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Abstract

In this paper, we examine the complexity of the boundedness, containment, equivalence, and
reachability problems for certain subclasses of Petri nets (PNs) (equivalently vector addition
systems (VASs), vector addition systems with states (VASSs), or vector replacement systems
(VRSs)). Specifically, we consider the complexity of the boundedness problem for general
VASSs, fixed dimensional VASSs, and conflict-free VRSs. We consider the complexity of the
remaining problems for bounded VASSs, 2-dimensional VASSs, and conflict-free VRSs.
Instances in each of these classes are known to have effectively computable semilinear
reachability sets (SLSs). In each case, our results are derived by showing how to obtain succinct
and sometimes special representations of the associated SLSs. The results discussed here
constitute a summary of results obtained elsewhere by the authors. No proofs appear in this
document, although we do strive to outline the general strategies involved. Readily available
sources for the detailed proofs are indicated.

VTo appear in Advances in Petri Nets 1986, 1987.
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1. Introduction

In this paper, we summarize results presented in [12, 13, 14, 37] concerning the
complexity of various problems related to Petri nets (PNs). We deal with several
formalisms, each of which is in some sense equivalent to the Petri net formalism. These
formalisms include vector addition systems (VASs), vector addition systems with states
(VASSs), and vector replacement systems (VRSs). Furthermore, we place certain
restrictions on the various formalisms so that we can examine the complexities of a
number of problems for several subclasses of Petri nets. Besides the general case, we
study bounded VASs and VASSs, 2-dimensional VASSs, and conflict-free VRSs, VASs,
and PNs. For each of these classes we examine the complexities of problems selected

from the following: boundedness, containment, equivalence, and reachability.

We start by examining the complexity of the boundedness problem (BP) for VASs
and VASSs. This problem was first considered in [21], where it was shown to be
decidable. However, the algorithm presented there was basically an unbounded search,
and consequently no complexity analysis was shown. Subsequently, in [26], a lower
bound of O(2°*m) space was shown, where m represents the dimension of the problem
instance (and ¢ is some constant). Finally, an upper bound of ()(2°*n*l°g ™) space was
given in [36]. Here, however, n represents the size or number of bits in the problem
instance. A close analysis of the result in [26] reveals, in terms of n, a lower bound of
0(2c*\[”} space, since the size of the systems constructed in [26] required O(m?) bits.
Similar bounds hold for the covering problem. See [36]. Whether the gap between the
upper and lower bound could be reduced (with respect to the covering problem) was

posed as an open problem in [28].

In Section 2, we illustrate how these bounds can be sharpened and examine the
complexity of the BP for VASSs having a fixed dimension. A detailed presentation of
these results can be found in Rosier and Yen [37]. Let VASS(k,/,n) denote the class of
k-dimensional n-state VASSs, where the largest integer mentioned, in an instance, can

be represented in [ bits. Via a modification of the technique used by Rackoff, we



illustrate that the BP? for VASS(k,/,n), can be solved in O((l+log n)*o¢ k*log ky
nondeterministic space. By modifying Lipton’s result, a lower bound is then shown of
O((l+1og n)*zc*k) nondeterministic space. Thus, the upper bound is optimal with
respect to parameters [ and n, and is nearly optimal with respect to the parameter k.
This yields an improvement over the result of Rackoff, especially when compared with
the lower bound of Lipton. This is because the lower bound of O(QC*k) space was
essentially given for VASS(k,1,1). Now Rackoff’s corresponding upper bound, just for
the instances of VASS(k,1,1) constructed by Lipton, is no better than O(2°*k2*1°g k)
space. (In general, it can get much worse.) Our result, however, yields an upber bound
of O(QC*HI"g k) over the entire class (VASS(k,1,1)). We also investigate the complexity
of this problem for small, but fixed, values of k. For example, we see that the BP is
PSPACE-complete for 4-dimensional VASSs, and NP-hard for 2-dimensional VASSs.
The above results can then be extended for the caée without states. In particular, we see
that the BP is NP-hard for VASS(3,,1) and PSPACE-complete for VASS(4,[,1).

Extensions to related problems (e.g. covering and reachability) are also discussed.

The containment problem (CP), equivalence problem (EP), and reachability
problem (RP)' for PNs (VASs, VASSs, or VRSs) are the subject of many unanswered
questions concerning computational complexity. The CP and EP are, in general,
undecidable [1, 10]. However, the RP is decidable [24, 28], and, for classes of PNs
(VASs, VASSs, VRSs) whose reachability sets are effectively computable semilinear sets
(SLSs), so are the CP and EP. Classes whose reachability sets are effectively
computable SLSs include bounded VASs [21], 5-dimensional VASs (or, equivalently, 2-
dimensional VASSs) [11], conflict-free VASs [6], persistent VASs [9, 25, 30, 33], and
regular VASs [8, 40]. For each of these classes, the algorithm which generates the SLS
representation of the reachability set is a search procedure that is guaranteed to
terminate. However, no analysis of when termination will occur is provided, and thus
no complexity results are obtained. ‘The best known lower bound for the general RP is

exponential space [26]. The RP for conflict-free VASs has been shown to be NP-hard

2More precisely, the problem of deciding whether a system is unbounded.
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[20]. The perhaps best studied class is that of symmetric VASs. For this class, the CP,
EP, and RP have been shown to be exponential space complete [3, 16, 28]. The result
establishing the complexity of containment and equivalence for symmetric VASs was
just shown recently by Huynh in [16]. Prior to the work described here, few other

complexity results appear to have been known concerning these problems.

In Sections 3-5, we examine the complexity of the CP, EP, and RP for three classes
of PNs. Specifically, we consider the complexity of these problems for bounded V.ASSs,
2-dimensional VASSs, and conflict-free VRSs (VASs, PNs). Instances in each of these
classes are known to have effectively computable semilinear reachability sets. By giving
upper bounds on the sizes of the SLS representations, we achieve upper bounds on each
of the aforementioned problems. The results discussed here are essentially 2 summary

of the results presented by Howell, Huynh, Rosier, and Yen in [12] and Howell and
Rosier in [13].

In Section 3, we concern ourselves with examining the complexity of the CP and
EP for bounded VASSs. A detailed description of the results reported in this section can
be found in Howell, Huynh, Rosier, and Yen [12]. In the case of bounded VASSs, the
SLS representation is simply a listing of the reachability set; therefore, we derive 2
bound on the norm of any reachable vector based on the dimension, number of states,
and amount of increment caused by any move in the VASS. The bound we derive
shows an improvement of two levels in the primitive recursive hierarchy over results
previously obtained by McAloon [31], thus answering a question posed by Clote [5]. We
then show this bound (on the norm of any reachable vector) to be optimal. As a

consequence of our analysis, we also derive similar bounds for bounded VASs.

In Section 4, we describe results concerning the complexity of the CP, EP, and RP
for 2-dimensional VASSs. (Recall that the BP for 2-dimensional VASSs was considered
in Section 2.) A detailed description of the results reported in this section can be found
in Howell, Huynh, Rosier, and Yen [12]. The results are obtained in part via an analysis

of an algorithm given by Hopcroft and Pansiot [11] that generates a semilinear set (SLS)



representation of =e‘the reachability set. Specifically, [12] shows that the algorithm
operates in 22‘:*1 : nondeterministic time, where [ is the length of the binary
representation of the largest integer in the VASS, n is the number of transitions, and c
is some fixed constant. Examples are given in [12] for which this algorithm will take
22(1‘1’%1 nondeterministic time for some positive constant d. Finally, we can modify the

*I*n

<
algorithm to be deterministic in such a way that it still requires no more than 22
time. From this upper bound and special properties of the generated SLSs, we derive

c**n
upper bounds of DTIME(22 ) for the three problems mentioned above.

