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Abstract

The optimality criterion of keeping the utilization of the resources of a dedicated, special purpose
architecture to the maximum is interpreted as being equivalent to keeping them busy at all times. This is
in furn understood in terms of the concept of conservation of tokens. The problem of designing an
optimal architecture is expressed in terms of a system of simultaneous equations. It is shown that it is
possibié to build an optimal architecture, if and only if, an integer solution exists for the set of equations.
A particular instance of the Generalized Linear Pipeline is illustrated as an example of such an
architectural design. It is also shown that solutions exist for trees and graphs which are combinations of
trees. Furthermore, ceriain conditions are specified, which when satisfied ensure integer solutions for

non-tree computation graphs.



1 Introduction

One of the metrics of goodness of a special purpose architecture is the utilization of its individual
elements. Although the all-imporiant metric of an architecture is its speed of processing, it ofien depends
entirely of the technology employed and the formulation of the problem itself. When these two factors are
prespecified, it is the utilization of the resources that becomes imporant. The process involved in
desigﬁing a systolic array for a particular algorithm is that of formulating the algorithm in a manner
suitable for pipelining the basic operations, with multi directional data flow. The operation of simple linear
pipelines is well understood [1], and as a result, they are employed heavily in designing systolic arrays. It
is known that, by designing each stage of the pipeline to have the same delay, and by feeding data items
after unit delay, it is possible to achieve high throughput and high utilization (utilization = 1). In designing
systolic arrays, multiple independent computations are often interleaved to satisfy dependencies which

conflict with this basic principle of pipelines [2].

in most instances, a dedicated architecture is sought for repetitively executing algorithms, that is,
for algorithms which repeat a set of operations infinitely many times over differing data sets. We also will
restrict the discussion in this repori to such algorithms. Typically, steady state solutions are obtained,

which, given an infinite repetition of the computation involved, are most interesting.

The rest of the report is organized as foliows. In Section 2 we define the notation used to capture
computations. In Section 3 are given characteristics of the solution space. The problem of designing
algorithm-specific architectures is also defined there. Finally, in Section 4, results are obtained regarding
ceriain classes of computation graphs. An example of Generalized Linear Pipeline is also included in

Section 4.

2 Specification of Computations

The computations expressed by an algorithm are specified using directed acyclic graphs called the
Data Dependency Graphs (DDG's). The nodes of a DDG represent computations and the edges
represent data dependencies between pairs of nodes. The computations specified by the nodes are
considered to be atomic; that is, the computations are not to be split into simpler operations. Also by
convention, the node upon which an edge is incident is "data-dependent” on the node from which the
edge originates. Several edges may originate at a node (output edges), and several may be incident

upon it (input edges). The nodes of a DDG which have no input edges are called input nodes, and those



with no output edges are called output nodes. The rest of the nodes are called infermediate nodes. The

input and output nodes represent interfaces to input and output devices.

Figure 1: An Example Ot A DDG

With each node of a DDG is associated an atomic unit of computation of arbitrary complexity.
There is also associated a delay of execution of the compuiation. A node execules its computation by
firing. When a node fires, it absorbs input data and produces output data after a certain delay, at which

point it is ready to fire again.2 Upon firing, the node absorbs a prespecified number of data items (input

2The firing of a node for absorbing input can be conceptually separated from its firing for producing output.  But under the
condition of steady state, the two rates are the same and are considered synonymous. Under the pipelined behavior of nodes,
however, the two firings have to be separately viewed.



tokens) from each of its input dependencies and produces a prespecified number of data items (oulput
tokens) for each of its output dependencies. (The number of tokens is assumed {o be aninteger.) This is

represented by assigning the corresponding numbers of tokens 1o input and output edges. An example of

a DDG is shown in Figure 1.

3 Solution Space and Problem Statement

Computation Blocks: We have stated above that the computations expressed by the nodes of a
DDG are atomic, and that it is not possible to resolve them into simpler subcomputations. The result of
this on the solution space is that the nodal computations are assumed to be implemented as dedicated
nardware modules and these modules are 1o be utilized as building blocks to construct the architecture.
The delays mentioned in Section 2 refer to the delays of these hardware modules. The hardware

modules are referred to as computation or function blocks or elements.

