THE STABILIZING PHILOSOPHER:
ASYMMETRY BY MEMORY AND BY ACTION®

Mohamed G. Gouda
Department of Computer Sciences
University of Texas at Austin
Austin, TX 78712-1188

TR-87-12 April 1987

Abstract: Asymmetry in systems of synchronizing processes can be main-
tained by action or by memory. Systems that are asymmetric by action
cannot be self-stabilizing, while those that are asymmetric by memory can
be. We illustrate the last point by discussing a new class of systems of
dining philosophers: each system in this class is both asymmetric by
memory, and self-stabilizing at the same time. Owur conclusion:
asymmetry by memory is more reliable than asymmetry by action.

Keywords: Asymmetry, dining philosophers, self-stabilization, synchroni-
zation.

* This work is supported in part by the Office of Naval Research Contract No. NOOO14-
86-K-0763, and by a contract with MCC.

0. Introduction

Asymmetry has to be maintained in systems where processes may
synchronize with one another; examples of such systems are mutual
exclusion [2], dining philosophers [3], drinking philosophers [1],
resource allocation systems, etc. Dijkstra was the first to observe the
need for asymmetry in such systems [4]; his published comments
however were understated and their significance went unnoticed by the
scientific community. Later Lehman and Rabin made the same ob-
servation, but drove the point to prominence [8].

There are two common approaches to maintain asymmetry in a
system of synchronizing processes; we refer to these approaches as
asymmetry by action and asymmetry by memory. In the first approach,
the programs of different processes in the system are syntactically
identical except that they differ in their initial local states, i.e. differ in
the initial setting of their program counters or the initial values of their
local variables. Thus, the processes start at an asymmetrical global state,
and each of their actions is geared to preserving the asymmetry. In other
words, asymmetry is a system invariant. For an example of a system that
is asymmetric by action, see Chandy and Misra's solution to the drinking
philosophers problem [1].

In the asymmetry by memory approach, the programs of different
processes are syntactically identical except that they access local
constants that have identical names (to satisfy the syntactic
resemblance), and different values (to effect asymmetric behaviour). An
example of a system that is asymmetric by memory is one that consists of
identical processes Pg, ..., Pp-1, where the program of each P; accesses its
index i. In this case, the indices act as local constants that have identical
names but different values. Because these local constants take part in
defining the state space of the system, every global state of the system,
whether reachable or not, is asymmetric. This trivially implies that
asymmetry is a system invariant.

The distinction between asymmetry by action and asymmetry by
memory can be summarized as follows. The state space of a system that
is asymmetric by action contains at least one symmetric global state, i.e.,
one where all processes have identical local states. Clearly, since
asymmetry is a system invariant, any such state is not reachable from the
initial state of the system. On the other hand, as argued before, the state
space of a system that is asymmetric by memory has no such states.

The importance of this distinction may go unappreciated until one
considers thae property of self-stabilization. A system is said to be self-
stabilizing iff starting at any state in its state space, it is guaranteed to
converge to a "safe" state in a finite number of state transitions. Now, a
system that is asymmetric by action cannot be self-stabilizing. This is
because if such a system starts at a symmetric global state, it can never
converge to an asymmetric global state by the result of Dijkstra, Lehman,
and Rabin [4, 8]. On the other hand, systems that are asymmetric by
memory can be self-stabilizing. In this paper, we establish this fact by

3

discussing a new class of systems of dining philosophers [3]; each system
in this class is both asymmetric by memory and self-stabilizing.

The dining philosophers is widely recognized as the icon of
synchronization and resource-allocation systems (which should explain
our choice of the problem), and the class of systems of dining
philosophers that we present in this paper is indeed interesting in its
own right.

1. Philosophers that are Asymmetric by Memory

We consider a system of n philosophers Pg,...,Pn-1 arranged in a
circle. The left neighbor of each philosopher Pj is Pi-1 mod n. and its right
neighbor is Piy+1 mod n- Henceforth, we write the subscripts i-1 and i+1 to
mean i-1 mod n and i+1 mod n, respectively.