In Section 5, we give completeness results for the BP, CP, EP, and RP for conflict-
free VRSs (VASs, PNs). For the BP, we give an O(n'*®) upper bound, from which we
can show the problem to be PTIME-complete. This result first appeared in Howell,
Rosier, and Yen [14]. The O(nl's) upper bound represents an improvement over the
previously best-known upper bound of exponential time shown by Landweber and
Robertson [25]. We then give an NP upper bound for the RP. This result represents
the first primitive recursive upper bound known for the problem. Since Jones,
Landweber, and Lien [20] have shown this problem to be NP-hard, it follows that the
problem is NP?compIete. From these results, we can show that the CP and EP are
Hl;—comphte, where 17!2) is the set of all languages whose complements are in the second
level of the polynomial-time hierarchy. In showing the upper bound, we first show that
the reachability set has a SLS representation that is exponential in the size of the
problem description, but which has a high degree of symmetry. We are then able to
modify a proof given by Huynh (concerning SLSs) to complete our upper bound proof.
All of our results for conflict-free VRSs also hold for conflict-free VASs and are
polynomially related to our bounds for conflict-free PNs. A more detailed discussion of

the results for containment, equivalence, and reachability for conflict-free VRSs can be

found in Howell and Rosier [13].

Preliminary Definitions

Let Z (N, NT, R) denote the set of integers (nonnegative integers, positive integers,

rational numbers, respectively), and let 7k (Nk, Rk) be the set of vectors of k integers



(nonnegative integers, rational numbers). For a vector v € Zk§ let v(i), 1 <1<k, denote
the i-th component of v. Let Z¥X™ (NkXm REXm) pe the set of kXm matrices of
integers (nonnegative integers, rational numbers). For a matrix V€& kam, let V(i,}),
1<i<k,1<j<m,denote the element in the i*" row and j*? column of V, and let v;
denote the jth column of V. For a given value of k, let 0 in 7¥ denote the vector of k
zeros (i.e., 0(1)=0 for i=1, ... ,k). For any ve& Z¥, we define the norm of v, v, as
2?:-—-1 [v(i)]. (Note that this is often called the I-norm.) Now given vectors u, v, and w
in Z¥ we say:

e v=w iff v(i)=w(i) for i=1, ... k;
e v > wiff v(i) > w(i) for i=1, ... k;
e v>w iff v > w and v w;

e and u=v+w iff u(i)=v(i)+w(i) for i=1, ... k.

A kXm vector replacement system (VRS), is a triple (vy,U,V), where Vo € Nk,
UeNKEXm  and VeZEX™  sych  that for any i, 1 <i<k, 1<j<m,
U(1,j)+V(i,j) = 0. v, is known as the start vector, U is known as the check matriz, and
V is known as the addition matriz. A column u; of U is called a check vector, and a
column \f of V is called an additton rule. For any x € Nk, we say addition rule v is
enabled at x iff x 2> u;. A sequence <Y,,...,¥, > of rules in V is enabled at a vector x iff
for each j, 1<j<n, ¥; is enabled at x+y,;+ - +yj_1. The reachability set of the VRS
V=(v,U,V), denoted by R(vy,U,V) (or R(V)), is the set of all vectors z, such that
z=Vy+y,+ - - - +y, for some n > 0, where each ¥ (1<j<n)is a column of V, and
<Yypees¥p > I8 enabled at vye If the sequence of rules <Ygre-s¥, > is enabled at v, then
we say that the sequence LWiggeeryW >, where wj=v0+2'::=1 Vp 1 <j<n,isapathin
(v, U,V). If along the path there exist r and s, 1 <r<s<n, such that w_o < W
(w.<w), then we say that m=<w.,w > is a loop (positive loop), and that = is
enabled at LT Let ¥ denote the Parikh mapping, such that if ¢ is a sequence of rules
in V, then ¥(6)€ N™, and ¥(6)(j) is the number of occurrences of v; in 6. Let A(8)

denote the displacement of 4.



For a given kXm matrix V, the minimal check matriz is 2 kXm matrix U in
which U(i,j) = max(0, -V(i,j)). If U is the minimal check matrix for V, we abbreviate
(voUsV) as (v,V), and call (vy,V) a vector addition system. We are sometimes
interested in the set of all VRSs (VASs) having k rows (i.e., we are not interested in the
number of columns). We will refer to this set as the set of k-dimensional VRSs (VASs,
respectively). A k-dimensional vector addition system with states (VASS) is a 5-tuple
(vgsVsPg,S,6) where v, is the same as defined above, V is a finite set of addition rules, S
is a finite set of states, § (C SXSXV) is the transition relation, and Py is the initial
state. Elements (p,q,x) of é are called transitions and are usually written p — (a,x). A
con figuration of the VASS is a pair (p,x), where p is in S and x is a vector in NK.
(Pg:vo) is the initial configuration. The tramsition p— (q,x) can be applied to the
configuration (p,v) and yields the configuration (q,v+x), provided that v+x > 0. In this
case, (q,v+x) is said to follow (p,v). Let oy and o, be two configurations. Then o, is
said to be reachable from 9 iff gg=0, Or there exist configurations Tys oo v 30y such
that LA follows o for r=0,...,t-1. We then say o=<og, . . . 0,> is a path in
(v ,V,pO,S,é). The reachability set of the VASS 'V=(VO,V,pO,S,5), denoted by
R(vg,V,pg,S,6) (or R(V)), is the subset of Sx Nk containing all configurations reachable

from (po,vo). It is easily seen that these definitions for VASs, VASSs, and VRSs are
equivalent to those given in [21, 11, 23].

The reachability problem (RP) for VASs (VASSs, VRSs) is to determine, for a given
VAS (VASS, VRS) V and a vector v, whether vER(V). The containment and
equivalence problems (CP, EP, respectively) are to determine, for two given VASs
(VASSs, VRSs) V and V, whether R(V)CR(V) and whether R{(V)=R(V), respectively.
A VAS (VASS, VRS) V is said to be bounded iff for each row i, there is a constant ¢
such that if vE€R(V), then v(i)<c. The boundedness problem (BP) for VASs (VASSs,
VRSs) is the problem of determining whether a given VAS (VASS, VRS) is bounded.

Part of our exposition involves semilinear sets; hence, we define here the terms used

in this paper. For any vector v, € NE and any finite set P(={v1,.a,,vm})gNk? the set

L(vgP)={x: 3k,....k €N and sz@-%—zzzl k;v;} is called the linear set with base v,



over the set of periods P. The size of the linear set L(vyP), denoted by §L(VO,P}§, is

defined to be Z:'io k*logy ||v;]|. (L.e., the number of bits needed to represent the linear

set.) A finite union of linear sets is called a semilinear set (SLS for short).

2. The Complexity of the General BP
In this section, we examine the complexity of the BP for VASSs with respect to the

following three natural numeric parameters of an instance:

e the dimension,

e the maximum size of any integer mentioned in the description, and
e the number of states.

