A Stepwise Refinement Heuristic
for Protocol Construction!

A. Udaya Shankar? and Simon S. Lam?>
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-11 April 1987

UThis report is also distributed as Technical Report CS-TR-1812, Department of Computer Science, University of Maryland,
March 1987,

ZWork supported by National Science Foundation Grant No. ECS 85-02113. Address: Department of Computer Science and
Institute for Advanced Computer Studies, University of Marvland, College Park, MD 20742,

3Work supported by National Science Poundation Grant No. ECS 83-04734.

ABSTRACT

We present a stepwise refinement heuristic to construct distributed systems. A distri-
buted system in our model is specified by a set of state variables and a set of events. Each
event is specified by a predicate that relates the values of the system state variables immedi-
ately before the event occurrence to their values immediately after the event occurrence. At
any point during the construction, we have the following: A partially constructed distributed
system referred to as an image system; a set of safety and progress requirements; and a
marking that identifies the extent to which the requirements are satisfied by the image sys-
tem. At each step of the construction, the image system and the set of requirements are
refined and the marking is increased. We also have a reversal step to undo the construction

to a limited extent. The construction ends when the image system satisfies all the require-
ments.

We provide two construction examples. The first, a distributed counter, is a small
example for illustrating our heuristic. We then construct three sliding window protocols
that use modulo-N sequence numbers (for any N >2) to provide reliable data transfer over
communication channels that can lose, reorder and duplicate messages in transit. These
protocols utilize timers to enforce real-time constraints necessary for their correct operation,
and are easier to implement than sliding window protocols previously studied in the protocol
verification literature. This example illustrates a major application of the heuristic.

TABLE OF CONTENTS

1 INTRODUCTION i,
1.1 Construction examples,

1.2 Organization of this report

1.3 System model ...
2 CONSTRUCTION OF DISTRIBUTED SYSTEMS

2.1 Distributed counter example

3 REAL-TIME SYSTEM MODEL

4.2 Requirementsooooeeviiiiiiiiiinnnn.

4.3 Correct interpretation of messages

4.4 Refining the requirement to interpret data correctly
4.5 Refining the requirement to interpret acknowledgements correctly

4.6 Constraints on accepting new data
4.7 Bounded message lifetime channels

4.8 An implementable time constraint that enforces 8,
4.9 An implementable time constraint that enforces S,
5 SLIDING WINDOW PROTOCOL CONSTRUCTION: FINAL PHASE
5.1 Protocol implementation with 2N timers
5.2 Protocol implementation with N timers
5.3 Protocol implementation with one timer
5.4 Transforming variables to auxiliary variables

5.5 Progress marking update
REFERENCES ...,

2.2 Construction heuristicccooeveenn....

4 SLIDING WINDOW PROTOCOL CONSTRUCTION: INITIAL PHASE
4.1 Initial image systemccococeeeenil

B B S N VA RV

B bed ped el jed e ek ol jedjeed
G W 0~ O G O

1. INTRODUCTION

We present a heuristic for constructing a distributed system in successive steps. At
any point in the construction, we have the following: an image system, a set of requirements,
and a marking that identifies the extent to which the requirements are satisfied by the image
system.

An image system is a fully specified distributed system in its own right; i.e., it can be
implemented. Its state variables are a subset of the state variables of the distributed sys-
tem, and its events are projections of the events of the distributed system [6].

There are three types of requirements: tnvariant requirements; event requirements, each
associated with an event of the image system; and progress requirements. The invariant
and event requirements represent the safety properties desired of the system. They are
specified by predicates in the state variables of the image system. The progress require-

ments represent the progress properties desired of the system. They are specified using the
temporal operator leads —to [1, 10].

Every invariant requirement is satisfied by the initial values of the state variables. An
invariant requirement is marked with respect to an event if we have proved that it holds
after any occurrence of the event, assuming that all invariant requirements and all event
requirements associated with the event hold before the event occurrence. An event require-
ment is marked if we have proved that it is implied by the associated event’s enabling condi-
tion and the invariant requirements. A progress requirement is marked if we have proved
that it is satisfied by the image system, assuming that the image system satisfies all the
invariant and event requirements, and has a fair implementation, i.e., every event that is
continuously enabled will eventually occur.

We start each construction with an image system that has just enough structure to
specify the safety and progress properties desired of the distributed system. The construec-
tion then proceeds by successive applications of refinement steps that refine the image
system’s events and state variables; they also increase the requirement sets and the marking
set. In addition to the refinement steps, we also have a reversal step that allows us to
“undo” the construction to a limited extent, at the expense of possibly reducing the marking
set. The construction terminates successfully when all requirements are marked. The con-
struction terminates unsuccessfully when a requirement is generated that is inconsistent with
other requirements or with the initial conditions of the image system.

Our construction heuristic is strongly influenced by Dijkstra’s pioneering work in the
formal derivation of programs using weakest preconditions [2]. We are also influenced by
the method of protocol projection [6]. In particular, we depend on the fact that when an
image system is refined, its marking set expands.

Chandy and Misra [1] have presented a stepwise refinement heuristic, and used it to
construct a general quiescence detection algorithm. In both our approach and theirs, a dis-
tributed system is modeled by a set of state variables and events. Both approaches main-
tain invariant and progress requirements throughout the construction. However, there are
significant differences between the two approaches. Chandy and Misra construct a distri-
buted system starting from a single-process topology and then successively refining the
topology. During their construction, such topology refinements are incorporated into the
events, invariant requirements, and progress requirements. Thus, at an arbitrary point in
the construction, an event may not be implementable in the distributed system because it
accesses variables that are not accessible in the final topology. In our approach, the network
topology is constant and the image system af any time during the construction is

-2

implementable on the topology. We use the current image system and requirements to
refine the requirements, the events and the state space of the next image system.

Our construction approach also places a strong emphasis on simultaneously generating
a formal verification. Each step’s application can be checked by automated techniques. To
reduce verification effort, we have introduced the marking set, the event requirement set, the
reversal step, and predicates for event specification. (These features are not present in the
method of Chandy and Misra.) Our construction heuristic does not require events to be
specified by predicates; they can be specified by guarded multiple-assignment commands as
in [1]. We specify events by predicates primarily to facilitate the formal verification.

1.1. Construction examples

We provide two construction examples. The first one is small and serves to motivate
the heuristic. In this example, we construct a distributed counter implemented in two
processes connected by error-free channels. For each process, there is a local user who can
increment the counter by 1. Each process maintains a local copy of the counter. We con-
struct a system satisfying the invariant requirement that the copies differ by at most 1, and
the progress requirement that user updates are never permanently disabled.

The second example is a major application of our heuristic. We construct three sliding
window protocols that use modulo-N sequence numbers to achieve correct data transfer
between a source process and a destination process connected by channels that can lose,
duplicate, and reorder messages arbitrarily. The protocols are constructed in two phases.
The first phase is common to all three protocols. In this phase, we show that the channels
must impose an upper bound on message lifetimes, and the source process must enforce cer-
tain time constraints before accepting new data blocks from its user. Such time-dependent
systems are common in networking [8, 4, 14]. To construct these protocols, we use the sys-
tem model developed in [9, 10] in which real-time constraints can be specified and verified as
safety properties. In the second phase of the construction, we present three different ways
of enforcing the time constraint requirements on the source process, resulting in three proto-
cols. The first and second protocols use 2N and N timers respectively. The third protocol
uses a single timer to enforce a minimum time interval between accepting successive data
blocks. The single timer can be dispensed with if the required minimum time interval is
enforced by the hardware (as is assumed in [8, 4]). The minimum time interval is a function
of N, the receive window size, and the maximum message lifetimes. Given any lower bound
on the time interval between accepting successive data blocks, the function provides the
minimum value of IV that ensures correct data transfer without tmposing any constraints on
the transmission of messages.

To our knowledge, this is the first verified comstruction of sliding window protocols
which use modulo-N sequence numbers where /N is arbitrary and messages in channels can
be reordered arbitrarily. The first two sliding window protocols appear to be novel. The
third sliding window protocol is best compared with the original Stenning’s protocol [15].
Like our protocols, the original Stenning’s protocol considers arbitrary (but fixed) send and
receive windows sizes, and channels that lose, reorder, and duplicate messages. Unlike our
protocols, his protocol uses unbounded sequence numbers, requires the source to resend all
outstanding data messages in FIFO order at each retransmission, and requires the destina-
tion to send an acknowledgement message in response to every received data message.
Knuth [5] has considered a sliding window protocol using modulo-N sequence numbers, and
obtained the minimum value of N that ensures correct data transfer assuming channels that
lose messages and allow messages to overtake a limited number of previously sent messages.

Because of this limitation on the reordering of messages, his protocol does not require
bounded message lifetimes and timers. (Knuth also allows the N for data messages to be
different from the N for acknowledgement messages.) In [12, 13|, we have extended the third
protocol in several respects, e.g., variable windows for flow control, selective acks, etc.

1.2. Organization of this report

In Section 1.3, we describe our system model without real-time features. In Section 2,
we present the distributed counter example first, and then describe the construction heuris-
tic. In Section 3, we present our system model with real-time features. In Section 4, we
present the initial phase of the sliding window protocol construction. In Section 5, we com-
plete this construction and present the three sliding window protocols.

1.3. System model

We model a system by a finite set of state variables v==(v,v4, - - -) and a finite set of
events eq,e9, - - - . We refer to v as the system state vector. The initial conditions on the
state variables are specified by a predicate Initzal. We use the term “predicate” to refer to
a well-formed formula of first-order logic augmented by appropriate mathematics for the
variables. When we say that a predicate is logically valid (implies, equivalent, etc.}, we are
referring to derivations within this logic.

Each event has an enabling condition and an update. The enabling condition is a
predicate in v, i.e., its free variables are from v. The event can occur only when the value
of the state vector satisfies the enabling condition. The occurrence of the event updates the
value of the state vector v. Instead of using algorithmic code, we specify the update by a
predicate in v and v/ | where v denotes the value of the state vector immediately before the
event occurrence, and v/ denotes the value of the state vector immediately after the event
occurrence. LThe event is specified by the conjunction of its enabling condition predicate and
its update predicate. Such predicates are referred to as event predicates. For example, an
event ¢, that is enabled whenever the state variable v, is less than 5 and whose action
increments the state variable vy by 1 is defined by e; =(vo<5 Av{ =v+1). (In a pro-
cedural language such as [7], e could be specified by await v,<5 then v:=v;+1.) For com-
pactness in event specifications, we have adopted the convention that if a variable v/ in v/
does not occur in an event predicate then the state variable v is not affected by the event
occurrence; i.e., the conjunct v/ =wv is implicit in the event predicate.

