UNDERSTANDING PROBABILISTIC
BYZANTINE AGREEMENT

Russell Turpin and Jim Dution

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-87-10 April 1987

Abstract
The current variety of probabilistic protocols
for reaching Byzantine agreement can be
subsumed by a simple, general algorithm. After
presenting and proving this algorithm, several

protocols in the literature are examined in
its light.

Contents
Introduction
The Model
The Basic Idea
A Rigorous Description
Termination
Asynchronous Communication
A Pernicious Effect of Asynchrony
Review of Published Protocols
Conclusions

References

Introduction

The problem of reaching distributed agreement in the
presence of completely arbitrary faults has been recognized as
one of the central problems in fault-tolerant computing. The
Byzantine agreement problem, first introduced in [6], is the
generally accepted abstraction of this consensus problem. A large
number of algorithmic solutions to this idealized problem have
been published in the past several years. In addition to these
algorithmic solutions, a number of theoretical results have been
published.

o Pease, Shostak, and Lamport proved in an early paper [6]
that Byzantine agreement without authentication
(cryptography) cannot be secured unless fewer than one third
of the processes are faulty.

o Recently, Fischer, Lynch, and Paterson proved asynchronous
agreement impossible for deterministic processes [4].

o Lynch and Fischer put a lower bound on the number of
communication rounds required to reach deterministic
Byzantine agreement [5]. The lower bound is t+1, where t is
the number of faulty processes.

o Turpin and Coan provided an efficient reduction of
multivalued agreement to binary agreement, allowing research
attention to focus on binary agreement [11].

The second and third results above are limitations of
deterministic protocols -- those protocols which are guaranteed
to reach agreement within some fixed time. Recently, a number of
researchers have overcome these limitations using probabilistic
protocols. There are now several probabilistic protocols that can
reach Byzantine agreement in an asynchronous environment with an
expected time that is a constant independent of the number of
processes or faulty processes.

The probabilistic protocols published to date exhibit
several common features. They are usually much simpler than their
deterministic cousins in their algorithmic description. They all
require each process to iteratively execute the protocol through
a sequence of phases. And they are ahistoric in the sense that
processes must only carry their current proposed agreement value
across phases.

Tt is the thesis of this paper that these similarities arise
because the various protocols are all variants of a single
general algorithm. This general algorithm is described below and
proved correct. Despite their algorithmic simplicity, most of the
probabilistic protocols leave one wondering why they work at all.
The conceptual framework built below to describe the general
algorithm provides a basis for the understanding of these

probabilistic protocols. Several of the published protocols,
representing a cross-section of the field, are examined in the
light of this framework.

The Model

The problem of Byzantine agreement concerns n independent
processes in a completely connected communications network. The
network is assumed to be reliable, so that any transmitted
message is eventually delivered exactly once. Furthermore, the
communications system correctly identifies the sender of any
message to the recipient of the message. The model presents a
synchronous environment if an upper bound can be placed on the
time required to deliver a message, otherwise, it presents an
asynchronous environment.

The processes engage in a distributed protocol with the goal
of agreeing on some piece of information, which is assumed to be
a binary bit (0 or 1). A process that follows the prescribed
steps of the protocol without error is said to be correct;
otherwise, a process is said to fail or be faulty. No constraints
are placed on the content of messages sent by faulty processes.

Faulty processes can be assumed malicious and to have
perfect knowledge of the state of the distributed system.
However, faulty processes do not know future states of the
system. (This assumption, which is unnecessary for deterministic
protocols, is vital for probabilistic protocols which rely on
random information not determined before certain times.)
Similarly, faulty processes are not able to determine encrypted
information without the required keys. The parameter t describes
the maximum number of faulty processes, and the fault-tolerance
of any specific protocol is measured as an inequality involving t
and n.

Each process begins a Byzantine agreement protocol with an
initial value and terminates having decided on a decision value.
A Byzantine agreement protocol must satisfy two criteria:

validity If all correct processes begin with the same
initial value, then each correct process decides
on that value.

Agreement Each correct process decides the same value.

Deterministic protocols always terminate and satisfy the
above criteria. Probabilistic protocols show weaker properties;
they may only have some probability of termination or achieving
the above criteria.