We further assume that the computation elements have finite buffer sizes. In general, we will allow

large butfer sizes, but the sizes will not be allowed to grow without bound.
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Figure 2: Model Of A Bus

Communication Elements: The dependencies represenied by the edges of the DDG result in an



intermodule communication network. The basic building biock for the intermodule communication
network will be a bus (also referred to as a communication block or element). A bus is defined here as a
unidirectional serial communication medium (wires with driver-receiver pairs, for example) with multiple
input and output ports (see Figure 2a). At any given time, a bus connects one of its input poris 1o one of
its output ports. The switching between pairs of modules can be achieved by turning on an appropriate

driver-receiver pair at the appropriate time.

For analysis, however, a communication element is represented by a model similar o a
computation element (see Figure 2b) except that it has a single input arc and a single output arc, and the
numbers of tokens associated with these are always same (I, = O,). This model of a bus allows us 10
integrate it in the general framework required to analyze a DDG by letting us treat it like a computation
block. The only difference is that a computation block modifies the data it absorbs, while the
communication block does not. A communication block absorbs one token and produces one token when

it fires, and has a delay value D%.

Global System Clock: We will impose a requirement of synchronism over the entire architecture.
That is, all intermodule data transfers take place at ticks of a system-wide clock. We do not make any
assumptions about the internal clocks of the computation blocks. The existence of a single global clock

implies that all relevant delays are integral multiples of the global clock period.

Problem Statement: Having described the architectural model, we can state the design problem
as follows: Given a DDG as described above, we must construct an architecture which is optimal
according to the criterion of maximum resource uti!izaiiqn. in this report, we will construe the condition of
maximum utilization to mean full utilization (100%). Within the scope of this criterion we will attempt 1o

minimize hardware cost by eliminating unnecessary hardware.

The problem of designing an architecture is that of finding appropriate numbers of individual types
of computation blocks, defining a communication structure over them, and specifying the execution or
firing schedule. Since the solution architecture will have 100% utilization, execution schedule is trivial -
one of greedy scheduling, where a block fires as soon as its dependencies are satisfied and after it has

completed its current execution; there is no idle time, except at the start of the algorithm. For

31t is not necessary to have uniform delay for buses corresponding to different dependencies; the delays can be allowed 1o vary,
for example, to model different sizes of tokens.



communication elements the common link connecting the input and output poris is utilized 100%.
4 Analysis of Data Dependency Graphs

4.1 Principle of Conservation of Tokens

We assume that communication blocks (i.e. buses) have no storage capability and also that the
communication blocks are strictly transmitive. That is, the number of tokens entering a communication
block equals the number of tokens leaving it. This is held true at all times and is called the Principle of
Conservation of Tokens. Thus, according to the principle, in a steady state of execution, the rate of
tokens entering a communication block must equal the rate of tokens leaving it. Since the communication

blocks realize dependencies, the said principle can be used to analyze the latter and the function blocks

connected via them.

(@) (b)

Figure 3: A Data Dependency



4.2 Analysis of DDGs

Consider nodes i and | connected by a dependency as shown in Figure 3a. The communication
blocks, which realize the dependencies, interpose between every pair of function blocks connected by a
dependency. Prior to the analysis, it is necessary to modify the DDG by replacing each dependency with
a node representing the communication block in the desired architecture and a pair of dependencies
connecting it to the original source and destination nodes, in a manner consistent with the original

dependency. We call this new graph a Modified DDG (MDDG). See Figure 3b.

By the principle of conservation of tokens, the rate of influx of tokens equals the rate of efflux of
tokens for the communication element. Under steady state conditions, the rate of influx must equal the
rate production of tokens by node i. Similarly, the rate of efflux must equal the rate of absomption of
tokens by node j. Assuming that n, and n; are numbers of biocks of types i and j respectively, and n, are

the number of communication blocks, we have the following relations:

n—O-f = n --{If— and n -0-2 = n-{j— -
D, "D, D, 7 D
Giventhat I, = Oy, we also have
0; _ I
ni'-— - nj‘—-—‘
D; D.

J

Each dependency in a DDG gives rise to a pair of equations of the form shown above. Thus 3
DDG can be expressed in terms of |E| simultaneous equations, where E is the set of edges of the MDDG;
these equations are henceforth referred to as the set of token-conservation equations for the DDG. i
there are |V| nodes in the MDDG, the system of equations is of the form Rn = 0, where R is an |E| < V]
matrix relating the token rates, and n and 0 are vectors of length |V|. The following theorem shows the
relationship between the system of equations describihg a DDG and the desired architecture. in what
follows, whenever we refer to a solution to a set of token-conservation equations for a DDG, unless
otherwise specified, we imply that we analyze the corresponding MDDG, and in fact refer to the solution

10 its token-conservation equations.