For ease of expression, we let VASS(k,/,;n) denote the class of k-dimensional n-state
VASSs where the largest integer mentioned, in an instance, can be represented in ! bits.
(Note that this definition agrees with the one in [37], but differs slightly from the one in
[12].) In Subsection 2.1, we illustrate via a modification of Rackoff’s technique that the
BP, for VASS(k,/,n), can be solved in O((I+log n)"‘QC’kk*log %) nondeterministic space.
(All of our results in this section are expressed with respect to nondeterministic
complexity classes unless otherwise stated. This could also be said for [26] and [36],
although in their case such algorithms can be made deterministic without altering the
complexity class, as only the constant ¢ gets changed [38]. Our subsequent discussion,
however, involves subexponential complexity classes where this is not necessarily the
case. Hence, it is important in our analysis that we consider the problem of deciding
whether systems are unbounded rather than bounded.) This offers an improvement
over the result in [36], especially when compared with the best known lower bound.
This is because the lower bound of O(2°*k) space was essentially given for VASS(k,1,1).
Now the corresponding upper bound from [36], just for the instances of VASS(k,1,1)
considered in [26], is no better than O(2c*k2*i°g k) space. (In general, it can get much
worse.] Our result, however, yields an upper bound of ()(26’&1"&ng k)i over the entire

class.

Whenever k is a fixed known constant, however, our algorithm requires at most

nondeterministic linear space in terms of {. In Subsection 2.2, we see that the BP is



PSPACE-complete for 4-dimensional VASSs. Although we are unable to provide the
corresponding result for either 2 or 3-dimensional VASSs, we are able to show that the
problem is NP-hard for these classes. Similar results hold for the case without states. In
particular, we see that the BP is NP-hard for VASS(3,/,1) and PSPACE-complete for
VASS(4,l,1). Consequently, it is unlikely that the problem can be solved in PTIME
with respect to the parameter . When k=1, however, the BP can be solved in PTIME.
When both k and [ are considered to be fixed known constants the problem becomes
NLOGSPACE-complete. Hence, the complexity of the algorithm given in Subsection

2.1 is unlikely to be improved with respect to the parameter n either.

Now in Subsection 2.3, we illustrate how the proof of [26] can be augmented to
obtain a lower bound of O{(/+log n)*QC*k) nondeterministic space for VASS(k,/,;n). In
order to do this, we define a class of problems each of which has three natural numeric
parameters, say k, [ and n, whose nondeterministic space complexity is bounded by
2K*(I+log n). We then establish that the BP for VASS(k,/,n) is as "hard" as any
problem in this class with respect to a certain special type of reducibility. Our goal
here is to provide a simultaneous lower bound over the three parameters, as opposed to
examining the lower bound when one (or two) of the parameters is fixed. (Thus, an
algorithm for this problem with nondeterministic space complexity O(2c*k+l+10g n)
cannot exist. Note, however, that the existence of such an algorithm was not precluded
by the results given in the previous subsection.) Thus, the algorithm presented in
Subsection 2.1, is optimal with respect to parameters | and n, and is nearly optimal
with respect to the parameter k. We do not know at this time, however, whether the

log k factor can be eliminated.

Before continuing to the discussion of our results, let us briefly mention that these
results can be extended to some other related problems concerning VASSs. For example,
the lower bounds established in Subsection 2.3 hold for the covering and reachability
problems. Using a similar approach, as was used in Subsection 2.1, an upper bound of
O((l+log n) * g¢*k*log k) can be shown for the covering problem. (Finding better

upper/lower bounds for this problem was mentioned as an open problem in [28].)
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— £ is said to be computable in S(m) space iff there exists a DTM M such that, given
an input x€Z, M will output g(x) using at most S(|x|) space. Now, comsider two
problems L and L/ over £. L is said to be (S,Q)-reducible to L’ via the function g iff g

is computable in S([x]) space such that:

e x€L iff g(x)€L’, and

o vxex, [g(x)|<Q(x]).
From [22], we obtain (1) and (2) below.
(1) If a function f: = I is computable by an S(n) space bounded DTM M with
tape symbols {0,1,#} such that at any time the worktape contains at most k #s,

then f is computable in S(n) + (k+2)*log S(n) space by a DTM M’ with tape
symbols {0,1}.

(2) Suppose L is (S,Q}reducible to L' via the function g.

(2) If L' is solvable in ¢(x) deterministic time, then there is a constant ¢

such that L is solvable in y(g(x))+c*x|*S(jx|)*25(XD deterministic
time.

(b) If L' is solvable in ¢(x) nondeterministic space, then there is a
constant ¢ such that L is solvable in ¢”(x)+c*logs”(x) nondeterministic
space, where ¢"(x)=¢(g(x))+2*log(Q([x|))+S(]x|).

In [37], we establish a lower bound for the VASS BP in terms of the three natural
numeric parameters, k, [ and n. The goal is to provide a simultaneous lower bound
over the three parameters, as opposed to examining the lower bound when one (or two)

of the parameters is fixed. In order to do this, we focus on the following class:

C: A problem P belongs to C if P is a problem with three natural numeric

parameters, say k, / and n, that can be solved in 2k*(l+log n) nondeterministic
space, and for any instance x, of P, the following three conditions are satisfied:

1. |x|] = max{k,/,n}, (|x] represents the length of x),

2.k, ! and n can be computed from x and written down in
deterministic log |x| space, and

3. k>log|x| or I>log|x| or n>x|/2.

Let L and L' be two problems with natural parameters (k,/,n) and (k’,/',n’), respectively.
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m)*2° k*log k) nondeterministic space, for some constant ¢ independent of /, k and m.

2.2. The Complexity of the BP When k Is a Fixed Known Constant

In this subsection, we focus our attention on the BP for VASS(k,/,m) when k is
fixed. A summary of these results can be found in Table 2.3. In [37] we show that the
BP is PSPACE-complete for k>4. Consequently, it is unlikely that one can improve
the complexity of the aforementioned algorithm with respect to the parameter [. At
this time, we do not know whether the PSPACE-complete result can be improved for
the case when k=2 or 3.> However, in [37], we show that it is NP-hard when k=2,
Now, when k=1, there exists a PTIME algorithm. If ! is also fixed, then thé problem
becomes NLOGSPACE-complete. However, we do not know whether the previous
PTIME result can be improved to NLOGSPACE. These results should be compared
with earlier PSPACE-hard results concerning VASs (or VASSs) in the literature [20],

where the parameter k instead of [ is allowed to vary.

VASS(k,l,m) VAS(k,])
PSPACE-complete k>4 k>4
NP-hard k>2 k>3
PTIME k=1 ————n
trivial e k=1

Table 2.3 The complexity of the BP for VASSs (VASs) where k is fixed.

2.3. The Lower Bound

In this subsection, we fix the alphabet over which problems can be specified.
Without loss of generality let this alphabet be Z={0,1}. A decision problem over T is
said to be solvable in ¢(x) deterministic time (¢(x) nondeterministic space) iff there
exists a deterministic (nondeterministic) Turing machine with tape alphabet £ which
decides the problem using at most ¢(x) time (¢(x) space), where x is the input string.
(Hereafter, deterministic (nondeterministic) Turing machines are abbreviated as DTMs

(TMs).) Note that ¢ (¢) need not be a function of the input length. A function g: bl

3When k==3 it has recently been claimed that the problem is PSPACE-complete [4].



Previously, the best known bounds for this problem were essentially the same as those

for the BP. See [26, 28, 36].