We shall use enabled(e) to denote the enabling condition of an event e; e.g,
enabled (e,) = v9<<5. Formally, if event e is specified by event predicate p, then
enabled (e) is defined to be any predicate in v that is logically equivalent to the predicate

v (p).

Given a predicate A in v, we use A’ to denote A with every free occurrence of v
replaced by w' . A predicate A in v is snveriant if the following are logically valid:
(a) Initial => A ; and (b) A Ne = A’ for every event e. Part (a) ensures that A holds
initially; part (b) ensures that A is preserved by every event occurrence.

Given predicates A and B in v and an event ¢, we say that A leads—to B via ey [1,
10] if the following are logically wvalid: (a) A = enabled(e;)AB', and
(b) A Ne = A’ VB’ for every event e. Whenever A holds, part (a) ensures that e is
enabled and its occurrence makes B hold; part {b) ensures that no event can violate A
without establishing B. Thus, in any fair implementation B will hold at some point. We
use leads —to to denote the closure of the leads —fo —via relation [1, 10}; e.g., A leads—to B

e

if A leads—to B v C and C leads~to B.

Consider predicates A and B in v, and an event e. We say that A is a weakest
precondition of B with respect to e if it is logically equivalent to Vv’ (e = B’). Note
that A is False over only those states where ¢ is enabled and its occurrence can cause B to
be violated. (This corresponds to Dijkstra’s weakest liberal precondition [2].) We say that
A is a suffictent precondition if it implies Vv' (e = B' }; i.e., satisfies
Yv' (A Ae = B'). Wesay that A is a necessary precondition if it is implied by

Vv' (e = B'); ie., satisfies A = v/ (e A—=B'). Finally, we will use “wrt” as an
abbreviation of “with respect to”.

Distributed system model

We specialize the above model to represent a distributed system of entities Py, P,
-+, P; and one-way channels C;, Cy, - -, Cg connected in some arbitrary network
topology. Both entities and channels are processes. Each process has a set of state variables
and a set of events. Let v; denote the set of state variables of P;. Let z; denote the
sequence of messages in transit in channel C;. The system state vector Iis
ve=(Vy, VB, 2K).

The events of entity P; can access the state variables in v; and only those z;’s of
channels connected to P;. Entity events model message sends and receptions, and internal
activities such as timeout handling. The events of channel C; involve only the state vector

z;. Channel events model channel errors such as loss, duplication, and reordering of mes-
sages in transit.

Further, entity events access z;’s only via send and receive primitives. The send prim-
itive for channel C; is defined by Send;(m)=(z;' =2;@m); ie., append the message
value m to the tail of z;. We use @ as the concatenation operator. The receive primitive
for channel C; is defined by Rec;(m)=(z;=mQ z;'); i.e., remove the message at the
head of z; and assign it to m, provided that z; is not empty. Note that Rec;(m) is False if
z; is empty. When these primitives are used in entity events, the formal message parameter
m is replaced by the actual message sent or received.

2. CONSTRUCTION OF DISTRIBUTED SYSTEMS
In Section 2.1, we present the distributed counter example and use it to motivate the
construction heuristic described in Section 2.2.

2.1. Distributed counter example

Consider the network of entities P; and P, connected by error-free channels C; and C,
as shown in Figure 1. At each entity, there is a local user who can update the counter by
adding 1 to it. Each entity P; has an integer state variable z; which is a local copy of the

G
Py Py
Gy

Figure 1. The network topology

counter. Initially, #,=2,==0. The desired safety property is that z; and z, must not differ

by more than 1 at any time. The desired progress property is that user updates should not
be permanently disabled.

Clearly, an update by the local user at P; has to be communicated to P (75%4). Let
INC be the message used to communicate the update. To specify the progress property, we
need at each P; a state variable y; that counts the number of local user updates. Initially,
y1=y9=0. The progress properties cannot be specified in terms of z, and z,, because these
can be increased, for example, by user updates at P; alone, without any user updates at P,.
We shall restrict ourselves to constructing symmetric protocols, where the specification of P,
is identical to that of P; with the subscripts 1 and 2 interchanged. We start the construc-

tion with the image system defined by the following events at P;, for ¢ =1 and 2:

I

local; ;! =z;+1 Ny =y;+1 A Send; (INC)

remote; = Rec;(INC)Az;' =z;+1

The desired safety property is specified by the following invariant requirement:

Ay = z-2,€ {-1,0,1}

The desired progress property is specified by the following progress requirements:

Ly
Lg

I

y1=n leads —to y,=n +1
yo=n leads~to y,=n+1

I

For any requirement X;, we use X; to denote X; with the variable subscripts 1 and 2 inter-
changed. Because we shall consider only symmetric protocols, whenever we introduce a
requirement X;, we shall also introduce the corresponding symmetric requirement X, unless
they happen to be the same (as in the case of A).

Observe that z,-y, counts the number of occurrences of remote, Because C, is ini-
tially empty, we expect y; 2> 25-y, to hold. We shall go one step further and restrict our

construction to protocols that satisfy the following invariant requirement (the corresponding
symmetric requirement is also stated):

f

Ay
A

yi-(zoys) € {0,1}
yo(21-y1) € {0,1} '

Il

1

Note that A,y implies 4, (We use A; ; to denote A; A A;.) If localy is to preserve

Ay, then the following must hold prior to local’s occurrence (more formally, the following is
a weakest precondition of A ; wrt local,):

So = Y=Y,

Sg Is an event requirement associated with local;. How can we enforce S, prior to
every occurrence of local;? We could insist that Sy holds whenever local; is enabled. How-
ever, because the current local; is always enabled, this corresponds to requiring S to hold

B

invariantly. Such a step would inhibit local; from ever occurring, thereby invalidating L.
The only alternative is to increase the resolution of the system state space.

We introduce at Py a boolean state variable b, and let b ,=True be the enabling condi-
tion of localy. Initially, b;=True. Obviously, S, cannot hold after local; occurs. There-
fore, local; must be disabled after each occurrence. This is accomplished by setting b, to
False in local,. Thus, we have the following refined version of localy:

lOCall == b 1 /\ 3;1’ 2$1+1 A yli ==Y 1+1 /\ Sendl(ff\fC) /\ ."b 1’

We can now enforce event requirement Sy with the following invariant requirement:

Ay = by= y1=29Ys

Event remote, preserves A iff y;=24-y,+1 holds prior to its occurrence. Let |z . |
denote the number of INC messages in z;. Because remote, is enabled only if |z, 4, | >1,
we can enforce the event requirement Sy by having |2y, | 21 = yi=azs-yo+1 as an
invariant requirement. Because remote, invalidates the consequent y;=zq4-yq,+1, we
require it to also invalidate the antecedent |z; .. | >1; ie., C; must contain at most one
INC message. This is summarized in the following invariant requirement:

Ay = | 2y e | =0V (| 2y, mve | =1Ay1=29-yo+1)

The corresponding modifications of adding state variable b, and refining local, are
made to Py. We also have the corresponding symmetric requirements Sy and A§,§' Hen-
ceforth, we shall not explicitly list these corresponding symmetric requirements and
modifications. The following marking now holds (proof below), where A;_; denotes
A NA; 41N - - ANAj, and e:A denotes that e is marked wrt A :

localy: Ay 373 So | remoteyr A 0-37-3 locals: A 0-315 S5 | remoteg A 0-37.3

Proof. Given localy, wehave Ay = A | Ay ,Ay3= A | A, = A;' for i=1-3, and
Agy= S8y Given remoie,y, we have A3 = A4 , A3=> A, , and A7 3z is not affected (ie.,
no variable in Ay 3 is updated by remote,). The markings for local, and remote; follow
from symmetry; i.e., local; is marked wrt to A; (A7) iff local, is marked wrt Ar (A;). Also,
recall that A is the same as A5 End of proof.

We still need a marking for L. To preserve L, we require an event at P; that resets
by to True. Denote this event by reset;. If reset; is to preserve Ao, then y;==29-y4 must
hold prior to its occurrence. From A s, we know that remote 5 establishes y =2z 4y, Thus,

we refine remofeg to send a new message ACK | and refine reset; to occur only upon the
reception of an ACK :

remote
resety

Rec (INC) A2y —ay+1 A Send (ACK)
R@C Q(AGI{) A 6 1’

!

The earlier marking of remotey wrt A, .75 continues to hold because A, 373 does not
involve z,, while the modification to remote , updates only z,.

e

We can now enforce the event requirement y,=z4-y, of resef; by requiring
| 23 40x | =1 = y1==2 -y, to be invariant, where |z, | is the number of ACK mes-
sages 1n 2z, Because Jocal; violates the consequent y;=zo-y, We require
| 2940 | 1= —b; to be invariant. Because resef; violates the consequent —b;, we

require | #y 40 | <1 to be invariant. This is summarized in the following invariant require-
ment:

Ay = I Zo a0 | =0V (* 29, 40x ! =1Ayi=z2-yaAby)

The previous marking can now be extended to the following:

localy: Ay 413 So | remotey: Ag 477 | resely Ag 1y

localy: Ay 413 S5 | remotey Ay 73 | resetg Ay 473

Proof. Given local, we have A,=> A, and Ajnot affected. Given remote, we have
Agy= A, and Ajnot aflected. Given resel, we have A, => A 24 ,and Ay 57 700t
affected. Markings for local,, remote |, reset, follow from symmetry. End of proof.

We have by Ay;=n leads~to y,=n+1 vialocal;. Thus, to establish L, it is
sufficient to establish —b; leads—to b;. We have |zg, 0 | >1 leads—to b, viareset;, and

| 21 e | =1 leads ~to | 29 45 | =1 via remotey. Thus, we can mark Ly by introducing the
following invariant requirement:

Il

Ag —151:\9]zl,mc i 21\/ ‘ZQ,ACK 121

Both local, and remote, imply A’ because they send a message. Event reset; implies
by which implies A¢' . These events do not affect A

At this point, all of the invariant requirements are marked wrt all events, and all event
and progress requirements are marked. The construction is terminated successfully. Each
P, is specified by state variables =;, y;, b; with initial values 0, 0, True, respectively, and
the latest versions of the events local; , remote; , reset;.