A state of a philosopher P; is a pair
(S1, qi)

where S;e {T,H,F,E}, and g;e {0,1}. The component ¢; is called the
priority of philosopher P;. Informally,

S; =T indicates that P; is thinking,

Si=H indicates that P; is hungry,

S;=F indicates that P; has its left fork, and

S;=E indicates that P; has its two forks and is eating.

A system state is a string of n pairs:
{809 qO) (S}.’ ql) ses (Sn—l, Chﬁ—l)
where (S, gi) is a state of philosopher P;.

The possible activities of a philosopher P; are defined by seven state
transitions; each of which is in one of the following forms:

fo: (present state of Pj) — [(next state of Pj)
f1: [present state of Pi-1] (present state of Pj) — (next state of Pj)
fo: (present state of Pj) [present state of Pi+1] — (next state of Pj)

Notice that in these forms, circular brackets (...) enclose the present and
next states of Pj, while rectangular brackets [...] enclose the present
states of Py's neighbors. The seven state transitions of P; are as follows.

to: E, g — ([T g
t1: T, ¢ —» (H g
to: [T, rl H g — (F g
ta: (F, ¢ [T, r] — (E, g+1 mod 2)
ta: (F, g [H r] — (E, g+l mod 2)

4

ts: [H, r] (H, 9 — (F, g provided (r+g) mod 2 = v;
ts: [F, r] (F, gy — (H, qf provided (r+q) mod 2 = w;

vi; and wj are two constants local to Py; their values depend on
whether n, the number of philosophers in the system, is odd or even.
For now, we assume that n is odd, and define the values of v; and w; as
follows. (The values of vi and w; in the case of even n are defined in
Section 3.)

vo=0
vi=1 fori=1,..., n-1, and
wi =0 fori=0,.., n-1.

Notice that the value of vjis not the same for each Pj; hence the
philosophers are asymmetric by memory.

Informally, the philosopher's state transitions can be explained as
follows. Transition tg means that an eating philosopher can stop eating
and start thinking. t; means that a thinking philosopher can stop
thinking and become hungry. tg means that a hungry philosopher whose
left neighbor is thinking can "grab" its left fork. tg and t4 mean that a
philosopher who has a left fork and whose right neighbor is either
thinking or hungry, can grab its right fork and start eating after flipping
its own priority. ts means that a hungry philosopher whose left neighbor
is also hungry can still grab its left fork provided that the sum of
priorities of the two philosophers equals vi. tg means that a philosopher
that has a left fork and whose left neighbor also has a left fork can give up
its left fork provided that the sum of priorities of the two philosophers
equals wj.

Formally, the system has the usual interleaving semantics, where
one state transition, selected arbitrarily from those that are currently
being enabled, is executed at a time. We expect that the reader is
familiar with the concepts of: a state transition being enabled at a system
state, a system state following another over some state transition, a
system state being reachable from another, etc. Based on this semantics,
we show next that our system satisfies some interesting properties
including self-stabilization.

2. Self-Stabilization and Other Properties

In this section, we prove that our system satisfies the five useful
properties of: liveness, self-stabilization, safety, progress, and individual
progress. Informally, these properties can be defined as follows.
Liveness means that at least one state transition can be executed at each
system state. Self-stabilization means that the system is guaranteed to
reach a safe state after executing a finite number of state transitions.
Safety means that once the system reaches a safe state, then all its
subsequent states are safe. Progress means that at least one philosopher
eats infinitely often. Individual progress means that every philosopher
eats infinitely often. Clearly, individual progress implies progress;
however we prove both properties since our proof of individual progress
is based on the fact that the system will progress infinitely often.

In order to establish these properties, some notion of fairness has
to be assumed. We base our proofs on the following fairness assumption.
Every state transition that is continuously enabled is eventually executed.
Only the proofs of self-stabilization, Theorem 1 below, and individual
progress, Theorem 4, make use of this assumption.

Theorem O: (Liveness) At least one state transition is enabled at each
system state.

Proof: Let s = (Sg, qo) ... (Sn-1, gn-1) be any system state. If there is an i,
0 <i<mn, such that S; = E or S; = T then transition tg or t; of P; is
enabled at s. Thus, we need only to consider the cases where each S; is

either H or F. There are three such cases, and we show that in each of
them at least one transition is enabled at s.