2.1. The Upper Bound

The BP for VASs was first studied in [21], where a nonprimitive recursive decision
procedure was proposed. This procedure is based on a search algorithm which generates
the reachability set R(v,,V), and at the same time, attempts to find 2 "pumpable loop",
that can be exploited to reach an arbitrary number of distinct vectors. It was shown
that either the reachability set is finite or such a loop exists. Hence, the algorithm must
eventually terminate. Unfortunately, the size of R(v,,V) is not bounded by a primitive
recursive function of the size of (v,,V). Rackoff, in [36], subsequently showed that if
such a pumpable loop could be executed by some computation of the system, then it
could be executed by a "short® computation. As a result, Rackoff presented an
algorithm which required at most gc*m*log m space, for some constant c. Here, the
parameter m represents the size (i.e., number of bits) of the instance. Actually, this
parameter, upon careful examination, can be decomposed into three natural parameters
k, ! and n, where k and n are the dimensions of the addition matrix V, and [ is the
maximum length of the binary representation of each component in V. (The reader
should note that these parameters are equally natural for PNs. There k would
represent the number of places, ! the maximum number of inputs or outputs of a
transition and n the number of transitions. See e.g. [35].) However, we can assume
without loss of generality that n < (2*2I+1)k. Hence, for simplicity, we use VAS(k,!) to
denote the class of VASs with parameters k and [. Later, when we discuss VASSs, we
introduce another parameter m to represent the number of states. It should be clear
that the three parameters k, [, and m are mutually independent. Therefore, the class of

VASSs with parameters k, [ and m will be denoted as VASS(k,/,m).

In the remainder of this subsection, we sketch how one can obtain an upper bound
of O((I+log 11)’*2"*1""‘10g k) nondeterministic space, where ¢ is a constant and n is the
number of rules, for the BP for VAS(k,[). What we actually show, as did Rackoff, is 2

bound on the length of the shortest system computation, if one exists, which will
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execute a pumpable loop. The general strategy is, in fact, a modification of the one in

[36]. Formal details can be found in [37].

We require the following definitions. Let w € z¥ and 0<i<k. The vector w is
i-bounded if w(j)=>0 for 1<j<i. Let p = WgsesW_ be a sequence of vectors, we say p
is i-bounded if every member in p is i-bounded. Moreover, if W<W, for some j,
0<j<m, then p is said to be self-covering. Let 0<i<k, and let V be an arbitrary
addition matrix. In what follows, we consider a generalization of the notion of a path.
Let 6=2,....,2_ be any sequence of addition rules in V. We then call P=Wg,...; W _, Where
Wj=V+Z';;=1 z;, 2 g-path in (v,V). Note that a k-bounded g-path is a2 path. For each
v € 7¥, define m'(i,v) to be the length of the shortest i-bounded, self-covering g-path in
(v,V), if one exists; otherwise, define m'(i,v)=0. Define g(i)=max{m'(i,v) | v € ZX}.
This function g will then give us a bound on the length of the shortest computation

which can execute a pumpable loop. Note that this upper bound does not depend on

any specific start vector.

In [37], we illustrate that:

(1) g(0)<(2'n)¥, for some constant ¢ independent of I, k and n, and

<
(2) g(i-§-1)<(221"‘g(i))k , for some constant ¢ independent of [, k and n.

Now by recursively applying (1) and (2), it is easy to show that
c¢*k*log k
g(k)<(2*n)? . This means if a VAS is unbounded, there must exist a path, of
c*k*log k
length no more than (21’"11)2 , that leads to a "pumpable loop". Therefore, we

have:

Theorem 2.1: The BP for VAS(k,) can be decided in O(2° K108 kx(j4]og n))

nondeterministic space, for some constant ¢ independent of [, k and n.

Now consider a VASS in the class VASS(k,[;m). Clearly n, the number of possible

rules, is no more than m*(2*2l+1)k, As a result we have:

Corollary 2.2: The BP for the class VASS(k,/,m) can be solved in O((/+log
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Let d be a constant. For such problems we say L is d__ (S,Q)-reducible to L' iff there
exists a function g such that L is (S,Q}reducible to L' via g and k'<d*k, I'<d*!, and
n'< d*n?. (Here for an arbitrary xez*, k, l and n (k', I and n’, respectively) denote the
natural parameters with respect to x and L (g(x) and L', respectively).) Let C be a class
of problems over Z. L is said to be C-hard with respect to d__(S,Q)-reducibility if for
every L' in C, there exists a constant ¢ such that L' is d__ (S(n),c*Q(n)) reducible to L. In
[37] we show that the BP for the class VASS(k,/,n) is hard for C, with respect to
d_((2+¢)log(log|x|+log n), |x|*}reducibility for some constant d and all ¢>0.

To establish this conclusion, the following intermediate result is required. The proof
is similar to the one in [26], where Lipton constructed a VAS to simulate a multiple

counter machine. A rather lengthy sketch is provided in [37].

(3) There exists a positive integer constant h, such that for any 3-tuple of integers k,
! and n one can construct a VASS in VASS(h*k,/,n), that can manipulate a

counter, whose value can range from O to (n*Qi)2 . Furthermore, this counter
can be incremented, decremented and tested for zero. (I.e., the resulting VASS

k
can simulate a counter machine whose counter is bounded by (n*2/)?".)

Now, using (3), one can construct a VASS in VASS(h*k,/,n) (for some constant h)
such that a pair of positions (r,r') can be used to simulate a counter. By using no more
than three times the number of positions one can then construct such a VASS that can
simulate, in some sense, a three counter machine (3CM), ala Minsky [32]. Now in

[37] we show how an arbitrary problem in C can be reduced to the BP for VASS(k,,n).

As a result, we obtain the following theorem and associated corollary:
Theorem 2.4: The BP for VASS(k,,n) is hard for C, with respect to
d_((2+¢)(log|x|+log n),|x|*}reducibility.

Corollary 2.5: There exist some constants ¢, ¢ and h independent of k, [ and n, such

that the BP for VASS(k,l,n) requires 2¥/¢“*(i+log n) nondeterministic space for k=>>h.

Note that given a DLBA, we could construct an equivalent 3CM in which two

counters are used to simulate the tape and the third is used as a working counter.
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Hence, one can construct a VASS in VASS(6,c*|x|,n) to simulate the 3CM in such a way
that each counter is represented by a pair of positions. Consequently, for k>6 the BP
becomes PSPACE-hard. The reader should recall, however, that Subsection 2.2
illustrated that the BP was PSPACE-hard for k>4.

3. The Complexity of Containment and Equivalence for Bounded
VASSs

In this section, we describe results from [12] concerning the complexity of the CP
and EP for bounded VASSs. Recently, Mayr and Meyer [27] showed that the CP and
EP for bounded VASs are not primitive recursive. Subsequently, McAloon [31] showed
that the problems are primitive recursive in the Ackermann function, and Clote
[5] showed the finite CP* (FCP) to be DTIME(Ackermann) complete. Let f,(x)=2x
and fn(x)=fn_1(x)(1) for n>1, where fi(m) is the m-th fold composition of f.. Using 2
combinatorial argument, McAloon showed an upper bound for the time complexity of
the FCP that can be shown to be at least fk+1(m), where k is the row dimension and m
is the maximum sum of the elements of any vector in the VAS (see also [5]). Clote
[5] subsequently used Ramsey theory to give an upper bound of approximately fk +6(m)
and posed a question as to whether McAloon’s bound could be improved. It follows
that these bounds also hold for the size of bounded VASs. McAloon’s bound on the size
of bounded VASs is close to optimal. See [30, 27, 34, 40].