2.2, Construction heuristic

We now provide a description of the construction heuristic. The construction of a dis-

tributed system proceeds in successive steps. At any point during the construction, we have
the following:

(a) An image system specified by a finite set of state variables v, initial condition predicate
Indtial | and a finite set of events €4, €4, - * -

(b) A finite set of invariant requirements Ao, Ay, - - - . Each A; is a predicate in v. We
use the notation A to denote the conjunction of all the A;’s that are currently defined.
Initial = A is always logically valid. (We want A to hold at all times.)

{c) A finite set of event requirements Sg, Sy, - - - . Each 5; is a predicate in v that is asso-
ciated with an event. We use the notation S, to denote the conjunction of all the S5;’s
that are currently associated with event e. (We want S, to hold prior to any
occurrence of ¢ .)

(d) A finite set of progress requirements Lo, Ly ---. EBach L; is a leads~to or a

-

leads —to —via statement.

(e) Marking:
An event ¢ is marked with respect to an invariant requirement A; if
A AS, Ne = A;' is logically valid.

An event requirement 5; of event e is marked if A A enabled(e)=>S; is logically
valid.

A progress requirement B leads—~to C wviae, is marked if the following are logically
valid: B AA NS, = enabled (e) ANC' , and BAA NS, ANe = B' v ' for every
event e.

A progress requirement B leads ~to C is marked if it can be derived from the closure of
the marked leads —fo —via requirements.

We begin with an image system that has just enough structure to specify the safety
and progress properties desired of the distributed system to be constructed. The marking is
initially empty. Typically, the set of event requirements is also empty because the desired
safety properties can be specified in terms of invariant requirements alone.

The construction terminates successfully when the following conditions hold: (a) every
S; is marked; (b) every event e is marked with respect to every A;; (c) every L; is marked.
Condition (a) implies that 4 Ae =S, holds. This and condition (b) imply that
A Ne = A' holds for every event e. We always have Inifial = A . Thus, A is invari-
ant. This and condition (c¢) imply that the image system satisfies all the L;’s.

Let us formalize the notion of event refinement. Recall that every event e is specified
by an event predicate. Let the specification of event e be changed from event predicate p
to event predicate ¢. We say that e is refined if A A S, A ¢ = p holds. In other words,
the effect that the new e can have on the state vector v is a special case of the effect that
the old e can have on the state vector v. (This definition of event refinement can be
extended to include sequential composition of events [10].)

We have the following rather obvious replacement property. Given a predicate B that
is logically implied by A, we can replace an invariant requirement A; by B = A; or
B AN A;. Recall that S, is the conjunction of all event requirements associated with an
event e. Given a predicate B that is logically implied by A A S,, we can replace an event
requirement S; of ¢ by B = 5; or B A S;.

We now describe some refinement steps that can be applied during a construction. We
shall refer to steps in the distributed counter construction for illustration.

1. Refinement of event requirements

Let event ¢ be unmarked wrt invariant requirement A;. Obtain a weakest precondition
B of A; wrt e. If B is not logically implied by A A S,, then include B as a new event

requirement of e. Mark e wrt A;. (This is how S is obtained in the distributed
counter example.)

If the predicate expression for a weakest precondition is unmanageable (and this depends
on our ingenuity and patience [2]), then we can obtain either a sufficient precondition or
a necessary precondition. In the latter case, e remains unmarked wrt A;; this is still a
useful step because it increases the set of requirements.

In any case, because of the replacement properties, we can always replace the precondi-
tion B with a predicate equivalent to ¢ = B or C A B, where C is logically implied by
A AS,. Thus, we can define a weakest precondition B to be a predicate that is logically

D

equivalent to Vv' (A AS, Ae == A;'). Similarly, we can define a sufficient precondi-
tion B to be a predicate that satisfies Vv/ (A A S, AB Ne = A;'). Predicate expres-
sions obtained from these definitions are often much simpler than expressions obtained
from the original definitions of weakest and sufficient preconditions in Section 1.3.

2. Refinement of invariant requirements

Given an event requirement .S5; associated with event e, we can introduce
enabled (¢) = S; as a new invariant requirement. As a result, S; is marked. (Illustrated
in the distributed counter example by the derivation of A, from Sg.)

Similarly, an invariant requirement can be introduced in order to mark a progress
requirement. (Illustrated in the distributed counter example by the derivation of Ag
from Lg.)

3. Refinement of event enabling conditions

Let event e of entity P; have an event requirement S; which refers only to v,. Let e be
defined by the predicate p. Then we can refine e to be 5; Ap. As a result, S; is
marked. The marking of e with respect to invariant requirements is not affected by this
refinement. However, this refinement step can potentially unmark a leads —to —via pro-

gress requirement involving e, which in turn can unmark leads-io progress require-
ments.

4. Refinement of system state vector and events

Let the state vector v be augmented with new state variables u, and Initial be aug-
mented with new conjuncts that define initial conditions for state variables in u.

An existing event e can be modified with the addition of updates to the new state vari-
ables in u. If the new predicate defining e is an event refinement of the old predicate
definition of ¢, no marking is affected (otherwise, see step 6 below).

A completely new event e that updates only state variables in u can be introduced; such
an event is marked with respect to all existing A, .

The above refinements are illustrated in the distributed counter example by the addition
of state variable b; and the refinement of event local; .

5. Introduction of new messages

To introduce a new message m that is sent by P; to P; via Cy, we introduce Send; (m)
in a new or existing event ¢; of P;, and introduce Recy(m) in a new or existing event e;
If e; (or e;) was previously marked wrt to an A;, then that marking can remain only if
A; does not refer to z; or refers to z; only in functions or predicates whose values are
not affected by adding m to the tail of z; (or removing m from the head of z;); e.g., a
function that returns the number of my’s in z; where mg is a previously defined message,
and a predicate that is True iff a given sequence of messages is in zj .

This step is illustrated in the distributed counter example by the addition of the message
ACK.

6. Modification of system events

An existing event e¢ defined by predicate p can be redefined to be a predicate ¢, where ¢
is not an event refinement of p. Every marking involving ¢ has to be reexamined, and
uvnmarked if it no longer holds.

~10-

A new event e that updates existing state variables can be introduced. Such an event is
unmarked wrt to every existing 4;. (Illustrated in the distributed counter example by
the addition of event reset; .)

This is the reversal step that allows us to undo the construction to a limited extent. We
must be careful not to modify the updates to state variables that were used to specify the
desired properties at the start of the construction. Otherwise, these state variables may
not have the meaning intended when they were used to specify the desired properties.

General observations

The construction terminates unsuccessfully whenever we have a requirement that is
logically inconsistent with the other requirements or with the initial conditions; e.g., an A;
such that A; = —A V —~Initial, or an §; of event e such that S; = —A v =S, vV —Initial .

Generating a precondition that is only sufficient (and not necessary) and including it as
an event requirement may cause unsuccessful termination later on. Generating an invariant
requirement from an event or progress requirement may have a similar effect if it is done
without an adequate resolution in the system state space (as defined by the state vector v).
New state variables should be introduced whenever it is determined that the generation of
an Invariant requirement will cause unsuccessful termination.

It is often very convenient to generate a precondition wrt a sequence of events, rather
than just one event. For example, B is a necessary precondition of A; wrt to a sequence of
events e, - - - ,e, if there exists By, By, - -, B, such that —B;_;=> ¢ A—=B;’ for
i==1,..,n, and —B, = —A;.

3. REAL-TIME SYSTEM MODEL

For the sliding window protocol construction, we require a system model in which real-
time constraints can be formally specified and verified. Such a real-time model has been

presented in [10]. We now give a summary description of that model, adequate for our pur-
poses here.

The system model presented in Section 1.3 is augmented with special state variables,
referred to as timers, and with fime events to age the timers. A timer takes values from the
domain {Off,0,1,2, - - - }. Define the function next on this domain by nezt(Off)==Off and
next (i }==1 +1 for 1 520ff. A timer can also have a maximum capacity M, for some positive
integer M ; in this case, next (M)=0Off.

There are two types of timers: local timers and ideal timers. Local timers are ones
implemented within individual entities of a distributed system. For each entity, there is a
local time event (corresponding to a clock tick) whose occurrence updates every local timer
within that entity to its neat value. No other timer in the system is affected. Thus, local
timers in different entities are decoupled. We assume that the error in the ticking rate of
the local time event of entity P, is upper bounded by a specified constant ¢;; e.g., ¢; ~~107°
for a crystal oscillator driven clock.

We also include in our model an ideal time event whose occurrence updates every ideal
timer in the system. The ideal time event is a hypothetical event that is assumed to occur
at a constant rate. Ideal timers are not available to the implementation. Rather they are
auxiliary variables that record the actual time elapsed, and are used to measure errors in the
rates of local time event occurrences.

w11

In addition to being affected by its time event, a timer of an entity can be updated to
either 0 or Off by an event of that entity. The former is referred to as starting the timer,
and the latter as stopping the timer. Thus, a timer that is started by an event occurrence
measures the time elapsed since that event occurrence.

Given an ideal timer u and a local timer v of entity P;, we define the predicate
started —together (4 ,v) to mean that at some instant in the past u and v were simultane-
ously started, and after that instant neither u nor v has been started or stopped. The
maximum error in the rate of P;’s local time event occurrences is modeled by assuming the
following condition, which we shall refer to as the accuracy aziom:

Accuracy axiom. started —fogether (u,v) = |u-v | <max(l, ¢; u)

An invariant requirement A; can include started —together predicates. To mark such

an A; wrt to an event e (ie., to derive e AA = A;'), we use the following two rules pro-
vided that e is not a time event:

(a) u! =0 A v’ =0 implies started —together (u ,v) .