The BRasic Idea

The validity condition for Byzantine agreement is very weak.
Tt restricts the agreement value only when all correct processes
are initially unanimous. Why then is achieving Byzantine agree-
ment so hard? After exchanging initial values, each correct
process can attempt to determine the value held by a majority of
correct processes. This attempt is always successful if the
processes are initially unanimous, and each process knows if it
fails in this attempt. A subtly wrong algorithm for reaching
Byzantine agreement proceeds as follows. 1In the first round,
processes exchange values and each process attempts to deter mine
the value held by a majority of correct processes. In the second
round, all processes either agree on the majority value, or on a
default value if any correct process failed in its attempt to
determine the majority value.

The flaw in the above algorithm is that the choice between a
default value and the majority value reguires each correct
process to determine whether any correct process failed in its
attempt to determine the majority value. This transmission of a
global state to each process requires Byzantine agreement. Thus,
the above "solution" is circular in its description and moves us
no closer to reaching Byzantine agreement. Surprisingly, a slight
modification to the above algorithm yields a probabilistic
solution to the Byzantine agreement problem.

After exchanging values, the correct processes fall into two
sets: those that successfully determined the majority value, and
those that failed to do so. Suppose there were a reliable way to
transmit to each process the value of a global random bit. The
processes that failed to detect the majority value would accept
this random bit as their proposed agreement value. This procedure
has a one in two chance of creating agreement amongst both the
processes that determined the majority value and those that
accepted the random bit, assuming that the random bit favors
neither value and is independent of the majority value. The
probability of reaching agreement can be made as high as desired
by iterating this procedure. The central theme of this paper is
that this algorithm describes all previously published
probabilistic Byzantine agreement algorithms, which differ
primarily in their methodeg for generating random bits.

A Rigorous Description

The general algorithm is iterative and each process proceeds
through segquential phases. The state of process 1 at the
beginning of each phase is described by its current proposed
value, V (i), which at the start of the first phase contains the
process's initial value. During each phase, a process's proposed
value may be reset. However, if all processes begin a phase with

some common value, they will all end the phase with that value;
that is, agreement is persistent. In addition, if processes begin
a phase with different values, there is some probability that
proposed values will be reset so that all processes end the phase
with a single common value. The probability of eventually
reaching agreement can be made as likely as desired by continued
iterations.

bpuring each phase, each process generates the values of two
variables that provide some information about the global state of
the system. These variables determine the proposed value for the
next phase. The first variable is calculated through a series of
communications that involve exchanging proposed values, but may
entail much more. The second variable is the result of a
(pseudo-) random coin toss. The different random Byzantine
agreement algorithms described in the literature differ primarily
in how these two variables are calculated, but all rely on the
properties described below to insure algorithmic correctness.

The first variable, F (i), is a boolean variable with an
additional "undetermined" state (0, 1, and *). This variable is
called the forced value because the process must accept it as the
new proposed agreement value unless its value is undetermined
(*). Two properties limit how the various protocols can prescribe
the forced value.

{1} If all processes begin the phase in agreement, then each
process's forced value is the common proposed value at the
beginning of the phase.

(2) If any process generates a forced wvalue of %1%, no process
may generate a forced value of 0",

Property (2) above guarantees that in each phase all correct
processes fall into two sets: those that have some common binary
value (0 or 1) for their forced value, and those whose forced
value is undetermined. It therefore makes sense to speak of the
forced value for the system during a particular phase, that being
the binary value (0 or 1) generated by any process for itg forced
value, or undetermined (*) if the forced value for all processes
is undetermined.

The second variable, C(i), is a simple boolean (0 or 1) and
is called the coin toss value because it ideally represents a
global random coin toss. The property required of the coin toss
value to insure correctness is a subtle one.

{3) There is a positive constant ¢ such that for each phase the
probability of all correct processes having a coin toss
value of 1 is at least ¢ and independent of the forced wvalue
for the system in that phase, and similarly for a coin toss
value of 0.

Note that while there is no guarantee that there will be a
global coin toss value during each phase, as there is for the

forced value, there is at least a probability that there is a
global coin toss value. A final rule concerning the generation of
new proposed values is required.

(43 Each process selects its proposed value for the next phase
by choosing its forced value unless it is undetermined, in
which case it chooses its coin toss value.

