VERTICALLY PARTITIONED OBJECT-ORIENTED
SOFTWARE DESIGN FOR
DEPENDABILITY AND GOOD PERFORMANCE

Stephen Peter Hufnagel
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-02 January 1987

ACKNOWLEDGEMENTS

The Department of Computer Science, The University of Texas at
Austin, is great. The faculty have been encouraging to and supportive of me
with their personal time and departmental facilities. I would like to thank the
members of my committee for their review of my research and their
constructive comments. Dr. Browne showed me how to formulate problems
and how to think abstractly and he inspired, encouraged, and guided me
through my graduate school years. Dr. Lengauer encouraged me to write
clearly and understandably. Dr. Martin had the patience to coauthor my first
journal paper and was particularly helpful during the thesis review period. Dr.
Novak provided me with insights into system design. Dr. Malek refined my
understanding of the fault tolerance literature. Dr. Dale as department
chairman and then as graduate advisor provided the administrative support to
get me through the PhD program. Nancy Macmahon provided innumerable
instances of help and encouragement at my most difficult times.

1 would like to thank my supervisors and the administration at my
place of employment, Applied Research Laboratories, The University of Texas
at Austin, for their patience, encouragement, and understanding of me during
my graduate years.

The task of formatting this document was greatly eased by the use of
the Scribe document processor developed by Brian Reid and maintained by
Unilogic, Ltd. The Scribe dissertation format definitions for The University of
Texas at Austin were developed by Richard Cohen.

Stephen Peter Hufnagel

The University of Texas at Austin
May, 1987

ABSTRACT

The goal of this research was to improve performance within an
object-oriented software system design. It was desired that the performance of
object-oriented software be competitive with alternate software design
techniques for designing dependable software systems.

This thesis presents a design approach that first partitions a software
program by data structure to define object data types. Then for each object
data type, an associated type manager is defined. The type manager contains
the necessary software procedures to perform all required operations on the
object’s data structure. Type manager functions should exploit an object’s
individual semantic properties in order to provide application-specific fault
localization, fault recovery, "operating system" routines, and "database"
routines. Layered, system-wide operating and system-wide database systems
are, consequently, no longer required.

Simplicity of recovery results from the requirement to commit to the
object’s state at specific safe recovery points, defined by the completion of a
type manager function. The type-specific functions and simplicity of recovery
help to provide an overall performance improvement.

A software program is composed of a set of object type managers
running on an abstract machine. The type managers may create and/or
maintain instances of data objects. The abstract machine provides scheduling
of and access to the computer’s resources and execution time binding among
object type managers.

This thesis presents quantitative simulation results to prove that the
use of the proposed design approach can result in software that is an
improvement over previous attempts to balance dependability and
performance while maintaining high software comprehensibility.

Y

TABLE OF CONTENTS

Acknowledgements Gt e e s e s e s s e e s e e e

ADBSEFACE o o o o v o o e o o o s s o s s e s s e e e s s s s e e s s 0o o ot s

Table of Contents . .« « o« c o o o e s c oo ooacocsssssscssssss

Chapter 1. INTRODUCTIONccccveeecncecncss

1.1. Research Goal oo e e oo

1.2. Problem Statement e s s s e e s e e e e e
1.3. Scope « . v v b0 a e e e e e s e s s st s e s et e e

1.4. Thesis Plan . ..« c s oo coa00so 20

1.5. Design Approacho e e e s s .
1.8. Design Overviewcc oo e e e e s e s es e
1.7. Design Analysis e e s s e e e e e
1.8. Conclusion eceocesoos Gt e e s e e s e e

Chapter 2. BACKGROUND

2.1. Definition of Terms
2.1.1. Function/Procedure
2.1.2. Modulet eecoesenes
2.1.3.0bjectcccceoccccoonoe
2.1.4. Object-Oriented
2.1.5. Type Manager« o000
2.1.6. Vertically Partitioned
2.1.7. Processo o oo oo s o
2.1.8. Model of Execution:
2.1.9. Model of Computation
2.1.10. Programccccss 000

2.2. Fault Tolerance/Recovery Concepts

vi

eeeeeeeeeeee

oooooooooooo

aaaaaaaaaaaa

oooooooooooo

oooooooooooo

oooooooooooo

oooooooooooo

oooooooooooo

oooooooooooo

oooooooooooo

iv

vi

v I =N B NIV I

10

10
10
10
i1
12
12
14
15
16
16
16
16

2.3. Transaction Concepts

oooooooooooooooooooooo

Chapter 3. A DESIGN METHODOLOGY e e e e e
3.1. Software Design Specifications o s e e e s s
3.1.1. OVErview . . c cc o s o s e o oo cooasoscssoosos
3.1.2. Amplificationo . .
3.1.3. Conclusion e e e e e e e e e N
3.2. Type Manager Requirements e e e s o s
3.2.1. Validity Testingcccocecoceocn- e oo e
3.2.2. Atomicity of Operationccococceecn
3.2.3. Distribution of Objects oo e v v 0 e oo
3.2.4. Consistency Management e e e e e e e e
3.2.5. Synchronization e e e e s e e e
3.2.6. Integrity Management0¢ e e e s s
3.2.7. Fault Localizationc... e e e e e e
3.2.8, Fault Recovery« e o e s e e e -
3.2.9. Access Controlcc0c.. Gt e e e e s e e e
3.2.10. Storage Management ccoo oo os o
3.2.11. Machine Interface e e e e s e e e s e e
3.2.12. SUMIMATY « « s o s o s o s s o o c oo s osoescsssss
3.3. Type Manager Functions e e e s e e s s s
3.3.1. Initialize co v e ceccocesceon e e e e s
3.3.2. Terminate « o o o e s o s o o s 6 6 s o cosoossso
3.3.3. Relocateo oooeesooooscocccscscocoss
3.3.4. RECOVET . o o o c o o s 0 s s o o o s ocsscescossssoos
3.3.5. Create Gt e e s e s s e e e s s e e e e e e s e e s e
3.38.Delete . oo v v o oo s o e oo c oo e s s s e e e e oo
3.3 7.Commit .o e eooooossos e e e e e e e e e e s
3.3.8. ADOFD & v c o e o e o o o o s s s o s o o s co s s o s ocosns
3.3.9.Execute . o « o o o v o0 0o oo e e e e s e e e e
3.4. Communication Among Type Managers
3.5.Design Aidso i i it it e e e e
3.6. Design Stepso o0 s e Gt e e e e e s e e e s

Z1

26

26
26
28
32
32
33
33
34
34
35
36
36
36
37
37
38
38
39
39
39
39
39
40
40
40
41
41
41
42
42

Chapter 4. AN APPLICATION ENVIRONMENT

4.1, Introduction ...

4.2. Application Requirements e e e ae e
4.3. Functional Software Specifications oo s e
4.3.1. Operating Systemo oo oo e e e e e
4.3.2. Database Systemn cccoc oo oo o
4.3.3. Application Softwarec0.. c e o e e
4.4. Object Design Specifications e e e e o s s
4.4.1. Abstract Machine e e s e e e e oo e s e o e s

4.4.1.1. Bootstrap

Function . o o coeoeoooosooceocces

4.4.1.2. TM Function e e e e s s e e e e oo
4.4.1.3. Storage Functioncccceoeeecee
4.4.1.4. Resource Function «c oo c oo s 00005220
4.4.1.5. CPUID Function . . . «c « s c o e s 00 s acososs
4.4.1.6. Communication Function e e e e
4.4.2. Type Managers s e s e s s e s e s e

4.4.2.1. Type TM

ooooooooooooooooooooooooo

4,422 . Process TM ... c c v v e v oo s o a5 cs s e e e
44.23. Program TMt eceoenecs
4,424, NameTMc¢c.0- e s e s e a e o s
4.4.2.5. Switchboard TM cccocoooococsos
4.4.2.6. UNO Generation TM e e e e s s
4.4.2.7. Communications TM e cososcsas s .
4.4.2.8 Track TM coocceosss e ee e
4.4.2.9. Display TM e e e e e e s e s

4.4.2.10. Disk TM

ooooooooooooooooooooooooo

442 11.DBM TMo ooonsosasaosoos

Chapter 5. THE METHOD

5.1. Introduction ...
5.2. Goals
5.3. Scope-
5.4. Approach
5.5. Software Metrics

OLOGY EVALUATION

oooooooooooooooooooooooooo

oooooooooooooooooooooooooo

viii

44

44
44
47
47
47
48
48
48
49
49
50
50
51
51
52
52
54
55
56
58
59
59
60
60
61
61

62

62
62
63
64
65

5.6. Graph-Theoretical Description
5.7. Design and Implementation

5.7.1. Hardware Testbed ..
5.7.2. Workload:

5.7.3. Software System Structures

5.8. Execution0.05.¢
5.9. Metric Data Description .

Chapter 6. METHODOLOGY ANALYSIS

6.1. Quantitative Analysis ..
6.2. Qualitative Analysis
6.3. Conclusion:¢....

oooooooooooooooo

oooooooooooooo

oooooooooooooooooooo

Appendix A. EXPANDED APPLICATION ENVIRONMENT

A.l. Introductiono e

A.1.1. Execution Environment

A.1.2, System Functions ..

A.1.3. Operational Environment
A.1.3.1. Physical Environment

A.2. System Requirements ..

A.2.1. Distributed System Subfunctions
A.2.1.1. Interprocess Communications

e &8 & @ © @ © @ © & @

eeeeeee

A.2.1.2. Resource Management e s e s e e s

A.2.1.3. SecuTity .« oo oo e o csoooocene e e e e e

A.2.1.4. Configuration Management

A.2.1.5. Database Management - e e e e
A.3. Assumptions . . ¢ o s o s e 0o e e e s e e e s e e .

Appendix B. METRIC LITERATURE REVIEW

B.1. Introduction
B.2. Software Metrics
B.2.1. Complexity Measure

ix

oooooooooooooooooooo

oooooooooooooooooooo

aaaaaaaaaaaaaaaaaaaa

66
60
69
72
72
73
73

76

76
80
82

83

83
83
84
84
85
86
87
87
87
88
88
80
20

g1

g1
g1
95

Appendix C. EXPERIMENTAL RESULTS

C.1.CASE 1: Cold Startup . .« « c ¢ c o v o e c o oo e
C.2. CASE 2: External Messages Received . <o ¢ cccoo oo
C.3. CASE 3: External Messages Received
C.4. CASE 4: CPU 1 Failureo 0o v cccaoccccncn
C.5. CASE 5: External Messages Received .. ¢ oo oo
C.6. CASE 6: CPU 1 Recovery ...« cooooeoccnoncee
C.7.CASE 7: CPU 2 Failure . . .« c o ccccovoeoccvees
C.8. CASE 8: External Messages Receivedo oo o=
C.9. CASE 9: CPU 2 ReCOVery . .ceccocoocoocccocce
C.10. CASE 10: CPU 3 Failureo ccocecccceens
C.11. CASE 11: External Messages Received . ..o
C.12. CASE 12: CPU 3 Recovery ... ceoosoc e

Bibliography

ooooooooooooooooooooooooooooooooooo

104
108
112
116
119
124
127
129
133
137
139

143

Chapter 1

INTRODUCTION

1.1 Research Goal

The goal of this research effort was to specify and evaluate by
simulation, some performance properties of a design approach for designing
dependable software systems with high integrity while maintaining high

software comprehensibility.

Computer system dependability is the quality of the delivered service
such that reliance can justifiably be placed on the service [Laprie 85]; we
include here that the software may be required to continue to function
properly in the presence of hardware component failure(s). Dependability is
frequently quantified by the measures of availability and reliability.
Avarlability is a measure of the fraction of the time when a system is able to
meet its functional specifications. Reliability is a measure of the continuous
service accomplishment from a reference initial instant. Integrity is the degree
to which a system meets its design specifications. Performance refers
specifically to the response time for execution of system functions. Integrity
and performance may be specified with respect to a spectrum of execution

environments or to a specific execution environment.

[

1.2 Problem Statement

Layered general purpose software structures frequently result in
poorly defined data structures. These poorly defined data structures can result
in, (1) high software complexity and reduced software comprehensibility (2)
interdependencies among data accesses that cause difficult and sometimes
impossible recovery logic, and (3) a high performance overhead when
providing for system recovery. Typically, layered general-purpose software
structures do not take advantage of the available semantic properties of the
particular application in which they are used. This often results in inefficient,
complex, and cumbersome solutions to simple problems. Performance is
classically improved by piecemeal introduction of specific case solutions in an
ad hoc manner. The usual result is reduced software comprehensibility and

increased software complexity.

1.3 Scope

This thesis will substantiate some of the properties of systems built
according to a new design methodology. That is, the results presented here will
establish that a system built according to the design methodology can have
performance at least competitive with a system built according to the
(conventional) layered functionally partitioned design approach. We will also
demonstrate some of the capabilities of vertically partitioned object-oriented

design for management of faults.

1.4 Thesis Plan

This thesis introduces a new concept called vertically partitioned
object-oriented software system design that will be specified as a part of an
overall software design methodology. Chapter 2 reviews the concepts drawn
from the literature and used as a basis to create the new software design
approach. Chapter 3 specifies the design methodology and justifies the design
decisions that resulted in the specification. In chapters 2 and 3, we will also
discuss the traditional software design problems of deadlock, cascading
rollback (domino effect) during fault recovery, orphan processes (as a result of
a system crash), and consistency of data within a distributed and/or

multiprocessing environment.

A simulation has been conducted to demonstrate the efficacy of the
methodology. Chapter 4 gives the requirements for a sample execution
environment and a sample workload. Chapter 4 also specifies two models of
execution and two models of computation. That is, two computer simulation
programs were specified. The first program was specified using traditional
lavered functional software design techniques. The second software program
was specified following the vertically partitioned object-oriented design

methodology.

In chapter 5. the design. implementation, and execution of the
simulator are described. The two computer programs were developed to gather
metric data while each separately performed the computation graph traversal

of the same application requirements following the two different software

design approaches. Appendices A and B contain a summary from the
literature review that was conducted to determine the sample execution

environment and metrics that were used within the simulation experiment.

Experiments were defined and executed to evaluate some properties
of the two software systems. The basic framework of the experiments was to
view the computations as a graph and to observe that computations can be
formulated as the flow of control between the binding of actions to data
objects. Chapter 6 discusses both quantitatively and qualitatively the
properties of the vertically partitioned object-oriented design approach. The
quantitative discussion is based upon the simulation results, presented in
Appendix C. The qualitative discussion is based upon the inherent
characteristics of the new design approach. The conclusions of this thesis are

presented at the end of Chapter 6.

The remainder of this chapter will provide a summary of the
vertically partitioned object-oriented design approach, a brief design overview
and analysis, and some general conclusions. The concepts and claims presented

in this chapter will be further developed and justified later in the thesis.

1.5 Design Approach

The approach will be to develop an object-oriented system design
that will "vertically" partition the state of the system (i.e., by object type).
Vertical partiiioning means that each object type has all of the necessary logic
to perform required operations on its data. The concept of composite objects

(that is, objects hierarchically built from smaller objects) will be developed.

Historically, object-oriented systems have been built upon a
functionally layered operating system with the result of poor performance in
execution. Vertical partitioning of object-oriented systems is new and is

expected to result in improved performance.

In this design approach, a system is first decomposed into a set of
data object types, which have associated type managers. Each type manager
contains the procedures that execute functions on the specific data values
contained within its data object(s). The type managers may create and
maintain instances of data objects. Users may augment the primitive set of
type managers with application-specific type managers. A program is the set
of system object types, user-generated object types, and object occurrences
corresponding to these system and user-generated object types. The abstract
machine provides scheduling of resources and dynamic run-time binding
among type managers and between each type manager and its required

physical resources of the machine.

1.6 Design Overview

In a typical layered hierarchical system, the hierarchical structure
extends across the entire system, whereas the vertical partitioned object-
oriented approach gives a separate hierarchical structure to each individual
object type. Decomposition (or composition) of total processing is done on the
basis of data type rather than on the basis of processing funetion. Data are
stored, processed, and retrieved within objects by type managers. The

application of functions on an object’s data is atomic. Atomicity is the

requirement that an execution of a function on the data of an object must be
completed or aborted. As a result, an object’s state is only updated at the
successful completion of the execution of a type manager’'s function on an
object’s data. The atomicity property provides safe fault recovery points at

type manager domain boundaries.

Vertically partitioned composite objects provide a foundation on
which one can build an associated fault model. The recovery model will
typically contain fault detection, fault localization, and fault-recovery to

provide for system reliability.

Protocols to provide for concurrency within and among composite
objects and for recovery from failure within composite objects will be
considered. An extended notion of a specification to include reliability,

integrity, and performance will be discussed.

1.7 Design Analysis

The motivation for an object-oriented system design is to attain high
integrity with increased comprehensibility and reduced software complexity.
The classical reason that object-oriented designs are not used is that they are
typically inefficient, due to a multi-layered structure built upon a lavered
operating system. Object-oriented systems traditionally result in a workload
that contains a great deal of context switching and data movement, thereby
reducing performance. This increased workload arises because of the smaller

granularity of system structures resulting {rom object-oriented design. Much

|

data movement is among related data structures. Vertical partitioning lowers
the flow of data across domain boundaries. (Intra-domain context switches are
typically less expensive than inter-domain switches.) Also, traditional object-
oriented designs have not taken full advantage of semantic information

available about the object’s functions and storage.

All mechanisms for monitoring integrity in the presence of faults are
based upon redundancy. By vertical partitioning of composite objects, we
allow the use of the semantic properties of object data by the type managers
that act on the data.. Generally, semantic properties of data and data
structures can be used to improve overall system performance. The object-
oriented design often allows compile-time binding of functions to their
associated data structures. Compile-time binding typically results in improved
system efficiency. Decomposition of total processing on the basis of data
structure cuts down the data flow and inter-domain context switches.
Performance may also be improved due to the locality of functions and data

within the object boundaries.

The use of the semantic properties of object data results in type-
specific fault localization, fault recovery, "operating system" support routines.
and "database” routines. Hence, system-wide operating systems and system-
wide database systems are no longer required. Simplicity of recovery results
from atomicity at the objects boundaries and from use of type specific fault
detection and recovery mechanisms. Vertical partitioning limits the
propagation of faults, localizes data, limits the interdependencies among

objects for fault recovery, and enhances overall system security.

Many large system designs require distributed and/or parallel
processing capabilities. An object-oriented design results in a software
structure where advantage may be taken of the independence of system
distribution and the degree of system multiprocessing. This property can be
used to apply the resultant software design to 2 distributed and/or

multiprocessing environment.

A commitment protocol is required at the completion of a type
managers function to insure the atomicity property of type managers. The
commitment protocol of hierarchically constructed composite objects provide a
hierarchy of synchronization between concurrently running type managers.
Composite objects inherently have composite data structures. As a result,
inconsistencies will not arise among data structures. It will be shown that
composite objects result in a structure in which (1) deadlocks are avoided. (2)
a simple protocol to solve the orphan problem [Moss 81] is facilitated, and (3)

fault recovery protocols can be easily expressed.

1.8 Conclusion

This proposed design approach provides a management of complexity
by providing a modularity based upon data structure that has the property of
reduced interdependency of software modules and data structures. We claim
that, for an equivalent fault tolerance specification, this proposed methodology
will result in a software package that is not only comprehensible but also
reduces execution time due to overall implementation efficiency. The use of

the methodology that is developed here is expected to result in software that is

an improvement over previous attempts to balance dependability and

performance while maintaining high comprehensibility and low complexity.

Chapter 2

BACKGROUND

2.1 Definition of Terms

In this section a review and definition of the terms used in the

methodology will be given.

2.1.1 Function/Procedure

A function is defined as the mapping of a set of data from one
domain to another domain (i.e., functions are applied to data). A procedure is
defined as the means by which a function is implemented (i.e., a procedure is

performed or executed).

2.1.2 Module
The definition of module to be used is a case of the Parnas criterion

=

[Parnas 72]. A module (e.g., the type manager of an object) performs all of
the required actions on its data, and specifies the necessary pre- and post-
conditions for acceptance of the results of those actions. The functions of a
module are made available to other modules as procedure calls, and these
procedure calls constitute the only access to the functions of the module. In
particular, the data manipulated by the module is only made available to

other modules by procedure invocations; other modules have no direct access

to the location or the representation of any data used by the module. Modules

10

11

detect conditions which violate their specifications and prevent application of

functions upon the module’s data when the necessary conditions are not met.