(b) u' =u Av' =v A started —together (u ,v) implies started —together (u v} .
We use the following rule if e is a time event:

(c) u' 52O0ff A v’ 5£Of A started —together (u ,v) implies started —together (u ,v) .
Time constraints

With timers and time events, time constraints between event occurrences can be
specified as safety properties. For example, let e; and e, be two events, and let v be 2
timer that is started by e, and stopped by e, The time constraint that e, does not occur
within T time units of e’s occurrence is modeled by having v > T as an event requirement
of €4, or by transforming it to the invariant requirement enabled(eg) == v >T . The time
constraint that eo must occur within T time units of ey’s occurrence is modeled by having
v <T as an invariant requirement.

A time constraint is either implementable or derived. An smplementable time con-
straint is one that is enforced by an individual process of the protocol system without any
cooperation from the rest of the protocol system. In this case, the corresponding safety pro-
perty is referred to as a fimer aziom, and is assumed to hold. Obviously, arbitrary time
constraints are not implementable, and hence cannot be treated as timer axioms. If the two
examples above are to be implementable, then both e; and e, have to be events of the same
process. Furthermore, in the second example, the enabling condition of e, must depend
entirely on that process; e.g., e, cannot require the reception of a message. (See [10] for a
formal definition of implementable time constraints.)

A derived time constraint is one that holds for the protocol system because of the
interaction between the processes. In this case, it is a safety property and has to be verified,
just like any other safety property. Note that our system model now has time events, n
addition to the usual communication and internal events. Thus, to establish an invariant
requirement A; that involves timers, we have to ensure that it is preserved by the time
events also. Because time events update only timers, we can automatically mark them wrt
invariant requirements that do not refer to timers.

-12-

4. SLIDING WINDOW PROTOCOL CONSTRUCTION: INITIAL
PHASE

We consider the network topology of Figure 1, where the channels C; and C, can lose,
reorder and duplicate messages in transit. There is a source at Py that produces new data
blocks, and a destination at P, that consumes data blocks. We want to construct a sliding

window protocol that delivers data blocks to the destination in a timely manner and in the
same order as they were produced.

We start by considering the most basic features found in any sliding window protocol.
Refer to Figure 2. At any time, let data block 0, data block 1, ..., data block s-1, denote
the sequence of data blocks that have been produced by the source at P;. Of these, data
blocks O to a—1 have been sent and acknowledged, while data blocks @ to s -1 are unack-
nowledged. At any time at P,, data blocks O to r -1 have been received and forwarded to
the destination in sequence, while data blocks in r to r +RW -1 may have been received

(perhaps out-of-sequence) and are temporarily buffered. The numbers r to r +RW -1 con-
stitute the recetve window, RW is its constant size.

s-1
012.. acknowledged 1 unacknowledged 1 data blocks at Py
receive window
012.. passed to destination T not received or buffered t data blocks at Py
r r+RW -1

Figure 2. Relationship between a, s, r

A sliding window protocol uses modulo-N sequence numbers to identify data blocks,

where N >2. We use @ to denote n mod N for any integer value n. We use® and © to
denote modulo-N addition and subtraction respectively.

Py sends data block n accompanied by sequence number #. When P, receives a data
block with sequence number #, if there is a number 7 in the receive window such that
i==n, then the received data block is interpreted as data block 7. P, sends acknowledge-
ment messages containing 7, where n is the current value of r. When P; receives the
sequence number 7, if there is a number ¢ in the range a +1 to s such that 7 =%, then it is
interpreted as an acknowledgement to data blocks ¢ to ¢-1, and a is updated to equal 7.
P, increments s when a new data block is produced. P, increments r when data block r is
forwarded to the destination.

Observe that each cyclic sequence number % corresponds to an unbounded sequence
number n. When a cyclic sequence number is received at an entity, we require the entity to
correctly interpret the value of the corresponding unbounded sequence number (which is not
available in the message); i.e., ¢ must equal n above. To reason about correct interpreta-
tion, we include the unbounded sequence number as an auxiliary field in the message.

4.1. Initial image system

We now formally specify the image system. Let the data messages sent by P; be of the
type (D ,data ,cn ,n), where D is a constant that indicates the type of the message, data is
a data block, cn is its identifying cyclic sequence number, and n is the corresponding

~18-

unbounded sequence number. Let the acknowledgement messages sent by P, be of the type
(ACK ,cn ,n), where cn is a cyclic sequence number, and n is the corresponding unbounded
sequence number. Here, cn takes values from [0..N-1], and n takes non-negative integer
values. The notation [i..j] denotes the sequence of integers [¢,7+1,...,7]; the sequence is
empty if 1 >7.

Specification of P,

We next list the state variables of P, using a Pascal-like notation for specifying their

domain. DATA denotes the set of data blocks that can be sent in this protocol; empty is a
constant that is not in DATA .

Source : array[0..00] of {empty } U DATA ; {Source [n] will record the n th data block
produced by the source. Initially, Source [0..00] = empty }
s : 0..00; {Source [0..s ~1] have been produced by the source. Initially, s = 0}

a : 0..00; {Source [0..a-1] have been acknowledged. Initially, ¢ = 0}

We now specify the events of P;. Given an array S, we use the notation S[n| =d as an

abbreviation for S[n| =d AVi(istn = S[i| =5i]). (S|n] ==d corresponds to the
procedural statement S [n]:=d .)

sourcedata = Source[s] € DATA Ns' =s+1
senddata = dn(n € a..s-1] A Send (D ,Source [n],7 ,n))
recack = den,n(Recy{ACK ,cn ,n)

ATJi(i €la+ls]Ai=cn Na' =i)
V(=di(i €Elat+l.s|Ai=cn)Na’ =a)))

Event sourcedata is always enabled to accept any data block. senddata is always enabled
to send any unacknowledged data block. recack is always enabled to receive any

(ACK ,cn ,n) message; the message is ignored if there is no ¢ matching cn; the auxiliary
field n is not accessed.

Specification of P,
The state variables of P, are as follows:

Sink : array[0..00] of {empty } U DATA ; {Sink [n] will record the received data block
interpreted as the n th data block. Initially, Sink [0..c0] = empty }

r : 0..00; {Sink [0..r 1] have been passed on to the destination. Initially, r = 0}

The events of P4 are as follows:

sinkdata = Sink[r|£empiy ANr! =r+1
sendack = Send,(ACK F,r)
recdata = ddata,cn ,n{ Rec(D ,data ,cn ,n)

AJi(i €[r.r +RW-1] A i=cn A Sink[i]' =data)
V(=di(i €lr.r+RW -1 ANi=cn) A Sink! =Sink)))

sinkdata is always enabled to sink any insequence data. sendack is always enabled. rec-
data is always enabled to receive any (D ,data,cn ,n) message; the message is ignored if
there is no ¢ matching cn ; the auxiliary field n is not accessed.

34

For the sake of brevity, we have assumed that Source, Sink, s, a, r are available to
the implementation. Later, we will refine the events so that these become auxiliary vari-
ables.

Specification of channels

Each C; has a state variable z; that denotes the sequence of messages in transit. C;
has an event that can lose, duplicate and reposition any message in z;. We will make sure
that every occurrence of z; in the invariant requirements is in a predicate of the form

m € z; for some message m. Thus, every invariant requirement can automatically be
marked wrt channel event.

4.2. Requirements

We want the protocol to satisfy the following invariant requirements:

Ay = 0<aea <r <s
Ay = n €0.r-1]= Sink[n]= Source[n]

Ay specifies that data is acknowledged at Py only after it has been delivered to the destina-
tion at Py, which in turn happens only after it was accepted from the source at P;. A,
specifies insequence delivery of data to the destination.

We want the protocol to satisfy the following progress requirement:

Ly = a=n leads—to a >n+1

L specifies that any data block n will eventually be acknowledged. Because of the safety
properties A, this will occur only after data block n is produced and delivered to the des-
tination. L g requires the following:

RW2>1

Otherwise, recdata will never place any data into Sink[r]; therefore sinkdata will never
increase r; because of Ay, a will never increase.

The following invariant requirements formalize the meaning of s, r +RW, and the
unbounded sequence number field in messages:

Ay = n2>s < Source|n|=empty

Az = n2>2r+RW = Sink|[n|=emply

Ay = (D, data,cn,n)in z; = data =Source [n| A cn =%
Ay = (ACK en,n)in 29= cn="n

Because of A 45, henceforth we assume that ¢n =% for any message in the channels.

The following invariant requirement, which states that data blocks buffered at P, have
been correctly interpreted, is a sufficient precondition of A ; wrt sinkdata :

=1 B

Ag

I

n € [r.r +RW-1] A Sink [n|s2empty => Sink [n|==Source [n]

In fact, Ay is a necessary precondition because a succession of sourcedata, sendata, and
sinkdata occurrences can take Ag A —Ag to —A ;.

Marking
The following table indicates the (e ,A;) pairs that can be marked (proof below):

sourcedata: Agg | senddata: Ay g | recack: A g
sinkdata : Agg sendack : A g g recdata : Ags

In the proof of the marking, we use the following conventions for the sake of brevity.
We say A == A;’ holds given an event ¢ to mean that ¢ A A == A;’ holds; thus, ¢ can
be marked wrt A;. We say that A; is not affected given event ¢ if e does not update any
of the variables in A;, with the exception of a channel state variable z; from which e
removes a message. Because z; can occur in A; only in the form m € z;, this means that ¢
can be marked wrt A;.

Proof of marking.

Given sourcedata we have Ag=> Ay ,Ag;= A ,Ay=> A, ,Age=> A¢ ,and A5
not affected.

Given sendata we have Ay = A, |, and Ay 355 not affected.

Given recack , we have A, 4 not affected.

Given sinkdata we have Agog=> Ay , A1g= A, ,Ag= A, ,Ags3= A4 ,and Ay,
not affected.

Given sendack we have As=> A5’ , and A g4 not affected.

Given recdata we have A= A, , Az= A, ,and Agq45 not affected.

End of proof.

4.3. Correct interpretation of messages

Recall that every message in C; has a cyclic sequence number @ corresponding to an
unbounded sequence number n. When P; receives a message, it either ignores the message
or interprets @ as equal to some ¢. Thus, we define the correct interpretation requirements
as follows: for any message in C; that can be immediately received and will not be ignored,
¢ must equal n. Note that if C; can reorder, then any message in it can be immmediately
received by P ;.