Case O (for each i, S; = H): Assume that transition t4 of each P;, i = 1,...,n-
1, is disabled at s; then there are two possibilities to consider, depending
on whether qo=0o0rqp = 1:

either (qo, 41, 92, 43, .-. , Gn-1)

0,0,0,0, .., 0,
or (q0. 91, 92, 93, ... , Qn-1) 1,1,1,1, ..

s ® 9 9 °91)'

In either case, transition t4 of Pg is enabled at s.

Case 1 (for each i, S; = F): Assume that transition ts of each P;, i = 1,...,n-
1, is disabled at s; then there are two possibilities to consider, depending
on whether qo =0 orgqp = 1:

either (qo, 91, 92, 93, ... , Gn-1)
or (qO’ qla q29 q3, e 3 (ln-l)

o
[=X=)

Recall that n is odd; thus gn-1 = O in the first possibility, and qp-1 = 1 in
the second. In either case, transition ts of Pg is enabled at s.

Case 2 (there exist i and j, S; = H and S; = F): In this case, there exist
two adjacent philosophers Py and P+ 1 whose states are such that Sy = F
and Sm+1 = H. Hence, tg of Py, is enabled. 1

In order to specify the next two system properties, we need first to
define the concept of a safe system state. A system state (Sp, qo) ... (Sn-1.

Qn-1) is called safe iff for each i, if S; = E then S;;; # F and Si41 #E.

Theorem 1: (Self-stabilization) The system will reach a safe state after a
finite number of state transitions.

Proof: Define a ranking function f that computes a natural number (s} for
each system state s = (Sg, qo) ... (Sn-1, gn-1) as follows.

n-1
fls) = 3 fi(s)

i=0

1 if (S4.1 =FE and S;=F) or
(Si-1 = E and S; = E] or
(Si = E and Sj+1 = F) or
(Si = E and Si+1 = F)
=0 otherwise

where fi(s]

Notice that a system state s is safe iff {(s} = O.

Now each execution of a state transition either keeps every fj
unchanged, or reduces the values of some fi's from one to zero.
Moreover, for every i, if fi(s) = 1, then there is a state transition that is
continuously enabled until it is executed, and whose execution makes
fils) = 0. (For example, if Si.1 = E and S; = F then fi.i1 =fi=1and tg of
P is continuously enabled, and its execution makes fj.1 = fi = 0.) By our
fairness assumption, this transition is eventually executed yielding f; = O.
After a finite number of state transitions, the system will reach a state s
where f(s) = 0, i.e., s is safe. O

Theorem 2: (Safety) Any state that is reachable from a safe state is safe.

Proof: It is sufficient to show that for every pair of system states s and s/,
if s is safe and s' follows s over some state transition t, then s' is also safe.
This can be established in a straightforward way by inspecting the seven
cases: t=tg, ..., t =tg. LA

Theorem 3: (Progress) At least one philosopher eats infinitely often.

Proof: It is sufficient to show that transition tz or ty of at least one
philosopher is executed infinitely often. This can be established by (i)
defining a ranking function f that computes a natural number for each
system state, and (i) showing that each state transition other than t3's
and t4's reduces the value of f.

Define f(s) for any system state s = (Sg, 90) ... (Sn-1. gn-1) as follows:

n-1
fls) = ¥ fis)
i=0

where the value of fi(s) depends on whether i = O or i # 0. (That fp(s) is
different from the rest of the fi(s) is a consequence of our design decision

to make vp=0 and vi;=1, for each i#0, which causes philosopher Pg to
behave differently from the rest of the philosophers.)

Fori=0, fils) =5 iff 5;=E
=4 iff ;=T
=3 iff S;=Hand (Si.1 =E or S;.1 =7T)
=2 iff S;=Fand (Si.1 =E or Si-1 =T)
=1 iff (S;=Hand S;i.1 =H) or (S; =F and Si.1 =F)
=0 iff (Sy=H and Si.1 =F or (S; =F and S;-1 = HJ.