[Wulf 75]

A module when seen from 2 user’s point of view is perceived as being
a variable of some abstract data type. A module, when seen {rom the inside, is

a set of (i.e., state) variables and a set of procedures [Cristian 82].

It is important that the source language version of the
implementation reflect the module structure of the design. Note, however, that
the interfaces among modules are often macros. The ultimate object code may
be distributed quite differently than may be apparent in the source code.

[Wulf 75] As an example, parameters or messages may equivalently be used to

pass information between modules.

2.1.3 Object

An object is the analogue of a variable in programming languages: an
object is the abstraction of a typed storage cell [Wulf 81]. It has a "value" or
nstate.” Often the representation of an object will be constructed from a
number of other objects: in this sense an object strongly resembles a "record"
in a programming language. An object may be thought of as a triple
< Unique-Name, Type, Representation>. The unique-name of an object
distinguishes it from all other objects that ever existed in the past, exist in the
present, or will exist in the future. The fype of the object defines the type of
the resource that the object represents (e.g., program, process, data) and the

functions that may be applied by executing procedures associated with the

192

object. Similarly stated, a type is an abstraction of a class of objects; the
abstraction specifies the operations that apply to the objects. |[Cohen75]. The
representation of the object is a data structure which has associated

procedures that operate on the data.

2.1.4 Object-Oriented

An object-oriented software system is completely built of objects.
 Each object will satisfy the Parnas module criteria. Each object type has a
whlack box description”. Each object’s description gives the internal functional
specification and external interface specification. Externally the representation
of an object is not visible. A language must have four elements to support
object-oriented programming: information hiding, data abstraction, dynamic

binding, and inheritance [Pascoe 86].

2.1.5 Type Manager

Formally, a type manager defines the functions that may be applied
to a class of objects of the same type. This definition is parallel to the
programming languages definition of a manager [Kieburtz 83] and
[Silberschatz 77] that was derived from a monitor [Brinch Hansen 73] and
[Hoare 74] for the specific purpose of resource allocation. Informally, a type
manager is a set of procedures that defines what can be done with the object’s
data (e.g.. modify, read, write. delete). A type manager is an object that

responds to procedure calls.

Type managers check formal parameter specifications (e.g., type
specifications of parameters) against actual parameter specifications (e.g..

those parameters that are passed between procedures of orbjects). Tvpe

13

managers may have other type managers execute functions on their own
respective data. Type managers can create and delete instances of objects.
Type managers can have embedded processes. Each type manager is directly
responsible for the mapping of the occurrences (i.e., copies of data structures
and/or copies of itself) of the objects that it spawns to physical storage. Each
type manager implements access control policies for the occurrences of its type
and implements the necessary level of redundancy to ensure the level of fault

tolerance given in its specification.

A type manager may support concurrent operations such that there
may be multiple active processes manipulating the data managed by the type
manager. When concurrent operations are allowed, consistency management
of the data objects that the type manager controls is the responsibility of the

individual type manager.

Tasks will be performed by issuing calls to an object’s type manager
with a request for a particular function to be applied. At each level of

execution, functions of type managers are atomic.

System and application type managers are created. modified, and
destroyed by a special system type-type manager. The object type manager

hierarchy is shown in Figure 1.

14

Type Type

Jccurrences

Type Manager Type Manager of Type Managers
(e.g.,Type Process)

PilA PiB P2A P2B Instances
cof Objects

FIGURE 1: Object Type Manager Hierarchy

Occurrences of a particular type manager object type may be present
at several different sites in a distributed system. It may be necessary for the
type manager to coordinate the resource management among the occurrences

of the type manager to avoid blockages and/or unnecessary delays.

2.1.6 Vertically Partitioned

A system is wertically partitioned if all functions applied to the
object’s data structure and all required support software are self-contained
within the type manager of the object (i.e. an object’s type manager does not
share lavers of support software with any other type manager.) That is, no
component of one object will depend on the internal details of any other
object. Only the object’s type manager can change the state of its
permanently stored data. Each type manager, if needed, performs all of the
required functions of a traditional database management system and all of the

required functions of a traditional operating system.

15

Each object is built upon the abstract base machine. The abstract
machine provides scheduling of the resources of the machine and provides run
time binding both among type managers and in addition between type
manager and the machine’s resources. Each type manager has direct access to

the abstract machine.

The use of vertical partitioning allows a semantics which permits
specific treatment of individual object types. It will be shown that a vertically
partitioned object-oriented software program structure provides a natural
mechanism by which we may compose elementary (primitive) operations on

primitive data objects to form logical data structures and logical operations.

2.1.7 Process

Formally, a process is defined as an object for which there exists a
type manager of type process. A process is a declared type that takes a
program object, address space, and a processor to execute. A process is an
object to which the function execute applies. A process is created (defined) by

giving a type manager a program and an address space, and a processor.

Informally, a process may be defined as a schedulable stream of
instructions with a program counter (PC) imbedded in some address space
where names have been resolved. A process may invoke procedures defined by
type managers. The process’ locus of computation may flow from execution in

one object’s address space to execution in another object’s address space.

Users may have many processes. By invoking the type manager of

type process, a process may create further processes which may be subordinate

to the original process or may be of equal status.

2.1.8 Model of Execution
The model of execulion contains an address space, a process type. an
interpreter of the primitive units of operation, and the binding of the process

to the interpreter.

2.1.9 Model of Computation

The model of computation contains primitive units of operation (e.g..
abstract machine and a set of primitive type managers), schedulable units
(processes), definition of address space, means of sequencing and means of

synchronization, and interprocess communication facility.

2.1.10 Program

A program is an interpretable sequence of code. The model of
computation must be satisfied for a program to execute within a machine that
satisfies the model of execution. When programs are running, processes are
executing functions on object state variables by invoking the object’s type
manager. Chapter 4 provides an example set of type manager specifications

for a program.

2.2 Fault Tolerance/Recovery Concepts

This section will review the key definitions and concepts drawn from

the fault recovery and fault tolerance literature.

A system state consists of records and devices with changeable

17

values. The system state includes system consistency constraints which are
assertions about the values of records and about the allowed transformations

of the values [Gray 81].

A recovery point is a point in time at which the state of a process is
saved for possible regeneration [Wood 81]. A process expresses a commitment
to a recovery point when recovery from that point in time is possible and the
process no longer requires the data prior to that recovery point. The recovery
region is the period of activity from the establishment of a recovery point to
commitment to the next recovery point. Visually, recovery lines can be used
to show the set of recovery points that a system will be rolled back to in the
event that each of the processes initiates recovery actions [Wood 81]. A
latency interval is the time elapsed between a manifestation of a design fault

and a detection of the consequences of this manifestation [Cristian 82].

A direct propagator relationship takes place when the occurrence of a
fault in one recovery region requires the rollback to a recovery point not in
that region [Wood 81]. An indirect propagator is a direct propagator or a
propagator that recursively leads to a direct propagator relationship. A
recovery point RP is a potential recovery initiator of a recovery point RP’ iff
the RP is active and is an indirect propagator to RP’ [Wood 81]. A safe
recovery point is one which will not generate further recovery actions (domino
effect) as a result of a recovery action initiated elsewhere in the system. The
concept of recovery points, recovery regions, and recovery lines is a way of
establishing commitment to the results of the execution to one or more

transactions, as will be discussed later [Browne 83].

18

Fault recovery is initiated when an error is detected. The goal of the
fault recovery mechanism should be to return the system to 2 consistent state
from which processing may continue [Wood 81]. The recovered state should
be a safe state. That is, there should be no recovery cycles which may lead to
the domino effect. Additionally, the recovery mechanisms should not lead to
deadlock. Finally, the recovery mechanism should be efficient. That is, it
should not place such a large processing load on the system as to be

" impractical to use.

A forward recovery is the recovery sequence in which the final state
of the recovery set is different from the initial state. Forward recovery is based
upon knowledge of the semantics of the procedure that is being executed and
has to be explicitly programmed by the designer of the procedure. Backward
recovery is the method by which the variables in the recovery set recover their

prior state [Cristian 82].

Any fault recovery scheme must deal with one or all of the following:
1) the standard execution domain, 2) the anticipated exception execution
domain. and 3) the unanticipated exception execution domain [Cristian 82].
The standard program execution domain is executed if a program receives
correct input data and each module executes properly to a normal completion.
When a fault occurs, then the program will execute in an exception domain.
The fault may be due to out-of-bounds input data, improper software design,
or faulty hardware. The exception domain may be partitioned into the

anticipated exception domain and the unanticipated exception domain. In the

19

anticipaled exception domain faults can be predicted and, conversely, in the

unanticipated recovery domain faults can not be predicted.

Two mechanisms may be used to implement fault recovery: (1)
programmed recovery and (2) default recovery. Programmed recovery has
specific user generated code placed within the module to deal with one or
more faults. Default recovery has a general system mechanism used to back
up to a recovery point, replace the module state information with consistent
data, and reprocess. Programmed exception handling may generally be used
for faults within the anticipated exception domain and some form of default
recovery must generally be used to recover from faults in the unanticipated
exception domain. In order to obtain highly reliable software both
programmed exception handling and default recovery should be used in

combination [Cristian 82].

Within a module, two fault recovery options are available: (1)
masking and (2) signaling [Cristian 82]. Masking detects and corrects a fault
within the module. The fault is not made visible to the calling module except
possibly as an indication that a fault was located and corrected for error
logging purposes. If a procedure R can provide its standard service, in spite of
o lower level exception E which is propagated in R, we say that the
propagation of E is masked by R. Signaling is the condition in which a fault
‘s detected but recovery is not provided within the module boundary. The
problem is passed to the calling module for possible resolution. Whenever
possible, the responsibility of coping with faults specific to each interpretation

level of abstraction need to be taken at the level where the fault occurs.

20

A recovery protocol must ensure that the system reverts 1o a2
consistent state in the event that one or more processes initiate recovery
action, and it must support the determination of recovery point safety. A
successful recovery protocol should maintain a record of the direct propagator
relationship between recovery points and invoke recovery to all recovery points

S

which are linked by the direct propagator relationship. When reéovery i
invoked by one process, the protocol should prevent cycles of dependencies
(domino effect) by avoiding potential recovery initiator relationships. The
protocol should avoid deadlock. Finally a recovery protocol should minimize
the message passing and storage overheads associated with the protocol, and

strive for conceptual simplicity.

Recovery from faults in the presence of concurrent processing is a
difficult problem. The difficulty arises from dependencies between the
concurrently executing processes which may cause cascading rollback upon the
occurrence of faults. This problem occurs when recovery is based upon discrete
state recovery points and logs of processing [Browne 83]. [Reed 83] gives a
continuous state history protocol, where each binding of an action with a data
object and the changes effected are recorded. In Reed’s protocol cascading of
rollback cannot occur under the assumption that a fault is immediately

detected.

In their papers, [Wood 81] and [Russel 80] have given detailed
analyses of mechanisms for determining valid recovery points for a

dynamically varying set of interacting processes. The mechanisms involve

21

claborate and complex procedures for keeping track of which recovery point is
the currently valid recovery point for the currently executing set of processes.
The recovery manager must, in essence, maintain a dependency graph for the
interacting processes at run time. A fault occurring in a properly formulated
recovery region within a process cannot invalidate current or past processing

within another process.

In summary, any effective recovery protocol should (1) provide state
consistency, (2) provide recovery safety, (3) avoid deadlock, and (4) be efficient
[Wood 81]. In the mnext section, it will be shown that a transaction based

software system makes an incremental step towards meeting these criteria.

2.3 Transaction Concepts

This section will brieflyv review the key definitions and concepts

drawn from the transaction literature.

According to Gray [Gray 81], a transaction is a composition of
primitive system actions which has the properties of atomicity, comsistency,
and durability. The atomicity property requires that the composite action
taken is either completed or not completed. The effects of the composite
action are not visible externally to the scope of the transaction. The
consistency property requires that the actions of the transactions maintain
satisfaction of the constraints defined for the data. The durability property
requires that the effects of a completed transaction will not be undone. (The

effects can only be changed by another transaction.)

[}
[

A transaction may be viewed as a transformation of a system state.
Each transaction is defined to have exactly one of two outcomes: committed
or aborted [Gray 81]. Once a transaction is commitled, its effects can only be
altered by running another transaction. An aborted transaction has no effect
on the system state. The commitment interval is the time interval between
the beginning and the end of a transaction [Cristian 82]. It should be noted
that 2 transaction binds a sequence of elementary actions to data items at
execution time to create an indivisible action on a logical data object [Browne

83].

Actions on entities (system states) are categorized as [Gray
81] unprotected, protected, or real. An unprotected action need not be undone
or redone if the transaction must be aborted or if the entity value needs to be
reconstructed (e.g., a scratch disk). A protected action can and must be
undone or redone if the transaction must be aborted or if the entity value
needs to be reconstructed (e.g., a DBMS system). A real action cannot be

redone (e.g., a cash dispenser).

From the beginning to the end of a transaction, real or unprotected
updates of the state must be kept hidden from other transactions until the
transaction is committed. One must stabilize the records which a transaction
reads and keep them constant until the transaction commits (e.g., rereading
the same record must give the same result). The method of synchronization
generally used between transactions is two-phased locking with end-of-

transaction commit [Gray 81]. This method results in a binding of a sequence

23

of actions to data by establishing appropriate locks on the items in the
transaction and holding these locks until all actions have been completed. The
two-phase method of synchronization can have a substantial overhead by
reducing the degree of possible multiprocessing when the lock granularity is

large.

Simple single-level transactions have primarily been used for simple
short action sequences. In a single-level transaction, any failure of a sub-unit
of processing will cause the entire transaction to abort. Consequently, simple
single-level transactions may not be an adequately powerful tool for the
formulation of complex processing structures over extended periods of time.
When processing spans over several concurrent streams of execution then
component transactions within the instruction stream may have to be rolled
back for recovery of faults. These circumstances have led to the concept of

nested transactions [Moss 82].

Nested iransactions imbed transactions within transactions by
applying transaction synchronization and recovery concepts within
transactions as well as among them. Nested transactions allow the
establishment of smaller indivisible actions within the scope of a larger
externally visible durable action [Browne 83]. If one of the enclosed sub-
transactions fails then the enclosing higher level transaction can recognize this
as an exception and take appropriate action such as initiation of an alternative
computation of the same action [Browne 83]. The nested transaction structure
may be particularly useful when the computations involve algorithms which

are robust in their application [Browne 83].

24

Shadow version recovery occurs when a transaction begins to hold a
write lock for data and a backup copy of data is made. When a transaction
commits, its parents (if any) may inherit some of the committing child’s data
versions. A top-level transaction that is ready to commit will know the

identities of all nodes it affected through its descendants.

Children and parent transactions are connected when parents inherit
locks as children complete. In a nested transaction system, if a child fails
(aborts), the parent is not required to abort. This permits parents to attempt
their own recovery, by retrying the action or using some other method.
Locking rules in nested transaction systems provide for inheritance of locks
[Moss 81]. Nested transactions permit safe concurrency within as well as
among transactions, and enable transactions to fail partially in a graceful and

controlled manner.

In 2 nested transaction system, inconsistencies may occur within the
set of nested transactions. One way to detect these inconsistencies is to pass to
the ancestor node a list of the descendant transactions committed and pending
commitment. The superior node checks the list against a reference list. If the
lists differ, a crash must have occurred at some earlier time. Transactions
thought to have committed may be lost or transactions may be left as orphan
transactions, in an indeterminate state. In this case everything must be undone

and the top-level transaction must abort.

The advantage of transactions is that consistency relationships are

Q]
(2l

usually defined over actions and data object definitions which are more
complex than the usual system primitives of reads and writes of single data
items. This advantage is important because systems must maintain consistency

both in normal concurrent processing and in the presence of faults.

Default exception handling based on automatic backward recovery
can provide effective fault tolerance for design faults with latency intervals
contained within the commitment intervals associated with transaction
executions. This exception handling cannot cope with design faults of latency

intervals which stretch over successive transaction executions [Cristian 8‘2}.

In summary, nested transactions form a basis for building distributed
systems because they encapsulate the synchronization and failure properties of
distributed systems in a very clean and usable way [Moss 81]. Unresolved
problems in a transaction-based system are (1) how to provide for transactions
over a long period of time when the latency interval is greater than the
commitment interval, (2) dealing with orphans, (3) synchronization between

transactions, (4) the inefficiency of run time binding.

It will be shown that the approach presented in the following chapter
is an improvement over the achievements of the transaction approach

discussed in this section.

Chapter 3

A DESIGN METHODOLOGY

The first section of this chapter will consolidate the key concepts
brought forth from the literature into a vertically partitioned object-oriented
design approach as a set of software design specifications. Justification for the
specifications and design options will be discussed. The second and third
sections will discuss the requirements for and functions of a generic type
manager. The fourth section will discuss communication among type
managers. The fifth and sixth sections will outline a set of design aids and
design steps, respectively, that are generally useful in developing this type of
software. Taken as a whole, these sections define a methodology for designing

vertically partitioned object-oriented software programs.

3.1 Software Design Specifications

3.1.1 Overview

The approach is to develop an object-oriented system design that
nvertically partitions” the state of the system by type. The concept of
composite objects is included. Decomposition of total processing is done on the
basis of data structure rather than on software functions. Data is accessed
and manipulated within objects by type managers. Atomicity must be

maintained by the type manager’s procedures.

26

27

Atomicity implies that the invoking of an object’s type manager will
have one of two outcomes: a new state will be created and be committed to or
there will be no change to the object’s state. Each externally accessible
function or procedure of the type manager will return, as a minimum, an
exception flag, that will indicate a completed or aborted execution. A
temporary state of pending commitment is possible, while waiting for higher
level objects to commit. Once an object’s state is committed to, its effects can
only be altered by invoking a compensating action. During a temporary state
of pending either the object’s original state (i.e., possibly with a time tag) may
be used for additional accesses, or access to the object’s state information may
be blocked, awaiting either the indication to commit to a new state or the

indication to return to an earlier state.

Execution of a type manager’s procedure may involve calls to
procedures of other type managers. Each type manager must have the
property of implementing indivisible actions. Type managers must recognize
the failure of a given call from the exception flag that is received and use
alternative computational procedures that may be provided by the called type

manager [Browne 83].

The hierarchical definition of composite objects in terms of other
objects must in each case guarantee the atomicity, consistency, and durability
of the objects. Each type manager must implement correct concurrent access
to the data of the object controlled by its procedures to maintain data

consistency both during normal execution and when recovering from faults.

28

The type manager for each object may provide an undo and a redo
procedure to allow fault recovery. Undo and redo must be restartable; that is,
if the operation is already undone or redone, the operation should not change
the object’s state. Because the semantics of the application are known, undo

operations can be specific to the fault.

Functions manipulating an object should exploit the object’s
individual semantic properties in order to provide application-specific fault
localization, fault recovery, and "operating system" and "database routines"”.
This is the strength of the approach of wvertical partitioning. Software
reliability, integrity, and performance specifications will dictate the extent of

each object’s fault detection, localization, and recovery logic.

A system is composed of a set of type manager objects installed on an
abstract machine. The type manager objects may create and maintain
instances of data objects. Each type manager contains all of the procedures
that are needed to execute functions on the specific data values contained

within its data object(s).

3.1.2 Amplification

A hierarchical object-oriented program structure is used because it
provides a simple means by which programs may be structured. People are
used to thinking about object abstractions. As in everyday life, physical
objects are made up of smaller objects and as such the methodology includes
component objects. The hierarchical use of composite objects in terms of other

objects is analogous to the concept of nested transactions in database

29

management systems, because in each case the properties of atomicity,
consistency, and durability must be guaranteed. These properties are the
basis upon which a simplified fault recovery model may be built. Composite
objects provide a variable granularity of data that provides design control over

data consistency, software integrity, and fault recovery.

The fundamental requirement for the implementation of high
integrity programs is the ability to construct atomic operations of arbitrary
size on data objects of arbitrarily complex structure. Definition of objects
through definition of their type managers amounts to early binding (at system
definition time) of a sequence of elementary actions to elementary data objects
to create indivisible actions on logical data objects [Browne 83]. The type
manager of an object must contain the necessary mechanisms for consistency

management and fault-tolerant scheduling.