The correct interpretation requirement for data messages is specified by the following
invariant requirement:

A, = (D,data i n)€z ANi €[r.r+RW-1]A\1=7 = i=n

A can also be obtained directly as a necessary precondition of Ay wrt recdata . Its neces-

sity follows because Source [/] and Source [n| are arbitrary entries from DATA , and there-
fore Source [i |==Source [n] iff i=n.

The correct interpretation requirement for acknowledgement messages is specified by
the following invariant requirement:

-16-

Ay = (ACKAn)€z,Ai €Ela+l.s|AT=T = i=n

Because of Ag, a weakest precondition of Ay wrt recack is
(ACK,min)EzgNi €Ela+l..s]Ni=" = n <r. However, it is obvious that we expect

any {(ACK ,7 ,n) message in z, to satisfy n <r. We specily this in the following invariant
requirement:

Ay = (ACK enn)Ezy=n<r

The corresponding requirement for data messages is (D ,data,cn,n) €z = n <s-1,
which can be derived from A 57 and data s%empty .

The previous marking can be extended to the following:

sourcedata: Ay qg | senddata: Ay g9 | Tecack:Agg
sinkdata 1 Ay gg g sendack : Ag 74 recdata: Agg

Proof of extension of marking

sourcedata does not affect A;g. senddata does not aflect A gg.

Given recack we have Agg=> Ay , Ag=> A4 , and A4 not affected.
Given sinkdata we have Ag=> A4 , and A4 not affected.

Given sendack we have Ag= Ay , and A7 not aflected.

Given recdata we have A7, => Ag , and A;gg not aflected.

End of proof.

4.4. Refining the requirement to interpret data correctly

We now determine the values of v, RW, and the unbounded sequence numbers n in
C, that satisfy A;. First, observe that a succession of sourcedaia followed by a senddaia
can always take Ay to (D ,data ,7,r) € z;. If RW >N, then (D ,data ,7,r) € z; violates Ay
with i=r +N. Thus, RW <N is a necessary condition. Combining this with EW >1, we
have

1<RW <N

Second, observe that i € [r.r FRW-1]AT=n iff i-r € [0.RW-1]A¢i—r=n=F iff
i—F € [0.RW-1]Ai=r+7—F__ The last equivalence is because RW <N and

i—r € [0..RW-1] imply ¢—r==2-r. Thus, we can refine recdata to the following, where we
have also used the modulo arithmetic property 7i—7 =ROT :

recdata = ddata,cn ,n(Rec (D ,data ,cn ,n)
A (cn©F € [0.RW -1 A Sink [r +cnSF) =data)
V (cn©F € [0.RW 1] A Sink' =5Sink)))

We can rewrite A, as the following invariant requirement:

(D data A n)Ez AT—F E0.RW-1]= n =r+A—7

=

This specifies that every n in z; must satisfy either of the following:
(i) a=7 € [0.RW-1] A n=r+7—F, which is if n € [r..r +RW -1] (because RW <N).
(iiy =7 € [RW..N-1|, which isiff n € [r +RW +kN..r + N-1+kN| for some k.

In addition to satisfying (i) and (ii), it seems reasonable to assume that the n’s in C; satisfy
the following: if C; contains n; and n,, then it is possible for C; to contain any n in
[nq..n]. Finally, because of A, and sendata, it is always possible for C; to contain n equal
to r. Thus, we are looking for a contiguous set of integers that satisfies either (i) or (ii) at
each integer, and includes r. The largest set that meets these requirements is
[r+RW-N..r +N-1], which is obtained by taking the union of [r.r+RW-1] and
[r +RW +kN..r +N-14+kN| for k=0 and -1. Thus, we have the following invariant

requirement:

Aw = (Ddatamn)€z,=n€[r-N+RW.r +N-1]

4.5. Refining the requirement to interpret acknowledgements correctly

Proceeding as in the case of data sequence numbers above, we now determine the
values of a, s, and the unbounded sequence numbers n in C, that satisfy Ag First,
observe the following: < sendack recack ,sendack >can take the system from A, to
a==r N(ACK ,@,a)€ zy; 2a succession of sourcedata can take the latter to
s—a >N A(ACK ,@,a) € 2y, which violates A g with ¢ =a +N. Thus, we obtain the follow-
ing invariant requirement:

Ay = s—-a < N-1

Second, observe that ¢ Ela+l.s]Ai=R iff i(-a €[l.s—a|ANi-a=F—a iff
i@ €[l.s-a]Ai=a+R—-a. The last equivalence is because A;; and i-a € [l..s-a]

imply ¢—e==¢—a. Thus, we can refine recack to the following, where we have used
n—a=n0au:

recack = den,n{ Reco(ACK ,cn ,n)
A((en©T € [l.s—a]Aa' =a+cnO7)
V(en©@ € [1.s—a]Aa' =a)))

We can rewrite A g as the following invariant requirement:

(ACK in)€zshi—a €[l.s—a]|=n = a-+n—a
This specifies that every n in zs must satisfy either of the following:
(i) ama € [l.s—a|An=a+7—a, which is iffl n € [a+1..5] (because of 4 ;).
(i) 7=a € [s—a+1..N|, which is iff n € [s +1+kN..a +N +kN| for some k .
Because of sendack, C; can always contain n equal to r. Therefore, as in the case of data
sequence numbers, we are looking for a contiguous set of integers that satisfies either (i) or
(ii) at each integer, and includes r. The largest set that meets these requirements is
[s +1-N..a +N], which is obtained by taking the wunion of [a-+1.s] and

[s +1+kN..a +N+kN] for k=0 and ~1. Because of A gg;;, we can replace the upper bound
a+N by r. Thus, we have the following invariant requirement:

~18-

Ay = (ACKAn)€Ezy=n €[s-N+1.r]

4.8. Constraints on accepting new data

Observe that A ;3 can be violated by senddata and by sinkdata. The sinkdata event
can violate A ;5 by increasing r to a value m such that there is an n in C; that is less than
m—N-+RW . Because of Ag, we know that m <s holds. Because the channels can reorder
and duplicate messages, we observe that it is always possible for m =s to hold. Thus, we
shall require every n in C; to satisfy n >s-N-+RW, rather than the weaker bound
n>r-N+RW in Ay, Finally, observe that the upper bound r+/N-1 in Ay can be
replaced by s~-1, because of Ag;;. Thus, we have the following invariant requirement:

Ay = (D,datain)€Ezy=n €[s-N+RW..s-1]

A5 can be violated by senddata and by sourcedata. The senddata event can introduce
any n € [a..s—1] into C;. This always preserves the upper bound s—1 in A ;. The lower
bound is preserved iff ¢ 2s-N+REW . Thus, we have the following invariant requirement:

Ay = s-a < N-RW

Observe that A, implies that RW <N-1. Otherwise sourcedata can never occcur and
Ly will never hold. Combining this with 1I<REW <N, we have

1<RW <N-1

The previous marking can be extended to the following:

sourcedata: Ag 7910 | senddata: Ag q4 | recack: Ag iy
sinkdata: Ag j4 sendack: Ag 4 recdata: Ag 14

Proof of extension of marking

Given sourcedaia , we have A iy not affected.

Given senddata, we have A 531, = A3’ , and Ay 914 not affected. We can also mark
A 7,10 because A 0,11,13 = A 7,10

Given recack we have Ay => Ay , and A54513 not affected. We can mark A,y because
A= Aqp

Given sinkdata we have A ;5 => A1y , Ay 13 14 not affected. We can mark A, because
Agi,13= Ar0

Given sendack we have A == Ay |, Aggia=> Ay, and A 1911,13,14 Dot affected.

Given recdata we have A {5 4 not affected.

End of proof.

All that is left is to ensure that sourcedata preserves A o34. This would also mark
Agqy because Ag 914 = Agy;. We now obtain the following three necessity requirements as
the weakest preconditions of A 14, A 15, and A ;5 respectively wrt sourcedata:

-19.

Sg = s-a < N-RW-1
S, = (D, datai,n)€z=n>s-N+REW-+1
S, = (ACK,in)€zy=>n>s-N+2

At this point, sourcedata can be marked wrt Agyy 34 We have left the preconditions Sg.
as event requirements because they have exactly the same form as the invariant require-
ments A 141312 from which they were derived, with N being replaced by N-1. Therefore,
transforming the above .S;’s into invariant requirements would merely lead us to repeat the
construction with a smaller N. In fact, repeated reductions like this would eventually lead
to N=RW , at which point we would have a dead protocol because of A ;.

S is a requirement involving only variables of P;. Hence it can be incorporated into
the enabling condition of sourcedata, which is now refined to

sourcedata = s-a < N-RW-1A Source[s] € DATA Ns' =s+1

This marks sourcedata wrt Sg. At this point, we have the following marking:

sourcedata: Ay 14,59 | senddata: Ay 44 | recack: Ag 14
sinkdata 1 Ag 14 sendack : A g 14 recdata : Ag_ 14

4.7. Bounded message lifetime channels

All that is left is to enforce S; and S, before every occurrence of sourcedata. Unlike
Sy, these requirements cannot be included in the enabling condition of sourcedata because
they involve messages in z; that are not accessible to P;. Because C; and C, can reorder
and duplicate messages to an arbitrary extent, it is obvious that S; and S, can only be
enforced if the channels impose an upper bound on the lifetimes of messages in transit.

Therefore, we assume a message cannot stay in channel C; for longer than a specified
MazDelay; time units.