Theorem 1: It is possible to design a 100% utilized architecture for a DDG, if and only if, the

system of equations, Rn = 0, describing the DDG, has an integer solution,

Proot:
Only if:



Assume that an archilecture can be built from primitives defined in Section 3 for a DDG, and that
the utilization of the computation and communication elements is 100%. The fact that an archilecture can
be built implies that a consistent set of communication elements can be configured to implement the
dependencies between nodes. Moreover,.according to the assumptions made in Section 3, the
computation elements have finite buffer sizes and the communication elements have no siorage

capabifity.

Consider a dependency like the one shown in Figure 4 which may be part of an MDDG. This par
of the proof is unaffected by the fact that either A or B is a communication element, so we will ignore this
fact. Letn, and ng respectively be the (integer) number of A and B nodes used in the architecture. Let
the delays associated with them be D, and Dg respectively. Since the nodes are utilized 100%, both
types of nodes are periodic over the time period Dy-Dg. During this time period, the number of tokens
produced by A nodes is Ny-Op-Dg, while the same consumed by B nodes is ng-lg-D,. By the assumption
of finite buffers, under steady state condition, the number of tokens consumed by B nodes must equal the
number of tokens produced by A nodes. Thus we get ny0aDp = NgrlgDa. Transposing Dy and Dg, we
get the desired token conservation equation for the dependency between nodes A and B. This is true for

every dependency of the MDDG. Thus the choice of ny's used in the architecture satisty the set of foken

conservation equations.
if:

There are two parts to building an architecture: 1) Constructing topologically consistent connections
between various nodes so that their dependencies can be satisfied. 2) Ensuring that the computation

does indeed proceed at 100% utilization.

We prove this in two parts: First we prove that a consistent set of connections can be made
between function and communication blocks. Later, we will use this fact along with others 10 conclude

that the computation can proceed with 100% utilization.

Consider again two nodes in an MDDG, A and B, connected by a dependency, as shown in Figurs

4. Without loss of generality, assume that B is the communication element. We know that the following

relationship is true:



Figure 4: Dala Dependency Between Nodes Aand B

We define a "hypergraph” over the two types of nodes as follows. For each node of type A, we define
O, - Dg ports, giving us a total of ny - O, -Dg ports on the A side. We similarly define 13- D, poris for each
node of type B, resulting in ng-1g-D4 poris on the B side. From the above relation, the total number of

ports on either side are egual, and thereiore can be maiched one to one. This completes the first part.

By definition, node A is periodic with period D, and node B is periodic with period Dg. Thus both
types of node are periodic with a common period D, - Dg. It can be verified that the expressions above,
derived for total number of ports, aiso define the total number of tokens generated and absorbed by A
nodes and B nodes respectively over the period D, - Dg. It can be interpreted that the links of the above
hypergraph each carry exactly one token every period of D, -Dp. It rem’ains o be shown that, given the
consistent connectivity and exact definition of the source-destination pair for each token, it is possible to

execute the computation at 100% utilization.

Assume, without any loss of generality that, the A nodes have no input dependencies; i.e., they are
input nodes. Assume also thal they are not blocked and can execute at 100% utllization. We now insist

that every node of type B does not start firing until it finds at least a total of I5- D, tokens in (finite) buffers
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of A nodes to which it connects?. Since it is periodic over D, Dg, and the number of tokens it absorbs
over that time period is Ig-Dp, the same as the number of tokens delivered io #t (by hypergraph
construction), we conclude that a B node does not idie over the time period due to lack of tokens. Also,
the number of tokens remaining in the bufiers at the end of this period is same as at the beginning. We
can transitively prove this for the rest of the nodes in the graph. [

Note 1: it is possible to reduce the total number of ports on both A and B side it we assign
port connections in a "greedy” order. Since each edge of the hypergraph carries
exactly one token every period, it is possible to skew temporally the edges of the
hypergraph connecting the same two nodes. It is then possible to collapse these
edges into one time-shared edge which carries the same number of tokens.