The use of data abstraction in program development leads to
programs which are structured into a hierarchy of modules. Visually, such a
hierarchy may be represented by an acyclic graph. An acyclic recovery graph

may be used to show the avoidance of the domino effect in recovery.

Simplicity of recovery results because the vertical partitioning of
objects minimizes inter-object dependencies. Analogously to transaction
systems, the invocation of the type manager of an object causes a state
transformation which has the property of atomicity (all or nothing), durability
(results survive failures), and consistency (a correct transformation, e.g., the

procedure must obey legal protocols).

30

Macro software objects built from a subset of possibly reusable
objects may be provided. A macro capability facilitates common software
development. When the performance and integrity specifications dictate, the

common software base can be optimized for each object’s application.

In building a fault detection and recovery model upon a vertically
partitioned, hierarchically structured, object-oriented structure, the key
concepts brought forth from the transaction systems approach are atomicity
and nested transactions. Analogies between the composite object-oriented
structure described here and nested transactions as proposed by Moss [Moss
81] may be made, such that many of the recovery techniques developed for
nested transactions are directly applicable to an efficient fault recovery
mechanism here. Additionally, the early binding and semantic knowledge

available from the hierarchical object structure will provide an execution time

advantage in efficiency due to prior knowledge [Garcia 83].

Objects are hierarchically structured. Commitment of higher-level
(ancestor) objects must wait until all lower-level (descendant) object calls have
completed and tentatively committed. Should the higher-level object decide to
abort execution, all lower level objects must also abort execution and return to
a previous safe state. The type managers of the various objects in the system
must contain the recovery and/or control procedures necessary to allow overall
safe state recovery. Additionally, the tvpe manager will implement correct
concurrent access to a database of the objects defined by its functions and

procedures.

31

For high reliability and high integrity applications, each object’s type
manager must maintain consistency at the object level both in normal
concurrent processing and in the presence of faults in the underlying execution
machine. Each type manager must deal with system failures and media faults,
as appropriate. An independent decision can be made for each type manager
as to how to implement recovery, based upon the circumstances of the
individual type manager. This approach should lead to more efficient
execution and performance since the context of the operation may be

considered in making design decisions.

As an example, within an object either logging or recovery blocks
may be used to allow fault recovery. Logging keeps the current state and an
old reference state of each object, and a history file of differential state
changes, called a log. Logging allows the object’s type manager to reconstruct
the object state from the old state plus the log. For recovery blocks, when the
object is invoked, a copy of an entire relevant state history of the object is
made. The recovery block allows the object type manager to return the object
state to the old state. The decision of whether to use logging or recovery
blocks is based upon implementation efficiency for specific systems or

applications.

3.1.3 Conclusion

The functions and procedures of the object type managers can be
viewed as implementing a set of transactions [Browne 83]. Analogously, each
hierarchical level of abstract objects can be viewed as implementing a set of
nested transactions. The basic difference between the transaction and object
view is the time at which the sequence of elementary operations is bound to
the set of data objects. The object view binds a sequence of operations to a
set of data items at compile time while the transaction view binds the

operational sequence at run time [Browne 83].

Whenever the need for indivisible actions on logical data objects can
be foreseen and early binding can be provided, an increase in efficiency will be
possible. Specificity in the choice of localized recovery mechanisms allows
specific fault recovery that aids in overall system efficiency. For example,
whenever the semantics of logical operations can be used to allow programmed
exception handling, early binding can allow a simplified forward recovery from
faults. Finally, partitioning at object boundaries limits the effect (e.g., access
range) of functions, reduces the propagation of faults, and enhances overall

system security.

3.2 Type Manager Requirements

In this section we define the requirements that should be considered

for each type manager, as is appropriate to the specific application.

33

3.2.1 Validity Testing

Validity testing of parameters is the responsibility of the individual
type managers. In addition to type testing, boundary condition testing of
input parameters is possible. This represents a form of early fault localization
that may help locate problems before they propagate among some or all of the

type managers.

3.2.2 Atomicity of Operation
Objects may be composite. Within hierarchically constructed
composite objects, atomicity must be maintained at each object level and at

the highest level.

Each object’s type manager procedure must return a status flag. A
status indication of "aborted" will normally be accompanied by an associated

exception flag that indicates the reason for the aborted action.

The object’s commit control flow can result in data inconsistency and
orphan processes [Moss 81], in the eventuality of a processor crash during this
sequence. The window of vulnerability to crashes during the commit sequence
between objects should be minimized. The protocol semantics are a design

issue that impacts performance and software integrity.

34

3.2.3 Distribution of Objects

It is the responsibility of the type managers to provide for the
distribution of objects over processors. Some or all of the objects may be
centralized or distributed. As an example, one design option provides for
highly reliable distributed objects with redundant copies of all data. This
typically results in a high communication overhead and complex inter-
processor protocols. Alternately, objects may be centralized. This design
results in a potential single point of failure. The type managers may distribute
the operations in accordance with the data consistency, program integrity, and

overall performance requirements.

3.2.4 Consistency Management

Consistency management is the direct responsibility of each type
manager. A uniform approach to consistency management is not required.
Depending on the specific type manager application, an appropriate
mechanism may be used. As an example, infrequently used type managers may
disallow concurrency and use a simple lockout protocol while a frequently used
type manager may support concurrency and use a version of a continuous

state history protocol as described by [Reed 83].

There are various commit protocols that might be considered such as
the two-phase locking with end-of-operation commit protocol. In this protocol
a prepare to commit is given, an acknowledgement is received, a commit is
given, and a final acknowledgement is received. Alternately, one of the one-
phase commit protocols might be considered. In one-phase locking, a commit

is given and an acknowledgement is received. A variation called one-phase

35

locking with presumed commit gives a commit and the positive commit is
presumed. A reply is issued, within a prescribed time, only when an execution
abort occurs and commit is not possible. Alternately, one phase locking with
presumed abort gives a commit and an execution abort is presumed, unless an

explicit commit is received within a prescribed time.

The simple one and two phase protocols only require data replication
of the initial state data while the continuous history protocol requires a
version (environment number) or timestamp associated with the data objects
and multi-versions of replicated data. In a multi-version system, a scheme is

necessary for purging unnecessary old copies of replicated data, as described

by [Reed 83].

There is a large literature on consistency management protocols
[Bernstein 81]. Within each type manager different protocols may be used in

accordance with the semantics and requirements of that object’s application.

3.2.5 Synchronization

If an object’s type manager supports concurrent execution, the
object’s type manager must provide for synchronization within the object.
The two-phase locking protocol is generally desirable because it allows each

participant to unilaterally abort prior to the commit.

Hierarchically composite objects inherently provide locking of data at
multiple levels of granularity. This is true because objects do not share data.
An object is either solely responsible for its own data or it requests data from

another object’s type manager.

36

Operations that manipulate the data of an object are provided by the
type manager of the object. Localized operations within objects should
minimize the exchange of data between objects. Communications between
objects should primarily contain commands and names. This is a very good

security feature of well designed object-oriented systems.

3.2.6 Integrity Management

Integrity management of an object’s data is provided at the object
boundaries in that one object’s type manager cannot directly access the
internal structures of objects of another type. Integrity management within
the object boundaries is the responsibility of the type manager. The degree of
integrity management within each object’s boundary is a design issue,

depending upon the system integrity specification.

3.2.7 Fault Localization
Fault localization should be done at the appropriate composite level
of the hierarchy of objects. The degree of fault localization should conform to

the degree of abstraction being handled at each level.

3.2.8 Fault Recovery

Fault recovery can be done at the object level at which the fault is
located, or the fault indication can be passed up to a higher level. Fault
recovery in the anticipated exception domain may provide for forward
recovery. Faults in the unanticipated exception domain can be handled by
default recovery that resorts to some form of abort (backup recovery) and

reprocess.

37

Faults may be either corrected and masked at the level where they
occur or propagated to a higher level for resolution within the composite
object structure. If concurrency is to be supported, an integrated
unanticipated (i.e., subsystem crash) fault recovery backup capability and
version or timestamp mechanism for concurrency control may be desirable. In
this case a continuous state history protocol as described by [Reed 83] may be
needed. The protocol described by [Reed 83] is attractive because it integrates
the requirements of concurrency control and fault recovery into a single

mechanism that is directly controlled by the individual type managers.

Anticipated fault recovery is best handled by the procedures that
operate on the data of objects; unanticipated fault recovery is best handled by
a separate type manager procedure. Crash recovery 1is the specific

responsibility of the individual type managers.

3.2.9 Access Control

Access control can be implemented at the object level to provide
maximum security, or some more lenient approach to access control can be
implemented to improve system performance. Various schemes such as

capabilities or tokens can be implemented.

3.2.10 Storage Management

The vertical structuring of the object system dictates that all storage
management for the respective data structures of the object is the
responsibility of each type manager. One type manager may not directly
access the data of any other type manager. This means that the traditional

data access features of an operating system and of a data base system are

38

provided at the type manager level rather than at the system level. Reusable
code may be developed and used for many applications while specifically
tailored code may be preferable in certain high-use objects. The requirements
of the specific application should dictate whether simple or complex storage

management techniques are provided.

3.2.11 Machine Interface

The specific machine implementation will provide an abstract
machine. The abstract machine provides scheduling of machine resources and
binding both among type managers and between type managers and the
machine’s resources. Each type manager will provide its own interface to the

abstract machine.

3.2.12 Summary

The key concept in a vertically partitioned object-oriented design is
that each object type is considered a self-contained unit that is accessed by the
procedures of its type manager. For a particular application, each of the type
manager procedures may be tailored to suit the specific need of the
application. Early compile time binding of functions to data is provided at the
object level. Late run-time binding may be necessary among objects because

of the possibility of relocation in a dynamic distributed environment.

39

3.3 Type Manager Functions

In this section a set of commonly required type manager functions
will be described to provide a template for the design of objects and their
respective type managers. Depending upon concurrency and recovery
requirements, a version and sequence number or timestamp may be desirable

for all type manager procedure entry points.

3.3.1 Initialize
The initialize function must preset or set up data structures before

the first execution of any functions on the data structures.

3.3.2 Terminate
The converse of initialize, the terminate function provides for the

orderly shutdown of an instance of a type manager that is no longer desired.

3.3.3 Relocate
The relocate function provides for the orderly moving of one or more
instances of a type manager’s data from one system to another for distributed

systems.

3.3.4 Recover

The recover function provides the recovery logic to recover from
expected or unexpected failure during the execution of a function of the type
manager. There may also need to be one or more recover functions for
dynamic reconfiguration in a distributed execution environment in response to

hardware status change (i.e., hardware failure or hardware recovery).

40

3.3.5 Create

The funection of create is to install an instance of a requested object.
This is the mechanism in which composite (descendant) objects are created.
The objects may be static and long lived or dynamically changing depending
upon the operational environment. All binding among objects is done by
installing each type manager object in the abstract machine. The function of

create includes the request of storage from the abstract machine.

3.3.6 Delete

The function of delete is to remove an instance of the requested
object. This is the mechanism in which composite (descendant) objects are
eliminated. The delete function must update the abstract machine and return

storage to the abstract machine.

3.3.7 Commit

Within a composite object structure, the function of commit is to
commit a version of the object and all of its descendant objects to the pending
object’s state. This entry, in conjunction with abort, is the mechanism that
provides for atomicity. There may be a separate commit entry corresponding

to each of the other type manager entries (excluding abort).

An object version can be discarded as a part of the commit protocol.
If an object commits to a particular version in a sequence of composite object
actions and one or more of them aborts, then the object version may also have
to be discarded. Various commit protocols are available depending upon the
consistency guarantee that is desired. As an example, a two phase commit
protocol with presumed abort is very safe, but may have a high performance

overhead for frequently used type managers.

41

3.3.8 Abort

The function of abort is to retract a ready to commit object version.
This function represents the alternate to commit, while guaranteeing
atomicity. If an irrecoverable fault or an orphan process is located, it may be

necessary to abort an operation and return to a previous consistent state.

3.3.9 Execute

The function of execute is to execute some type specific function(s).
This entry or set of entries provide for the type specific functions of the type
manager. In some applications, that transform object data, an undo function

may be desirable as a separate entry, due to the atomicity of operations.

3.4 Communication Among Type Managers

Communications among type managers and/or processes is an
important function. It can be handled by either direct procedure calls or by
processes that manage 2 mailbox system. A name manager and a switchboard
(circuit) manager may be used in establishing communications. A name
manager establishes a path to the present location of the object but does not
guarantee that the object will remain at that location. Migratory objects may

be tracked by either a forwarding address or a call to the name manager.

A switchboard manager establishes a two way communications path.
A switchboard manager is analogous to a two way circuit. Both ends of the
circuit must be updated or have the information available to update if there is

a change in the connectivity.

3.5 Design Aids

The design steps and design tools sections will be brief with reference
to the literature because these techniques are well documented. Data flow and
control flow diagrams, data object tables, hierarchy charts, and computation
structure graphs are graphical design tools that are generally useful to
facilitate software design. Data and control flow diagrams are useful to
visually analyze data and control flow as shown by [DeMarcos 78]. To
determine natural object boundaries around data structures for a system
design, a data object table based upon the modularization criteria of [Parnas
72] and further developed by [Duncan 84] may be used. Traditionally,
hierarchy charts have been used to display program organization. A good
reference for the use of hierarchy charts is [Buhr 84]. More recently,
computational structure graphs are being used to detail out the characteristics,

module interfaces, and control and data flow as described by [Browne 85].

3.6 Design Steps

A program can be best designed [Browne 84, Browne 85] by following
these design steps.

e Map the software requirements statement into a partitioning of
data objects. Determine the data objects and their interfaces with
the objective of creating a modularization with maximum cohesion
within the objects and minimum coupling among objects. Object
structure diagrams are a useful design aid here.

e Define the type manager processes and the externally visible type
manager functions controlled by each type manager. This step
provides the classical black box description of each type, that is the
internal functionality and external interfaces and parameters
passed for the type manager of each object. Structure diagrams are

43

a useful design aid in doing this step. At this point the abstract
machine interface is mapped into the overall design.

e Express the (trans)actions of the system in terms of the sequences
of calls among type managers. This step shows the relationship
among types for each externally visible system event by showing
for each type manager process or type manager function, the
sequence of external procedure calls. Control flow and data flow
diagrams are useful design aids for performing this design step.

e Specify the protocols to be used among object procedures and
processes. Control flow diagrams are a useful design aid in
performing this design step.

e For each type manager map the type manager design to a specific
modularization implementation. Hierarchical diagrams and a
definition of the internal data structures are useful design aids at
this step.

e For each type manager specify the detailed algorithms and
processing within each object. Internal structure diagrams and/or a
high order design language are useful design aids at this step in the
design process. Additionally internal flow diagrams and internal
control diagrams may be useful.

e Integrate the module design into a cohesive system design.

In summary, the design process should guide the user to look at data
representation, to partition the program by data structures, and to define

objects by the set of functions that act upon the data structures.

Chapter 4

AN APPLICATION ENVIRONMENT

4.1 Introduction

This chapter will define 2 set of requirements and two sets of
associated specifications for a particular application. First the application
requirements, which include an execution environment and workload
description, will be given. Next the specifications for a traditional functionally
layered design will be given, and then the specifications for a vertically
partitioned object-oriented design will be given. These functional and object
design specifications will be the basis for the evaluation experiments described

in chapter 5.

4.2 Application Requirements

This section will describe the application requirements that will be
used in making design decisions in the subsequent software specifications
section. This section is 2 subset of the more complete requirements given in
Appendix A. The abbreviations were made to simplify the experiment and to
emphasize the more interesting aspects of the requirements with respect to the

methodology evaluation. Much of this material is based upon [Tripathi 83].

The hardware configuration will consist of three computers connected

44

45

to two local area networks that are also attached to two disks, two operator
displays, two communication (message) receivers and a system command unit.
Communications between the hardware units will be by the passing of
messages on one of the local area networks. The application programs will
support external message reception of track-update messages by the
communications units. One of the communications units will be enabled by
the software program to format each track-update message for transmission to
the communications processing function on one of the computers. There will
be three software processing functions: (1) the communications processing
function, which will receive track-update messages from a communications
unit on the local area network, decode each message to create a track-report
message, and send each track-report message to the track processing function.
When the system is initialized the communications processing function will
send a message to one of the communications units to make it the active unit.
The other unit will stay in standby. (2) The track processing function will
receive track-report messages from the communication processing function,
will perform track update processing, will create display-update messages, and
will pass the display-update message to the display processing function. (3)
The display processing function will receive display-update messages from the
track processing function, will create two display-command messages (400
words each), and will send the display-commands messages to both of the
display units. When the system is initialized the display processing function
will send a 4000 word initialization-commands message to each of the display

units.

46

The system will provide for continued operation after and recovery
from a single point of failure. That is, the system will automatically
reconfigure itself to bypass a non-operational hardware unit and continue
receiving and processing external track-update messages. If a non-operational
hardware unit becomes operational the system will reconfigure itself to include

the operational unit.

When all hardware units are operational the following system
configuration will be used: 1) Communications unit 1 will be active and
communications unit 2 will be in standby. 2) Local area network 1 will be
exclusively used for communications among hardware wunits. 3) The
communications processing function will be located in computer 1, the
tracking function will be located in computer 2, and the display processing
function will be located in computer 3. 5) Duplicate information will be placed
on disk units 1 and 2. 6) Duplicate information will be displayed on display

units 1 and 2.

If a computer becomes non-operational, the system will detect the
failure and reconfigure itself to redistribute the processing function of the non-
operational computer to the next higher numbered computer, modulo three.
(i.e., if computer 1 fails then computer 2 will configure itself to do both the
communications function and the tracking function.) If a computer becomes
operational, after having been non-operational, the system will reconfigure

itself to the fully operational configuration just described.

47

The following assumptions may be made: 1) Messages are reliably
passed and messages will be passed in the order that they are sent. 2) The
hardware units are "fail stop”, that is, they will stop and provide an

indication when a hardware failure occurs.

4.3 Functional Software Specifications

In this section the specifications for a layered functional software
design will be given. These specifications will be brief because traditionally a

layered functional design of software is used.

4.3.1 Operating System

Each computer will have a kernel operating system. Each operating
system will be responsible for local configuration based upon the operability of
the system hardware units. It will maintain a local and global status of the
system configuration and exchange status between processors whenever a
software reconfiguration occurs. The operating system will provide local area
network access routines and pass messages among processes and the local area

network. Interprocess communications will be done by message passing.

4.3.2 Database System

A database system will be provided to allow uniform access to disk

data structures.

48

4.3.3 Application Software

The application software will be partitioned into three processes: a
communications process, a track process, and a display process. The default
system configuration is to have the communications process on CPU 1, the

track process on CPU 2, and the display process on CPU 3.

4.4 Object Design Specifications

This section will detail the design specifications for a vertically
partitioned object-oriented design to meet the requirements given earlier in

this chapter.

4.4.1 Abstract Machine

We are generating a distributed system that integrates the normal
operating system and database system functions. There is no specific
underlying function of a distributed operating system in this system structure
since the functions are subsumed by the selection of basic type managers. Any
host machine that supports the set of type managers to be specified will have
an abstract machine interface that provides binding among type managers and

between type managers and resources.

The abstract machine has a scheduler that multiplexes the processor
among the type managers and schedules the type manager’s requests for
memory and communications resources. The abstract machine will provide the
processor number upon which the software is running. The abstract machine
interface consists of requests for resources (i.e., CPU, local area network and

memory), linkage between type managers. and requests for CPU identification

49

(ID). The abstract machine is also responsible for restarting the system and
the startup of the type-type manager. Each abstract machine function will

now be discussed.

‘4.4.1.1. Bootstrap Function

The bootstrap function is used to start or restart the system software.
Actual recovery within the type managers will be performed by the individual
tvpe managers. This function bootstraps an object whose name is type and
type is type that establishes the type manager operations.

Entry Name: Bootup

Parameters:
8] Status indicator of results, if failure

Note: An 1 before a parameter descriptor indicates that the
parameter is an input to the function and an O before a parameter descriptor

indicates that the parameter is an output from the function.

4.4.1.2. TM Function

The type manager (TM) function of the kernel does the necessary
linkage to install or remove type managers from the system so that the
computer scheduler will cause the execution of the proper type manager
procedures. The installation and removal of a type manager into the abstract
machine is the responsibility of the type manager requesting the CPU
resources.