To formally specify this real-time constraint, we augment our existing image system
with timers and time events. As usual, every addition we make will be a refinement of the
image system. To every message in a channel, we add an auxiliary ideal timer field, denoted
by age, that indicates the ideal time elapsed since the message was sent. The age field is
started at 0 when the message is sent (this update is specified in the send primitive). Like
any ideal timer, the age fields are updated to their next values by the ideal time event.
The maximum message lifetime property is specified by the following timer axioms, which
are assumed to be invariant for the system:

TX,
TX,

I

(D ,data ,@,n ,age)in z; = MaxDelay; > age > 0
ACK 7 ,n ,age)in 2y = MazDelayy, > age > 0
2 2 =

I

Recall that predicates of the form (M ,f) € z; occur in our A;’s, where f denote the
fields of message type M. We now treat (M ,f)E€z; as corresponding to
Jage (M ,f,age) € z;). Because Ay ;4 do not involve timers, the ideal time event can be
marked wrt them. Thus, the previous marking can be extended to the following:

~20-

sourcedata: Ay 44,5, senddata: Ay 44 | recack: Ag
sinkdata: A g 14 sendack : Aqg 14 recdata : Ag_qy4
tdeal time event: Ag 4

4.8. An implementable time constraint that enforces S;

In this section, we prove that S, is enforced if P, produces Source [n] only after Maz-
Delay, ideal time units have elapsed since Source [n—-N+RW | was last sent. In Section 5,
we implement this ideal time constraint in terms of local timers. '

Define the following array of ideal timers at Py:

Tp : array[0..00] of ideal timer; {Tp [n | will record the ideal time elapsed since
Source [n | was last sent. Initially, Tp [0..00] = Off}

Tp is started in senddata , which is now refined to the following:

senddata = dn{n €la..s-1] A Send (D ,Source [n],w,n) A Tp[n] =0)

The following invariant requirement specifies that T [n] records the ideal time elapsed
since Source [n] was last sent:

Ay = (D, data 7,n,age)€ 2= age > Tp[n| >0

It is obvious from A ;5 and TX; that a (D ,data ,7,n ,age) message is not in Cy if
Tp [n] is either greater than MazDelay, or Off. Thus, S, holds if the following time con-
straint holds:

Ss = n €0.s-N+RW|= Tp[n|>MaxDelay,V Tp [n |=O0Of

S5 is an implementable time constraint. It implies the following invariant requirement:

Ay = n €0.s-N+RW-1]=> Tpn]>MazDelay,V Tp [n]|=0f

A g is preserved by sendata because a >s-N-+RW -1, and by sourcedata because of Ss.
Because A 4 i1s an invariant requirement, P; can enforce S5 by enforcing the following time
constraint:

S, = s>N-BW = Tp[s-N+RW|>MaaDelay,V Tp [s ~N +R W |=0f

The above discussion is formalized in the following marking:

sourcedala : Ag 15,5012 | senddata: Ay yq | recack: Ay i
sinkdata @ A g 1 sendack: A g 16 recdata: Ag i
ideal time event: Ag i

-3

Proof of extension of marking

Given senddata, we have Ay = A5 ,and A5,,=> A, .

Given sourcedata, we have SyNA 5= Ay , S4NAg A TX 1= 513, and A5 not
affected.

Given ideal time event, we have A ;= A’ jand Az= A, .

A 5 and A 45 are not affected by any other event.

End of proof.

To enforce Sy, it is sufficient if Py tracks the ideal timers in Tp [s —-N +RW..s -1]. This
can be done with a bounded number of local timers, each of bounded counter capacity. For
example, a circular array of N-RW local timers, where local timer n mod N-RW tracks
Tp[n] for n € [max(0, s—N+RW)..s~1]. Each local timer can be stopped once it indicates
that the corresponding ideal timer has exceeded MazDelay,. (See Section 5. for several
different implementations.)

4.9. An implementable time constraint that enforces S,

In this section, we prove that S, is enforced if P, produces Source [n] only after Maa-
Delay, ideal time units have elapsed since Source [n—N+1] was acknowledged. In Section
5, we enforce this time constraint in terms of local timers.

Sy can be enforced only by ensuring that more than MazDelay, time units have
elapsed since (ACK ,7,n) was last sent, for any n € [0..s—-N+1]. Unlike the previous case
nvolving data messages, P, does not have access to the time elapsed since (ACK ;7 ,n) was
last sent. This is because ACK messages are sent by Py and not by P;. However, P; can
obtain a lower bound on this elapsed time because of the following considerations:
(ACK ,7,n) is not sent once r exceeds n; a exceeds n only after r exceeds n; @ and r are
nondecreasing quantities. Thus, the time elapsed since a exceeded n is a lower bound on
the ages of all (ACK ;7 ,n) in C;. Furthermore, this elapsed time can be measured by P,.

With this motivation, define the following array of ideal timers at P,

Tg : array[0..c0] of ideal timer; { T [n] will record the ideal time elapsed since r first
exceeded n . Initially, Tp [0..00] = Off}

Ty is started in sinkdata , which is now refined to the following:

sinkdats = Sink [r|£emply Ar! = r+1 A\ Tp[r]| —0

The following invariant requirements specify that » is nondecreasing, and that T [n]
for n <r is a lower bound to the age of any (ACK ,7 ,n) message in Cy:

Ay
As

Tp[0]2Tp[1]= - - - 2 Tg [r-1]20A T [r..c0]=Of
(ACK W,n,age)EzgAn <r = age > Tp[n] >0

.

i

We define the following array of ideal timers at Py:

T, : array[0..c0] of ideal timer; { T4 [n] will record the ideal time elapsed since a first
exceeded n . Initially, T4 [0..c0] = Off}

T, is started in recack, which is now refined to the following:

-22..

ll

recack den ,n(Rec ol ACK ,en n)
A((cn©T €[l.s—a|Aa’ =a+cnOa A Ty [a..a’ -1) =0)

V(en©a ¢ [ls-alha' =a A Ty' =T4))

The following invariant requirements specify that e is nondecreasing, and that T4 [n |
is a lower bound to Ty [n]:

Alg
AQO

I

T4 la-1120 A T4 [a..c0]=0f
<Tg|n]

1l

T4 01ZT4 11> - 2
n €[0..a- 1}:>TA[]

From A 1415 90 and TX 5, we see that the following time constraint implies S

Sy = s>2N-1= T,[s-N+1|>MazDelay,

The above discussion is formalized in the following marking:

sourcedata: A g 90,503 senddata: A g oy | recack: Ag o
sinkdata 1 A g op sendack : Ay o recdata : A g o
ideal time event: A g 9

Proof of extension of marking

Given i¢deal time event, we have A; = A;’ for 1==17,18,19,20.

Given sourcedata, we have S5 A\ A 1415 90 = So, and A 17 99 not affected.

Given senddata , we have A j7_9p not affected.

Given recack , we have Ajg=> A’ | Ay AAj7o0=> Ay (we can use Ay because A
is marked wrt recack), and A ;7,4 not affected.

Given sinkdata, we have A= Ay , AgANTXy=> Ay | Agag= Ay , and A g not
affected.

Given sendack , we have A ;3= A4’ , and A 1714 o9 not affected.

Given recdata , we have A j7_oq not affected.

End of proof.

P; can enforce S by tracking the ideal timers in T4 [s~N-+1..a~1]. This can be done,
for example, with a circular array of N -1 local timers where local timer n mod N -1 tracks
T4ln] for n € [max(0,s -N+1)..a~1]. Note that each local timer can be stopped once it
indicates that the corresponding ideal timer has exceeded MazDelay,.

5. SLIDING WINDOW PROTOCOL CONSTRUCTION: FINAL
PHASE

In this section, we complete the construction by providing three different implementa-
tions of S, and S5 using local timers. For the sake of readability, we have summarized the
current state of the construction in Tables 1, 2, and 3. Table 1 lists the current invariant
and event requirements. Tables 2 and 3 list the current specifications of P, and P,. Recall
from the previous marking that the only requirements that the current image system does
not satisfy are the requirements S, and S for sourcedata .

25

5.1. Protocol implementation with 2N timers

In Sections 4.8 and 4.9, we outlined how P, can implement S, and Sy with two circular
arrays of N—RW and N-1 local timers, respectively. We now provide a formal specification
and verification of that implementation. For the sake of notational convenience, we use two
circular arrays of size N, rather than of sizes N-RW and N-1. This allows us to avoid
modulo N-RW and N -1 arithmetic.

Given an ideal timer u and a local timer v of P; which are started together, from the
accuracy axiom it is clear that u >T holds if v >14(1+¢,)T, or equivalently if v is a timer
of capacity (l+€¢)7 and is Off With this motivation, we define
MDelay; = (1-+¢;)MoaxDelay; for i=1 and 2.

Enforcing Sy
Define the following array of local timers at Py:

Timerp : array[0..N 1] of local timer of capacity MDelay; {Initially, Timerp [n |=Off}

For n € [max(0, s—-N+RW)..s 1|, Timerp 7] will be started together with T [n]. There-
fore, it will track Tp [n] upto MDelay local time units with an accuracy of ¢;. The send-
data event is now refined to the following:

senddata = dn(n € |a..s-1] A Send (D ,Source [n],7,n)
ATpln] =0A Timerp [7] =0)

The relationship between Timerp and T'p is formalized in the following invariant require-
ment:

By = n €[max(0,s-N+RW).s-1]=
started ~together (Timerp (7], Tp [n])
V (Timerp [7] = Off A Tp [n] > MaxzDelay)
V (Timerp (7] = Off A Tp [n] = Off)

From B and S, we easily derive Timerp [s -N+RW | = Off = 5,. Also, observe that
s—-N+REW =35DRW. Thus, we can enforce S, by including Timerp [SORW | = Off in the
enabling condition of sourcedata, which is now refined to the following:

sourcedata = s—-a < N-RW-1A Timerp S®RW | = Off
A Source [s]! € DATA As! =s+1

The previous marking can be extended to the following:

SOU?’Cedata : A 0__2@,8@_2}80‘4 Senddata : A {)—QG)B 0-2 T@CGCk : A 0_2@75 0-2
sinkdata : Ag 99,B g sendack : A g o9, B g recdata: A o5,Bq.9
ideal time event: Ay 00,840

where

-24.-

By
B,

I

n e
n e

Il

ls.max(s +RW -1, N-1)] = Timerp [7 |=0ff
.. 00] = T} [n |=0f

Proof of extension of marking
We use the following modulo arithmetic property in the proof:

(*) Vi,7 € max(0, s-N+RW)..5-1] (i=j if 1 = J)
Given sourcedata , we have By ;= By , By=> B, , and By = B, .
Given senddata, we have Ay ABoA(*)= By ,B;= B, ,and By= B, .
Given ideal time event, we have By => By , By=> B, , and B, not affected.
Given local time event of Py, we have By=> By , By => B, , and B, not affected.
B 5 is not affected by any other event.
End of proof.