Note 2: Although we insisted that each node have a buffer size large enough to hold all
tokens it needs during the period D,-Dg, not all nodes will require a butier of that
large a size; a much smaller buffer size will generally do.

Note 3: The buffer size, however, may be larger for nodes which have multiple input arcs to
allow some parent nodes to continue firing while waiting for some of its other input
dependencies to be satisfied. This is especially true during the start of the

" computation when the pipeline is being filled up.

Lemma 1: If n is a solution of the system of token-conservation equations for a DDG, and if k is a

positive integer, then k-n is also a solution.
Proof: Both sides of each equation get multiplied by k.[J

The effect of multiplying the original solution by a positive integer is that of replicating the
architecture the integer number of times. 1t is clear that the utilization of the resultant architecture is also

100%. Converse to the above lemma, it is obvious that the following is also true.

Lemma 2: if n (=<np) is an integer solution of the system of foken-conservation eguations for a
DDG, and if k is an integer such that every n, can be expressed as k-n’;, where ny's are all integers, then

<n'> are also a solution. [J

Lemma 3: If there exists a solution for the set of token-conservation equations for a DDG, it is

unique within a factor allowed by Lemmas 1 and 2.

Proof: Let <n> and <n'> be two integer solutions to the system of token-conservation equations.

Consider a dependency similar to the one shown in Figure 4. It is clear that,

41t node A was a communication element, then we insist that it does not start firing uniil it has Iy - D tokens in its own input buffer.
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= p—
Dy Dg
and also,
, O4 , Ip
nA._, = nB-___.
D, Dp

This can be shown to be true ¥V A and B pairs connecled by a dependency, and therefore transitively Vv i
and j, where nodes i and j are any nodes inthe DDG. Thus, V|,
, 'y

/SRS  F I ——
i i
g

The proof is completed by noting that n, and n’, are integers. []

4.3 Tree-Form DDGs

We will now analyze different classes of DDGs and specify conditions under which these graphs

have integer solutions. We starn with tree-form graphs.

Theorem 2: A DDG in the form of a rooted tree® has an integer solution.

Proof: Assume that the nodes in the DDG are labelled uniguely, 1 through m, with the root assigned the
label "1". Since every node, except the root, has one input edge and since each node may have several
output edges, except the leaf nodes which have no output edges, let us assign 1o each node a number |,
denoting the number of input tokens the node absorbs upon firing. Since the root has no input edges, it is
not assigned any input iokens. Also, as before, if node i is connected by a dependency o node |, a
number Oij is assigned to the corresponding output port of node i. See Figure 5. Notice that for a
tree-form DDG, if node | is dependent on node |, node i is |'s only parent. We can now define g solution 1o

the set of ioken-conservation equations.

We set

5The graph referred 1o here is also known in the literature as an out-tree.
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Figure 5: A Tree-Form DDG

m
ny = Dy I .
=2

We can then set

parent of i

B nz N
1
child of root

root

o3
i

i

where the products are iaken over nodes along the directed path from the root to node 1.

To see that these assignments do satisfy the set of equations, we need to notice first that n, is an
integer V¥ i, since the terms in the product in the denominator are contained in the expression for n,.
‘Consider nodes p and g such that p is the parent of g. The path from the root to node q is unique and

node pisinit. Let node o be the parent of p. Thus,

14
p. 110
g  rool
Fl, E e e >

4 D, q
'

child of root
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Definition 1: An inverted tree® is a graph in which all nodes have at most one output arc. The leaf
nodes have no input arcs and the root has no output arc. An inveried tree therefore looks like a tree

shaped DDG, but the direction of its dependencies is rootward. See Figure 6.

Figure 8: Aninveried Tree DDG

Theorem 3: A DDG with the form of an inveried tree has an integer solution.

84150 known in the literature as an in-res.



14

Proof: The proof of this theorem is similar to the one for Theorem 2. We start by numbering the nodes in

the DDG, root getting the label 1. Also assume that there are m nodes in the DDG. We let

m
=l
For an&z node i (= 1), we assign

rool
I.
D. : J
i childofi
n. = nl PSR A
t D, parent of root

0;

i
where the products are taken along the directed path from node i to the root. It can be verified that these

assignments satisty the system of equations. It should also be noted that the terms in the denominator

for the expression for n; also appear in the numerator as part of n,. Thus n/'s are integers. []
We can extend the above results to combination of multiple trees.