Let BV(k,b,n} be the class of k-dimensional n-state bounded VASSs where the
maximum increase in the norm of a vector (i.e., the sum of the absolute values of its
elements) caused by any move is b. (Assume the start vector is 0.) In [12], we use a
tree construction technique to derive an upper bound on the largest norm of any vector
reachable in BV(k,b,n). The bound we derive for k-dimensional VASs is fk-l(d*mz},
k> 2, (fi_,(d*m) for k > 4), where m is the maximum sum of the elements of any
vector in the VAS, and d is a constant. By then considering the addition of states and

the restriction of the start vector to 0, we derive a bound of f; (c*max(n,log b)) on the

41.&, the CP for bounded systems.
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norm of the largest vector reachable in BV(k,b,n), where k > 3 and c is a constant.
Furthermore, we show that this bound is tight for b=1. (l.e., we illustrate for each k
and m a VASS in BV(k,1,m*(2*k-1)+2) that can generate a vector with norm f, (m).)
These results immediately yield, for the k-dimensional VAS FCP, a bound of fk_l(d’*m)
time, for k > 4 and some constant d. This bound represents an improvement of two
levels in the primitive recursive hierarchy over McAloon’s result, thus answering the
question posed by Clote. Since we do not know of any attempts to use tree
construction techniques similar to ours in analyzing combinatorial problems, and
because our techniques yield better results than the standard combinatorial techniques
applied in the past to this problem, we surmise that our techniques may have other
applications. Finally, we show that the CP and EP (for BV(k,b,n}) require at least time
f, (d*n) infinitely often for some constants ¢ and d. The proof is such that each
position in the constructed VASS can be bounded by f, (d*n). Hence, if we considered
the entire class of VASSs whose positions were bounded by f,(n) (rather than just
BV(k,b,n)) our lower bound would be tight. We surmise, therefore, that the constant ¢

can be eliminated.

In this section, we will assume that the start vector for a VASS is always 0. (INote
that R(VO,V,pO,S,5)=R(0,VUV0,q,SU{q},é’) for some q¢ S and some &.) Let BV(k,b,n)
be the set of all VASSs (O,V,pO,S,é) such that R(O,V,pO,S,é) is finite, VC Zk, |S|=n, and
max{Zf.;l v(i) : vEV}=b. We define u(k,b,n) as the maximum norm of any vector
reachable by a VASS in BV(k,b,n). Let ¢ be a path in a VASS. We define the
monotone increasing component of o, «(o), to be the sequence of configurations o; in o
for which all previous configurations in o having the same state as o; have a vector with
strictly smaller norm than that of ;. If o is a path in a VASS in BV(k,b,n), then (o)
clearly has finite length.

3.1. Bounds on the Sizes of Bounded VASSs
The general idea in [12] is to arrange the monotone increasing component of a path
in 2 VASS into 2 tree in which any proper subtree contains only configurations whose

states are the same and whose vectors have identical values in certain positions. In
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particular, in a subtree rooted at depth i (where the root of the tree is defined to be at
depth 0}, i > 1, all vectors will agree in at least i-1 positions. The resulting tree has
certain properties which allow us to give a tight upper bound on its size, and hence, on
the length of the monctone increasing component. We define T(k,b,n) as the set of trees

T having the following properties:

1. T has height < k (i.e., the longest path from the root to a leaf is no more
than k);

2. The root node of T is labelled 0 and has no more than n-1 children;

3. The nodes in T have integer labels such that for any node labelled r>b,
there is a node labelled s, r-b < s<r;

4. The label of any node in T is less than the label of any of its children;

5. The number of children of any node of depth i, 1 < i < k-1, is no more than
the node’s label.

Each node in a tree T € T(k,b,n) will represent a configuration in «(c¢); the node
label will be the norm of the vector in that configuration. Each proper subtree of T
will represent a hyperplane having dimension k-j+1, where j is the depth of the root of
the subtree. The root of T represents the initial configuration. The remainder of T is
divided into subtrees rooted at depth 1, each representing the set of configurations in
(¢} having some particular state. Suppose some state q is entered for the first time
with vector v. Then the configuration (q,v) is represented by a node with depth 1 in
T. Now all subsequent configurations in «(s) containing q must have a vector v/ such
that v/(i)<v(i) for some i; otherwise, the path from (q,v) to (q,v) could be pumped,
producing infinitely many configurations. Consider the hyperplane of dimension k-1 in
which all vectors w are such that w(i)=v(i). For an arbitrary v, there are at most ||v||
such hyperplanes, each defined by the values of i and v/(i)<v(i). The subtrees rooted at
depth 2 in T represent these hyperplanes, their roots representing the first configuration
occurring in that hyperplane. Likewise, the subtrees rooted at depth j represent
hyperplanes of dimension k-j+1. It is easily seen that T satisfies properties 1, 2, 4, and

5 above; furthermore, since b is the maximum increase in norm caused by any
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transition, property 3 must also hold. As a result, we have:

(1) Let o be a path in a VASS in BV(k,b,n}, (o})=<op, . ..,0,>. There is a tree
T € Tk,b,n) with t+1 nodes whose labels are the norms of the vectors in (o).

The following facts are established in [12]:

(2) For any tree T € T(k,b,n), there is a tree T’ € T(k,b,n) with the same number of
nodes as T such that the labels on all nodes of any given depth are nondecreasing
from left to right.

(3) For any k, b, and n, Tk,b,n) contains a tree of maximal size (i.e., a tree having
as many nodes as any other tree in T(k,b,n)).

(4) Any tree in T(k,b,n) having maximal size has its node labels arranged in order of
a depth-first (preorder) traversal.

(5) Let S(k,b,n,i,x) be the set of subtrees in T(k,b,n) whose root is at depth i with
label x. The largest element of S(k,b,n,i,x) has its node labels arranged in order
of a depth-first (preorder) traversal.

(2) can be shown by observing that if a tree T & T(k,b,n) has its top j levels
ordered, then any subtrees rooted at the next level whose whose roots are out of order
may be swapped, resulting in a tree T' € T(k,b,n). (3) is shown by induction on k. The
idea is to show that if the lemma were false for k but true for k-1, then any tree in
T(k,b,n,), where ng is the smallest integer such that T(k,b,ny) has unbounded tree sizes,
can be rearranged to form a tree in T(k-1,b,n,+u) for some u. Finally, (4) is shown by
rearranging a tree T € T(k,b,n) whose node labels are not in order of a depth-first
traversal into a tree T' that has room for at least one more node. After we rearrange T
so that each level has nondecreasing node labels from left to right, we wish to move the
smallest node label s which does not appear in depth-first order into its proper place in
a depth-first ordering. It is not hard to show that by repeatedly moving the leftmost
descendants of s on successive levels upward to replace their parents, we can make room
for the node displaced by s and any extra subtrees beneath this node. These subtrees
are all moved upward in the tree, so there is room for new nodes at the bottoms of

these subtrees. (5) follows as a corollary to (4).
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Since the largest tree T in T(k,b,n) has its node labels arranged in depth-first order,
the value of any given node in T (except the root) and the number of children it has (if
its depth is k-1 or less) is simply b plus the largest label in the subtree rooted at its left-
hand sibling, or b plus the label of its parent if it has no left-hand sibling. It is
therefore a straightforward matter to derive a recurrence relation for the largest node
label in T. If we let X;(b,n)=n*Db, Xy(b,n)=n*max(log b,1), and X,(b,n)=max(n,log b)

for i > 3, we can easily show the following theorems:

Theorem 3.1: There exist constants ¢ and d (independent of k and b) such that for
any k-dimensional bounded VAS (v, V) with max{zf.;l v(i) 1 ve{vy}uV} = b,
k > 2, we have Vv € R(v,,V), [[v|[ < 1} ,(c*3_;(b,]IvlD)-

Theorem 3.2: There exists a constant ¢ (independent of k, b, and n) such that
p(k,b,n) < £, (c*5 (b,n)).