Enforcing Sy
Define the following array of local timers at Py:
Timer, : array[0..N-1] of local timer of capacity MDelay,; {Initially,
Timer, [0..N-1] = Off}

For n € [max(0, s ~N+1)..a~1], Timer, 7] is started together with, and will track
T4 [n] upto MDelay, local time units with an accuracy of ¢;. The recack event is now
refined to the following:

recack = dJen,n(RecolACK ,en)
AN((cn©T €[l.s~a]Aa’ =a+cnO7
AVe € la.a’ -1} (T4 1] =Timery [1) =0)
V(en©a g 1.s—alAa’ =a ATy =Ty A Timer,' =Timer,)))

The relationship between Tvmer, and T, is formalized in the following invariant:

B; = n €[max(0, s-N+1)..a-1] = started —together (Timer, [7], Ty [n])
V (Timery [@]) = Off A Ty [n] > MazDelay,)

From Bj, Sg, and the fact that s -N+1 = 5@1, we easily derive that Timery [§®1] = Off
implies S5. Thus, we enforce Sy by refining sourcedata to the following:

sourcedata = s-a < N-RW-1A Timerp [SORW | = Off A Timery [5®1] = Off
A Source [s] € DATA ANs' = s+1

The previous marking can be extended to the following:

sourcedata: A g 09,80 4,505 senddata: Ay 09, Boy | recack: Ag o9,Bgy
sinkdata : A 0—201B 0-4 sendack : A 0”20’80_4 recdata : A 0_20,B 0_4
ideal time event: A 90,Bgy

where

-25.

By = n €la.max(s, N-1)] = Timery [7]|=0f

Proof of extension of marking

We use the following modulo arithmetic property which holds because of A 44
(*) Vi, € [max(0, s-N+1)..a-1] (¢ =5 il 1 = 7)

Given sourcedata , we have By => B3 ,and By,= B/ .

Given recack, we have Ay 39 A B3 4 A(*)= B3 ,and B,= B/ .

Given ideal time event, we have By = B4 , and B, not affected.

Given local time event of Py, we have By= By , B,= B, .

B4 4 is not affected by any other event.

End of proof.

At this point, every invariant requirement is marked wrt every event, and every event
necessity requirement marked. This completes the construction of our first protocol, except
for the marking of the progress requirements which is in Section 5.5. The system
specification is exactly as in Tables 2 and 3, except that in Table 2 the state variables

Timerp and Timery are added, and sourcedata, recack, and senddata are as specified
above,

5.2. Protocol implementation with NN timers

In this section, we provide an implementation in which both S, and S are enforced by
the N local timers in Timer, . Unlike in the previous implementation with Timerp, the
enforcement of S, is not tight.

Because Source [n] is not sent after it is acknowledged, we have Tp[n] > T4 [n] for

all n € [0..a—1] (the proof of this is trivial). Thus, an alternative way to enforce S, is to
enforce the following:

Sg = s>N-RW = T,[s-N+RW]|>MazDelay,

Sg is analogous to S5 and can be enforced by including Timery [SORW |>MDelay, in the
enabling condition of sourcedata. We have used the fact that Timery [s -N+RW| tracks
Tyls-N+RW] (from Sy and B;) and s-N+EW = s®RW . We have to combine this
with the other condition Timer, [§®1]>MDelay, needed to enforce S5. There are two
cases. If MazDelay, << MaxzDelay,, then we refine sourcedata (in Table 2) as follows:

sourcedata = s—a < N-RW-1A Timery [s®1|=0f
A{ Timer, [S®ORW |=0fV Timer, [SORW |>MDelay,)
A Source [s] € DATA Ns! = s+1

If MazDelay,; > MazDelay,, then we define each Timery [/] to have a capacity MDelay,,
and refine sourcedate as follows:

sourcedata = s-a < N-RW-1A Timery [FORW |=0f
Source[s] € DATA ANs' = s+1

There is no need to include Timery [SD1]=0f because T4 [s -N+1] > MazDelay, follows
from Ty [s-N+RW] > MazDelay, and A 4.

26~

This completes the construction of our first protocol. The marking of the progress
requirements is in Section 5.5. The specification of this protocol is exactly as in Tables 2
and 3, except that the state variable Timer, is added, and sourcedate and recack are as
specified above.

5.3. Protocol implementation with one timer

In this section, we prove that S5 and S¢ can be enforced by imposing a minimum time
interval 6 between successive occurrences of sourcedata. This time constraint is of interest
for two reasons. First, it can be implemented with a single local timer at P;. Second, it
corresponds to specifying a maximum rate of data transmission, if we assume that source-
data also transmits the accepted data block. (There is no loss of generality here; P; need
merely save in another buffer data blocks that are produced and not yet sent.) Note that if &
is sufficiently small, e.g. the hardware clock period, then there is no need for P; to explicitly
use 2 local timer. This would correspond to the situation in TCP [8] and the original
Stenning’s protocol [15].

Define the following timers at P, where &5 = (1+-¢,)é:

Tvmerg : local timer of capacity &,,; {indicates the local time elapsed upto §;;, since
the last occurrence of sourcedata . Initially, Timerg = Off}

Tg : array[0..c0] of ideal timer; { Ty [n | will record the ideal time elapsed since
Source [n] was produced. Initially, Tg[0..c0] = Off}

We refine the sourcedata event to the following:

sourcedata = s-a < N-RW-1A Timerg=O0f A\ Timerg’ =0 Tg[s] =0
Source [s]! € DATA As! = s+1

The following invariant requirements state that Timerg tracks Tg[s-1], and that suc-
cessive occurrences of sourcedata are separated by at least § ideal time units:

B

s 21 => started —together (Timerg ,Ts[s -1]) V (Timers =O0f A Tg[s-1]>6)
Bs

n,m €[ls-1]= Tgim|]-Tg[n] > (n-m)é

I

Proof that B; s can be marked with respect to all events

Given sourcedata , we have By , and Bgg=> By .

Given ideal time event, we have By => By | and By=> By .

Given local time event of Py, we have By => By , and By not affected.
By s is not affected by any other event.

End of proof.

Consider an occurrence of sourcedata that increments s from sg to sg+1. Just prior
to an occurrence of sourcedata, we have Tg[sg-1]>6 because of Timerg=0f and B;. This

and Bg imply

(*) nEl.sg]= Tslsgn]|>né
Both S5 and S are of the form sy > K = T, [sq~K| > D. Obviously, this is enforced by
(*) if there is some ng € [1..s¢) that satisfies

(**) 50 = K = Ty [s¢-K]|> Tg[sgng > D

-7 -

The first inequality above states that data block syK is acknowledged before data block
sg-ng is produced, or equivalently, that a exceeded syK before s exceeded sg—ng This
can be enforced simply by requiring s—a < K-ng-1 to hold prior to any occurrence of
sourcedata. The second inequality above, Tglsg—ng) > D, can be enforced for any
ng € [1..s) simply by having § large enough so that it satisfies ny 6 > D .

Stating this in terms of mq == K -ng, we have the following: (**) is enforced if there is
an mg € [1..K —1] such that (K-mg)§ > D and s—a < mg-1 holds prior to any occurrence
of sourcedata. Note that my=K would require s—a =0 to be invariant, resulting in a
dead protocol.

S is (**) with D =MazDelay,; and K=N-RW . Thus, it is enforced if there is an
mg € [1.N-RW-1] such that (N-RW -mg) § > MazDelay, and s—a < mg-1 holds prior
to an occurrence of sourcedata. Sy is (**) with D=MazDelay, and K=N-1. It is
enforced if there is an mg € [1..N-2] such that (N-1-my) § > MazDelay, and s —a < m 1
holds prior to an occurrence of sourcedata .

Therefore, both S5 and S are enforced for any mg € [1.N-RW —1] if § is large enough
to satisfy (N-RW ~mg) 6 > MazDelay, and (N-1-mg) 6§ > MazDelay,, and s—a < mg1 is
enforced prior to every occurrence of sourcedata. Observe that m is an upper bound on
s~a. In the literature, such an upper bound is referred to as a send window size, and is

often denmoted by SW. Rephrasing the above conditions in terms of SW, we require SW
and & to satisfy the following:

1<SW < N-RW-1
MazDelay, MaaDelay,]

é > max)
- N-RW-SW N-1-5W

We require s—a < SW-1 to hold prior to every occurrence of sourcedata, which is now
refined to the following:

sourcedata = s-a < SW-1A Timerg=0f A Timerg! =0 Tg[s] =0
Source [s] € DATA Ns' = s+1

For the typical case of MaxDelay, = MaxzDelay, = MazDelay , the above constraint on

§ simplifies to 6§ = %. If in addition, IV is very large compared to SW or RW
(e.g. in TOP, N=2%2 while SW,RW < 2%), then the bound simplifies to 6 > 2{ezDelay.

N
The specification of this image system is exactly as in Tables 2 and 3, except that the
state variables Timerg and T are added, and sourcedata is as specified above. We have
proved that every event in this protocol can be marked with respect to the invariant
requirements A g g9 A B 7 and the requirements S 4 for sourcedata , where

B, = s-a <8SW

Recall that the image system of Tables 2 and 3 was marked with respect to the invariant
requirements A g o and the requirements Sy 3 for sourcedata. The marking of the progress
requirements is in Section 5.5.

28

5.4. Transforming variables to auxiliary variables

We now show how Source, s, a, Sink, and r can be transformed into auxiliary vari-
ables. These are minor modifications that make the protocol system more realistic.

P, must save unacknowledged data blocks in local buffers for retransmission purposes.
Therefore, even though Source, ¢, s are auxiliary variables, the implementation has access
to the value s—a and the data blocks Source[a+i¢] for any ¢ € [0..s—a-1]. From the
events of P;, we see that the only other value needed by the implementation is @. Because

of Ay, we also have s —¢ = 5—a = 50@. For the sake of symmetry, we shall implement &
instead of s —a. Thus, we define the implemented variables ¢s and ce at P; which track 5
and @ respectively. The events of P; would be redefined as follows. In sourcedata, replace
s—a by csOca, s by a+csOca, and include c¢s! =cs@1. In sendata, replace
n €la.s-1], n, and @ by ¢ € [0..csOca-1], a+¢, and ca®i respectively. In recack,
replace @ and s-a by ca and ¢s©ca respectively, include ca’ =cn as a conjunct to
a'! =a +cn©d, and include ca’ =ca as a conjunct to a! =a.