The above four constraints on the generation of each
process's forced value, coin toss value, and new proposed walue
are sufficient to prove correctness of the general probabilistic
Byzantine agreement algorithm. The selection rule (4) together
with property (1) of the forced value secures validity and
persistence of agreement. Property (2) and the selection rule (4)
divides processes during each phase into two sets, either of
which may be empty: those that choose a common forced value for
their next proposed value, and those that choose their c<oin
tosses. Property (3) guarantees that there is a minimunm
probability that these coin tosses are the same and equal to the
forced value. Thus, if the processes begin a phase not in
agreement, there is a minimum probability, ¢, that they end the
phase in agreement. The probability that processes do not agree
after r phases is less than:

(1 -c¢c)t

This probability decreases exponentially in r, and can be made as
small as desired by choosing large values of r. Detection of
agreement and successful termination are discussed below.

The constant ¢ must be independent of the computation trace,
but may depend on the number of processes in the system and
maximum number of faulty processes. Because the probability of
continued disagreement is exponentially decreasing, the expected
number of rounds to reach agreement is constant for any system
configuration. However, if this constant increases with the
number of processes, the protocol is considered to perform
poorly.

Termination

A probabilistic protocol that operates according to the
general algorithm described above can be executed in two distinct
fashions. First, it can run for a predetermined number of phases,
in which case there is some probability that the protocol will
terminate with processes not in agreement. The probability
depends on the number of phases allowed, and decreases to zero
exponentially as this number is increased.

A second mode of operation is to allow execution until
agreement is detected. In this case, the protocol terminates with
probability 1 and the expected number of phases before ter mina-
tion is constant for a fixed number of processes.

Two different technigues are used to detect agreement.
First, a correct process detects imminent agreement if it deter-
mines that in the next phase all correct processes will use the
determined forced value (not *). The criteria for detecting this
must be met if processes are already in agreement. Second, a
correct process detects agreement if it determines that the coin
tosses for the phase are unanimous and equal to the forced value.
Thic method is only used by the protocols that generate a global
coin toss value. The termination logic must insure that processes
that detect agreement continue to execute the protocol until
agreement is detectable by all correct processes.

Asynchronous Communication

Probabilistic Byzantine agreement can be achieved in an
asynchronous environment. This is an important advantage over
deterministic agreement, which was shown by Lynch and Fischer [4]
to be impossible in an asynchronous environment. The general
algorithm described above progresses each process through a
ceries of phases. The global constraints concern the states of
different processes in any one phase, but do not restrict the
occurrence of a phase to any particular time. That is, there is
no assumption that any two processes are in the same phase at the
came time. Thus the general algorithm describes both synchronous
and asynchronous protocols.

In a synchronous protocol, all processes progress through
the same phase simultaneously. Any communication involved in the
generation of forced values or coin tosses only applies to the
current phase. An asynchronous protocol must take steps to
prohibit cross-phase communication. The (by now) classical method
for doing so is to append the phase number to each message. A
process in a particular phase discards messages it receives from
processes in prior phases, immediately applies messages it
receives from processes in the same phase, and saves messages it
receives from processes in later phases.

Faulty processes may, of course, append any phase number to
their messages, or die incommunicado. To prevent deadlock, an
asynchronous protocol must never wait for messages from more than
n-t processes and must require each process to transmit the
message that helps resolve a wait state (in other processes)
before entering that wait state itself. A more subtle effect of
asynchrony is the difficulty of securing some independence
between the coin tosses and the forced value. This is discussed
further in the next section.

A Pernicious Effect of Asynchrony

In a synchronous algorithm, the following is a sufficient
procedure to generate the forced values. First, processes
exchange their proposed agreement values. Then, each process sets
its forced value to 0 or 1 if it detects that a majority of
correct processes have initial proposed values of 0 or 1,
respectively. A process detects that a majority of correct pro-
cesses hold a value if it receives more than (p+t)/2 messages
containing the value. A process that does not detect a majoxrity
value has an undetermined forced value. This procedure is ea sily
seen to meet the requirements of (1) and (2) when n > 3t.

Faulty processes cannot change the forced (majority) v alue
after all processes enter a particular phase, but they may be
able to influence which processes detect the forced value and
which resort to using their coin toss values to update their
proposed values for the next phase. If the faulty processes can
determine some coin toss values for the next phase, they can use
their influence on processes in the current phase to affect the
forced value for the next phase and thereby cause disagreement to
continue.

This kind of cross-phase subterfuge is a concern for all the
published asynchronous protocols. To secure some probability of a
unanimousg coin toss egqual to the forced value, as required by
(4), the potential control of the faulty processes over the
forced value is limited in several ways. Most of the asynchromnous
protocols reviewed here use a stronger criteria for determining
forced value than detection of a correct majority. Toueg 1107
uses authentication in determining the forced value.