[12] also  illustrates a VASS in  BV(k1,m*2*k-1)+2) (and in
VASS(k,1,m*(2*¥k-1)+2)) that can produce a vector with norm f,(m); hence, the derived
bound for u(k,b,n) is tight. This construction is similar to one given by Miiller in [34],
which gives a weak PN computer for Ackermann functions; in fact, a simple

modification can be made to the construction in [34] to yield the same lower bound for
p(k,b,n).

3.2. The Finite Containment and Equivalence Problems®

In this subsection we concern ourselves with the complexity of the CP and EP for
bounded VASSs. If u is an upper bound on the norm of any vector reachable by a k-
dimensional VASS (or VAS), clearly u¥ is an upper bound on the number of vectors in
the reachability set. It then follows that the FCP and FEP can be solved in time
O(u®¢). Thus, from Theorems 3.1 and 3.2 we have the following result, which
represents an improvement of two ie§eis in the primitive recursive hierarchy over the

bound provided by [31].

SAs was the case with the finite containment problem (FCP) the finite equivalence problem (FEP)
refers to the EP for bounded systems.



19

Theorem 3.3: There exists a positive constant ¢ (independent of k, b, and n) such

that the CP and EP can be solved in time
1. f (c* (b,n)) for BV(k,b,n), k > 2;

2. f14(c*n*b) for 2-dimensional bounded VASs whose vectors cause increments
of no more than b and whose start vectors have norm n;

3. f,_,(¢*x_4(b,n)) for k-dimensional bounded VASs, k >3, whose vectors
cause increments of no more than b and whose start vectors have norm n.

We can also show, by a refinement of the proof in [27], the following:

Theorem 3.4: There exist positive constants a, b and ¢ (independent of k and n) such

that the CP and EP for BV(k,1,n) require f,_ (b*n) time infinitely often whenever k> c.

In the proof of the previous theorem (see [12]), the construction is such that each
position is bounded by f; (b*n). By letting V.(n) denote the set of bounded VASSs

whose reachability sets are bounded by fi(n), we have the following corollary:

Corollary 3.5: There exist positive constants ¢ and d (independent of i and n) such
that the time complexity of the CP and EP for V.(n) are bounded above (below) by
f.(d*n) (fi(c*n)),

4. The Complexity of Containment, Equivalence, and
Reachability for 2-dimensional VASSs

In this section, we describe results from [12] concerning the complexity of the CP,
EP, and RP for 2-dimensional VASSs. The study of VASSs having a specific fixed
dimension is interesting because it can be shown, using techniques similar to those in
[1, 7, 10], that there exists a k such that the CP and EP are undecidable for k-
dimensional VASSs. Although the best upper bound for k is unknown at this writing,
the CP and EP are known to be decidable for k=2 [11]. 2-dimensional VASSs are of
additional interest because the reachability set is not, in general, semilinear when the
dimension is greater than two [11]. In this section, we utilize the ideas inherent in the

previous section to provide an analysis of the algorithm given in [11], which generates
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from an arbitrary 2-dimensional VASS the SLS representation of its reachability set. As
a result of the analysis, we obtain upper bounds for the CP, EP, and RP in the case of
2 dimensions. For a given VASS, let [ denote the maximum number of bits needed to
represent any integer in the system, and let n denote the maximum of the number of
states and the number of transitions. Specifically, we show that the algorithm of
Hopcroft and Pansiot [11] operates on any 2-dimensional VASS in NTIME(ch*I*n) for
some constant ¢. Furthermore, there are instances that require 22d*l*n steps for some
positive constant d; hence our analysis (of the algorithm) is tight. We then give 2 minor

i j%&

<
modification to the algorithm that reduces its complexity to D'I‘II\/HE.(22 ) for some
§ l*

constant ¢. The SLS constructed by the resulting algorithm contains 0(22c n) linear
sets. Each of these linear sets has a base with norm 0(220“1*11) and O(2") periods with
norm O(Zdul*n) for some constant d. From these properties we derive an upper bound
of DTIME(QQC* *n) for the CP, EP, and RP for 2-dimensional VASSs. Now the best
known lower bounds for these problems are significantly smaller (e.g., NLOGSPACE
(NP) for the RP of VASS(2,1,n) (VASS(2,/,n)) [37]). Hence, there is still much room for
improvement. However, the two algorithms for the genmeral RP in [24, 29] do not
appear to yield better upper bounds for 2-dimensional VASSs. Whether or not these

bounds can be tightened we leave as an open question.

Now, before continuing to the detailed discussion, the following definitions are

required. Given a VASS=(v,V,p;,S,6) and a path [ in the state graph, =

v v Y
sl-!»sz—g cee st’l—kl s, Where si—+(si+1,vi) (1<i<tl)isin 4 lis a short loop iff 5, =s,

and siyésj (1<i<j<t). The displacement of I, denoted by |, is Ef.:l v lisa

short positive loop (p-loop, for short) iff [ is a short loop and |I| > O.

Now the analysis presented in [12] depends heavily on the algorithm given in [11].
So that the reader may comprehend the gist of what follows the algorithm from [11] is
listed below. However, only a brief description will be given. The reader is encouraged
to refer to [11] for more details. Given a 2-dimensional VASS V, the main idea behind
the algorithm is to construct a tree in which each node is labelled by a 3-tuple ix,p,AX]s
where x€ N2, p€S and AXQNQ, to represent the reachability set generated by V. In
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what follows, each A is called a loop set. Each v in A is called a loop wvector. The
label [x,p,A, ] indicates that {(p,v): v € L(x,A,)} € R(vy,V,py,S,6). The intuitive idea of
why the procedure works is the following. The tree is built in such a way that each
path, in a sense, corresponds to a path in the VASS. Each time an executable (valid) p-
loop is encountered, that particular p-loop will be added (if necessary) to the loop set
since clearly that loop can be repeated as many times as we want. If, along any path of
the tree, there is an ancestor [z,p,Az] of [x,p,Ax] such that A =A_and xEL(z,AZ), then
that particular path terminates at [x,p,A ]. (This condition will be referred to as the
terminating condition.) In [11], it was shown that a point (p,v) in SXN? is reachable
in V iff there exists 2 node with the label [x,p,Ax] such that vé& L(X,AX). (In other
words, the reachability set coincides exactly with the SLS associated with the tree
construction.) Furthermore, the tree construction will eventually terminate. Now, in
order to put complexity bounds on this procedure, some measure of the tree is needed.
In particular, we will see later that in order to derive the upper bound of the Hopcroft-

Pansiot algorithm, it suffices to consider the following two quantities:

(1) max{|}v]l: 3 [x,p,A ]J€T such that v€A_},

(2) max{|[x]}: [x,p.A,]€T}.