Fori= 0, fils) iff S, =E
ifft S;=T
iff S;=Hand (Si.1 =E or Si.1 =T)
iff Siy=Fand (Si.1 =Eor Si.1 =T)
iff (Si=H and (Si.1 = H or Si.1 = F)
and g; + gi-1 mod 2 = vy or
(Si=Fand (Si.1 =Hor Si.1 = F)
and gj + gi-1 mod 2 = wy)
=0 iff (Sj=Hand (Si.1 =H or Si.1 = F)
and ¢qj + gi-1 mod 2 = vy or
(Si=F and (Si.1 = Hor Si.1 = F)

and qj + gi-1 mod 2 # wj.

(1 I O I
N W OO~

It remains now to show that each state transition, other than ts and
ta, of P; reduces the value of f; + fi;1 by one at least. (Clearly, eachh of
these transitions keeps the values of other fi's unchanged.) We divide the
proof into three cases.

Case O (i = 0): Each of the transitions tg, tg, t5, and tg of Pg reduces fp by
one, and keeps f; unchanged. Transition t; of Pg reduces fp by one, and
does not increase f1, but may decrease it.

Case 1 (i = n-1): Transition tg of Pn.1 reduces f.1 by one, and keeps fg
unchanged. Transition t; of Py.1 reduces f;.1 by one, and does not
increase fp. Each of the transitions tg, t5, and tg of Pn-1 reduces f-1 by
two, and does not increase fg by more than one.

Case 2 (i = 1, ..., n-2): Transition tg of P; reduces f; by one, and keeps fi;1
unchanged. Transition t; of P; reduces f; by one and does not increase
fi+1. Finally, each of the transitions tg, ts, and tg reduces fj by two, and
keeps fj+1 unchanged. o

Theorem 4: (Individual progress] Every philosopher eats infinitely often.

Proof: From Theorem 3, it is sufficient to prove that if a philosopher eats
infinitely often, then its left neighbor will also eat infinitely often.
Assume that P; eats infinitely often starting from some system state s, and
that Pj.1 does not eat at s. We show that Pi.; will eat at some later state.

Since Si.1 # E at s, there are two cases to consider.

Case O (Si-;1 = T at s): In this case, transition t; of Pi.1 is enabled at s and
at all subsequent states until it is executed, by the fairness assumption,
yielding S;.1 = H at some later state s'. State s' satisfies the following
case.

Case 1 [Si.; = Hor Si.; = F at s);: Assume that Pj.; does not eat after s,
i.e., Si.1 = Hor Si.1 = F at each state after s. Thus, transition tg of P; can
never be executed after s. Moreover, since the priority of P; is flipped
each time Pj eats, transition t4 of P; can be executed at most once after s.
Since neither tg nor t4 of P; can be executed infinitely often after s, P

8

cannot eat infinitely often after s, contradicting our original assumption.
Therefore, Pj-1 will eat after s. |

2, Extensions and variations

So far our discussion has been limited to systems with odd number
of philosophers, i.e., odd n; we now turn our attention to systems with
even n. The only difference between systems with even n, and those with
odd n is in the values of the constants v; and wj. Define the values of v;

and w; for a system with even n as follows.

vi =1 fori=1,.., n-1,
wo=1 ,and
wi =0 fori=1,..., n-1.

With these values, all the proofs in the previous section remain the same
except for the proof of Theorem 3; which is modified as follows.

Proof of progress for even n: Define {(s), for any system state s = (Sp, qo)
... (Sn-1, qn-1) as follows:

n-1
fls) = ¥ fils)

i=0

ifSi=E
ifS;=T
ifSij=Hand (Si.1 =Eor Si.1 =T)
if Si=F and (Si.1 = E or Si.1 =T)
if (Sy=Hand (Si.1 =H or Si.1 = F)
and gj + gi-1 mod 2 = vj) or
(Si =F and (Si.1 = Hor S;i.1 = F)
and g; + gi-1 mod 2 = wy
=0 if(Si=Hand (Si-1 =Hor Si-1 = F)
and q; + gi-1 mod 2 # vy or
(Si =Fand (Si.1 = Hor Si.1 = F)
and g; + gi-1 mod 2 # wy

where fj(s)

o
= WO Ol

It remains now to show that each transition, other than t3 and t4, of
P; reduces the value of f; + fj,1 by one at most. (Clearly each of these
transitions keeps the values of other fj's unchanged.)] Each of the
transitions tg, tg, t4, and ts reduces f; by one, and keeps fj;1 unchanged.
Transition tj; reduces f; by one, and does not increase fj,1, but may
decrease it. This completes the proof. L