Theorem 4: A DDG formed by starting with a free and incrementally appending a tree at a time 1o
the existing DDG, such that, every appended tree overlaps the existing DDG in exactly one node, has an

inieger solution.

Proof: The DDG can be broken down into trees and inveried trees which share common nodes. These
can be separately analyzed and solutions obtained. The solutions can be combined to obtain the final
architecture in the same order the DDG was formed. At each step, we multiply individual solutions

meeting at a node by appropriate integers so as to get a common number for the shared node. ]

We will now illustrate the design methodology via an example of a Generalized Linear Pipeline.

4.4 Generalized Linear Pipeline
A Linear Dependency Graph (LDG) is a DDG in which the nodes form a linear array. The two end
nodes are called input and output nodes and have an output edge and an input edge respectively. Each

of the intermediate nodes has an input edge and an output edge.

It an LDG is analyzed in the manner described above, we obtain a Generalized Linear Pipeline

architecture. It has the characteristics of a common multistage pipeline, but is general in that, each stage
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has multiple identical computation elements and a delay which may be different from that of other stages.
In fact, a common pipeline is a special case of the generalized pipeline under the condition of |, = O, = D;
=1,V i e VUE’. The following theorem shows that an architecture can always be designed for an LDG

that achieves 100% utilization.

Corollary 1: The system of token-conservation equations for an LDG has an integer solution.

Proof: An LDG is a special case of a tree-form DDG, but we give a separate proof here. Assume that

there are m nodes in an LDG, numbered 1 through m. We get the following set of equations:

nl'-—- - nz'—-“

nz'—'— = n3‘—'—

These equations can be used to express n; in terms of n, and constants.
n i-1
1 I1

H
7=l
Dy H"j
=2

if we choose

E}

?ZizDi" ]j’
!:

™I

which is an integer value, we can obtain the following integer expression for n;

TRemember that communication and function blocks are analyzed similarly.
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m -1
mo= D [14 119

j=£+1 4

{

0

The foregoing proves that a solution exists for the sysiem of equations describing an LDG. It does

not however guarantee the smallest values for n/'s which satisfy the equations.

Figure 7: A Linear Dependency Graph
An Example

Figure 7 shows a computation with a Linear Dependency Graph. The numbers inside the nodes

indicate the delays associated with their execution.
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Figure 8: Solution Architecture For The LDG

The instances of bus elements are compuied the same way as the function elements. For the bus

elements, however, I, = O, = D, = 1. Figure 8 shows the solution architecture.

The architecture in Figure 8 has boih temperal and spatial parallelism. The architecture is
minimally optimum for the given computation graph. That is, it is possible to simply duplicate the
architecture and still produce an optimum architecture which provides double the throughput of the

original architecture, but elimination of one or more architectural elements will result in less that 100%



utilization of one or more elements. It is important to note that for an arbitrary combinations of I's, O;'s
and Ds, it is possible that the resultant architecture is very complex and large. In practice, however,

these combinations are not likely to be arbitrary, and one may expect a reasonable structure.

4.5 Non-Tree DDGs
-Definition 2: A DDG is said to be a Consistent DDG (CDDG), if and only ff,

1) For every pair of nodes p and g connected by multiple paths, there exists a rational constant C

such that, for every path connecting the two nodes,

parentof g

child of p
where the products are taken along the path from p 1o g. See Figure S.

If there are multiple input nodes in the DDG, then the following two conditions must also hold:

2} For every pair of input nodes p1 and p2, there exists a rational constant C’ such that, for every

node g that is a common descendant of p1 and p2,

parent of ¢ parent of g
0 IT 9
S N, S
q 9
1§ IT 1
child of pl child of p2

where the products on the left hand side are taken along a path from p1 to g and the ones on the right

hand side are iaken along a path from p2 {o g. Furthermore,

3) if there is another input node p3, such that it has common descendents with p1 and p2, and if C1,
C2 and C3 are rational constants, as defined by Condition 2 above, between p1 and p2, between p1 and

p3, and between p2 and p3, respectively, then C1 = C2/C3.

If a DDG satisfies the firsi condition, then it means that, if p were fo fire a certain number of times, it
results in generating tokens on the input edges of g in numbers proportional to the numbers associated

with the corresponding dependencies of g. This is necessary to ascertain that when q fires to absorb all
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iokens on one of its input edges, it also finds the exact numbers of tokens on edges belonging 1o the
other paths between the nodes p and g. In absence of such a condition, there will be an infinite build-up
of tokens along ceriain paths, resulting in a meaningless computation. All real computations must satisty

this condition.