All these protocols prevent any correct process £rom
revealing its coin toss for the phase until it has rece ived
communication for determining the forced value from n-t proce sses
that appear to be in the phase. The protocols by Toueg [10], Ben-
or [1], and Bracha [2] allow a correct process to accept for this
communication only messages that have been echoed by a majority
0of correct processes, thus limiting the ability of fa ulty
processes to send differing messages. The proof that these
techniques can effectively limit the power of the fa ulty
processes and secure the independence requirement of (4) is
beyond the scope of this paper, as this is one aspect in w hich
the published protocols vary significantly.

A1l the protocols reviewed here use either local coin tosses
or a reliable dealer to distribute a global coin toss. Thus, the
faulty processes cannot influence coin toss values, and only
their influence on the forced value must be checked.

Review of Published Protocols

We will review several of the probabilistic protocols for
Byzantine agreement published in the literature [1,2,3,7,8,10].
The techniques each uses for generating the forced value and coin
tosses are discussed. Of course, the authors of these papers do
not describe their algorithms as variants of a common, general
algorithm, and each uses their own notation and terminology. A
major theme of this paper is that these algorithms do fit into
the general framework described above and that this framework can
be used to understand these diverse algorithms and prove them
correct.

One group of protocols uses Shamir’s method for sharing
secrets [9] to provide a global sequence of random bits for the
coin toss values. A reliable dealer process generates a seqguence
of random bits. Each random bit is encoded into "pieces” that are
numbered and signed and distributed to the processes. The pieces
are constructed so that the random bit may be reconstructed from
any t+1 pieces, but that fewer pieces provide no information
about the random bit. Any t+l processes can cooperate in
reconstructing the desired random bit in the seguence, but at
least one of these processes must be correct. Because the pieces
are numbered and signed, the faulty processes cannot introduce
spurious pieces.

The Byzantine agreement protocols that use Shanmir's shared
secrets technique reguire correct processes to accept successive
random bits as their coin tosses. The coin toss values of correct
processes are therefore the same, and this value is independent
0f the forced value providing no correct process reveals its
piece of the coin toss for the phase until the forced value is
determined. The constant c is one-half, guaranteeing probable
guick agreement regardless of the number of processes. This
ingenious methodology was first proposed by Rabin [8]. Note that
this methodology requires processes to decrypt the pieces of the
coin toss values that are signed by the dealer, but does not
necessarily require processes engaged in an agreement protocol to
encrypt messages or decrypt messages other than received pieces
of the coin toss values.

Rabin's protocol functions asynchronously and allows a
correct process to reveal its piece of the random bit for the
phase as soon as it receives the proposed agreement values from
n-t processes. Rabin did not view the selection of a new proposed
value as a choice between a forced value and coin toss value.
Instead, each process uses the random bit to select between a
weak and strong criterion for using the plurality of received
agreement values as its new proposed agreement value. In terms of
the framework expounded here, a process's coin toss value is
either a default value or a function of the proposed agree ment
values it receives from other processes, depending on the walue
of the random bit. This allows the faulty processes to attempt

influence on both future forced values and coin toss values.
Because of this weakness, Rabin's protocol only works when fe wer
than a tenth of all processes are faulty.

Perry [8] recast Rabin's protocol within the framew ork
described here. He realized the importance of using the random
bit directly as the alternate for the new proposed values, and
carefully selected his criteria for choosing a forced value.
Because of this, his asynchronous protocol reguires only n > 6t,
and his synchronous protocol reaches the known bound of n > 3t
for unauthenticated algorithms. (Perry's description of his
algorithm was the major impetus behind our description of a
general probabilistic algorithm, and he is responsible for the
term "forced value" and was the first to clearly explain the
importance of limiting the influence of faulty processes over the
forced value in an asynchronous environment.)

Toueg [10] extends Perry's work through the use of
authentication to achieve optimal limits of fault tolerance,
requiring n > 2t for his synchronous protocol and n > 3t for his
asynchronous protocol. As previously mentioned, his asynchrorous
protocol uses an echo broadcast procedure, where each process
accepts only messages echoed by a majority of correct processes,
to limit the ability of faulty processes to spread differing
messages.