Entry Name: TM Installer

Parameters:
1 UID of the TM to be installed

50

I TM linkage block (i.e., entry polnts)
0 Status indicator of results

Entry Name: TM Remover
I UID of TM to be removed
0 Status indicator of results

4.4.1.3. Storage Function
The abstract machine’s storage function allocates memory to type
managers and keeps a directory of the ownership of these resources.

Entry Name: Memory Request
Parameters:

I Caller UID

I Amount of storage space (i.e., blocks)

0 Physical location of logical block(s) of storage
0 Status indicator of results of invocation

Entry Name: Memory Return
I Caller UID
I Amount of storage space (i.e., blocks)
O Physical location of logical block(s) of storage
0 Status indlcator of results of invocation

4.4.1.4. Resource Function
The abstract machine’s resource function allocates disk blocks to be

controlled by a type manager and keeps a directory of allocated blocks.

Entry Name: Resource Request
Parameters:
I Caller UID
I Number of blocks desired
0 Starting block number
0 Status flag - indicate the results of the invocation

Eniry Name: Resource Return
Parameters:
I Caller UID

51

I Starting block number
I Number of blocks returned
0 Status flag - indicate the results of the lnvocation

4.4.1.5. CPU ID Function
The abstract machine’s CPU ID function uniquely identifies the

computer number upon which the software is executed.

Entry Name: CPU 1D

Parameters:
0 Unlque CPU ID

4.4.1.6. Communication Function
The communication function will provides for communication linkage
between type manager and other type managers or the active local area

network, so that type managers may pass messages.

Entry Name: Message Send

Parameters:
I Callee UID
0 Linkage to destination
0 8Status

Entry Name: Message Recelve
I Callee UID
0 Linkage to source
0 status

(@1
[}

4.4.2 Type Managers

This subsection will specify the set of type managers that will be used
to meet the application requirements given earlier in this chapter. The
initialize, recover, and disable entries are common to all type managers and

will not be described except when they have special properties.

4.4.2.1, Type TM

The type-type manager is the object in the system that manages
*types" in the system, and it is the means by which new type managers are
introduced into the system and unnecessary type managers are deleted from
the system. The type-type manager is also responsible for configuration control
for system initialization and system reconfiguration, in the eventuality of

system failure or recovery.

The type-type manager can create active processes and it can create
data objects with associated type managers to access or transform the data.
The type-type manager is also responsible for the distribution of type
managers.

Entry Name: Initialize

Function: Install the initial set of system type
managers.

Parameters:
0 Status indication of the results of the invocation

Entry Name: Install
Function: Install and initiallze a type manager.

Parameters:

I UID of new TM

0 Status indication of the results of the invocation

Entry Name: Remove

Function: Terminate and remove a type manager

Parameters:

I UID of the TM to be removed

0 Status indication of the results of the
Entry Name: Dead Remote CPU

Function: Provide local reconfiguration to
for the fallure of a remote CPU.

Parameters:

I UID of falled CPU

0 Status indication of the results of the
Entry Name: Recovered Remote CPU

Function: Provide local reconfiguratlion to
for the recovery of a falled remote CPU.

Parameters:

I UID of failed CPU

0 Status indication of the results of the
Entry Name: Shutdown

Functlon: Shutdown the system

Parameters:
0 Status indication of the results of the

invocation

compensate

invocation

compensate

invocation

invocation

4.4.2.2. Process TM
Type process is a particular object type that controls execution of

other type manager’s functions. It takes schedulable tasks and executes the
functions of control including scheduling and termination. By control we mean
that the type manager manages the state of the process so that resources can
be made available appropriately to those processes which can be executed. A
type manager for type process takes an appropriately defined program object
(see program manager), binds it to an address space, and executes operations
(e.g., run, stop, checkpoint) on the program.

Entry Name: Process create

Function: Take a copy of program object, bind it to an
address space, assign i1t a process UID, and begin

executlion.

Parameters:

0 Process UID of process

0 Status indication of the results of invocation

Entry Name: Process Kill
Function: K11l a process.
Parameters:

I Process UID

0 Status indication of results of invocation
Entry Name: Process Pause
Function: Pause the execution of a process.
Parameters:

I UID of process to pause
0 Status indication of results of invocation

[zl
Gt

Entry Name: Process Restart
Function: Restart a process that has been paused.

Parameters:
I Process UID
0 Status indication of results of invocation

Entry Name: Process Checkpolnt
Function: Establish a copy of the process’s state.

Parameters:

I Process UID

0 Checkpoint number

0 Status flags - Results of ilnvocation

4.4.2.3. Program TM

The program type manager’s function is to compile the program text
and to link binary code into object structures. The bit stream of a type
program object conforms to the syntax and semantics of the intended
interpreter, which should be specified as part of its state.

Entry Name: Program Object Create

Function: Create a program object in compllable form.

Parameters:
I UID of the program object source text
I Object name
I UID of object
I Version number
O State indicator (e.g., source only,

compiled and ok, compiled but bad)
G Status flags

Entry Name: Program Object Destroy

Function: Destroy a program object.

Parameters:
I Object UID
I Version
0 Status indication of results of invocatlion

Entry Name: Program Object Complle

Function: Complle source code, create a listing of a
source program, binary code,
test for errors, and create linker table.

Parameters:
I Object UID
0 Status flags

4.4.2.4. Name TM

The name manager is the type manager that creates unique names
(UIDs) for all objects in the system and handles the symbolic name to UID
mapping. The name manager must guarantee unique names across the

application system.

Entry Name: UID Provide

Function: Create a unigue UID.

Parameters:
I Caller UID
0 New UID
0 Status

Entry Name: UID Name Associate
Function: Associlate a2 symbolic name with an object’'s UID.
Parameters:

I Object’s UID
I Symbolic name

0 Status flags

Entry Name: UID Kill

Function: Remove an UID from the system.

Parameters:
I UID
0 Status

Entry Name: UID Name Dlsassoclate

Function: Disassoclate a symbolic
object’s UID.

Parameters:
I UID
I Symbolic name
0 Status

Entry Name: UID from name

Function: Given a symbolic name, return the object’s UID.

Parameters:
I Symbollic name
0 UID

0 Status word

Entry Name: Name from UID

name from an

Function: Return an associated symbolic name.

Parameters:
I UID
0 Symbolic Name
0 Status flags

57

4.4.2.5. Switchboard TM
This type manager provides an "operation switch" and provides

guaranteed paths to the type managers. The concept of a switchboard
manager is that it is analogous to a two way circuit. Both ends of the circuit
must be updated or have the information available to update if there is a
change in the connectivity. The switchboard is called by the abstract machine
(dispatcher) whenever the latter cannot satisfy a communications request from
a type manager or from the local area network controller.
Entry Name: TM Locate
Function: Locate a Lype manager.
Parameters:

I Desired T™M UID

0 Linkage to type manager

0 Status

Entry Name: Recelve status

Function: Process a status-information message from a
remote switchboard type manager.

Parameters:
I 1linkage to message
0 Status of invocation

Entry Name: Send status

Function: Process a status-request message from a
remote switchboard type manager.

Parameters:
I linkage to message
0 Status of invocation

Entry Name: CPU down

59

Functlon: Process an advisory-message from a remote CPU.

Parameters:
I Linkage to advisory message
0 Status of invocation

Entry Name: Reroute message
Functlon: Reroute a message.

Parameters:
I linkage to message
0 S8tatus of i1nvocation

4.4.2.6. UNO Generation TM
This system wide type manager will provide the capability of
generating unique numbers (UNOs) within a bounded range.

Entry Name: UNO

Parameters:
0 unique number
0 Status flags

4.4.2.7. Communications TM

This is the application type manager that accepts, decodes, and
processes track-update messages from either of the communications units,
creates track-report messages, and passes the track-report messages to the
track type manager.

Entry Name: Initialize

Function: Send an initlalization-command message

to external communications unit 1 establishing

the CPU locatlion of the communications type manager.

Entry Name: Process

60
Function: Process a track-update message.

Parameters:
I linkage to track-update message
0 status of invocation

4.4.2.8. Track TM

This is the application type manager that processes the track-reports
messages, creates display-update messages, and passes the display-update
messages to the display type manager.
Entry Name: Process
Function: Process a track-report message.
Parameters:

I Linkage to message buffer
0 status of invocation

4.4.2.9. Display TM
This is the application type manager that processes track updates
and services the operator display unit.

Entry Name: Initialize

Function: Send a 4000 word display-commands initiallzation
message Lo the operational display units on the system.

Parameters:
0 status of invocation

Entry Name: Process
Function: Process a display-update message.

Parameters:
I Linkage to display-update message

0 status of invocation

4.4.2.10. Disk TM

Entry Name: Disk recelve
Function: Process a message from a disk unit.
Parameters:

I Linkage to message

0 status of 1invocatlion

Entry Name: Disk send

Function: Send data to a disk unit.
disk.

Parameters:
I Linkage to disk-message

4.4.2.11. DBM T™M

Entry Name: Get

Function: Get information from a data structure
for a type manager.

Parameters:
I data name
0 data

0 status of invocation

Entry Name: Put

Parameters:
I data name
I data

0 status of invocatlon

61

Chapter 5

THE METHODOLOGY EVALUATION

5.1 Introduction

This chapter will first present the goals, scope, and approach of the
methodology evaluation effort, and a brief review of the software metric study
will be given. Then a description of the techniques of design, implementation
and execution of the experiment will be reviewed. Next a graph-theoretical
description of the simulation experiments will be presented. Finally a
definition of the specific types of metric data which were collected during the
experiments will follow. A case by case presentation of the experimental
results will be presented in Appendix C. Chapter 6 will give the overall

analysis of the methodology evaluation results.

5.2 Goals

The goals of the methodology evaluation effort were to quantify and
to evaluate the performance-related properties of an object-oriented structured
system and to compare these properties to similar properties of a functionally

structured conventionally layered system.

63

5.3 Scope

The evaluation was confined to evaluating the performance impact
which results from varying the software design approach. Two computer
simulation programs were written in which the software design approach used
to meet the same system requirements was the only variable which was
changed. This resulted in a vertically partitioned object structured simulation

program and a layered functionally structured simulation program.

System structure affects the performance cost of satisfying inter-data
and inter-functional dependencies and controlling the execution of a
computation. Past object-oriented system structures which have been
embedded in conventional software environments have incurred increased
execution control and recovery dependency satisfaction performance overhead
costs which rendered their performance infeasible for actual use. A highly
modular structure will be expected to incur higher costs for these functions
because of a greater degree of partitioning of both state and functionality.
The approach of vertical partitioning partitions both the data structures and
functionality of the system so that the execution of a function on a given data
object will have reduced "overhead" costs. The vertical partitioning also
encourages the exploitation of an object's individual semantic properties to
minimize the execution of both the functions on data and system "overhead"

functions such as consistency management and recovery.

This study is confined, however, to comparison and evaluation of the

costs of executing these "overhead functions" for both an object-oriented

64

system structure and a functionally layered system structure in an otherwise
fixed execution environment. No advantage was taken of the possibilities of
the vertically partitioned object-oriented system for using the properties of
functions on objects to make the processing more efficient except for the case
of fault localization and fault recovery, which is a function required by the

application.

5.4 Approach

The evaluation of the methodology was done by simulation modeling.
Two programs were written to evaluate execution behavior. The requirements
and specifications for a sample application were given in chapter 4. The first
program met the design specifications of the functional layered approach,
given in chapter 4. The second program met the design specifications of the
object-oriented approach, given in chapter 4. Both programs met the

requirements for the application, given in chapter 4.

Both hardware and software were simulated. The programming
language PASCAL was used. The simulation software was executed on a DEC
92060 computer. Transaction-based modeling was used. That is, sets of
identical states (e.g., a CPU crashed, two CPUs were functional, etc.) were
defined in the two simulator programs and identical transactions or sets of
transactions were executed by the simulators. Each simulation program

incorporated measurement data gathering for analysis of the designs.

The functionally designed model was developed first. When the

85

software program was completed and working to the author’s satisfaction, the
program was "frozen." A copy of the program was made and used as the basis
to start the object design. The complete hardware simulation portions and
metric collection portions of the original simulator were kept intact. The
operating system code, database code, and application code were repartitioned
and augmented to create object structures. Then the code was modified as
needed to work within the object structures. Finally fault localization and
fault recovery portions of the code were optimized as appropriate, to take
advantage of the individual semantic properties of the object structures. No
functional capability was introduced nor was any functional capability lost in
creating the object designed program from the functionally designed program.

Only the structures were changed.

5.5 Software Metrics

A software metric is a measure of the differences between the two
design methodologies. As in software design, there should be a hierarchical
structure in metrics, so that comparable properties may be compared at

equivalent levels of abstraction.

The software metric literature was reviewed to determine if there
were well-defined metrics for the evaluation of software systems which would
lead directly to evaluation software performance properties. The results of this
study are summarized in Appendix B. It was found that most software metrics
relate to code structure, not to performance impact. A set of metrics were
selected, which define the execution cost and thus the performance impact of

the differences between the two system structures.

66

The metrics for evaluation of the "overhead"” processing costs defined
in section 5.3 are those which measure the amount of computational work
done to compose "primitive® elements of computation into logical
computation structures. These overhead costs result from the satisfaction of
dependencies and from the control of flow. They also include system-related
functions such as fault recovery. These processing overhead costs include the
flow of data between units of computation and the costs for invocation of
units of computation. The specific metrics which we chose include the number
of CPU context switches, flow of data and control between software modules,
number of changes of execution scope, and flow of data among CPUs and I/0O

units. These metries will be desecribed in section 5.9.

5.8 Graph-Theoretical Description

The program code for the simulation programs was extensive; hence,
it was not presented in this thesis. Instead, a graph-theoretical description is
given of the model of computation of the two simulation programs that were

developed and used to evaluate the methodology of chapter 3.

Each simulation program may be represented by a computation
graph; the computation graph is defined as an ordered pair <V, E>. V isa
set whose members are called vertices and E is a binary relation on the set
V. The members of set E are called {directed) edges. A path in the graph is a
sequence of alternating vertices and edges where the set of edges are of the
general form e(n) = <a(n), a{n+1)> such that each a(i) is a vertex. In this

application the vertices represent function execution domains (i.e., subroutines

67

or processes or hardware units that process data) and the directed edges
represent potential steps in an execution path; that is, two vertices are
connected by a directed edge 7ff the locus of computation can pass from the

source vertex to the destination vertex.

For the experiment a computation graph is defined for the functional
program and a separate computation graph is defined for the object program.
A separate set of vertices and edges defines the behavior of each hardware
unit. In each computation graph, the sets of vertices and edges representing
the communications, system control, disk, and display hardware units are
identical. The sets of vertices and edges representing computers 1, 2, & 3
differ and correspond to the functional and object systems software
respectively. For evaluation of the methodologies, test cases were defined.
Each test case specifies a set of system states and the control representation of
a message type to be processed. For each test case, a binary state was defined
for each hardware unit; that is, the unit was defined as being operational or
non-operational. For each operational hardware unit, its associated vertex and
edge set defined a part of the respective computation graph (i.e., resulting in
one computation graph for the functional system and another computation
graph for the object system). In this application, a path through a
computation graph represents the execution flow defined by the processing of

a particular transaction type by the system.

Each simulation program described in Section 5.6 defines a special

computation graph called a metric graph: a metric is a function from some

68

abstract concept to some ordered set. For our purposes, a metric graph is a
graph with a metric defined on the set of vertices and on the set of edges (i.e.,
a metric graph is a graph such that {1V --> N AND {:E --> NxN, where N is
the set of natural numbers). Each vertex contains control logic and control
information and/or data are associated with every edge. In our application,
the metric value associated with each vertex is called a context switch and
represented the performance cost of changing function execution domains. For
each edge there are two associated metric values: control flow which
represents the performance cost of passing control information between
verticies and data flow which represents the performance cost of passing data

between function execution domains (i.e., between vertices).

The experiments will first be described from the graph viewpoint. At
each vertex in the functional dependency graph, the execution of the functions
associated with the vertex and the edge that brought the execution flow to the
vertex was performed and was followed by a transition to another vertex. For
each test case and metric graph a functional dependency graph results; a
functional dependency graph is a subgraph of the metric graph, defined by the
resultant path in the metric graph, for a specific test case. For each hardware
unit, the metric values were summed for the object system and the functional

system resultant functional dependency graphs.

Now the experiment will be described from the program viewpoint.
Each execution of one of the software programs can be represented by a

functional dependency graph; the program executes the metric functions at

69

each vertex and makes the transition between function execution domains
represented by the edges. When executed, each software module (vertex) first
calls an accounting routine that updates the metric value sums (particular
sums are associated with each hardware unit) of that vertex and the edge
transition that caused that execution domain to be entered. The accounting
routine also keeps a sequential history of the vertices visited; hence, defining

the execution flow by a sequence of edge transitions.

5.7 Design and Implementation

Each software model simulated three components: a hardware
configuration, the definition of a software system structure, and a workload.
In addition each software model was equipped with an execution path trace
capability and performance measurement software. The hardware structure,
software instrumentation package, and the workload were identical for both
the functional simulation and the object-oriented simulation. The only thing
that was changed and evaluated was the two software system structures
(vertically partitioned object-oriented structure versus functionally layered

structure).

5.7.1 Hardware Testbed

The hardware testbed was designed to meet the requirements given in
chapter 4. For each simulation program the same hardware testbed was
simulated. In each case three CPUs were connected by two communications
local area networks (LANs). Attached to the networks were two disks, two
message communications (COMMS) units, two operator display consoles and a

control console. Duplicate units of each type of failure critical node (i.e., CPU,

70

Comms, disk, network, display) were identical except -for address. Identical
units were specified to allow automatic software reconfiguration to provide for
continued system operation in the event of the failure of a single hardware
unit. Two interface design specifications (IDS) were written, one for each
simulator. The hardware description and usage in each IDS was identical. The
inter-process versus inter-type manager message formats differed between both
simulator programs as a result of the different software structures. Figure 2

illustrates the hardware testbed design.

CPU 2

LAN | —%

crPU

\ DISPLAY i \ DISPLAY
1 : 2

COMMS : COMMS
1 ' 2
..................... e

gxiernal * gxternal
Messages CONTROL Messages
UNIT

FIGURE 2: Hardware Testbed

5.7.2 Workload

Twelve test cases were defined to evaluate the two software designs.
A test case was composed of a set of system states and a set of transactions.
For evaluation, each test condition was set and the test transactions were
executed on both simulator programs and identical types of metric data were

collected from each program, for analysis.

A case-by-case study was performed on the data from each of the
simulation models. The details of this study is reported in Appendix C. For
each test case, Appendix C defines the test conditions, provides the data from

both simulation programs, and discusses the test case results.

5.7.3 Software System Structures

The application software included the hierarchy of modules required
to meet the system specification and the control logic necessary to drive the
computation flow and detect and recover from selected faults. The modules
executed the control logic necessary to allow an execution flow but the
modules did not contain actual processing logic (i.e., tracking algorithms or
graphic software, etc.). An execution of a transaction by one of the simulation

models represents a traversal of the computation graph.

Fault management was explicitly modeled. In the case of the object
structure, software faults, within a type manager can only affect objects of
that type. In the case of the functional layered structure, all of the data

which can be reached in a particular layer could be destroyed.

5.8 Execution

In each case the execution of the simulation model was accomplished
by defining the paths through the computation graph defined for each of the
system methodologies and then traversing the graphs summing the metric
values. The vertices of this dependency graph are the functions of the type
managers in the case of the object-oriented system, and the functions
embedded in the layers in the case of the functional system. Thus, evaluation
by computation graph traversal allows one to gather data about each of the
methods which we have defined. Each procedure call implies a context switch.
When the procedure call was across type managers or across processes there is
a larger cost than for internal (i.e., internal to a type manager or process)
context switching. The flow of data between modules is measured by
evaluating the data carried on each arc; inter-module transfers of data can be

distinguished from an inter-type manager or inter-process flow of data.

5.9 Metric Data Description

This section will give a description of the specific metric sums that
were kept by each of the simulation programs during the execution of a test

case.