The proof of Corollary 1 outlines the method we may use to analyze a path within a DDG. Given
the number n, for a node p, we can uniquely define the the number Ng for a descendant g of p by

analyzing a pathfrompto q.

it is possible that we may gel different values for Ng by following different paths from p o q.

However, if the graph is a CDDG, we can state the following:

Lemma 4: In a CDDG, given two nodes, p and q, connected by multiple paths, if integers n, and
Ng satisfy the set of token-conservation equations along a path connecting p and q, then they satisty the

set of token-conservation eguations along all paths connecting the two nodes.

Proof: We first define what is meant by satisfying the set of token-conservation equations along a path.
Assume that a path from node p to q is formed by nodes p,1,2, ... ,i,q, as shown in Figure 9. I ng is

chosen o be the number of p nodes, then the following must hold true:

0, I,

np . B; = nl . B-I

n. - 2_1_ = 12

i Dl 2 D2
0, I

. = . 4

We can back substitule {o obtain the following relationship:

12
fio

* meer—

1

I
g

R, = A, -

NS
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When n, and Nq satisfy the above relationship, they are said to satisfy the set of token-conservation

equations along the pathp,1,.2 ... g

Now consider Figure 10, which shows two paths, r and s, connecting nodes p and q. Let Ny and Ng

satisfy the token-conservation equations along path r. Thus,

o
DqI;:‘[j
n o=

] np'b-—‘—'i‘;—""‘ ]

P
Il
g

where the products are taken along r. However, by the definition of a CDDG,

q q
Thus,
p
D HOJ
n,o=on et
¢~ "%'D, T,

T4

q
where the products are now taken along s. Thus g and ng satisfy token-conservation equations along s.

in the above, we made no assumption about whether or not r and s share one or more nodes.

Thus the lemma holds for intersecting paths as well. [J

Figure9: APathFrompiog

Notation: In what foliows we will often encounter ratios like
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path s

Figure 10: Multiple Paths Withina CDDG

0

e

1 9

N0
q

used in Lemma 4 above. To make algebraic manipulations more readable, we will use the notation R, to

S

mean the same ratio.

Consider Figure 11. From Lemma 4 above, we know that an integer solution exisis if the DD G
shown in the figure is in fact a CDDG. Consider the subgraph resulting from removal of edge ¢ from the
CDDG, which is a tree rooted at node p. By Theorem 2 the tree subgraph has an integer solution. We

now prove the following corollary.

Corollary 2: A solution for the tree subgraph of the CDDG formed by removal of edge ¢ as shown

in Figure 11, is also a solution of the CDDG.

Proof: Let g, Ng and n, be the solution values for nodes p, q and r respectively corresponding o the tree

subgraph. From the proof io Theorem 2,
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D,R
n‘_n.D____.b

By condition 1 of a CDDG, we obtain the following:

\®;
-

n, = n,-— Ry,

-]

That is,

D, R
n E=N P b___,
DP

D, 0,
A

Ol

~

Thus, a solution for the tree subgraph also satisfies the token-conservation equation for the dependency

associated with edge c¢. It is therefore a solution of the CDDG. [J

The second condition is a generalization of the first to handle the case of multiple input nodes. To
get an intuitive idea behind the condition consider Figure 12. Nodes p1 and p2 have common
descendents g1 and g2 connected by paths shown in'the figure. Assume that node p1 fires a certain
number of times so as to generate tokens on the corresponding input edges of g1 and g2. If p2 were o
fire an appropriate number of times so as to allow g1 to fire and absorb all tokens on its input arcs, it is
impossible for g2 to fire and absorb all fokens on its input arcs unless condition 2 was met. infact we will
prove below that condition 2 is a necessary and sufficient condition for a DDG of the form of Figure 12 1o

have an integer solufion.

Lemma 5: A DDG of the form of Figure 12 has an integer solution, if and only if, condition 2 in

Definition 2 is satisfied.

