UNARY MINIMUM COST PATH PROBLEMS,
ALTERNATING LOGSPACE, AND
RUZZO, SIMON, AND TOMPA'’S DLNL

Rodney R. Howell, Louis E. Rosier,
and Hsu-Chun Yen

Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-13 May 1987

Unary Minimum Cost Path Problems,
Alternating Logspace, and
Ruzzo, Simon, and Tompa’s DL

Rodney R. Howell, Louis E. Rosier, and Hsu-Chun Yen

Department of Computer Sciences
University of Texas at Austin
Austin, Texas 78712

Abstract

In this paper, we examine the class DLNUIo8] _ the class of languages accepted by O(log n) space bounded
deterministic oracle Turing machines that are allowed to make at most O(log n) calls to an NL oracle.
We show that this class is equivalent to the alternating logspace hierarchy, which has recently beenn shown
by Lange, Jenner, and Kirsig to collapse to its second level (i.e., AZJQ‘) Our results provide a succinet

proof of this collapse as well as a deterministic characterization of AZ’IZ‘. This characterization readily
allows us to show a number of "natural” problems related to the minimum cost path in a directed graph
with unary edge weights to be complete for AZJQ‘. As we examine these problems, we show variations to

be complete for NL and DY - the class of languages that can be expressed as the intersection of a
language in NL with a language in co-NL. In the process, we point out the characteristics of the problems
that appear to trigger the respective jumps in complexity. Using techniques introduced by Kremtel, we
then give a characterization of DLNEo8l 51 terms of optimization problems. Since problems that have
been shown in the past to be complete for AZ‘IQ’ do not appear to be optimization problems, but instead

have to do with finding particular types of strongly connected components, our work unifies two groups
of problems which appear, at least on the surface, to be very different. Finally, we examine how the
techniques of Lange, Jenner, and Kirsig may be applied to other related hierarchies.

1. Introduction

The logspace oracle hierarchy and the logspace alternation hierarchy were introduced in Ruzzo,
Simon, and Tompa [23], and Chandra, Kozen, and Stockmeyer [3], respectively. Both of these hierarchies
are contained in PTII\/IEIﬁDSPACE(}log2 n). Let DL denote the class of languages accepted by O(log n)
space bounded deterministic oracle Turing machines {(hereafter, OTMs), of the type prescribed in [23],
whose oracles are from NL -- i.e,, AIQ‘ in the logspace oracle hierarchy. Ruzzo, Simon, and Tompa showed
in {23] that the entire logspace alternation hierarchy is contained within DLNE. More recently, L.ange,
Jenner, and Kirsig [15] showed that AZ{Q’ coincides with the closure of NL under Hausdorff reductions --
denoted by L, (NL) in [15]. Since the latter is closed under complementation, [15] yields the remarkable

result that the alternating logspace hierarchy collapses.

Let DLNLH1 denote the class of languages accepted by O(log n) space bounded deterministic OTMs

1For brevity, hereafter, we use the abbreviations DL, NL, and P to denote the complexity classes DLOGSPACE, NLOGSPACE,
and PTIME, respectively.

whose oracles are from NL, where all computations are restricted to allow at most O{f{n}) oracle calls. In
this paper, we examine closely the class pLNElog] e first provide, in Section 3, a simple proof that
DLM‘{IOg]zAZ’;. Since DLNUogl g clearly closed under complementation, our strategy yields a short
proof that the alternating logspace hierarchy collapses. (Tompa [25] has also synthesized a short proof of
the result in [15].) More importantly, it provides a deterministic computational model characterizing
AZlQ‘, Lh d(NL)’ and the alternating logspace hierarchy. The characterization is especially useful when
considering problems related to the hierarchy, as it allows one to provide the analysis using another
computational model. We subsequently illustrate the characterization’s usefulness, in Section 4, when

exploring the complexity of a number of *natural® problems — many of which turn out to be complete
for DLNL{og],