CPU Context Switches is the performance cost metric sum that was
associated with changes in any computer execution domain during the
processing of a transaction. The context switch metric was set to one for a
computer subroutine call. The context switch metric was set to 10 for a

message received by a process (in the functional system) or by a type manager

~J
b

(in the object system) from a process, {from a type manager, or from a
communications, disk, or display hardware unit. This function was chosen
because message context switching generally has a much higher performance
cost in real systems. Within the simulation programs, the CPU context switch

metric was set to zero for processing within any of the non computer units.

CPU 1 messages, CPU 2 messages, and CPU 8 messages are a special
class of context switches. They are measures of the number of messages sent to
each respective CPU during the execution of a test case. These metric sums
are separate and distinct from the CPU context switches sum. The respective
metric sum was increased by one whenever a message was sent to computer 1,

2, or 3.

Proc/TM switches are a special class of context switches. For the
functional system this is a count of the number of times that a process domain
was entered and for the object system the number of times that a type
manager domain was entered. These metric sums are separate and distinct

from the CPU context switches sum.

CPU Control Flow and CPU Data Flow are the performance cost
metric sums that were associated with the passing of control information and
data into any computer execution domain. For each computer subroutine,
process, or type manager invocation, processing domain-specific metric values

were added to the respective sums.

|

(G4

CPU 1 data, CPU 2 data, and CPU 8 data are special cases of the
control and/or data flow metric sums. They are measures of the number of
control information and/or data words sent to each respective CPU, on the

local area network, during the execution of a test case.

Link data flow is a measure of the number of control and/or data

words passed on both of the system local area network, among hardware units.

Disk data flow is a measure of the amount of control information

and/or data received by both of the system disk units.

Display data flow is a measure of the number of words of control

information and/or data received by both of the operator display units.

Chapter 6

METHODOLOGY ANALYSIS

This chapter will first give a quantitative analysis of the design
methodologies based upon the experiments described in chapter 5 and reported
in detail in Appendix C. Then a qualitative analysis of the design
methodologies will be given based upon the inherent properties of the

methodologies. Finally, the author’s conclusions will be presented.

6.1 Quantitative Analysis

The context switches, CPU control flow, and CPU data flow were the
primary metrics selected for system evaluation. The primary metrics were
performance measures of the workload resulting from the respective software
system structures. Other secondary metrics were collected and will be used, as
needed, to help explain differences in the primary metrics. The secondary
metrics were considered components of the workload resulting from the

respective software structures.

Execution of the object system vielded from 33 to 59 percent fewer
context switches than execution of the functional system. Within the range,
the difference was lower during cases that require system configuration (i.e.

cases 1, 4, 6, 7, 9, 10, and 12) and higher during cases that were exclusively

LS
.}

message processing (i.e., cases 3, 5, 8, and 11). See Appendix C for the case

results and discussion of the case results.

The control flow metric sums were consistently (i.e., cases 2 through
12 were between 19 and 30 percent) higher for the functional system. In case
1 the functional system’s control flow metric sum was even higher (452

percent) because case 1 consisted exclusively of control sequences.

The object system’s data flow metric sums showed a typical four or
five percent improvement over the functional system’s metric sums. In case 1
the functional system’s data flow metric sum was higher relative to the object
system but the numbers were very small because data processing did not
occur. There was a large percentage difference in data flow due to the

difference in how the respective systems handled display initialization data.

The display data flow and disk data flow metric sums were always
the same between systems and, except for case 1, always the same between
cases. Case 1 differed because it was the system initialization case. For each
case these results confirm that the same application task was always being
done by both systems. For all cases link data flow was similar between
systems but CPU 1, 2, 3 messages and CPU 1, 2, and 3 data varied greatly

between systems.

One might intuitively expect in comparing a layered functional

system to a traditional (i.e., non-vertically partitioned) object system design:

78

(1) a higher context switching in the object case because of the greater
granularity of the computation domains; (2) equivalent or increased data flow
in the object design due to the passing of data to layered general purpose
system wide processing routines to perform operations on the data; (3)
equivalent or higher control flow, because in passing data, control information

to command operations on the data also needs to be passed.

In the experiments the observed performance advantage of the
vertically partitioned object design was predominantly due to: (1) the type
managers performing all operations on their own data, (2) there was no
operating system and hence, no operating system process switching, (3) inter-
type manager data access synchronization was not required because each type

manager had exclusive control of its data.

Because type managers perform all operations on their data there was
a reduction in data flow. In the experiments, the functional system passed
output data to an operating system routine that performed the output. The
object system requested access to the network and performed its own output.
Hence, the object system did not incur a data flow penalty. This effect was
best observed in the results of case 1, but was a factor in the data flow results

of all the cases.

Operating system process switching was a significant performance
cost contributor in the functional system. In the object system, messages were

sent directly between type managers. The distributed switchboard type

79

manager provided routing information to local type managers, as was needed.
In the functional system all inter-process messages first were decoded by the
operating system and then passed to the appropriate process. This affected the
context switches, data flow, and control {low metric sums. Another significant
contributor to the control flow metric was the fact that an inter-process
context switch had a higher control flow cost than an inter-type manager
context switch. This occurred because a type manager context switch required
less passing of control information than a process switch. The effect of
operating system process switching was most evident in case 1 but was a

contributing factor to the results of all the cases.

In the object system inter-type manager data access synchronization
was not needed because type managers are solely responsible for storage of the
occurrences of their data object types. Other type managers do not have
access to their data. Consequently, file locking and unlocking was not needed
when data was being written by the object system. In the functional system,
as a part of the disk data write protocol, the writing CPU had to send both
file lock and file unlock messages to the other CPUs. The effect of this design
difference can most easily be seen in case 3, but was a contributing factor to
the results of all the cases except case 1 which did not have disk write
operations. The functional system’s file lock/unlock protocol had a significant
impact on the context switching and control flow metrics because file
lock/unlock messages had to be constructed, sent, received, decoded, and

processed.

80

6.2 Qualitative Analysis

This section will provide a qualitative analysis of the structure of

each system.

The motivation for an object-oriented system designs is increased
comprehensibility and reduced software complexity. It has been "folklore™®
that these virtues can be bought only at the cost of efficiency. A vertically
partitioned object program structure was shown to provide a mechanism by
which we may compose elementary (primitive) operations on primitive data
objects to form logical data structures and logical operations which retain

efficiency.

Many fault recovery concepts discussed in chapter 2, especially from
transaction-oriented software systems, can be transformed to the object-
oriented structure proposed here (discussed in chapter 3). The vertically
partitioned object design approach has been shown to avoid many of the
complications in fault recovery, discussed in chapter 2. These complications

arise when transactions are used to provide atomicity.

In chapter 3, it was shown that the top down hierarchy of composite
objects (i.e., composed of objects) provides a simple means for fault recovery.
An important concept is that a hierarchical structure must be maintained
within composite objects. In a typical layered hierarchical system a
hierarchical view is taken of the entire system, whereas the vertical partition

method results in a hierarchical view of each object type.

g1

Chapter 2 concluded that the concept needed to provide efficient and
manageable fault recovery gleaned from the literature was that actions should
be composed into atomic steps that meet invariant conditions before entering
and/or leaving the object type manager’s boundaries. Atomicity must be
maintained within each type manager’s domain. In the object-oriented design
approach, when a fault is detected, each object’s type manager may either
correct or compensate for the fault, thereby masking the fault or signaling to a
higher level object to possibly act on the fault indication. As such,
hierarchical vertical partitioning at the object level provides a limitation on

fault propagation.

Well designed type managers will minimize the flow of data between
object modules because they are designed around their data structures and all
operations on the data are done locally. The resultant passing of controls and

names helps system performance and is a very good security feature.

The choice of recovery mechanisms within each type manager is an
important factor with regard to efficiency and performance. Chapter 3
discussed how the semantics of the object can be used to allow programmed
exception handling resulting in compile time binding. Efficiency is enhanced
by compile time binding of the sequence of elementary operations to a set of

dats items,

The classical objection to object-oriented design is that they are not

efficient. The results given here suggest that this lack of efficiency is due to

82

building objects on top of a traditional layered structure. Vertical partitioning
within the objects encourages the use of the semantics by the type manager of
each object. The keys to the performance improvement are type managers
designed around data structures, compile time binding of functions to data,
and the ability of the type managers to use the object’s semantic properties to

optimize data processing, execution control, fault location, and recovery.

It was the author’s observation that the object program was easier to
code, modify, and debug because changes or problems could generally be
localized to one or more specific type managers. Control logic changes and
problems in the functional system typically involved complex interactions

between the operating system and the application program.

6.3 Conclusion

The results of the methodology evaluation experiments proved that a
vertically partitioned object program can have competitive performance
efficiency with a layered functional program. Performance efficiency was
quantified by the software metrics of context switches, CPU control flow, and

CPU data flow.

It is the author’s belief that the design approach proposed in this
thesis can result in software that is an improvement over previous attempts to
balance dependability and performance while maintaining high software

comprehensibility and low software complexity.

Appendix A.

EXPANDED APPLICATION ENVIRONMENT

A.l1 Introduction

This appendix will describe a set of requirements for an application
system that is of interest to the author. These requirements were the basis for
the simplified set of requirements that are given in chapter 4. Much of this

material is based upon [Tripathi 83].

A.1.1 Execution Environment

The execution environment that will be considered is a "soft" real-
time environment, where soft implies that processing and responses must
happen in near real-time. The application programs will support data
collection, communications, data processing and decision support, control of
external devices and/or systems, and uscr interfaces. Distributed concurrent
processing must be supported using local and global communications networks
(e.g., both high and low bandwidth channels) on a diversity of processors. The

requirements for this environment will now be reviewed.

83

84

A.1.2 System Functions

The general goals for a soft real-time data processing system are the

following.

e Acquire sensor data from peripheral devices and/or systems.
e Acquire operator control information.

e Provide operator decision support.

e Make information available to the operator.

e Provide priority response time to time-sensitive operations.
e Support the local and global database needs of the system.

e Provide a reliable and prioritized (for time sensitive processes)
message facility between processes and processors.

e Provide an automated degraded mode operating capability (avoid
single points of failure).

e Support multi-user multi-level security of information.

A.1.3 Operational Environment

Because of the evolutionary nature of digital systems, it is desirable
to adopt a modular design approach which allows changes to the system for
expansions, capacity upgrades, functional upgrades, hardware substitutions,
and additions of new elements. Each replaceable module type within the
system must externally meet the same functional specifications. As an
example, processors must support a common high order language (i.e., ADA)
with virtual interface handlers. The approach of modular system design

should also help in rapidly configuring new systems.

85

Instead of designing systems to meet certain specific requirements, it
is desirable to provide an architecture which can easily adapt to the long-term
changing requirements due to the state of the technology and changing short-

term and long-term applications.

A.1.3.1. Physical Environment

A system will consist of clusters of local nodes that have high
bandwidth (e.g., 1-10 mb/sec) intra-node communications (e.g., local area
networks within the clusters) that are interconnected by lower bandwidth
(e.g., less than 10 kb/sec) inter-cluster communications (e.g., global networks
between the clusters). Each node may have sensors, secondary storage, other
peripheral devices, and user interfaces. Most of the intra-cluster messages
consist of remote procedure calls, database updates, and query messages. Most
of the inter-cluster communications consists of command messages and

database updates and query messages.

The following assumptions are made.

e The system is constructed of unreliable processors, unreliable
secondary storage, and unreliable communications.

e There is sufficient hardware redundancy and protocols for the
utilization of this redundancy to eliminate any single points of
failure.

e There is sufficient hardware redundancy to allow reasonable fault

recovery.

The system must provide:

e stable processors, stable storage, stable communications;

86

e the ability to reconstruct the database from the replicated
components of the global database;

e the ability to have safe recovery f{rom software and hardware
faults.

In summary, the system must accommodate network partitioning,

node dropout, node reunion, and network reconfiguration.

A.2 System Requirements

The system will be a distributed soft real-time vertically structured
object oriented system. The f{ollowing functional system goals must be
considered.

e Directory services for users, software modules, and data.
e Configuration management.

e Fault tolerance in the event of faults,

e Allocation of shared resources.

e Inter processor communications.

e Relocation of software programs.

e Multi-level data security, access control, release control, and audit
trail.

e Processor load leveling, by task relocation and/or parallel
operations, to maximize overall system throughput.

e Access to global system software.

e Inter processor communications.

e Performance monitoring.

A.2.1 Distributed System Subfunctions

The subfunctions of interprocess communications, resource

management, security, configuration management, and database management

will be further specified.

A.2.1.1. Interprocess Communications

Interprocess communications between local and global nodes need to
be supported for the following functions.

e Database query and updates between nodes.
e Remote invocation of functions between processors.

e Status query and other status management functions between
distributed operating system functions.

e System recovery after {ailure.
e Message passing.
A.2.1.2. Resource Management
Resource management functions of the distributed system include
maintaining directories for the resources distributed over the network. The

resources managed by the distributed system include data base objects, system

service processes, processors, 1/O devices, and secondary storage devices.

The resource management functions include the following.

e Location transparency in accessing the resources.

e Location transparency in the execution of software programs.

88

e Uniform mechanisms for accessing resources of different types.

e Prioritized scheduling of tasks and allocation of resources such as
processors to tasks.

e Handling of local and external service requests from within and
external to each processor.

e Detection and handling of certain error conditions.
e Resolving deadlock.

e Concurrent operations on shared resources.

e Protection among users and user tasks.

e Name management.

e Directory management for distributed resources.

A.2.1.3. Security
The distributed type managers are concerned with the transfer of
information between processes and objects. The following may be provided.

e Authentication between processes.

e Cryptographic transfer of information, when required, which may
potentially include dynamically varving security cryptography for
highly sensitive data.

A.2.1.4. Configuration Management

Configuration management entails the continuous and efficient
reconfiguration of the system’s processing, storage, and communication
resources to accommodate faults, dynamic variation in the workload, and
performance optimization. Configuration management activities include the

following.

89

e Node addition and secession from system network.
e Reallocation of data elements between nodes.

e Location of software program units.

e Allocation of backup responsibilities to cells.

e Maintenance of resource directories.

e Node status management.

e Interconnection (routing tables) management.

e Backup allocation of processors to functions.

e Database to storage device mapping.

e Test and diagnosis of nodes.

A.2.1.5. Database Management

Varying degrees of mutual consistency across multiple copies of an
object at more than one node does not have to be absolute; i.e., the data may
be hours old and still be acceptable as long as the age of the information is
known. The consistency requirements will vary between objects. This type of
data redundancy requires the consideration of different recovery for different

types of data.

The system database functions should address the following areas:

e Creation of new data types.
e Creation and deletion of database objects.

e Database partitioning and replication.

g0

e Dynamic relocation of database objects.
e Uniform database interfaces.
e Probabilistic algorithms to address the consistency issue.

e Error detection and handling of node failures, communications
failures, system reconfiguration.

e Query decomposition.

A.3 Assumptions

The following assumptions are being made in the development of this

work.

e There is no logical sharing of memory or devices between objects.
There can be sharing of logical resources within an object or
between component objects of an object (note that an object may
be composed of component objects).

e Distributed computing will be supported and is user transparent.
All objects in the system are accessed in a uniform fashion
regardless of their location.

e Varying degrees of concurrency will be supported and will be
controlled by the individual type managers.

e "Remote procedure calls" with "at most one execution" semantics
will be supported (e.g., all calls and passing of data outside of an
object’s boundaries are done by procedure calls). [Nelson 81].

e The underlying machine and/or kernel supports reliable message
passing. Messages will be passed in the order that they are sent.

e The underlying machine is "Fail Stop", that is, the machine stops
computation and provides an indication when a failure occurs.

Appendix B.

METRIC LITERATURE REVIEW

B.1 Introduction

Software metrics are developed and used to quantify and evaluate
software. In this application, we need metrics that can be used for quantitative
evaluation of the utility value of knowing and using the semantics of the
functions which are being executed against the data. The metrics should have
the option of specificity, within object type managers, of the mechanisms used
for recovery and consistency control partitioning at the object boundaries, that

limits the impact of a given function and/or a given fault.

The software metrics requirement is to generate meaningful metrics
for the enhancements in reliability which will come from each of these

properties.

B.2 Software Metrics

There is no well established set of rules or concepts for analyzing or
evaluating the properties of software systems. This is because the variables
which can be measured do not map readily upon properties or characteristics
which are both quantifiable and comparahle across programs. Only properties

or characteristics which are both quantifiable and comparable across programs

91

92

can be realistically used as metrics for evaluation of software systems. Since
there is not a uniform basis for evaluatling the software we develop, it is
difficult to make meaningful evaluations or comparisons of the methodologies
used to produce the software programs. Quantification is the process that
enables us to find the relationships between concepts, that allows us to
transform an art or a craft into a science. Fundamental properties that may
be useful metrics are identified by their appearance in the invariant relations
which unite observations across many environments; these observations
commonly express conservation relations. These fundamental properties may
be derived from the invariant principles which underlie experimental

observations [Browne 81].

Some of the software properties that have been cited in the literature
as meaningful software metrics are the following.

e Syntactic measures [Gilb 77] [Halstead 77] [Thayer 76].

e Count of modules and module connections [Belady 79], [Gilb 77] -
this gives a measure of the graph complexity.

e Program control flow [McCabe 76] [Ryder 79].

e Program data flow [Myers 78] - a good design will try to minimize
the flow of data between modules. In the object oriented approach
the operations should be done locally by the TMs; all work should
be done locally and only commands and names should be passed.

e Amount of information shared between modules [Chanon 73] - this
measure is a composite of the program control flow and the
program data flow.

e Program complexity - this can be based on a count of the number
of predicates [McCabe 76] or based on the functions (operators)
and operands within a program level or boundary.

e Software reliability [Walters 78] - this can be shown for a
particular application, by doing the dependency graph. If a
function, module, or device fails it is desirable to know what
percent of the data is lost, what the propagation of the fault is,
and what dependencies are associated with a particular fault.
Dependency graphs can be compared but are hard to quantify.

e Response time - this measure is only a good comparison between
various implementations of the same system.

e Resource Consumption [Lynch 81] - useful when an externally
defined unit of work is defined.

e Readability [Schneiderman 80].
e Brevity [Schneiderman 80].

e Correctness - must be done by proof of correctness. The arguments
are qualitative.

e Reliability [Walters 78] - you need to show fault locality, the
amount of work to detect errors, element fault diagnosability (due
to semantics), the amount of work to detect errors, and that
semantics allow better error detection in order to demonstrate
improvements in reliability. This can only be quantified by
example.

e Efficiency and performance [Walters 78].

e Integrity [Walters 78].

e Usability [Walters 78].

e Maintainability [MeCall 77].

e Testability [McCall 77].

e Modifiability [McCall 77].

e Portability [McCall 77].

94

e Reusability [McCall 77].

e Interoperability [McCall 77].

e Length of recovery path.

e Execution cost at a given level of integrity.

e Recovery cost.

As in software design, there should be a hierarchical structure in
metrics, so that comparable properties may be compared at equivalent levels

of abstraction.

The quantifiable metrics that will primarily be wused for the
evaluation of this study are the following.

e The dependency graph showing the functional interconnection of
modules as a result of vertical partitioning and the impact of faults
upon the system. These dependencies can be quantified by the
number and length of the recovery paths for each module in the
system.

e The amount of data passed between modules (as shown on the arcs
of the dependency graph.)

e The number of control words and names passed per arc of the
dependency graph.

The other metrics listed above will be subjectively talked about, as

appropriate.

B.2.1 Complexity Measure

The applicable software complexity metrics of Halstead will be
developed in this section because they frequently are used to quantify software
complexity. The following metrics will be developed:

e program volume,
e program length,
e program level, and

e intelligence factor.

The following definitions will be used.

e nl is the number of unique or distinct operators appearing in the
implementation.

e n2 is the number of unique or distinct operands appearing in the
implementations.

e N1 is the total usage of all the operators appearing in the
implementation.

e N2 is the total usage of all the operands appearing in the
implementation.

e f(1,j) is the number of occurrences of the jth most frequently
occurring operator, where j = 1,2,.... nl.

e £(2,j) is the number of occurrences of the jth most frequently used
operand, where j = 1,2,...,n2.

e n = nl + n2 is defined as the vocabulary.

e N = N1 + N2 is defined as the implementation length.

