ON THE CORRECTNESS OF A TERMINATION
DETECTION ALGORITHM

Devendra Kumar
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-08 March 1987

Abstract

We show that the termination detection algorithm for distributed computations proposed in

[Arora 86] is incorrect. We identify specific issues that have not been adequately addressed in
the above algorithm, leading to its incorrect operation.

Keywords: Distributed program, distributed termination detection, message communication.

Table of Contents
1. Introduction

2. Counter Examples: Detecting False Termination

3. Counter Example: Failing To Detect True Termination
4. Conclusions

NoN -

1. Introduction

In section 2, we present counter examples to show that the distributed termination
detection algorithm of Arora et. al. [Arora 86] may detect "false termination”. We also disousé
the underlying reasons for its failure. We point out the error in the proof of correctness of the
algorithm as presented in the above paper. Then we discuss methods to make the algorithm
correct. In section 3, we discuss situations where the algorithm fails to detect "true termination”.
Again, we point out the error in the proof of correctness as given in the above paper, and

discuss how to correct this aspect of the algorithm.

We give our counter examples for several different assumptions regarding the nature of
message communication. (These assumptions are those usually made in the literature.) The
reason for considering different assumptions is that the above paper leaves its assumptions
regarding message communication ambiguous. In particular, is it assumed to be synchronous,
as in CSP [Hoare 78], or asynchronous? If asynchronous, are the messages on a given channel
received in the same order as they were sent (referred to as the first-in-first-out, or FIFQ,
property of the communication channel)? This ambiguity in the paper is evident from the
following. In section 2 of the discussed paper, it seems that the algorithm assumes synchronous
communication, because the definition of C (the conjunction of local predicates ¢, of the
processes i) is not very meaningful if asynchronous communication is assumed. Obvicusly,
under asynchronous message communication, C cannot take into account the states of the
channels. On the other hand, in the proof of assertion (1) in section 3.2, the messages "in
transit” are considered. This assumes asynchronous message communication. Moreover, in
the algorithm description, deadlock situations may arise if synchronous communication is

assumed, e.g., if all processes are frying to send |-am-passive messages.

Our counter examples show that the algorithm does not work under any of the above
assumptions. In particular, in aill our examples, the sequence of events satisfies the FIFO
property for the channels. Thus any such counter example remains valid whether or not the
algorithm, in case of asynchronous message communication, assumes FIFO property for

communication channels.

The reader is assumed to be familiar with the details of the proposed algorithm [Arora 88].

In the following discussion we use i to refer to process p,. A communication channel from
process i to | is denoted by the ordered pair (i,j). Also, we write state(i) to refer to the variable

state(i) at process i.

In examples 1,2,3, and 4 below, we consider a network of N processes 0,1,...,(N-1), where
the value of N will be specified in each example. For any process i, communication channels
between processes i and [(i+1) mod NJ, in each direction, exist. Additional channels may be
defined in an example. (Thus, each process has at least four adjacent channels.) The ring R for
probe messages is defined by the successor function, successor(i) = (i+1) mod N for all
i=0,1,....,(N-1). Cne may assume either synchronous or asynchronous message

communication, unless otherwise specified. Initially all processes are assumed to be active.

2. Counter Examples: Detecting False Termination
For the sake of clarity, in a history of events in this section, we omit histories of all but one
specific probe b, identified in the history. The shown history may not be completed, since

termination may be declared earlier due to some other probe.

Example 1 below shows the following problem in the proposed algorithm. It is possible to
have state(j) = passive for all i,j, and yet there is a basic message m in transit on a channel that
is not on the unidirectional ring R on which the probes travel. In such a situation, a probe may
make a complete round of the ring R while the message m remains in transit. Thus a “false

termination” would be detected.

Example 1: Let N be 4. Assume channels (1,3) and (3,1) also exist. Assume asynchronous

message communication. Consider the following scenario.

1. Process 3 sends a basic message m to process 1.

2. All processes become passive, and send l-am-passive messages to all their

neighbors.

3. All the above messages are received, except for those on the channel (3,1).

At this point, state,(j) = passive for all i,j, except that state(3) = active.

4. Process 1 receives m, becomes active, and sends a basic message m’ to process

3.

5. Process 1 receives l-am-passive message from process 3.

At this point, state,(j) = passive for all i,j, except that state(1) = active.

6. Process 1 becomes passive and sends l-am-passive messages to all is

neighbors.

7. All these l-am-passive messages are received, except for the one from process 1
to process 3.
At this point, state,(j) = passive for all ij, and the channel (1,3) contains the

message m’ followed by an l-am-passive message.
8. A probe message b is initiated by process 0.