Notice that in case of even n, vy # w; for each i. Therefore, it is
possible in this case to get rid of the wy's completely by replacing the

condition {r+g) mod 2 = w; by (r+g) mod 2 = v; in transition tg.

9

Finally, we observe that our fairness assumption can be relaxed
somewhat. In particular, any of the t; transitions can be allowed to be
continuously enabled without ever being executed. Thus, a thinking
philosopher can continue to think indefinitely, and never become hungry.
With this relaxation, the statements of Theorems 3 and 4 need to be
changed as follows. (The statements of the other theorems remain
unchanged.]

(Progress) If a philosopher is ever hungry, then eventually at least one
philosopher eats.

(Individual progress) If a philosopher is ever hungry, then eventually this
philosopher eats.

The proofs in the previous section need to be modified slightly to
accommodate these changes.

4, Concluding remarks

We have discussed a class of systems whose members are both
asymmetric by memory and self-stabilizing. Since systems that are
asymmetric by action cannot be self-stabilizing, we conclude that
asymmetry by memory is a better strategy than asymmetry by action in
designing synchronization systems. For other examples of systems that
are both asymmetric by memory and self-stabilizing, we refer the reader
to Lamport's paper [7].

The discriminating power of self-stabilization is worth noting.
Indeed, if it was not for self-stabilization, the important distinction
between asymmetry by memory and asymmetry by action could have gone
unnoticed, or unappreciated.

Finally, we observe that our endeavor to design self-stabilizing
dining philosophers has paid off in an unexpected way: the resulting
systems are extremely simple, despite being highly reliable. This
observation is in complete agreement with the previous experience in
designing self-stabilizing systems [0, 4, 5, 6, 7].

Acknowledgement: My debt to Edsger W. Dijkstra is an invariant. The
comments of G. M. Brown, M. Broy, K. M. Chandy, S. S. Lam, J. Misra, and
N. Multari were helpful in improving the presentation.

References
[0] G. M. Brown, M. G. Gouda, and C. L. Wu, "Token systems that self-
stabilize," submitted to IEEE Trans. on Computers, 1986.

[1] K. M. Chandy and J. Misra, "The drinking philosophers problem,”
ACM TOPLAS, Vol. 6, No. 4, Oct. 1984, pp. 632-646.

10

E. W. Dijkstra, "Solution of a problem in concurrent programming
control,” CACM, Vol. 8, No. 9, Sept. 1965, p. 569.

E. W. Dijkstra, "Hierarchical ordering of sequential processes,” in
Operating Systems Techniques, C. A. R. Hoare and R. H. Perrott,
Eds., Academic Press, New York, 1972.

E. W. Dijkstra, "EWD391 Self-stabilization in spite of distributed
control,” 1973. Reprinted in Selected Writings on Computing: A
personal perspective, Springer-Verlag, Berlin, 1982, pp. 41-46.

E. W. Dijkstra, "Self stabilizing systems in spite of distributed
control,” CACM, Vol. 17, No. 11, Nov. 1974, pp. 643-644.

N. J. Multari, "Self-stabilizing protocols,” Ph.D. Thesis, Dept. of
Computer Sciences, University of Texas at Austin, in preparation
1987.

L. Lamport, "The mutual exclusion problem: Part II— Statement and
solutions,” JACM, Vol. 33, No. 2, April 1986, pp. 327-348.

D. Lehman and M. Rabin, "On the advantages of free choice: a
symmetric and fully distributed solution of the dining philosophers
problem," Proceedings of the 8th Annual ACM Symposium on
Principles of Programming Languages, ACM, New York, 1981, pp.
133-138.