The first quantity gives an upper bound on the number of periods in each linear

set, and the second quantity gives an upper bound on the number of linear sets in the

SLS.

Algorithm: (from [11])

Create root labelled [x,,p,,0];

while there are unmarked leaves do

begin
Pick an unmarked leaf {x,p,Ax]; .
Add to A all displacements of short positive loops from p valid at x;
if A, is empty and there exists an ancestor [z,p,A z] with z<x,
then add x-z to A

if there exists ¢ € N2, ¢=(0,7) or (+,0) such that
(a) ¢ is not colinear to any vector of A_, and
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the nodes in the Hopcroft-Pansiot tree, plus perhaps some additional nodes which are
redundant. Furthermore, it is clear that if our tree contains duplicate nodes, then the
respective descendants of these nodes are identical. Hence, we can prune our tree by

never adding duplicate nodes. Hence, [12] derives:

Theorem 4.1: Given a VASS V=(v03V,pG,S,5) and a state p in S, we can construct a

#I*n

<
SLS $L=UK L.(x,P,) in DTIME(2? ), for some constant ¢ independent of V, [, and

=1
n, such that,

(&) SL:{X: (p’X)ER(V()sV,posS’&)}s
ody**n
(b) k=0(2 ), for some constant d, independent of / and n,
d,*I*
() Wi, 1<i<k, Hxi[!r—O(22 2 n), for some constant d, independent of [ and n,
(d) Vi, 1<i<k, |P,|=0(2"), where [P,| is the number of vectors in P,

(e) ¥veP,, 1<i<k, [|v1|=0(2d3*i*n), for some constant d, independent of [ and
n.

From Theorem 4.1 we want to show that the CP, EP, and RP can be solved in
DTIME(QQC*I*D) for some fixed constant c¢. While the proof for the RP is quite
straightforward, the complexity results for the equivalence problem for SLSs [15, 18] do
not directly yield the desired upper bound for the CP and EP. However, a careful
application of the proof techniques in [18] yields the desired upper bound for the CP

and EP also. See [12]. We therefore have:

Theorem 4.2: For 2-dimensional VASSs, the CP, EP, and RP can be solved in

#I*

< n
DTIME(2? ), for some constant ¢ independent of [ and n.

5. The Complexity of Boundedness, Containment, Equivalence,
and Reachability for Conflict-Free VRSs
In this section, we describe results from [13, 14] concerning the complexity of the
BP, CP, EP, and RP for conflict-free VRSs (VASs, PNs). Conflict-free VASs were
introduced by Crespi-Reghizzi and Mandrioli []. ~ Landweber and Robertson

[25] subsequently showed an upper bound of exponential time for the BP for conflict-
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free PNs. Since the definitions given in [6, 25| are somewhat different from one
another, and since translations between the two do not seem to preserve sharp
complexity bounds, we introduced in [14] the notion of conflict-free VRSs (see [23]).
Our definition is general enough to include both previous definitions as special cases
(although conflict-fre¢ PNs have a somewhat more succinet representation), yet it is also
restrictive enough to allow us to prove the BP PTIME-complete for all three definitions.
In particular, we give in [14] an O(n!') algorithm for deciding boundedness for conflict-
free VRSs (or VASs). Due to the fact that a PN is represented somewhat more
succinctly, the time complexity is O(nz) for the PN model--an improvement over the
exponential time result of Landweber and Robertson. (For our complexity measures, n
is the number of bits needed to encode the problem instance.) Now most problems
concerning VRSs or equivalent formalisms have been shown to be intractable (see, e.g.,
[16, 17, 20, 26, 37]); therefore, since our algorithm has a time complexity of such a

small-order polynomial, it may have applications with respect to the verification of

parallel computations that can be modelled by conflict-free VRSs.

In [13], we show completeness results concerning conflict-free VRSs for the CP, EP,
and RP. Prior to this time, no primitive recursive upper bounds had been given for the
complexity of the CP, EP, or RP for conflict-free VRSs. The main result in [13] is that
the CP and EP for conflict-free VRSs are Iﬁeccmplete, where Hg is the second level of
the polynomial-time hierarchy (see Stockmeyer [39]). In showing this, we use a strategy
developed by Huynh [18] in showing the equivalence problem for semilinear sets to be in
Hg . Given this result and the fact that conflict-free VRSs have semilinear reachability
sets [25], one might attempt to solve the problem by translating the VRSs to SLSs and
applying Huynh’s result directly. However, it can be shown that such a translation
must be exponential. Hence, we prove additional properties concerning the resulting
SLS representations that enable us to obtain our results via a modified version of
Huynh’s proof. Now in his proof, Huynh used the fact that the membership problem
for semilinear sets is NP-complete [15]. We therefore first show that the RP for
conflict-free VRSs is in NP, thus giving the first primitive recursive algorithm for this

problem. (Since Jones, Landweber, and Lien [20] have shown the problem to be INP-
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hard, it follows that the problem is NP-complete.) In order to show this, we give some
properties of conflict-free VRSs that allow us to show that there is an instance of
integer linear programming that has a solution iff a given instance of the RP has a
solution; furthermore, this instance of integer linear programming can be "guessed® in
polynomial time. Our next step is to give a SLS representation of the reachability set.
We have already mentioned that this representation is exponential in the size of the
problem description. On the other hand, we are able to show a high degree of
symmetry in the SLS representation. It is this symmetry that allows us to alter

Huynh’s proof to give our upper bound. Finally, we show a matching lower bound to

complete the proof of the main result.

A VRS (v,,U,V) is said to be conflict-free iff (1) no number in U is greater than 1;
(2) no number in V is less than -1; (3) no row in V has more than one -1; and (4) if
V(i,j)=-1, then U(i,j) = 1, and all other elements in row i of U are 0. Now there is an
obvious translation from 2 conflict-free PN (see [25]) with k places and m transitions to
a kXm conflict-free VRS whose addition rules and check vectors have no elements
larger than 1. Thus, our definition is general enough to include both previous
definitions. In addition, all lower bounds shown in this section are shown using VRSs
having minimal check matrices and no elements larger than 1. Thus, all of our
completeness results hold for conflict-free VRSs, conflict-free VASs, and conflict-free
PNs.

5.1. Boundedness

In [14], we present an O(n!-%)

VRSs. Karp and Miller [21] showed that a VRS is unbounded iff it can execute a

algorithm to determine boundedness for conflict-free

positive loop. Our algorithm, therefore, looks for a positive loop that can be executed
by the VRS. Before a positive loop can be executed, it must be enabled. In [14], we

show the following two facts concerning conflict-free VRSs:

(1) For any kXm conflict-free VRS 'V=(v0,U,V) that is described by n bits, we can

construct in time O(n'-®} a path ¢ in which no rule in V is used more than once,
such that if some rule v_is not used in o, then there is no path in which v_ is

used.
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(2) Given a conflict-free VRS (VO,U,V), let V! be any matrix of rules in V such that if
VE.EV', then there is some path that uses Vi Then there exists a path &

containing a loop whose rules used are exactly those in V' iff every row in V' that
contains a -1 also contains a positive number. Furthermore, the loop in & can be
required to have each rule in V' used exactly once.