The following metrics are developed by Halstead:

e NN = nl log2 nl + n2 log2 n2, where NN is the calculated length
of an implementation of an algorithm in terms of its vocabulary
approximated by taking the power set (the set of all possible
subsets) of the number of operators and operands: 2**N = n1**n1
* n2**n2 and solving for N. NN is used in place of N to distinguish
the quantity obtained, the calculated length, from the value of the
length N obtained by direct observation.

V = N log2 n, where V is the volume or size of an implementation.
N is the length (or N1 + N2) and n is its vocabulary (or n1 + n2).
This metric should be sensitive to when a program is translated
from one language to another, since in any one language some
algorithms are smaller than others. Consequently, V is a measure
of the relative power of a representation language. To be
independent of the character set used this metric has binary digits
or bits as the units.

V* = (2 + n2*) log2 (2 + n2*), where V* is the minimal or
potential volume that an algorithm can be implemented. V* is the
most succinct form in which an algorithm could ever be expressed,
in a language where all operations are already defined (possibly as
a subroutine or procedure}. V* is a measure of an algorithm’s
content and V* of any algorithm should be independent of any
language in which it might be expressed. To start V¥ = (N1* +
N2*) log2 (n1* + n2*), where in its minimal form neither operators
nor operands require repetition; thus N1* = n1* and N2* = n2*,
where nl1* = 2 (one distinct operator for the naming of the
function or procedure and another to serve as an assignment or
grouping symbol). In this representation, n2*, for small algorithms,
should represent the number of input/output parameters and
represents the number of conceptually unique operands involved.

L = V*/V, where L is the program level of the implementation of
an algorithm. From this it follows that only the most succinct
expression possible for an algorithm can have a level of unity. This
representation (where V* = L * V) also suggests that, for a given
algorithm, when volume goes up, the program level goes down.
From this point of view, a language with L=1 is possible when all

g6

functionality is implemented as procedure calls. Human factors
studies have indicated that the difficulty of comprehension varies
inversely with the program level, assuming that the person is fluent
in the chosen language.

LL = nl1*/n1 * n2/N2 where LL is a measured approximation to
the program level. This derivation comes from the approximation
of L = n1*/nl and L = n2/N2. Combining these approximations
and noting that the constant of proportionality must be unity gives
the above equation for LL. LL is used in place of L to indicate
that the level measured by LL is an approximation to the value L.

I = LL * V, where I is the intelligence content. This relationship
indicates that for a given algorithm, the product of volume times
level should be constant as that algorithm is expressed in different
languages. This value of I represents the fundamental property of
information content of the algorithm.

= 2/n1 * n2/N2 * (N1 + N2) log2 (n1 + n2), by substitution the
equations for LL and Visin I = LL * V. Here all the terms on the
right hand side are directly measurable from any expression of the
algorithm. It should be noted that I directly correlates with V*,
Both of these metrics are independent of the language in which an
algorithm is expressed.

It should be the goal of a software design effort to have resultant

intelligence level T and potential volume V*).

software that has an ideal program level (L=1) for a complex algorithm (high

Appendix C.

EXPERIMENTAL RESULTS

This appendix contains the results obtained from the methodology
evaluation experiments. The design, implementation, and execution of the
experiments was presented in chapter 5. For each test case we will present (1)
the initial conditions, (2) selected metric data sums (that were defined in
chapter 5) from both the functional and object programs and a percentage
difference ("Functional Program data"/"Object Program data - 100") of the
‘ndividual metric data sums, and (3) a discussion of the test case’s results. An
overall experimental analysis was presented in chapter 6. It should be noted
that each test case systems’ (i.e., functional system and object system)
conditions are cumulative. That is, the resultant condition of the preceding
case plus any defined changes become the initial conditions for the current
case. Throughout the discussions, reference will be made to "both systems*® or
weach system". Systems refers to the functionally designed software system
and the vertically partitioned object designed software system, each system

running on an identical simulated hardware test bed.

The context switches, CPU control flow, and CPU data flow were the
primary metrics selected for system evaluation. Other metrics were collected

and will be used, as needed, to help explain differences in the primary metrics.

99

C.1 CASE 1: Cold Startup

INITIAL CONDITION: All of the system hardware units were
operational, but the systems were in standby (i.e., the three computer
processing units (CPUs) were not loaded with their application software and
neither communications unit was receiving external messages). A sequence of
messages were put on local area network (LAN) 1, by the system control unit;
the messages commanded each hardware unit (i.e. communications 1 & 2,

display 1 & 2, disk 1 & 2, and computers 1, 2, & 3) to initialize and begin

running.
RESULTS: Functional Object Percentage
System System Difference
Context Switches 263 188 38
CPU Control Flow 2234 428 421
CPU Data Flow : 8616 36 2293
Link Data Flow : 8320 8140 2
Disk Data Flow : 20 20 O
Display Data Flow : 8000 8000)
CPU 1 Messages : 3 1 200
CPU 2 Messages : 3 1 200
CPU 3 Messages : 3 1 200
CPU 1 Data Flow : 70 10 600
CPU 2 Data Flow : 70 i0o 600
CPU 3 Data Flow : 70 10 600
Proc/TM Switches i8 17 -22

DISCUSSION: Each unit received its initialization message and did
the following: 1) the communications units 1 and 2 each flushed their buffers
and were enabled to accept and maintain a circular buffer of the most recent
ten external messages. 2) Both display 1 and 2 units erased their respective
operator displays and enabled themselves to receive display-commands

messages. 3) Disk 1 and 2 each initialized their interface to accept commands.

100

4) Computers 1, 2, and 3 each loaded and initialized their software for their

respective processing responsibilities.

Computer 1 was configured to do communications processing. CPU 1
first, enabled communications unit 1 as active. Communications unit 1 was
thereby enabled to accept externally received track-update messages and
reformat them for local area metwork (LAN) transmission and to put the
resultant track-update message on LAN 1, addressed to CPU 1. CPU 1 was
enabled to accept track-update messages, to write a copy of the track-update
message on both disks, to do track-update message decoding, to create a
track-report message, and to pass the track-report message to the track
processing unit. In the functional system CPU 1 also sent a status-information

message to CPU 2 and to CPU 3.

CPU 2 was configured to do track processing. That is, it was enabled
to receive track-report messages from the communications processor, to decode
and process the track-reports, to create a display-update message, and to put
the display-update message on LAN 1, addressed to the display processor. In
the functional system CPU 2 sent a status-information message to CPU 1 and

to CPU 3.

CPU 3 was configured to do the display processing function. CPU 3
first, sent a display-initialization message containing 4000 words of display
initialization commands to display unit 1 and to display unit 2. The display

units accepted their respective message and initialized the operator display.

101

CPU 3 was then enabled to accept display-update messages from the track
processor and to reformat each message into a sequence of display hardware
commands, to create two display-commands messages, and to send a copy of
both of the display-commands message to display unit 1 and display unit 2,
for operator presentation. In the functional system CPU 3 sent a status-

information message to CPU 1 and to CPU 2.

The results of this case are of interest because they represent the
configuration performance costs of the functional system compared to those of

the object system. No "data processing” was associated with this case.

Context switching was higher by 39 percent in the functional system.
The object system would normally be expected to have increased context
switching due to greater structural granularity. That is, the functional system
configured itself with a different process (communications, track, and display)
and a duplicate copy of the kernel operating system on each of the three
respective CPUs. The object system configured itself with eight type managers
distributed amongst the three CPUs. The type and switchboard type managers
were duplicated on each CPU. The communications, name, process, and
program type managers were located on CPU 1. The communications type
manager, on CPU 1, contained a DBM and disk type manager. The track and
display type managers were located on CPU 2 and CPU 3 respectively.
Analysis revealed that the increased functional context switching resulted from

the processing of inter-computer status-information messages, as will be

described.

102

In the functional system a fixed size status array of 20 words of data
was sent between CPUs whenever a change of configuration was made in any
CPU. That is, the changing CPU notified the other CPUs in the system of its
change (i.e., 2 synchronized system design). Consequently, two of each of the
CPU messages were status-information messages from the other CPUs. In the
object system the switchboard type manager was responsible for routing of
remote messages. Each local switchboard only requests status from the other
CPUs, within the system, after the local switchboards fails to correctly route a
message (i.e., an asynchronous system design). Functional systems typically
have a capability to support a limited number of processes. Process creation
and relocation in a distributed environment is typically infrequent. Hence a
fixed size status array and the synchronized statusing made sense, for the
functional system’s design. The object system had greater structural
granularity and consequently more (type managers) to status. Hence, a
variable size status array was appropriate to reduce data flow to useful
information. Inherent in the object design was run time binding of objects
and dynamic reconfiguration. In this environment, status information within
the switchboard type manager was used when it was available and correct. to
reduce data flow. An actual global status update in the object design had a
greater control flow cost because there tvpically was more information to

exchange.

The control flow metric sum was 421 percent higher in the functional
system's results. The functional system’s dependency graph revealed that 18

process switches of which 15 were CPU kernel operating system invocations

103

oceurred during the execution of this case; each invocation had 2 control flow
cost of 92 words (i.e., for a total of 1656 words). The object system had 1%
type manager invocations during the execution of the same case, each type
manager invocation having a control flow cost of 10 words. Consequently. it
was concluded that a significant portion of the functional system’s control flow
was due to operating system process switching. Passing of status information

by the functional system also increased its control flow metric sum.

The CPU data flow was significantly higher (2293 percent) in the
functionally designed case. The functional system’s dependency graphs
revealed that the difference was due to the passing of data to operating svstem
routines for input and output. Specifically, the significant contributor was
4000 words of display initialization data sent from the display process on CPU
3 to both of the display units (i.e., for a total of 8000 words). In the object
system, type managers are responsible for their own input and output, except
for synchronization among type managers, where access control is provided by
the abstract machine. Hence the object system did not have the large data

flow performance cost.

Disk data flow and display data flow were identical in the two
designs, as might be expected. There were some minor difference in the
amount of link data flow and the number of CPU 1, 2, and 3 messages and
the amounts of CPU 1, 2, and 3 data flow. This was due to the differences in

statusing as was described above.

104

C.2 CASE 2: External Messages Received

INITIAL CONDITIONS: The system was fully operational, had been
initialized by case 1, and then two separate external target-update messages

were received by the communications hardware units.

RESULTS: Functional Object Percentage

Systen System Difference

Context Switches 1414 1035 36
CPU Control Flow 25700 211580 27
CPU Data Flow : 71246 68122 4
Link Data Flow : 5660 B612 0
Disk Data Flow : 264 264 0
Display Data Flow : 3200 3200 0
CPU 1 Messages : 34 29 17
CPU 2 Messages : 6 5 20
CPU 3 Messages : 6 4 50
CPU 1 Data Flow : 1484 1506 -5
CPU 2 Data Flow : 182 137 10
CPU 3 Data Flow : 260 205 26
Proc/TM Switches : 48 50 -8

DISCUSSION: Communications hardware unit 1 reformatted the
target-update messages and individually put the reformatted target-update
messages on LAN 1, addressed to CPU 1. First, CPU 1 received the track-
update message and executed the disk write protocol to write a copy of the
message to the input message log on both disk 1 and disk 2. CPU 1 then
executed the communications message decoder function that resulted in a
track-update report. In the object system CPU 1 sent a status-request
message to CPU 2 and CPU 3 and received status-information messages from
CPU 2 and CPU 3. The functional system had exchanged status during

execution of case 1.

105

CPU 1 put the resultant track-update report message on LAN 1,
addressed to CPU 2. CPU 2 received and decoded the message and executed
the track-update function that resulted in a display-update message. In the
object system CPU 2 sent a status-request message to CPU 1 and CPU 3 and

received status-information messages from CPU 1 and CPU 3.

CPU 2 put the display-update message on LAN 1, addressed to CPU
3. CPU 3 received and decoded the display-update message and performed
the display data preparation function and sent two display-commands
messages to each of the two display units (i.e., for a total of four messages).
Display units 1 and 2 received the messages and updated the operator

displays.

Next, CPU 1 received the second track-update message and executed
the disk write protocol to write a copy of the message to the input message log
on both disk 1 and disk 2. CPU 1 then executed the communications message
decoder function that resulted in a track-update report. CPU 1 put the
resultant track-update report message on LAN 1, addressed to CPU 2. CPU 2
received and decoded the message and executed the track-update function that
resulted in a display-update message. CPU 2 put the display-update message
on LAN 1, addressed to CPU 3. CPU 3 received and decoded the display-
update message and performed the display data preparation function and sent
two display-commands messages to each of the two display units (i.e., for a
total of four messages). Display units 1 and 2 received the messages and

updated the operator displays.

106

In the functional system CPU 1 was sent 34 messages; (24) messages
were disk replies (i.e., either read data or write-acknowledgement messages),
(2) were track-update messages from communications unit 1, and (8) were file
lock /unlock acknowledgement messages {from CPUs 2 and 3. In the object
system CPU 1 was sent 29 messages; (24) messages were disk replies, (2) were
track-update messages from communications unit 1, (2) were status-
information messages, one each from CPU 1 and CPU 2, and (1) was a status-

request from CPU 2.

In the functional system CPU 2 was sent (6) messages; (4) were file
lock /unlock messages from CPU 1 and (2) were track-report messages from
CPU 1. In the object system CPU 2 was sent (5) messages; (2) were track-
report messages from CPU 1, (1) was a status-request message from CPU 1,

and (2) were status-information messages {rom CPU 1 and CPU 3 respectively.

In the functional system CPU 3 was sent (6) messages; (4) were file
lock /unlock messages from CPU 1 and (2) were display-update messages from
CPU 2. In the object system, CPU 2 was sent (4) messages; (2) were display-
update messages from CPU 2 and (2) were status-request messages from CpPU

1 and CPU 2 respectively.

The object system’s results in this case may be compared to the
object system’s results in case 3, because during this case the object system
exchanged status between CPUs when initially sending messages to remote

type managers. This was because the local switchboard manager had not been

107

invoked during case 1. The functional system’s CPUs had exchanged status
information during case 1 and did not need to exchange status during this
case. Hence, case 3 will be presented to provide message processing results that
are comparable between system. The object system’s context switches and
control flow metric sums were higher in this case, because of the exchange of

status-information messages during this case.

A detailed analysis will be given as a part of the more interesting

case 3.

108

C.3 CASE 3: External Messages Received

INITIAL CONDITIONS: The system was fully operational, inter-
CPU status had been passed (i.e., during case 1 for the functional system and
during case 2 for the object system), and two separate external target-update

messages were received by the communications hardware units.

RESULTS: Functional Object Percentage

System System Difference

Context Switches ! 1414 888 59
CPU Control Flow 25700 20512 25
CPU Data Flow : 71246 67894 4
Link Data Flow : 5660 5340 5
Disk Data Flow : 264 264 0
Display Data Flow : 3200 3200 o
CPU 1 Messages : 34 26 30
CPU 2 Messages : 6 2 200
CPU 3 Messages : 6 2 200
CPU 1 Data Flow : 1484 1404 5
CPU 2 Data Flow : 152 32 375
CPU 3 Data Flow : 260 140 85
Proc/TM Switches : 46 36 27

DISCUSSION: The execution sequence of this case was similar to the
sequence discussed in case 2, the difference being that the object system
exchanged status information during case 2. No status information was
exchanged during this case because there were no system reconfigurations

preceding or during this case.

In the functional system CPU 1 was sent 34 messages; (24) messages
were disk replies (i.e., either read data or write acknowledgement messages),
(2) were track-update messages from com munications unit 1, and (8) were file

lock /unlock acknowledgements from CPUs 2 and 3. In the object system CPU

109

1 was sent 26 messages; (24) messages were disk replies, and (2) were track-

update messages from communications unit 1.

In the functional system CPU 2 was sent (8) messages; (4) were file
lock/unlock messages from CPU 1 and (2) were track-report messages from
CPU 1. In the object system CPU 2 was sent (2) track-report messages from
CPU 1.

In the functional system CPU 3 was sent (6) messages; (4) were file
lock /unlock messages from CPU 1 and (2) were display-update messages from
CPU 2. In the object system CPU 3 was sent (2) display-update messages from
CPU 2.

This is an important case because it represents the fully operational
steady state system computation work load. The overall results are
encouraging because in all metric categories, the object system’s metric sums
indicate the same or lower performance costs than in the functional system.
That is, the results, from this case, can be interpreted to say that, the object
system, as quantified by the performance metric sums, was as good as or

better than the functional system.

The object approach had less overall context switching (about 59
percent difference) within the system CPUs. The dependency graph analysis
revealed that context switching was reduced in the object system design

because, (1) the object system did not lock files before writing data to disk

110

and (2) the object system had 36 type manager calls while the function system
had 46 process switches of which 40 were kernel operating system calls. A
vertically partitioned object system design only requires file read /write
synchronization for concurrent operations within a type manager. This is
because type managers are assigned storage blocks by their abstract machine
and they are solely responsible for the contents of the storage blocks. Hence,
the need to maintain data consistency docs not require system wide inter-type
manager synchronization. Due to the file directory structure of the functional
system, an inter-CPU file lockout mechanism was incorporated into the design,
for disk write operations. A file lock /unlock operation requires a significant
amount of context switching due to the construction of the required messages,
sending of the messages, decoding of the messages, and processing of the
message commands. This also explains why there were six CPU 2 and six CPU
3 messages in the functional system’s results and only two respective messages
in the object system’s results. In both designs, there were two data transfer
messages from CPU 1 to CPU 2 and two data transfer messages from CPU 2
to CPU 3. The additional messages atb CPU 2 and CPU 3, in the function
system, are attributable to the file lock and unlock messages from CPU 1 to
CPU 2 and to CPU 3. The difference in CPU 1 Messages of 34 versus 26 for
the functional system and object system respectively, is due to the four pairs
of file lock command acknowledgements and file unlock acknowledgements

trom CPU 2 and CPU 3 to CPU 1.

The object system shows an information flow improvement (25

percent for CPU control flow, 4 percent for CPU data flow, and 5 percent for

111

link data flow). Control flow improvement in the object system partially
results from not having the file lock /unlock protocol, discussed in the previous
paragraph. Similarly to case 1, an object system’s data flow improvement
resulted from the type manager’s direct output control of the two displav-
commands messages of 400 words of display hardware commands each. The
predominant contributor to the control flow difference was 46 process switches
by the functional system, as compared to 36 type manager invocations by the

object system, with analogously performance results as was discussed in case 1.

In this case, the disk and display data flow were identical, because
identical application tasks were performed. There was a system difference in
CPU 1, 2, and 3 (i.e, inter-processor) data flow because of the respective

difference in CPU 1, 2, and 3 message numbers, as discussed earlier.

C.4 CASE 4: CPU 1 Failure

INITIAL CONDITIONS: Prior to this case the system had been fully
operational and configured as resulted from case 1. CPU 1 had failed since the
processing of the last message of case 3 and was non-operational, and two
external target-update messages were received by the communications

hardware units.

RESULTS: Functional Object Percentage

System System Dlfference

Context Swiltches 1282 936 36
CPU Control Flow 24839 20651 20
CPU Data Flow : 71272 67882 4
Link Data Flow : 5508 5328 3
Disk Data Flow : 264 264 0
Display Data Flow : 3200 3200 0
CPU 1 Messages : 1 1 0
CPU 2 Messages : 29 285 i6
CPU 3 Messages : 7 3 133
CPU 1 Data Flow : 110 110 0
CPU 2 Data Flow : 1334 1294 3
CPU 3 Data Flow : 280 180 g3
Proc/TM Switches 41 38 7

DISCUSSION: For this case, each system (i.e., functional and object)
first had to recognize the failure of CPU 1, then each system had to
reconfigure itself to bypass the non-operational CPU and relocate the
processing functions of the non-operational CPU. Finally, each system had to

process the two target-update messages.

Communications hardware unit 1 reformatted the target-update
messages and put the first reformatted message on LAN 1, addressed to CPU

1. CPU 2 was monitoring the LAN activity, had captured a copy of the

113

message addressed to CPU 1, and had recognized that CPU 1 had not ACKed
the track-update message from the communications unit. CPU 2 reconfigured
its software to add the communications processing function that had been
previously assigned to CPU 1. CPU 2 sent a message to communications unit
1, commanding it to send future track-update messages directly to CPU 2.
Then, CPU 2 executed the communication function on the captured message
and passed a track-report message 1o the tracking function also on CPU 2.
CPU 2 executed the tracking function and sent a display-update message to
CPU 3 for display processing. CPU 3 received and decoded the display-update
message and performed the display data preparation function and sent two
display-commands messages to each of the two display units (i.e., for a total of

four messages); the display units updated the operator displays.