Ben-Or [1] published the first algorithm for reaching asyn-
chronous Byzantine agreement, and it remains the simplest. Like
Toueg, he uses an echo broadcast procedure in choosing the foxrced
value, though he does not call it such. Processes make entirely
local coin tosses, and only luck causes them to coincide. Thus,
the constant c depends on both the number of processes and the
number of faulty processes. However, he proves that ¢ does not
increase with n if t increases no faster than the sguare root of
n. For correct operation, his algorithm regquires only that fewer
than a fifth of all processes fail.

Bracha [2] extends Ben-0Or's protocol by putting even more
severe checks on the ability of faulty processes to disseminate
confusing information during the calculation of the forced value.
The calculation of the forced value requires three communication
exchanges, and a validate function is used to reject any message
from a process that conflicts with that process's past message
history during previous exchanges. This allows Bracha's protocol
to achieve the maximum amount of fault tolerance; he reguires
only that n > 3t. The cost is greater message traffic.

The protocols of both Ben-0r and Bracha perform pooriy in
the sense that the expected time to terminate incre ases
exponentially in the number of processes involved. (If faulty
processes increase as the square root of total processes, the
expected time for these protocols remains constant.) Coan and
Chor [3] develop a method for generating coin toss values that is
neither as haphazard as entirely local tosses, nor requires the
cost of decrypting signatures as required by a global "shhared

secrets" coin toss. They divide processes into groups, which
alternate the responsibility for generating coin tosses for
different phases. Each correct process accepts as its coin toss
what it perceives to be the majority value of the coin tosses of
the group for the phase. Different processes may perceive
different majorities if the current group contains faulty
processes, but the authors show that this method limits the power
of faulty processes to influence the coin toss over consecutive
phases. The drawback to this protocol is that because groups may
be small and their messages must be received, it is necessarily
synchronous.

Conclusion

In this paper we have developed a general framework for the
understanding and proof of the currently known probabilistic
protocols for reaching Byzantine agreement. Individual protocols
were reviewed and their differences discussed.

An immediate guestion suggests itself: are there
probabilistic protocols that cannot easily be fit into the
general algorithm described here? 1In particular, can any
advantage be obtained by probabilistic protocols that make use of
historic information about previous phases?

Within the framework developed, reaching Byzantine agreement
depends on the ability to calculate a global random coin toss.
This highlights the importance of this latter problem, which
plays a crucial role in many probabilistic, distributed
algorithms (not just Byzantine agreement).

Thus, the second area indicated for future research isg the
development of further protocols within the general frame work,
particularly ones that do not rely on a reliable dealer to
distribute secret random bits. The protocols of this type
discussed above are handicapped either by poor performance (Ben-
or and Bracha) or restriction to a synchronous environment {Chor
and Coan). A method for efficiently generating (probably) global
coin tosses in an asynchronous environment in the presence of
faults is the key to the development of such a protocol.

(1]

[21]

[3]

[4]

[5]

[6]

[7]

[8]

191

[101]

[11]

References

M. Ben-0Or

Another Advantage of Free Choice: Completely Asynchronous
Agreement Protocols (Extended Abstract)

Proc. 2nd ACM PODC (1983)

G. Bracha
An Asynchronous [(n-1)/3]-resilient Consensus Protocol
Proc. 3rd ACM PODC (1984)

B. Chor and B. Coan

A Simple and Efficient Randomized Byzantine Agreement
Algorithm ,

IEEE order number CH2082-6/84/0000/0098$01.00 (1984)

J. Fischer, N. Lynch, and M. Paterson

Impossibility of Distributed Consensus with One Faulty
Process

JACM 32(2) (Apr 1985)

N. Lynch and M. Fischer

A Lower Bound for the Time to Assure Interactive
Consistency

Inf. Proc. Ltrs. 14(4) (Apr 1982)

M. Pease, R. Shostak, and L. Lamport
Reaching Agreement in the Presence of Faults
JACM 27(2) (Apr 1980)

K. Perry
Randomized Byzantine Agreement (Extended Abstract)
Cornell University

M. Rabin
Randomized Byzantine Generals
Proc. 24th FOCS (1983)

A. Shamir
How to Share a Secret
CACM 22{(11) (Nov 1979)

S. Toueg
Randomized Byzantine Agreements
Proc. 3rd ACM PODC (1984)

R. Turpin and B. Coan

Extending Binary Byzantine Agreement to Multivalued
Byzantine Agreement

Inf. Proc. Ltrs. 18(2) (Feb 1984)

i1