P, has to maintain buffers corresponding to the receive window. Thus, Sink [r +¢] for
¢ € [0..RW-1] are available to the implementation. From the events of P, we see that the
only other value needed 1s 7. Thus, we define the implemented variable ¢r at P, which
tracks 7. In sinkdata, include cr’ =cr®1. In sendack, replace ¥ by c¢r. In recdata,
replace ¥ by cr.

It is obvious that ¢s =§ A ca =@ A c¢r =T is invariant. Because of this invariant, the
new definitions of the events are refinements of the previous definitions. Hence, all the old
markings continue to hold.

5.5. Progress marking update

We will prove that L g= a=n leads~to a >n +1 can be marked for the above image
system, provided that the following progress assumptions hold:

(a) P; eventually retransmits the next outstanding data block. Formally, s >a=n leads
to either @ >n+1 or Py sending Source [n].

(b) P, eventually sinks insequence data. Formally, r=n A Sink[n|s£empty leads to
r >n+1.

(c) P, eventually responds to receptions of data messages. Formally, let unacked be an
auxiliary state variable that is true iff an acknowledgement message has not been sent
since the last data message reception. Then, we have unacked leads to P, sending an
acknowledgement message.

(d) The channels eventually deliver a message that is repeatedly sent (3, 10]. Formally, let
the auxiliary state variable o, (3,) denote the number of times that data block n (an
acknowledgement to data block n) has been sent by Py (P,) since the last time that it
was received by P, (P,). Then, we have that «, and 8, do not grow unboundedly.

We first prove the following:

L, = s>a=r=n leads-to s >r >a=n

Proof of 14
From assumption (a) and A, we have

=28

s >a=r=n A&, >1 leads—to
(s >a=r=n ANa, 2i+1)V (s >a=r=n A Sink [n|#empty)
Applying induction over ¢ to this, and using assumption (d), we have
s >a=r =n leads—to s >a=r=n A Sink [n|s%empty
Using assumption (b) on this, we have L.
End of proof.

We next prove the following:

Il

Lo s 2r >a=n leads-to a >n+1

Proof of Ly
From assumption (a) and A, we have

(*Ys>r>a=n ANa, 21 AB, =7 leads—to a >n+1

V{sZr>a=n Ao, >i+1AB,>7)V (s >r >a=n Aunacked \f,>7)
From assumption (c), we have
s >r >a=n Aunacked N\, >j leads—to (s >r >a=n AP, >j+1)Va>n+1
Substituting this in (*) and regrouping, we get
s>r>a=n Ao, >t AN3,>7 leads—to e >n-+1
V(sZr>a=n AB, 2J+1V (B, 2j Na, 2i+1))
Applying lexicographic induction over (7,7) on this, and using assumption (d), we have L ,.
End of proof
From Ly, Ly, and Ay, we have s >a=mn leads—to a >n +1. To establish L, all that

is left is to show s =a =n leads —fo s >a=n, ie., to show that sourcedata will eventually
be enabled whenever s =a holds. We now list the enabling condition of sourcedata in the
three implementations:

(1) s—a < N-RW-1A Timerp [S®ORW | = Off A Timer, [sD1] = Off

(22) s~a < N-RW-1 A Timer4 [501]=01f

A (Timer, [SORW =08V Timer, [FORW |>MDelay,)
(2b) s—a < N-RW -1 A Timer, [SORW |=0f
(3) s—a < SW-1A Timerg=0f

Observe that the conjuncts s—a < N-RW-1 and s-a < SW-1 hold whenever s equals

a. Thus, all we need to show is that the conjuncts involving the timers eventually hold
whenever s ==a holds.

Because the timer axioms are implementable, the time events are never deadlocked (see
[10] for a proof). Therefore, the value of any timer that is not Off keeps increasing. In par-
ticular, if u# is a bounded capacity timer that is only started when it is Off, then
u ~Off leads —to u =Off holds. From sourcedata, we see that Timerg is started only when
it is Off. From B, and recack, we see that Timery [n] is started only when it is Off for all
n € [0..N-1]. From B, s=a, and senddata, we see that Timerp [FDRW] is started only
when it is Off. Therefore, in each case, s—a leads to s >a or all the local timers becoming
Off, at which point sourcedata is enabled. Thus, L holds.

=Z -

Table 1: Invariant and event requirements of the protocol

{Properties relating Source ,Sink ;s ,a ,r ,N,RW }
1 <RW < N-1

Ag = 0<ae<r <s
A = s-a <N-RW
A, = n €[0.r-1]= Sink[n]= Source[n|
Ay = n €r.r +RW-1] A Sink [n)£empty => Sink [n|=Source [n]
Ay = n>s < Source|n|=emply
As = n>r+RW = Sink[n|=emply
{Properties relating D messages, Source ,Tp ,5ink s }
A, = (D, data,cn,n) € 2y => data =>Source [n| N cn="n
A;y = (Ddata,in)€z;=n €[s-N+RW.s-1]
Ay, = (D,data,7i,n,age)€zy=>age > Tpln] >0
Awp = n €[0.s-N+RW-1|= Tp[n|>MazDelay,
{Properties relating ACK messages, r,s,Tp }
Ag = (ACK,n,n) € 2= cn="n
Ag = (ACK,cn,n)€Ezy=n<r
Ap = (ACK A n)€zy=n €[s-N+1l.r]
Ay = (ACK m,n,age)E€zghn<r = age = Tpn] >0
Ay = T[]z Tr{l]= -+ 2 Telr-1120
{Properties relating s ,a,r, T4 , Tg }
Ay = T,02Ta1]= - 2Tyle-1]20
Agg = n€0a-1l= Tyn]|<Tpn]
Ay = n €0.s-N|= T, [n]>MazDelay,
{Requirements for sourcedata }
So = s-¢ < N-RW-1
Sy = s >N-RW = Tpls-N+RW|>MazDelay,
Sy = s > N-1=> Ty [s-N+1]>MaaDelay,

-3%-

Table 2: Specification of P,

State variables:

Source : array[0..c0] of {empty } U DATA ; {Initially, Source [0..c0] = empty }

s,a : 0..00; {Initially, s == a = 0}

Tp,T4 : array[0..00] of ideal timer; {Initially, Vn € [0..00)(TD [n] = T4 [n] = Off)}

Events:

sourcedata = s-a < N-RW-1ASource[s] € DATA As'! = s+1
senddata = dn(n €la.s-1] A Send (D ,Source [n],7w,n) A Tp[n] =0)
recack = Hcn,n(Reco(ACK ,en ,n)

A((en©T € [1.s—a| A a' =a+cnOT A Ty [a.a’ -1) =0)
V(en©a g [ls—alAa’ =a ANTy' =Ty)

Table 3: Specification of P,

State variables:

Sink : array[0..00] of {empty } U DATA ; {Initially, Sink [0..c0] = empty }
r : 0..00; {Initially, r = 0}

Ty : array|0..00] of ideal timer; {Initially, Vn € [0..00)(TR [n] = Off}

Events:

sinkdata = Sink[r|sempiy Ar' =r+1ATg[r) =0
sendack = Send,(ACK F7)

recdata = ddata,cn,n(Recy(D ,data,cn ,n)

A((cnOF € [0.RW -1] A Sink [r +cn©F | =data)
V (cn©F & [0.RW -1] A Sink' =Sink)))

-39

REFERENCES

[1] Chandy, K. M. and J. Misra, “An Example of Stepwise Refinement of Distributed Pro-
grams,” ACM Trans. on Prog. Lang. and Syst., Vol. 8, No. 3, July 1986.

[2] Dijkstra, E. W., A Discipline of Programming, Prentice-Hall, Englewood Cliffs, N.J,,
1976.

[3] Hailpern, B. T. and S. S. Owicki, “Modular verification of computer communication pro-
tocols,” IEEE Trans. on Commun., COM-31, 1, January 1983.

[4] International Standards Organization, “Information Processing Systems — Open Systems

Interconnection — Transport Protocol Specifications,” Ref. No. ISO/TC 97/SC 16 N 1990,
DIS 8073 Rev., September 1984,

[5] Knuth, D. E., “Verification of Link-Level Protocols,” BIT, Vol. 21, pp. 31-36, 1981.

[6] Lam, S. S. and A. U. Shankar, “Protocol verification via projections,” [EEE Trans. on
Soft. Engg., Vol. SE-10, No. 4, July 1984, pp. 325-342.

[7] Owicki, 8. and D. Gries, “An Axiomatic Proof Technique for Parallel Programs I,” Acta
Informatica, Vol. 6, 1976, pp. 319-340.

[8] Postel, J. (ed.), “Transmission Control Protocol: Darpa internet program protocol
specification,” Defense Advanced Research Projects Agency, Information Processing Tech-
niques Office, RFC 793, September 1981.

[9] Shankar, A. U. and S. S. Lam, “Time-dependent communication protocols,” Tutorial:

Principles of Communication and Networking Protocols, S. S. Lam (ed.), IEEE Computer
Society, 1984.

[10] Shankar, A. U. and S. S. Lam, “Time-dependent distributed systems: proving safety,
liveness and real-time properties,” Tech. Rep. US-TR-1586, Computer Science Dept.,
Univ. of Maryland, also TR-85-24, Computer Science Dept., Univ. of Texas, October
1985, revised October 1986, to appear in Distributed Computing.

[11] Shankar, A. U. and S. 5. Lam, “Construction of sliding window protocols,” Tech. Rep.
CS-TR-1647, Computer Science Dept., Univ. of Maryland, also TR-86-09, Computer Sci-
ence Dept., Univ. of Texas, Marchl 1986.

[12] Shankar, A. U., “A Verified Sliding Window Protocol with Variable Flow Control,”
Proc. ACM SIGCOMM 86, Stowe, Vermont, August 1986, also Tech. Rep. CS-TR-1638,
Computer Science Dept., Univ. of Maryland.

[13] Shankar, A. U., “Verified Data Transfer Protocols with Variable Flow Control,” Tech.
Rep. CS-TR-1746, UMIACS-TR-86-25, Computer Science Dept., Univ. of Maryland.

[14] Sloan, L., “Mechanisms that Enforce Bounds on Packet Lifetimes,” ACM Trans. Com-
put. Syst., Vol. 1, No. 4, Nov. 1983, pp. 311-330.

-22.

[15] Stenning, N. V., “A data transfer protocol,” Compuler Networks, Vol. 1, pp. 99-110,
September 1976,