9. Probe b makes a complete round of the ring R, and thus termination is declared
(unless it is declared before, due to some other probe message).

[Note: the two messages in the channel (1,3) remain in transit.]

Examples 2 and 3 below illustrate the following situation. When a probe message b
arrives at a process i, it is possible that state,(j) = passive for all j; however, i may have
previously sent a basic message m to some process k, and k received m after it propagated b.
Thus b is unaware of the behind-the-back computation resulting from the reception of m at k.
Example 3 is more involved than example 2; but it is included here because it drives home the

point more clearly.

Example 2: Let N be 8. Consider the following sequence of events.
1. All processes other than 6 become passive, and send [-am-passive messages to

their neighbors. All these l-am-passive messages are received.

2. Process 0 sends probe message b. The probe b is propagated by processes

1,2,3, and is finally received at process 4.

3. Process 6 sends a basic message to 7, which is received by 7, making it active.

Process 7 similarly makes process 0 active.

Process O similarly makes process 1 active.

Process 1 similarly makes process 2 active.

Processes 6,7,0,and 1 now become idle. They send l-am-passive messages to
their neighbors. All these [-am-passive messages are received.

At this point state(j) = passive for all i, j such that [(j # 2) and {(i=]) or (i and j are

neighbors)}].

4. Probe b travels from process 4 t0 5 to 6 to 7 to 0. Termination is declared (unless
it is declared before, due to some other probe message). But process 2 is still

active!

Example 3: Consider any N > 3.

Below we define a specific probe message b and show a history of events where b
continuously traverses along ring R without ever getting purged. Obviously, termination will be
declared in a finite time. However, in this sequence of events, the system does not terminate.
Variables | and J below are auxiliary variables used to facilitate our description of the history of

events. As before, events corresponding to probe messages other than b are not shown.
1.1=0;
if even(N) then J := N/2 else J 1= (N-1)/2;
All processes other than J become passive. They send l-am-passive messages to
their neighbors. All these I-am-passive messages are received.

Process | is ready to send a probe message b on the ring R.

2. At this point, invariant A, defined as the conjunction of the following clauses,
holds.

a. land J refer to processes, i.e., they are in the set {0,...,(N-1)}.
b. Processes | and J are not neighbors.
c. Process J is active.

d. state;(j) = passive for all i,j such that [(i # J) and {(i=}) or (i and | are

neighbors)}].

/* Note: In particular, every process other than J is passive. */
e. No basic or l-am-passive messages are in transit.

f. The probe b is at process L.
Now the following events take place.
J sends a basic message to successor(J). Then J becomes passive, and sends
l-am-passive messages to its two neighbors. All these three messages are
received. Successor(J) becomes active.
| sends the probe message b to successor(l). This message is received by
successor(l).
At this point we redefine the auxiliary variables I,J by | := successor(l) and J =
successor(J).

Now the invariant A again holds.

3. The sequence of events in step 2 above is repeated, until termination is declared,

when b or another probe completes a round of ring R.

Error In The Proof: The following statement in proof of assertion (3), on page 314 of the
paper, is incorrect: "This means that process p, must purge the probe-message upon receiving
it." It is possible that before receiving the probe message, p, becomes passive and has state (j)

= passive for all its neighbors |.

Methods Of Correction

Several approaches have appeared in the literature to deal with the problem of transient
messages illustrated in example 1. For example, [Misra 83] proposes flushing out the transient
messages by requiring the probe message to go through every channel of the network (with the
assumption of FIFO property). [Chandy 85a] suggests receiving an acknowledgment message
for every basic message sent. [Kumar 85] suggests a method using the counis of number of

basic messages sent and the number of basic messages received in the system.

The problem of behind-the-back computation, as illustrated by examples 2 and 3, is
usually solved by requiring the probe to traverse the ring R more than once, and declaring
termination only when in the current round of the ring R, the probe finds that each process i has
been "continuously passive” ever since its last visit at i. For details, we refer the reader o
[Misra 83, Chandy 85a, Kumar 85].

3. Counter Example: Failing To Detect True Termination

Note that a passive process does not necessarily become active on receiving a basic
message. For example, for some i, suppose ¢; (the condition for process i to be passive) is
defined to be: [process i has received at least one basic message]. Then, after receiving its first
basic message, process i becomes passive. On receiving its second basic message, it rermains
passive. Therefore at this point i will not send any l-am-passive messages (since it did not
become passive). This may result in a termination state remaining undetected forever, as

exemplified below.