Next, communications unit 1 sent the second track-update message to
CPU 2. CPU 2 performed the communications and track processing functions
and sent a display-update message to CPU 3. Finally, CPU 3 performed the
display data preparation function and sent two display-commands messages to

each of the two display units; the display units updated the operator displays.

In both the functional and object systems CPU 1 was sent (1) track-
update message from communications unit 1. Then, the systems reconfigured

and CPU 1 was excluded from the system processing.

In both systems: 1) CPU 2 captured a copy of the track-update

message sent to CPU 1, 2) CPU 2 recognized the failure of CPU 1 by the

114

absence of a message ACK on the network, 3) CPU 2 reconfigured to perform
the communications and track functions, and 4) CPU 2 processed the captured
message. Then, in the functional system CPU 2 was sent (29) messages; (24)
were disk read or write reply-messages, (1) was a track-update message from
communications unit 1, and (4) were file lock/unlock acknowledgement-
messages from CPU 3. In the object system CPU 2 was sent 25 messages; (24)
messages were disk replies, (1) was a track-update message from

communications unit 1.

In the functional system CPU 3 was sent (7) messages; (1) was a
status message from CPU 2, (4) were file lock/unlock messages from CPU 2
and (2) were display-update messages from CPU 2. In the object system CPU
3 was sent (3) messages; (1) was an advisory message that CPU 1 was down

from CPU 2 and (2) were display-update messages from CPU 2.

This is a complex case to interpret because the metric data sums
include performance cost data for system reconfiguration and message data
processing. The metrics sums resemble a combination of the (re)configuration

case 1 and the fully operational system message processing case 3.

This case has a 36 percent context switching difference, as compared
to 50 percent in case 3. In this case the functional system had a reduced file
lock/unlock workload because of the non-operational CPU. This reduced
workload resulted in reduced context switching and control flow metric sums

as compared to the object system. Specifically, the functional system number

115

of messages was eight less in this case, due to file locking/unlocking in the
functional system design, as discussed in case 2. This file lock/unlock protocol
:s considered the primary reason that the functional system had an increased

context switch metric sum.

The control flow metric sums differed by 20 percent. The
dependency graphs revealed that in this case there were 38 object system’s
type manager invocations and 41 functional system’ operating system
snvocations. The object systems superior performance indicated by the control
flow metric, is attributable to the greater control flow cost of an operating

system process switch, as discussed in casc 1.

The object system had a slightly reduced overall data flow of 4
percent. This is attributed to the direct output of the display-commands
messages (i.e., in this case each of 400 data words), as discussed in case 1. The
percentage difference is less here than in case 1 because the case 1 display-

commands messages were 4000 data words. of initialization data.

The functional systems provided inter-computer statusing during the
reconfiguration while the object system updated status as a part of processing

the first message.

116

C.5 CASE 5: External Messages Received

INITIAL CONDITIONS: CPU 1 remained non-operational, the
systems remained configured as resulted from case 4, and two external target

update message were received by both of the communications hardware units.

RESULTS: Functional Object Percentage
System System Difference
Context Switches : 1238 856 44
CPU Control Flow : 24468 20446 18
CPU Data Flow : 71086 67882 4
Link Data Flow : 5468 5308 3
Disk Data Flow : 264 264 o
Display Data Flow : 3200 3200 0
CPU 1 Messages : 0 0
CPU 2 Messages : 30 26 i85
CPU 3 Messages : 6 2 200
CPU 1 Data Flow : 0 0
CPU 2 Data Flow : 1444 1404 2
CPU 3 Data Flow : 260 140 85
Proc/TM Switches 38 34 11

DISCUSSION: The following sequence occurred twice; once for each
message. Communications unit 1 sent a track-update message to CPU 2.
CPU 2 performed the communications and track processing functions and sent
a display-update message to CPU 3. Finally, CPU 3 performed the display
data preparation function and sent two display-commands message to each of

the two display units; the display units updated the operator displays.

In both the functional and object systems no messages were sent to
CPU 1. In the functional system CPU 2 was sent (30) messages; (24) were
disk read or write reply-messages, (2) were track-update message from

communications unit 1, and (4) were file lock/unlock acknowledgement-

117

messages from CPU 3. In the object system CPU 2 was sent 26 messages; (24)
messages were disk replies, (2) were track-update messages from

communications unit 1.

In the functional system CPU 3 was sent (6) messages; (4) were file
lock /unlock messages from CPU 2 and (2) were display-update messages from
CPU 2. In the object system CPU 3 was sent (2) display-update messages from
CPU 2.

This is an important case because the system is processing messages
and no reconfiguration occurs. For analysis, this case will now be compared to

case 3.

For both systems, the context switching, CPU control flow, CPU
data flow, and link data flow metric sums are reduced because there are no
inter-processor messages between the communications processing and the track

processing functions.

The disk data flow, display data flow, CPU 3 messages, and CPU 3
data flow metric sums are identical between cases 3 and 5, as was expected.
In case 3 there were 46 process switches versus 38 in case 5. While in case 3
there were 36 type manager calls versus 34 in case 5. This inter-case
differences of Process/TM function domain switching was responsible for the
reduction in metric values in case 5, as compared to case 3. The functional

system had some advantage, in case 5 over the functional system in case 3

118

because of the reduced requirement of four less file lock /unlock massages and
the resultant four acknowledgement messages. The object system did not gain
this advantage in case 5, because it did not lock files. Consequently, the
respective differences in context switches and control flow metrics between
functional and object systems were less between cases. The overall differences
between the function system and the object system are consistent between the

cases considering the inter-case differences of Proc/TM switches.

119

C.8 CASE 6: CPU 1 Recovery

INITIAL CONDITIONS: CPU 1 became operational after the
processing of the last message of case 5, the systems remained configured as
resulted from case 4, and two external target update message were received by

both of the communications hardware units.

RESULTS: Functional Object Percentage

System System Difference

Context Switches 1630 1121 36
CPU Control Flow . 26766 209564 27
CPU Data Flow : 71624 68003 B
Link Data Flow : B774 5485 5
Disk Data Flow : 264 264 0
Display Data Flow : 3200 3200 O
CPU 1 Messages : ig9 15 26
CPU 2 Messages : 21 16 37
CPU 3 Messages : 8 3 166
CPU 1 Data Flow : 802 775 3
CPU 2 Data Flow : 868 757 -11
CPU 3 Data Flow : 320 169 89
Proc/TM Switches : 55 51 7

DISCUSSION: For this case, each system (i.e., the functional and
object) first had to recognize the operability of CPU 1, then each system had
to reconfigure itself to include the operational CPU, relocate the
communications processing {unctions to CPU 1, and to process the two target-

update messages.

Communications hardware unit 1 reformatted the target-update
messages and put the first reformatted message on LAN 1, addressed to CPU
9. CPU 1 was monitoring the LAN activity, recognized that the system was

active by capturing the target-update message addressed to CPU 2. CPU 1

120

configured its software to add the communications processing function that
had been previously assigned to CPU 2. CPU 1 sent a message to CPU 2,
commanding it to discontinue communications processing. CPU 2 sent a
message to communications unit 1, commanding it to stop sending track-
update messages to CPU 2. CPU 1 then sent a message to communications
unit 1, commanding it to send future track-update messages to CPU 1. In
both systems, during the execution of the first message, when CPU 1
commanded CPU 2 to terminate communications processing, CPU 2 continued
to process till completion. After completion of processing CPU 2 reconfigured
‘tself to no longer perform the communication processing function. In the
functional system CPU 1 sent a status-information message to CPU 2 and to
CPU 3 and CPU 2 sent a status-information message to CPU 1 and to CPU 3.
In the object system CPU 1 requested and received status from CPU 2 and
from CPU 3.

CPU 2 then performed the tracking function and sent a display-
update message to CPU 3 for display processing. CPU 3 received and decoded
the display-update message and performed the display data preparation
function and sent two display-commands messages to each of the two display

units (i.e., for a total of four messages).

Next, communications unit 1 sent the second track-update message to
CPU 1. CPU 1 performed the communications processing and sent a track-
report message to CPU 2. CPU 2 received the message and performed the

track processing functions and sent a display-update message to CPU 3.

121

Finally, CPU 3 performed the display data preparation function and sent two
display-commands message to each of the two display units; the display units

updated the operator displays.

In the functional system CPU 1 was sent 19 messages; (12) messages
were disk replies, (1) was a track-update messages from communications unit
1, (2) were status-information messages from CPU 2 and CPU 3 respectively,
and (4) were file lock/unlock acknowledgements from CPUs 2 and 3. In the
object system CPU 1 was sent 15 messages; (12) messages were disk replies, (2)
were status-information messages from CPU 2 and from CPU 3 respectively,

and (1) was a track-update message from communications unit 1.

In the functional system CPU 2 was sent (21) messages; (12) messages
were disk replies, (1) was a track-update message from communications unit 1,
(1) was a drop communications process message from CPU 1, (1) was a status-
information messages from CPU 1, (2) were file lock/unlock
acknowledgements from CPU 1, (1) was a file unlock acknowledgement-
message from CPU 1, (2) were file lock /unlock messages from CPU 1 and (1)
was a track-report message from CPU 1. In the object system CPU 2 was sent
16 messages; (12) messages were disk replies, and (1) was a track-update
message {rom communications unit 1, (1) was a status-request message (i.e.,
that also contained CPU 1's status) from CPU 1, (1) was a drop
communications message from CPU 1, and (1) was a track-report messages

from CPU 1.

122

In the functional system CPU 3 was sent (8) messages; (2) were file
lock /unlock messages from CPU 1, (2) were file lock/unlock messages from
CPU 2, (2) were status-information messages from CPU 1 and CPU 2
respectively, (1) was a display-update messages from CPU 1 and (1) was a
display-update messages from CPU 2. In the object system CPU 2 was sent (3)
messages; (1) was a status-request message from CPU 1 and (2) were display-

update messages from CPU 2.

This is a complex case to interpret because the metric data sums
include performance cost data for system reconfiguration and message data

processing. The results will be compared to those of case 3 and case 4.

The context switching, CPU control flow, CPU data flow metrics
sums resemble those of case 4, because both case contain reconfiguration and
external-message processing. The differences are attributable to the functional
system exchanging (8) file lock/unlock messages and (8) acknowledgment
messages here and only (4) and (4) in case 4. This difference is due to the non-

operational CPU in case 4.

There were 46 versus 55 functional system process switches in cases 3
and 6 respectively. This compares to 36 versus 51 type manager invocations in
cases 3 and 6 respectively. These differences provide an explanation for the

differences in context switches and CPU control flow between cases.

After completion of the processing of these two messages, the svstems

123
were configured identically as they were at the completion of case 3. As part

of the validation process, test case 4 was repeated at this point and identical

results, as were reported and discussed under case 4, were obtained.

C.7 CASE 7: CPU 2 Failure

INITIAL CONDITIONS: The system had been fully operational and
configured as resulted from case 6. CPU 2 had failed since the processing of
the last message of case 6 and was non-operational, and two external target-

update messages were received by both of the communications hardware units.

RESULTS: Functional Object Percentage

System System Difference

Context Switches : 1290 860 34
CPU Control Flow 24827 - 20698 19
CPU Data Flow : 71212 67835 4
Link Data Flow : 5420 5279 2
Disk Data Flow : 264 264 0
Display Data Flow : 3200 3200 0
CPU 1 Messages : 31 28 6
CPU 2 Messages : 1 1 0
CPU 3 Messages : 6 2 200
CPU 1 Data Flow : 1474 1449 1
CPU 2 Data Flow : 30 16 87
CPU 3 Data Flow : 162 50 204
Proc/TM Swltches : 41 40 2

DISCUSSION: During this case, both systems had to recognize the
failure of CPU 2, then each system had to reconfigure itself to bypass and
relocate the processing function of the non-operational CPU, and each system

had to process the two target-update messages.

Communications hardware unit 1 reformatted the target-update
messages and put the first reformatted message on LAN 1, addressed to CPU
1. CPU 1 executed the communications functions and placed a track-report

message on LAN 1, addressed to the CPU containing the track process.

In the functional system CPU 3 captured a copy of the first file-
lockout message sent to CPU 2 by CPU 1 and CPU 3 recognized that CPU 2
had not ACKed the file-lockout message from CPU 1. CPU 3, in the
functional system, reconfigured its software to add the track processing
function that had been previously assigned to CPU 2 and sent a status-

information message to CPU 1.

In the object system CPU 3 was monitoring the LAN activity, had
captured a copy of the track-report message addressed to CPU 2, and
recognized that CPU 2 had not ACKed the message from CpPU 1. CPU 3, in
the object system, reconfigured its software to add the track processing
function that had been previously assigned to CPU 2 and sent CPU 1 an
information message, that CPU 2 was non-operational. CPU 1 requested status

from CPU 3 and CPU 3 returned a status-information message to CPU 1.

In both systems CPU 3 executed the tracking function and sent a
display-update message to the display processing function, also on CPU 3, for
display processing. The display processing function received and decoded the
display-update message and performed the display data preparation function
and sent two display-commands messages to each of the two display units (i.e.,

for a total of four messages).

Next, communications unit 1 sent the second track-update message to
CPU 1. CPU 1 performed the communications processing function and passed

a track-update report message to CPU 3. CPU 3 received the message and

performed the track processing functions and passed a display-update message
to the display processing function (i.e., on CPU 3). Finally, CPU 3 performed
the display data preparation function and sent two display-commands
messages to each of the two display units; the display units updated the

operator displays.

In the functional system CPU 1 was sent 31 messages; (24) messages
were disk replies (i.e., either read data or write acknowledgements), (2) were
track-update messages from communications unit 1, (4) were file lock/unlock
acknowledgements from CPU 3, and (1) was a status message from CPU 3. In
the object system CPU 1 was sent 28 messages; (24) messages were disk
replies, (2) were track-update messages from communications unit 1, (1) was
an advisory message from CPU 3 that CPU 1 was down, and (1) was a status-

update message from CPU 3.

In the functional system CPU 2 was sent (1) file lock message from
CPU 1. In the object system CPU 2 was sent (1) track-report message from
CPU 1.

In the functional system CPU 3 was sent (6) messages; (4) were file
lock/unlock messages from CPU 1 and (2) were track-report messages from
CPU 1. In the object system CPU 3 was sent (2) messages; (1) was a status-
request message from CPU (1) and (1) was a track-report message from CPU
1. Additionally, in the object system, CPlT 3 captured and processed the first

track-report message that was sent to CPU 2 by CPU 1.

[
b
oy

C.8 CASE 8: External Messages Received

INITIAL CONDITIONS: CPU 2 remained non-operational, the
systems remained configured as resulted from case 7, and two external target

update message were received by both of the communications hardware units.

RESULTS: Functional Object Percentage
Systen System Difference
Context Swltches ! 1238 864 44
CPU Control Flow 24468 20426 19
CPU Data Flow : 71086 87774 4
Link Data Flow : 5360 5200 3
Disk Data Flow : 264 264 o
Display Data Flow : 3200 3200 o
CPU 1 Messages : 30 26 18
CPU 2 Messages : 0 0
CPU 3 Messages : 8 2 200
CPU 1 Data Flow : 1444 1404 2
CPU 2 Data Flow : 0 0
CPU 3 Data Flow : 162 32 375
Proc/TM Switches 38 34 i1

DISCUSSION: The following sequence occurred twice; once for each
message. Communications unit 1 sent a track-update message to CPU 1.
CPU 1 performed the communications processing functions and sent a track-
report message to CPU 3. CPU 3 performed the track processing and display
data preparation functions and sent two display-commands message to each of
the two display units; the display units updated the operator displays. No
inter-computer status exchanges were required because system reconfiguration

did not occur.

In the functional system CPU 1 was sent 30 messages; (24) messages

were disk replies (i.e., either read data or write acknowledgements), (2) were

128

track-update messages from communications unit 1, and (4) were file
lock /unlock acknowledgements from CPU 3. In the object system CPU 1 was
sent 26 messages; (24) messages were disk replies, and (2) were track-update
messages from communications unit 1. In both the functional and object

systems DO messages were sent 1o CPU 2.

In the functional system CPU 3 was sent (6) messages; (4) were file
lock /unlock messages from CPU 1 and (2) were track-report messages from
CPU 1. In the object system CPU 3 was sent (2) track-report messages from
CPU 1.

This case is important because the system is configured for steady
state message processing. For analysis, this case will be compared to case 5 to

discuss the differences in metric values.

The only significant differences between cases 5 and 8 are the CPU 1,
2. 3 messages and CPU 1, 2, 3 data flow metrics. They differ because of the

redistribution of the processing load. The other metrics are as expected.

129

C.9 CASE 9: CPU 2 Recovery

INITIAL CONDITIONS: CPU 2 became operational after the
processing of the last message of case 8, the systems remained configured as
resulted from case 7, and two external target update message were received by

both of the communications hardware units.

RESULTS: Functional Object Percentage

System System Difference

Context Swilitches 1806 1127 33
CPU Control Flow 26660 20917 27
CPU Data Flow : 71644 68014 5
Link Data Flow : 5770 5506 4
Disk Data Flow : 264 264 0
Display Data Flow : 3200 3200 C
CPU 1 Messages : 35 28 25
CPU 2 Messages : 6 4 B0
CPU 3 Messages : 8 B 80
CPU 1 Data Flow : 15634 1441 6
CPU 2 Data Flow : 162 108 40
CPU 3 Data Flow : 320 183 65
Proc/TM Switches 55 52 5

DISCUSSION: For this case, each system (i.e., the functional and
object) first had to recognize the operability of CPU 2, then each system had
to reconfigure itself to include the operational CPU, relocate the track

processing functions to CPU 2, and to process the two target-update messages.

Communications hardware unit 1 reformatted the target-update
messages and put the first reformatted message on LAN 1, addressed to CPU
1. CPU 2 was monitoring the LAN activity, had recognized that the system
was active CPU 2 configured its software to add the track processing function

that had been assigned to CPU 3. CPU 2 sent a message to CPU 3,

130

commanding it to discontinue track processing. In both systems CPU
reconfigured its software to drop track processing. In the functional system
CPU 2 sent a status-information message to CPU 1 and CPU 3 and CPU 3

sent a status-information message to CPU 1 and to CPU 2.

CPU 1 executed the communications processing {unction and passed
a track-report message to CPU 2. In the object system the track-report
message was sent to CPU 3. CPU 3’s switchboard type manager located the
track processing function (by requesting and receiving status from the other
CPUs) and forewarded the message to CPU 2 and sent an advisory message to
CPU 1 that a message had been improperly sent to CPU 3. CPU 1, in the
object system, sent a status-request message to CPU 2 and to CPU 3 and they

returned status information messages to CPU 1.

In both systems CPU 2 performed the tracking function and a
display-update message was sent to CPU 3 for display processing. CPU 3
received and decoded the display-update message and performed the display
data preparation function and sent two display-commands messages to each of

the two display units (i.e., for a total of four messages).

Next, communications unit 1 sent the second track-update message to
CPU 1. CPU 1 performed the communications processing and sent a track-
update message to CPU 2. CPU 2 received the message and did the track
processing functions and sent a display-update message to CPU 3. Finally,

CPU 3 performed the display data preparation function and sent two display-

131

commands message to each of the two display units; the display units updated

the operator displays.

In the functional system CPU 1 was sent 35 messages; (24) messages
were disk replies (i.e., either read data or write acknowledgement messages),
(1) was an advisory-message from CPU 3 that a message had been improperly
sent to CPU 3, (2) were track-update messages from communications unit 1,
(2) were status-information messages from CPU 2 and CPU 3 respectively, and
(6) were file lock /unlock acknowledgement-messages from CPUs 2 and 3. In
the object system CPU 1 was sent 28 messages; (24) messages were disk
replies, (2) were status-information messages from CPU 2 and CPU 3

respectively, and (2) were track-update messages from communications unit 1.

In the functional system CPU 2 was sent (6) messages; (1) was a file
lock message from CPU 1, (2) were file unlock messages from CPU 1, (1) was
a status-information message from CPU 3. and (2) were track-report messages
trom CPU 1. In the object system CPU 2 was sent (4) messages; (2) track-
report messages from CPU 1, (2) were status-information messages from CPU

1 and CPU 2 respectively.