The path o described in (1) above is constructed by repeatedly scanning the
addition matrix and executing any rule that is enabled and has not yet been executed.
It is not hard to show that this procedure operates in O(n!?®) time and that the
resulting path o is as described in (1). Furthermore, it is also not hard to show that ¢

enables the loop described in (2). These two facts, along with results from [6], allow us

1.5)

to produce an O(n" ) algorithm to find a positive loop. We therefore have:

Theorem 5.1: The BP for conflict-free VRSs is solvable in time O(n!'®), where n is

the number of bits needed to encode the problem instance.

The algorithm given in [14] will also work for conflict-free PNs; however, due to
their more succinct representation, we cannot derive the same complexity bound for
conflict-free PNs. What we can derive is stated in the following corollary, which gives

an improvement over the exponential-time result in [25].

Corollary 5.2: The BP for conflict-free PNs is solvable in O(n?) time, where n is the

number of bits necessary to describe the PN,

Finally, the BP for conflict-free VRSs is shown in [14] to be PTIME-complete. In
order to show the problem to be PTIME-hard, [14] uses a reduction from the path
system problem, which is known to be PTIME-complete [18]. Hence we have:

Theorem 5.3: The BP for conflict-free VRSs (VASs, PNs, respectively) is PTIME-

complete.
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5.2. Reachability

The next problem we would like to examine is the RP. Jones, Landweber, and Lien
[20] have shown this problem to be NP-hard. Although the problem is known to be
decidable [6], no upper bound on its complexity was previously shown. In order to
tighten this gap, in [13] we show the problem to be NP-complete. Our strategy is to
guess an instance of integer linear programming whose solutions give Parikh maps of
sequences of addition rules that lead to the desired vector. The following fact was
established in [13]. Together with (1) from Subsection 5.1, it yields sufficient conditions

to guarantee that for every solution &, there is an enabled sequence ¢ such that ¥(8)=x.

(1) Let (vq,U,V) be a kXm conflict-free VRS, and let ¢ be an arbitrary sequence of

rules from V. If every rule in ¢ appears in some path that uses only rules from #,
and if A(6)+v, >0, then there is some sequence ¢ enabled at vy such that

2{e")=w(0).

Using this result, we establish that the RP is NP-complete. Recall that the
problem was shown to be NP-hard in [20]. An inspection of the comstruction used in
that proof reveals that it holds for both conflict-free PNs and conflict-free VASs. Our
algorithm for deciding reachability works as follows. First, a set of rules to be used in 2
path is guessed. Let V' be an addition matrix containing exactly these rules. From (1)
in Subsection 5.1, it can be verified in polynomial time that exactly these rules can be
used in some path. Now from results in Borosh and Treybig [2], we can determine in
NP whether V'x==v-v, has a solution for which each x(i) > 1. If such a solution exists,

it follows from fact (1) above that there is a path from Vo to v using exactly the rules

guessed. We therefore have:

Theorem 5.4: The RP for conflict-free VRSs is NP-complete. -

5.3. Containment and Equivalence

We now turn to the CP and EP. In [13], we show that these problems are
Hg-complete, where 171; is the set of complements of all languages that can be
recognized by a polynomial-time-bounded nondeterministic Turing machine with an NP

oracle (see Stockmeyer [39]). In showing the upper bound, we follow a technique used
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first by Huynh [18] (see also [12]). In [18], Huynh gave a proof that the containment
and equivalence problems for semilinear sets are in H};, Landweber and Robertson
[25] have shown that the reachability set of a conflict-free Petri net is semilinear; it is
easy to verify that this also holds for VRSs. In [13], we give an upper bound on the size
of the SLS representation of the reachability set. In particular, we give an SLS
representation in which no integer is larger than (c*k*m*n)d*k*m, where k and m are
the dimensions of the VRS, n is the largest absolute value of any integer in the VRS,
and ¢ and d are fixed constants independent of k, m, and n. Now the technique used in
[18] is to show that if the two SLSs are not equal, then there is a “small" witness to

that fact. Unfortunately, applying our derived bounds to the result in [18] yields 2

bound of O((k*m*n)(k*m)cwk% ) for the largest integer in the smallest witness, This is
clearly too large to guess in polynomial time. Furthermore, we cannot improve our
bounds enough to make a direct application of Huynh’s results work. To see this,
observe that there is a bounded kX (k-1) conflict-free VRS with start vector (1,0,...,0)
which has, for any position i, 2<i<k, a rule which will subtract 1 from position i-1 and
add 2 to position i. The reachability set of this VRS has at least ok bases, and even for
SLS representations of this size, Huynh's results yield a bound of O((k*m*n)(k*m)cuk)e
In [12], 2 variation of the proof in [18] was given in which a small enough bound was
placed on the sizes of the periods to allow some degree of improvement to be made.
However, even if a bound of n could be placed on the largest integer in any period, this
proof does not not yield a polynomial bound on the binary representation of the
smallest witness. What we are able to do, however, is to give an SLS representation
with a high degree of symmetry. It is this symmetry, together with our bound on the
size of the SLS representation, that allows us to alter the proof in [18] to give us our
tight bound on the size of the smallest witness. The following fact gives the SLS
representation of the reachability set of an arbitrary conflict-free VRS.

(1) Let (v,,U, V) be a kXm conflict-free VRS in which n is the largest absolute value

of any integer. Then there exist constants Cys Co dl, and d2, independent of k,
m, and n, such that R(VG,U,V)=Uv€BL(v,Pv)§ where B is the set of all reachable

vectors with no element larger than (cl*k*m*n)cz*k*m, and P_ is the set of all
displacements of loops enabled at v such that if p€P_, then
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a. p has no element larger than (di“‘k"‘m"‘11}‘5.‘2”"&““s and

b. if v(i)=0, then p(i)=0.

We then continue by showing that if some vector w is reachable in a conflict-free
VRS 'Vl but not in another conflict-free VRS 'Vz, then there is some vector w/ whose
binary representation is polynomial in the size of the representations of V, and V,, such
that w' is reachable in 'Vl but not in ‘Vz. In so doing, we closely follow the technique
developed in [18]. An important point to remember is that for any linear set L(v,P)
given in the SLS representation of V (from (1)), v(i)=0 only if for all p€P_, p(i)=0. It
is precisely this fact that gives us our improvement over a direct application of the

results from [18]. Thus, we establish:

(2) There exist constants ¢ and d such that for any two kXm conflict-free VRSs V,
and V, in which n is the largest absolute value of any integer, if w€R(V,)\R(V,),

%19
then there exists a W’GR(VI)\R(V2) such that W'(i)ﬁ(c*k*m*n)d kK*m_

From Theorem 5.4 and (2), we can easily see that the CP and EP are in 17123 Before
continuing, we briefly explain our strategy for showing the lower bound. Let X and Y
be disjoint sets of Boolean variables, and let F(X,Y) be a Boolean expression in 3DNF.
Stockmeyer [39] showed the problem of deciding whether (VX)(IY):F(X,Y)=0 is
ITI;-complete (the notations (VX) and (3Y) denote (in...Vxnl) and (Eyl.,.Eynz),
respectively, where X={x1,...,xn1} and Y=={y19...,yn2}). In [13], we reduce this problem
to the CP and EP. As a result, we obtain:

Theorem 5.5: The CP and EP for conflict-free VRSs are Hg-compiete.
Acknowledgment: We would like to thank each of the three referees for their
comments, which were helpful when it came to improving the presentation of this
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