Proof: In order to prove this lemma, we label paths from p1 and p2 to nodes qi and g2 as shown in the
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Figure 11: A CDDG And Uts Tree-Subgraph

Figure 12: lllustration Of Condition 2

figure, and we use techniques used in proving Lemma 4.
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There are two tree-form DDGs with their roots at p1 and p2. First consider the tree rooted at p1.
By Theorem 2, we can find an integer solution for it. It is also possible to find an integer solution for the
tree rooted at p2. These trees overlap at g1 and g2. Let nqﬁ(pi) and nq1(p2), and nqz(m) and nqg{p2},

be the numbers of g1 and g2 nodes for irees rooted at p1 and p2 in their respective integer solutions.

We can find two integers k, and k, such that, k1-nq1(p1) = kz’”q1(92)- Thus we multiply the solution
for iree rooted at p1 by k, and the tree rooted at p2 by k,. We must now show that k,nqg(pi} =

From Theorem 2 we know that,

i

kl‘nql(pl) kl‘np}'-———

i

kpngp@l) = kpmy =Ry

ey (02)

i

kznpzD R,

and,

2) = kon o R
kynpp2) = 22’5 Ra
2

The left hand sides of the first and the third equations are equal by construction, and thus we have,

D
1 gl
k. -n kL = k2=n e R -
1 1 2
L3 Dpl é P Dpz ¢

But by assumption,
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Ry
= Rational Consiant = —— -
d

%'%
&

I

Therefore,
2 92
kpn .__i_.Rb = kyny, =R, .
pl }j)p1 L3 D‘l22
It thus follows that, ky-ngo(p1) = Ky Ny (p2).

Only if:

Assume that an integer solution for the DDG shown in Figure 12 exists. Thus,

D D
q1 q1
nlznl-__.R :nz-..__R
q 1D, 2D, ¢
Similarly,
D D
g2 q2
Ny = Ny =Ry = ny——Ry
q P1'D, 7D,

Using the property of uniqueness of a solution according to Lemma 3, we conclude that
Te2
npl
is a rational constant, and hence this lemma. [J
Notice that we have made no assumptions about the nodes on paths a, b, ¢ and d in the above
lemma, so the paths may share nodes and edges. Consider Figure 13 in which we have added an input
node p3 which has common descendents, of which g3 and g4 are two, with each of p1 and p2 such that,

condition 2 is satisfied in the combined DDG. We will now prove the following lemma.
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Lemma 6: 1f CDDG A in Figure 13 overlaps with another CDDG B such that condition 3 is satisfied
(at the nodes at which the two CDDGs overlap,) for the combined DDG, then the resultant DDG (which is

also a CDDG) has an integer solution.

Proof: To prove this lemma it is sufficient to show that a common set of integers values can be found for
nodes in CDDG A and CDDG B such that the two CDDGs have the same numbers of corresponding

nodes at which they overlap.

Consider two nodes g1 and g2 at which CDDG B overlaps CDDG A. Let p1 and p2 be two input
nodes in CDDG A such that, g1 is a descendant of both p1 and p3, and g2 is a descendant of both p2
and p3. Let g3 be a common descendant of p1 and p2 within CDDG A.

According to the definition,

R
Cl=-2:C=-27;and C3 = _2=.
R, R, R;
Let nm(A) and nqz(A) be the solution values for g1 and g2 within CDDG A, and let nm(B) and nqe(B) be
the corresponding solution values within CDDG B. For the combined CDDG to have an integer solution,

making nm(A) = nqj(B) must imply nqz(A) = nqz{B). To begin with, we state the following relations using

the same techniques as used for Lemma 5.

4) = Pg g d B) = n,2d
nA) = Pt g Re s an na®B) = nﬁ’:{;"‘"Rd ’
pl p3
and,
D D
- T = T2 R .
nqz(A) = Ny 1—)—;; R, .and rzqz(B) = g 5;-3- Rf

Letting nm(A) = nqi(B), and using the relation C2 = C1-C3, we obtain:

I ’Dp3.RC _ ’DpB.Ra‘Re = n DpB e~ n(A) DpS 1
p3 T Tpl - 'S~ 5% © " Rm 5 T g2 w5
D, R, D, R, Rf Dy, Rf qu Ry
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Thus,

Da A
nqz(B) = ﬂPB‘b—;B—' 'y F nqz( )

This result holds for every pair of g1 and g2, and thus for all nodes at which CDDG A and CDDG B

overlap. The result also holds if g1 and g2 are identical. [0

Figure 13: Hiustration Of Condition 3 For A CDDG.

We are now in a position to analyze a CDDG.