Example 4: Let N be 2. Consider the following seguence of events.
1. Process 1 become passive. It sends an l-am-passive message to 0. Process 0

receives this message.
2. Process 0 sends a basic message m to process 1. At this point statey(1) = active.

3. Process 1 receives m, but remains passive.

/* Hence it does not send an l-am-passive message. */

4. Process 0 becomes passive. It sends an l-am-passive message to process 1.

Process 1 receives this message. Process 1 sends a probe message to 0.
5. Process 0 receives the probe message, and purges it since statey(1) = active.

6. No further events take place in the system; hence termination is never detected.

But the system is terminated!

Error In The Proof: In proof of assertion (1) on page 313 of the paper, the following

statement is incorrect: "Upon receipt of the last l-am-passive message from one of its

neighbours, P will thus qualify for initiation of a probe-message.” Process Py may have sent a
basic message m to some p, after receiving an l-am-passive message from p,, and p, may

remain passive. Thus P would, in future, always assume that p, is active.

Also, as illustrated by example 4, the following statement in proof of assertion (2), page
313 is incorrect: "Thus, the probe-message of p would be forwarded by each process and

hence would reach back to p.”

Methods Of Correction

To correct such a situation, one may take any of the following two standpoints: (&)
redefine the termination detection problem so that a passive process on receiving a basic
message always becomes active, at least momentarily, or (b) on reception of a basic message,
if a previously passive process remains passive, then it sends out I-am-passive messages to all

its neighbors.

A problem similar to example 4 may arise if a process is initially passive. To avoid this,
one may require that (a) initially every process is active, or (b) initially if a process is passive, it

sends out l-am-passive messages to all its neighbors.

4, Conclusions

We showed that the termination detection algorithm proposed in [Arora 86] is incorrect —
sometimes it detects false termination, and sometimes it fails to detect a true termination. We
identified specific issues leading to the incorrect operation. We mentioned methods to correct

the algorithm with regard to these issues.

References
[Arora 86] R. K. Arora, S.P. Rana, and M. N. Gupta, "Distributed Termination Detection
Algorithm For Distributed Computations”, information Processing Letters, vol.

22, no. 6, pp. 311-314, 1986.

[Chandy 85a] K. M. Chandy and J. Misra, "A Paradigm for Detecting Quiescent Properties in

Distributed Computations”, working paper, Department of Computer Sciences,

[Chandy 85b]

[Dijkstra 80]

[Francez 80]

[Francez 81]

[Francez 82]

[Gligor 80]

[Gouda 81]

[Hoare 78]

University of Texas, Austin, Texas 78712, January 9, 1985.

K. M. Chandy and L. Lamport, "Distributed Snapshots: Determining Global
States of Distributed Systems", ACM Transactions on Computing Systems,

vol. 3, no. 1, February 1985, pp.63-75.

E. W. Dilkstra and C. S. Scholten, "Termination Detection for Diffusing

Computations", Information Processing Letters, Vol. 11, No. 1, August 1980.

N. Francez, "Distributed Termination", ACM Transactions on Prograrmming

Languages and Systems, Vol. 2, No. 1, pp. 42-55, January 1980.

N. Francez, M. Rodeh, and M. Sintzoff, "Distributed Termination with Interval
Assertions”, Proceedings of Formalization of Programming Concepts,
Peninsula, Spain, April 1981. Lecture Notes in Computer Science 107,

(Springer-Verlag).

N. Francez and M. Rodeh, "Achieving Distributed Termination Without
Freezing", IEEE-TSE, Vol. SE-8, No. 3, pp.287-292, May 1982.

V. Gligor and S. Shattuck, "On Deadlock Detection in Distributed Data Bases",
IEEE-TSE, Vol. SE-8, No. 5, September 1980.

M. Gouda, "Distributed State Exploration For Protocol Validation", Technical
Report TR 185, Department of Computer Sciences, University of Texas,

Austin, October 1981.

C. A. R. Hoare, "Communicating Sequential Processes”, Communications of

the ACM, Vol. 21, No. 8, pp. 666-677, August 1978.

[Kumar 85]

[Lamport 78]

[Misra 83]

D. Kumar, "A Class of Termination Detection Algorithms For Distributed
Computations”, Fifth Conference on Foundations of Software Technology &

Theoretical Computer Science, New Delhi, India, December 16-18, 1985.

L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed
System", Communications of the ACM, Vol. 21, No. 7, July 1978.

J. Misra, "Detecting Termination of Distributed Computations Using Markers”,
Proceedings of the ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, Montreal Canada, August 17-19, 1983.