In the functional system CPU 3 was sent (8) messages; (4) were file
lock /unlock messages from CPU 1, (1) was a drop-track message from CPU
(2), (1) was a status-information message from CPU 2, and (2) were display-
update messages from CPU 2. In the object system CPU 3 was sent (5)

messages; (1) was a misdirected track-report message from CPU 1, which was

132

redirected to CPU 2, (1) was a status-request message from CPU 2, (1) was a
drop-track message from CPU 2, and (2) were display-update messages from

CPU 2.

This is a complex case to interpret because the metric data sums
include performance cost data for system fault localization, system fault
reconfiguration, and message data processing. Additionally, the

reconfiguration/processing sequence was different between systems.

The context switching, CPU control flow, CPU data flow metrics
sums resemble those of case 6. There were 55 functional system process
switches in both cases. This compares to 51 versus 52 type manager switches
in cases 6 and 9 respectively. These differences provide an explanation for the
differences in context switches, CPU control flow, and CPU data flow between
cases. In case 6 the communications processing of the first track-update
message was done in CPU 2 and for the second track-update message was

done in CPU 1. Here both track-update messages were processed in CPU 1.

After completion of the processing of the two external track-update
messages, the systems were configured identically as they were at the
completion of case 3. As part of the validation process, test case 4 was
repeated at this point and identical results, as were reported and discussed

under case 4, were obtained.

C.10 CASE 10: CPU 3 Failure

INITIAL CONDITIONS: Prior to this case the system had been fully
operational and configured as resulted from case 9. CPU 3 had failed since the
processing of the last message of case § and was non-operational, and two
external target-update messages were received by the communications

hardware units.

RESULTS: Functional Object Percentage

System System Difference

Context Switches 1280 gg80 30
CPU Control Flow : 24827 20744 i9
CPU Data Flow : 71212 67955 4
Link Data Flow : 5560 B41¢ 2
Disk Data Flow : 264 264 0
Display Data Flow : 3200 3200 0
CPU 1 Messages : 32 28 14
CPU 2 Messages : 7 4 75
CPU 3 Messages : 1 i 0
CPU 1 Data Flow : 1584 1508 B
CPU 2 Data Flow : 182 77 136
CPU 3 Data Flow : 130 70 85
Proc/TM Switches : 41 42 -3

DISCUSSION: During this case, both systems had to recognize the
failure of CPU 3, then each system had to reconfigure itself to bypass the non-
operational CPU and relocate the processing function of the non-operational

CPU, and each system had to process the two target-update messages.

Communications hardware unit 1 reformatted the track-update
messages and put the first reformatted message on LAN 1, addressed to CPU
1. CPU 1 executed the communications [unctions and placed a track-report

message on LAN 1, addressed to CPU 2.

134

In the functional system when CPU 1 sent the first file-lock message
to CPU 3, CPU 1 was monitoring the LAN activity and recognized that CPU
3 had not ACKed the message. CPU 1 reconfigured its software to add the
display processing function that was assigned to CPU 3. CPU 1, in the

functional system, sent a status-information message to CPU 2.

CPU 2 performed the track update function and placed a display-
update message on LAN 1, addressed to the display processor. In the
functional system the message was sent to CPU 1. In the object system the

message was sent to CPU 3.

In the object system CPU 1 was monitoring the LAN activity, had
captured a copy of the display-update message addressed to CPU 3, and had
recognized that CPU 3 had not ACKed the display-update message from CPU
9. CPU 1, in the object system, reconfigured its software to add the display
processing function that had been previously assigned to CPU 3 and CPU 1
cent an advisory message to CPU 2 stating that CPU 3 was down. CPU 2 sent
a status-request message to CPU 1. CPU 1 returned a status-update message

to CPU 1.

In both systems, CPU 1 executed the display processing function and
sent two display-commands messages to each of the two display units {i.e., for

a total of four messages).

Next, communications unit 1 sent the second track-update message to

135

CPU 1. CPU 1 performed the communications processing function and passed
a track-report message to CPU 2. CPU 2 received the message and performed
the track processing functions and sent a display-update message to the
display processing function (i.e., on CPU 1). Finally, CPU 1 performed the
display data preparation function and sent two display-commands messages to

each of the two display units; the display units updated the operator displays.

In the functional system CPU 1 was sent 32 messages; (24) messages
were disk replies (i.e., either read data or write acknowledgements), (2) were
track-update messages from communications unit 1, (2) were display-update
messages from CPU 2, and (4) were file lock/unlock acknowledgement
messages from CPU 2. In the object system CPU 1 was sent 28 messages; (24)
messages were disk replies, (2) were track-update messages from
communications unit 1, (1) was a status-request(with status information)
message from CPU 2, and (1) was a display-update messages from the track
processing function. In the object system the first display-update message sent

to the non-operational CPU 3 was captured and processed by CPU 1 too.

In the functional system CPU 2 received (7) messages; (4) were file
lock /unlock messages from CPU 1, (1) was a status-information message from
CPU 1, and (2) were track-report messages from CPU 1. In the object system
CPU 2 received (4) message; (1) was an advisory message from CPU 1 that
CPU 3 was down, (1) was a status-request message (containing CPU 1 status)

2

from CPU 1, and (2) were track-report messages from CPU 1.

136

In the functional system, (1) file-lock message was sent to CPU 3
from CPU 1. In the object system there was (1) display-update message sent

to CPU 3 from CPU 2.

The results of this case are comparable to cases 4 and 7. The
differences in metric sums are attributable to the difference in reconfiguration

sequencing and the different distribution of the processing functions.

137

C.11 CASE 11: External Messages Received

INITIAL CONDITIONS: CPU 3 remained non-operational, the
systems remained configured as resulted {rom case 10, and two external target

update message were received by both of the communications hardware units.

RESULTS: Functional Object Percentage
System System Difference
Context Switches : 1238 884 40
CPU Control Flow 24468 20472 18
CPU Data Flow : 71086 67894 4
Link Data Flow : BB50O B340 2
Disk Data Flow : 264 264 0
Display Data Flow : 3200 3200 o
CPU 1 Messages : 32 28 4
CPU 2 Messages : 6 2 200
CPU 3 Messages : o 0]
CPU 1 Data Flow : 1584 1544 2
CPU 2 Data Flow : 182 32 375
CPU 3 Data Flow : 0 0
Proc/TM Switches 38 36 5

DISCUSSION: The following sequence occurred twice; once for each
message. Communications unit 1 sent a track-update message to CPU 1. CPU
1 performed the communications processing functions and sent a track-report
message to CPU 2. CPU 2 performed the track processing function and sent a
display-update message to CPU 1. CPU 1 received the display-update message
and performed the display data preparation functions and sent two display-
commands message to each of the two display units; the display units updated
the operator displays. No inter-computer status exchanges were required

because system reconfiguration did not occur.

In the functional system CPU 1 received 32 messages; (24) messages

138

were disk replies (i.e., either read data or write acknowledgements), (2) were
track-update messages from communications unit 1, (2) were display-update
messages from CPU 2, and (4) were file lock/unlock acknowledgements from
CPU 2. In the object system CPU 1 received 28 messages; (24) messages were
disk replies, (2) were track-update messages from communications unit 1, and

(2) were display-update messages from CPU 2.

In the functional system CPU 2 received (6) messages; (4) were file
lock /unlock messages from CPU 1 and (2) were track-report messages from
CPU 1. In the object system CPU 2 received (2) track-report messages from
CPU 1. In both the functional and object systems no messages were sent to

CPU 3.

This case is important because the system is configured for steady
state message processing. For analysis, this case may be compared to cases 5

and 8.

The only significant differences between cases 5, 8 and 11 are the
CPU 1, 2, 3 messages and CPU 1, 2, 3 data flow metrics. They differ because
of the redistribution of the processing load. There are two extra messages in
both system's message sums for this case because CPU 2 sent the display-
update messages to CPU 1. In case 5 the communications and track processing
functions were both located on CPU 2, hence the track-report messages did
not have to be sent on the LAN. In casc 8 the track and display processing
functions were both located on CPU 3; hence the display-update messages did

not have to be sent on the LAN.

1386

C.12 CASE 12: CPU 3 Recovery

INITIAL CONDITIONS: CPU 3 became operational after the
processing of the last message of case 11, the systems remained configured as
resulted from case 10, and two external target-update message were received

by both of the communications hardware units.

RESULTS: Functional Object Percentage

System System Dlfference

Context Switches 1550 1133 36
CPU Control Flow 26986 20958 28
CPU Data Flow : 71664 68068 4
Link Data Flow : 5810 5580 0
Disk Data Flow : 264 264 0
Display Data Flow : 3200 3200 0
CPU 1 Messages : 36 29 24
CPU 2 Messages : 8 4 0
CPU 3 Messages : 7 4 75
CPU 1 Data Flow : 1544 1611 2
CPU 2 Data Flow : 212 69 207
CPU 3 Data Flow : 290 216 34
Proc/TM Switches : 57 52 9

DISCUSSION: For this case, each system first had to recognize the
operability of CPU 3, then each system had to reconfigure itself to include the
operational CPU, had relocate the display processing functions to CPU 3, and

had to process the two target-update messages.

Communications hardware unit 1 reformatted the external track-
update messages and put the first reformatted message on LAN 1, addressed
to CPU 3. CPU 3 was monitoring the LAN activity and recognized that the
system was active. CPU 3 configured its software to add the display

processing function that had been assigned to CPU 1. CPU 3 then sent a

140

message to CPU 1, commanding it to discontinue display processing. CPU 1
reconfigured its software to disable display processing. In the functional
system CPU 3 sent a status-information message to CPU 1 and to CPU 2 and

CPU 1 sent a status-information message to CPU 2 and to CPU 3.

CPU 1 executed the communications processing function and passed
a track-update message to the track processor on CPU 2. The tracking
function was performed and a display-update message was sent to the display
processor for display processing. In the functional system this message was
sent to CPU 3. In the object system this message was sent to CPU 1. In the
object system CPU 1 forewarded the message to CPU 3 and sent an advisory
message to CPU 2 that it had incorrectly addressed the display-update
message to CPU 1. CPU 2 sent a status-request message to CPU 1 and to CPU
3.

In both systems CPU 3 received and decoded the display-update
message and performed the display data preparation function and sent two
display-commands messages to each of the two display units (i.e., for a total of

four messages).

Next, communications unit 1 sent the second track-update message to
CPU 1. CPU 1 performed the communications processing and sent a track-
update message to CPU 2. CPU 2 received the message and did the track
processing functions and sent a display-update message to CPU 3. Finally,

CPU 3 performed the display data preparation function and sent two display-

141

commands message to each of the two display units; the display units updated

the operator displays.

In the functional system CPU 1 was sent 36 messages; (24) messages
were disk replies (i.e., either read data or write acknowledgement messages),
(2) were track-update messages from communications unit 1, and (8) were file
lock /unlock-acknowledgement messages from CPUs 2 and 3. In the object
system CPU 1 was sent 29 messages; (24) messages were disk replies, (2) were
track-update messages from communications unit 1 (1) was a drop-display
processing message from CPU 3, (1) was a status-request message from CPU 3,
(1) was a status-request message from CPU 2, and (1) was a display-update

message from CPU 2 that was forewarded to CPU 3.

In the functional system CPU 2 was sent (8) messages; (4) were file
lock /unlock messages from CPU 1, (2) were status-information messages from
CPU 1 to CPU 3 respectively, and (2) were track-report messages from CPU 1.
In the object system CPU 2 was sent (4) messages; (2) were track-report
messages from CPU 1, (1) was a status-request (including CPU 3 status-
information) from CPU 3 and (1) was an advisory message stating that the

first display-update message had been incorrectly sent to CPU 1.

In the functional system CPU 3 was sent (7) messages; (4) were file
lock /unlock messages from CPU 1 and (2) were display-update messages from
CPU 2. In the object system CPU 3 was sent (4) messages; (2) were display-

update messages from CPU 2, (1) was a status-information message from CPU

142

2, and (1) was a status-request message (including CPU 1 status information)

from CPU 1.

This is a complex case to interpret because the metric data sums
include performance cost data for system fault localization, system fault

reconfiguration, and message data processing.

The results of this case are comparable to cases 6 and 9. The
differences in metric sums are attributable to the difference in reconfiguration

sequencing and the different distribution of the processing functions.

The context switching, CPU control flow, CPU data flow metrics
sums resemble those of case 6. There were 55 versus 57 functional system
process switches in cases 6 and 12 respectively. This compares to 51 versus 52
type manager switches in cases 6 and 12 respectively. These differences
provide an explanation for the minor differences in context switches, CPU

control flow, and CPU data flow between cases.

After completion of the processing of these two messages, the systems
were configured identically as they were at the completion of case 3. As part
of the validation process, test case 4 was repeated at this point and identical

results, as were reported and discussed under case 4, were obtained.

[Belady 79]

[Bernstein 81]

Bibliography

Belady, L.A., C.J. Evangelisti.

System Partitioning and its Measure.

Technical Report RC 7560 - #32643, IBM T.J. Watson
Research Center, March, 1979.

Bernstein, P.A., Nathan Goodman.

Concurrency Control In Distributed Database Systems.
ACM Computing Surveys 2(13): 185-222, June, 1981.
Contains timestamp ordering protocol.

[Brinch Hansen 73]

[Browne 81]

[Browne 83]

Brinch Hansen, P.
Operating System Principles.
Prentice-Hall, Englewood Cliffs, N.J., 1973.

Browne, J.C., Mary Shaw.

Toward a Scientific Basis {for Software Evaluation.

In Perlis, Alan, Fredrick Sayward, Mary Shaw (editor),
So ftware Metrics, chapter One. The MIT Press, 1981.

Browne, James C., James E. Dutton, Vincent Fernandez,

Annette Palmer, Anand R. Tripathi, and Pong-sheng Wang.

Zeus: An Object-Oriented Distributed Operating System For
Reliable Applications.

Technical Report, Information Research Associates, February,
1983,

This is a good summary review of the Zeus design. Zeus is an
object oriented system with a transaction layer
superimposed.

143

[Browne 84]

[Browne 85]

[Buhr 84]

[Chanon 73]

[Cristian 82]

[DeMarcos 78]

[Duncan 84]

[Garcia 83]

(Gilb 77]

144

Browne, James C.

Formulation and Programming of Parallel Computations: A
Unified View.

In Proceedings of the XI International Con ference on
Parallel Processing - Chicago, pages 624-631. IEEE,
1984.

Browne, James C.

Framework For Formulation And Analysis Of Parallel
Computation Structures.

In Proceedings of HICSS. IEEE & ACM, 1985.

Buhbr, R. J. A.
System Design With Ada.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984.

Chanon, Robert N.
On a Measure of Program Structure.
Technical Report, Carnegie-Mellon University, 1973.

Cristian, Flaviu.

Exception Handling and Software Fault Tolerance.

IEEE Transaciions on Computing C-31(6): 531-540, June,
1982.

Good concept paper.

DeMarcos, Tom.
Structured Analysis and Systems Spect fication.
Yourdon, Inc., New York, N.Y., 1978.

Duncan, A. G.and Hutchinson, J. S.
Communication System Design Usign Using Ada.
In IEEE 0270-5257/84/0000/0398. IEEE, 1984.

Garcia-Molina, H.

Using Semantic Knowledge For Transaction Processing In a
Distributed System.

ACM Transactions on Database Systems 8(2): 186-213, June,
1983.

Gilb, Tom.
So ftware Metrics.
Winthrop, 1977.

[Gray 81]

[Halstead 77]

[Hoare 74]

[IKieburtz 83]

[Laprie 85]

[Lynch 81]

[McCabe 76]

McCall 77]

145

Gray, Jim.

The Transaction Concept: Virtues and Limitations.

In Proceedings on Conference of Very Large Data Bases,
pages 144-154. IEEE, 1981.

Good concept paper.

Halstead, Maurice M.

Operating and Programming Systems: Elements of Software
Science.

Elsevier Computer Science Library, 1977.

Hoare, C.A.R.
Monitors:An Operating System Structuring Concept.
Commun. ACM 17(10):549-557, October, 1974.

Kieburtz, Richard B. and Abraham Silberschatz.

Access-Right Expressions.

ACM Transactions on Programming Languages and
Systems 5(1):78-96, January, 1983.

Laprie, Jean-Claud.

Dependable Computing And Fault Tolerance: Concepts And
Terminology.

In FTCS-15, pages 2-11. 1EEE, 1985.

Lynch, W.C., J.C. Browne.

Performance Evaluation: A Software Metric Success Story.

In Perlis, Alan, Fredrick Sayward, Mary Shaw (editor),
Software Metrics, chapter Twelve. The MIT Press, 1981.

McCabe, Thomas J.

A Complexity Measure.

IEEE Transactions on Software Engineering 4(SE-2),
December, 1976.

MecCall, J.A., P.K. Richards, G.F. Walters.

Factors in Software Quality.

Technical Report 77CIS12, General Electric, Command and
Information Systems, Sunnyvale, CA., 1977.

[Moss 81]

[Moss 82]

[Myers 78]

[Nelson 81]

[Parnas 72]

[Pascoe 86]

[Reed 83]

[Russel 80]

Moss, J. and B. Elliot.

Nested Transactions: An Approach to Reliable Distributed
Compuling.

Technical Report, Massachusetts Institute of Technology,
Laboratory of Computer Science, Cambridge,
Massachusetts 02139, April, 1981.

Moss, J. Elliot B.

Nested Transactions and Reliable Distributed Computing.

In Proceedings on Second Conference on Reliabilily in
Distributed Systems, pages 33-39. IEEE, 1982,

Good concept paper.

Myers, G.J.
Composite/Structured Design.
Van Nostrand Reinhold, New York, 1978.

Nelson, B.J.

Remote Procedure Call.

Technical Report CMU-CS-81-119, Carnegie-Mellon
University, Department of Computer Science, May, 1981.

Also available as Xerox Report No. CSL-81-8, dtd May &81.

Parnas, D.L.

On the Criteria To Be Used In Decomposing Systems Into
Modules.

Communications of The ACM 15(12), December, 1972.

Pascoe, Geoffrey A.
Elements of Object-Oriented Programming.
BYTE :139-144, August, 1986.

Reed, David P.

Implementing Atomic Actions on Decentralized Data.

ACM. Transactions on (omputer Systems 1:3-23, February,
198&83.

Russel, David L.

State Restoration in Systems of Communicating Processes.

IEEE Transactions on Software Engineering SE-6(2):
93-194, March, 1980.

Good concept paper.

[Ryder 79]

147

Ryder, Barbara G.

Constructing a Call Graph of a Program.

IEEE Transactions on Software Engineering
3(SE-5):216-226, May, 1979.

[Schneiderman 80]

[Silberschatz 77]

[Thayer 76]

[Tripathi 83]

[Walters 78]

[Wood 81]

Schneiderman, B.

So ftware Psychology: Human Factors in Computers and
Information Systems.

Winthrop Publishers, Inc., Cambridge, Mass., 1980.

Silberschatz, A., Kieburtz, R.B., and Bernstein, A.J.

Extending Concurrent Pascal to Allow Dynamic Resource
Management.

IEEE Transactions on Software Engineering
SE-3(3):210-217, May, 1977.

Thayer, T.A., et. al.

So ftware Reliabilety Study.

Technical Report RADC-TR-76-238, Rome Air Development
Center, 1976.

Tripathi, Anand R., Pong-sheng Wang.

Reliability and Consistency Management Technigues In
Distributed Systems.

Technical Report, Honeywell Inc, Corporate Computer
Science Center, August, 1983.

RADC Contract No. F30602-82-C-0154.

Walters, Gene F., James A. McCall.

The Development of Metrics for Software Reliability and
Maintainability.

In Proceedings of the 1978 Reliability and Maintainability
Symposium. ACM, 1978.

Wood, W. Graham.

A Distributed Recovery Control Protocol.

In Proceedings FTCS-11, pages 159-164. IEEER, 1681,
Good concept paper.

148

[Wulf 75] Wulf, W.A.
Overview of the Hydra Operating System.
In The 5th Symposium on Operating System Principles,
pages 122-131. ACM. November, 1975.

[Wulf 81] Wulf, William A., Roy Levine, and Samuel P. Harbison.
HYDRA/C.mmp: An Experimental Computer System.
MeceGraw-Hill, 1981.

	tr87-02
	tr87-02b
	tr87-02c