Theorem 5: A CDDG with a single input node has an integer solution.

Proot: For a CDDG with a single input node we can find a single tree subgraph with the input node as
root. By Theorem 2, we can find an integer solution for this tree subgraph. And by Corollary 2, this
solution will satisfy the token-conservation equations of the edges of the CDDG not included in the tree-

subgraph, and is therefore alse a solution of the CDDG. [
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Theorem 6: A CDDG (with multiple input nodes) has an integer solution.

Proof: We can partition the CDDG in the foliowing manner:

Choose an input node and assign to it all its descendents to create a single input sub-CDDG. Mark

the input node and its descendant nodes from the original CDDG. Call this sub-CDDG, sub-CDDG,;.

Choose next input node and assign it all its unmarked descendents. Also assign to it all marked
children of unmarked descendents. Call this component sub-CDDG,. The marked children assigned 1o
this sub-CDDG are the nodes at which sub-CDDG, overlaps sub-CDDG,. Mark the members of this
sub-CDDG as well.

Repeat the last step with every input node.

With the final input node, all nodes of the original CDDG will be exhausted. The above process

creates a set of single input sub-CDDGs which overlap to form the original CDDG.

From Theorem 5 above, each of these individual sub-CDDGs has an integer solution. Consider
sub-CDDG, and sub-CDDG,. By Lemma 5, we conclude that it is possible to find a single pair of integer
multipliers for these two overlapping CDDGs such that the numbers of all nodes at which the two CDDGs
overlap, match. We can thus obtain an integer solution for the union of the two sub-CDDGs and create a
larger sub-CDDG with an integer solution. This process of accretion can be repeated with every single
input sub-CDDG obtained above until the original CDDG s obtained. Lemma 6 guaraniees an integer

solution at each step. Therefore, an integer solution exists for the original CcDDG. O

5 Cyclic Dependency Graphs

We introduced Data Dependency Graphs as being acyclic. On the other hand, there are many
instances of computation graphs for repetitive computations where there are cycles within the graphs,
such that, the results of certain sub-computations are fed back into the computation stream. I there are
no additional semantic requirements put on the sub-computation executions, we can oblain integer
solutions for cyclical graphs as well, if certain conditions are met for the loops. Here we give a necessary

and sufficient condition for graphs with cycles {or loops) to have an integer solution. As before, integer

solutions imply an architecture with 100% utilization.
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Definition 3: A Cyclic Dependency Graph (CDG) is a Consistent CDG (CCDG}, if and only i,

1) For every cycle | inthe CDG, R =1, and

2) The CDG satisfies the conditions listed in Definition 2.

Gonsider the dependency loop shown in Figure 14, which may be part of a CCDG. ltconsisisof a
path a from node p to node g and an edge b from q to p. If we remove edge b from the loop, onfy path a

is left and the sub-graph becomes acyclic. We can demonstrate the following:

Lemma 7: If a set of integers satisfies the set of token-conservation equations for path a, they also

satisfy the token-conservation equation for edge b.

Proof: Letn,, ..., Ny be the set of integers satisfying the ioken-conservation equations along path a.

As in Lemma 5,

O
R =Ry~ =1
Iy
Thus,
o D, 1,
1= "'D,'0,

We can now prove the following theorem.

Theorem 7: A CCDG has an integer solution.

Proof: For the CCDG we identify a minimal set of edges E,, which when eliminated creates an acyclic
subgraph G'. First we analyze this sub-graph and ignore the set E, G isaCDDGsinceitis acyclic and

satisfies the conditions specified in Definition 2. Therefore by Theorem 6 it has an integer solution. Now
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Figure 14: A Cycle Within ACCDG
we reconstruct the original CCDG by adding one edge from the set E_ at a time. By Lemma 7 the
solution for G’ also satisfies the foken-conservation equation for the added edge. This holds for every

edge in E,,. Thus the solution for G' satisfies the set of token-conservation equations for the original
CCDG, and hence the theorem. [

Comments: In practice many cyclic dependency graphs have other semantics associated with
them, such as, the value being fed back 10 a node bears a fixed temporal relationship to the current firing
of the node. For example, in Signal Flow Graphs the value being fed back may be an oulput of the
algorithm delayed by exactly m clock periods. Such considerations were not dealt with in Lemma 7 or

Theorem 7, and therefore these results are not directly applicable to such situations.
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