k < j) Let R;:n be the read operation that wrote the values
appearing in register R;R; in state s. Therefore, (R;:n).done’ Vdu < =
(Ri:in).pu

Let s, be the state immediately following the event in which write operation
W :v reads sequence number from reader R;.

Let ss be the state immediately following the event in which read operation
R;:n writes sequence number to writer.
Let s, be the state immediately following the event in which read operation
R;:n writes to reader R;.

By writer and reader programs, s; < $o < 81 and s3 < s4. By assump-
tion, s; < 8 < s; and Q(v,1, 4, 84) is true.

21

Consider the first possibility i.e., (R;:n).done’ is true. By Proposition
1, s, < 83; therefore, R;:n reads its second value of register WE; from
the write operation W:v — 1 or from the write operation W:v. But, if
R;:n reads its second value of register WR; from W:v — 1 then Q(v,¢,5,5)
cannot be true. Therefore, E; :n must read its second value of register W R,
from the write operation W :v. In that case, since R;:n found (W R;.done)
to be true, (W R;.done), will also be true.

Now, consider the other possibility i.e., u < i A (R;:n).py.
Let s5 be the state immediately following the event in which read operation
R;:n reads from reader R,.

Let s¢ be the state immediately following the event in which write operation
W :v reads sequence number from reader E,.

By writer and reader programs, s¢ < s and s3 < 5. By assumption,
Q(v,u,i, ss5) is true.

By Proposition 1, s; < s3; thus se < s2 < s3 < s5. By Proposition 3, s3
does not occur in the interval [se, so]; therefore so < s5. Since Q(v,u,1,s5)
is true, by Proposition 4, Q(v,u,1,s) is true.

Case 2: (k < i < j) Let R;:n be the read operation that wrote the values
appearing in register R;R; in state s. Therefore, (R;:n).done’ V Ju < ¢ ::
(R;:n).pu

If (R;:n).done’ then, by reasoning as in Case 1, it can be shown that
(W R;.done);, is true; therefore, by writer program, (W Ry.done), is true.

Consider the other possibility ie., u < 7 A (R;:n).p,. Define states
Sy, 83, 84, 85, 3¢ as in Case 1. By writer and reader programs, sg < 52 < $o <
s; and s3 < 85 < 84 By assumption, s4 = s < 51, Q(v,1,],84) is true, and
Q(v,u,1,ss5) is true.

By reasoning as in Case 1, it can be shown that sp < s5. Therefore, by
the induction hypothesis, (W Ry.done)s, V 3t < k = Q(v,1,k, s5).

If (W Ry.done),, is true then, due to the precedence 5o < 85 < s < 1,
(W Ry.done), is true. Consider the other possibility i.e., t <kAQ(v,1,k, 35)
is true. 8o < 85 < & < 8; and the write operation W:v+1 writes to reader
R; before writing to R;; therefore, by Proposition 4, Q(v,t,k,s) is true.]

References .

[ASG 86] Anderson, J., Singh, A., and Gouda, M., “The Elusive Atomic

Register,” Technical Report TR.86.29, Department of Computer
Sciences, University of Texas at Austin, 1986.

[KKV 86] Kirousis, L.M., Kranakis, E., and Vitanyi, P., “Atomic Multi-

[La 86]

[Mi 86]

[Pe 83]

[Pe 86]
[VA 86]

reader Register,” detailed abstract, 1986.

Lamport, L., “On Interprocess Communication, Parts I and I1,”
Distributed Computing, Vol. 1, pp. 77-101, 1986.

Misra, J., “Axioms for Memory Access in Asynchronous Hardware
Systems,” ACM Transactions on Programming Languages and
Systems, Vol. 8, pp 142-153, 1986.

Peterson, G. L., “Concurrent Reading while Writing,” ACM
Transactions on Programming Languages and Systems, Vol. 5,
pp. 46-55, 1983.

Peterson, G.L., private communication, 1986.

Vitanyi, P., and Awerbuch, B., “Atomic Shared Register Access
by Asynchronous Hardware,” FOCS, 1986.

23