One claim that we substantiate in this paper is that Ale‘ is a robust complexity class. One measure
of robustness revolves around whether a complexity class can be shown to contain many “natural®
complete problems. Clearly, NL, P, NP, and PSPACE are robust, in this sense. More recently defined
complexity classes that fall into this category might include DP, PNP[IOg], PNP, and NPYF. (DP is the
class of languages each of which can be expressed as the intersection of a language in NP with a language
in co-NP. PNP[IOg1 is the class of languages accepted by deterministic polynomial time bounded OTMs,
with oracles from NP, where all computations are restricted to allow at most O(log n) oracle calls. pNF
and NPNF are A}; and Zg , respectively, in the polynomial time hierarchy [24].) For examples of natural
complete problems for these classes the reader is encouraged to consult Bentley, Ottman, and Widmayer

[2], Howell and Rosier [8], Huynh [9], Krentel [11], Papadimitriou [17], and Papadimitriou and
Yannakakis [18]. Krentel’s paper is especially interesting as it provides a characterization of pNPlogl ;09
PNP i terms of functions whose ranges are not restricted to {0,1}. In particular, Krentel shows that "the
inherent complexity of UNIQUE OPTIMAL TRAVELLING BSALESPERSON, as considered by
Papadimitriou [17], really comes from computing the length of the optimal tour. The uniqueness serves

only to transform the problem into a decision problem.”

We propose that the class AZ% {or DLNLUOg]) should also be considered robust (in the aforementioned
sense). Natural complete problems for this class have been illustrated in Howell, Rosier, Huynh, and Yen
[7], Lange [13], and Rosier and Yen [21, 22]. To further substantiate the above claim, we consider, in
Section 4, the complexity of a number of problems involving directed graphs with unary edge weights.
We give completeness results for several problems related to computing the minimum cost path in such a
graph. Variations are later considered for problems concerning minimum length paths (i.e., the case
where all edge weights are of cost 1), as well as problems involving the eccentricity of a vertex, the radius
of a vertex, and the center of a graph. (See Aho, Hopcroft, and Ullman [1] for a precise definition of
these terms.) One of the reasons for our interest in these graph problems stems from the fact that they

seem very central to the study of computer science. For example, Aho, Hopcroft, and Ullman [1] devote

an entire chapter of their textbook on data structures to the discussion of directed graph problems.
Furthermore, in [4], Cook mentions parallel algorithms for several of these problems where unary edge
weights are assumed. An example of a problem we show to be DLNL{IOchomplete is that of determining
the parity of the minimum cost path from u to v in a graph G. As a second example, given a graph G

and a vertex v the problem of determining whether v is a "center® of G is also DLNLUOchomplete.

In the process of providing our complexity results, we examine a sequence of related problems that
are complete for NL, DY or DN log] (DL is analogous to D, and is defined as the class of languages
each of which can be expressed as the intersection of a language in NL with a language in co-NL.} Some
of our complexity results are somewhat surprising; for example, the problem of verifying a potential
solution to a single source, single sink minimum cost path problem is DLacomplete, whereas the problem
of verifying a potential solution to an all pairs minimum cost path problem is NL-complete, and is in DL
if all edge weights are restricted to be 1. As we proceed, we examine just what seems to trigger each
jump in complexity, keeping in mind what seems to cause the analogous jumps in complexity from NP to
DY to PNP. Many of the problems we consider seem particularly well suited for pLNLlog], {As a result,
we showed some of them to be complete for prNLlog] long before we realized that DLNLHOg]:AZJQ‘ .} Also,
the inherent complexity of such problems seems to come from the necessity of computing optimal cost
paths - in much the same way as the inherent complexity of phPllog] (PNP) complete problems was due to
the necessity of computing the value of a certain optimization function (see [11]). Hence, the class
DLNLIog] seems to bear a great deal of similarity to pNPlogl 5nd PP, Some of the proofs are also
interesting in that they are simplified by the DLNLI]ogleE; characterization. This may be of special
interest since the previously studied AZ‘IQ‘-complete problems [7, 13, 21, 22] do not appear to be
optimization problems. (Most of these problems involve finding particular types of strongly connected
components in directed graphs.) Thus, the equivalence of DLNUlog] ¢4 AZ;‘ unifies two groups of

problems which, on the surface, appear to be different.

Finally, in Section 5, we take a look at whether the techniques utilized here (and in Lange, Jenner,
and Kirsig [15]) can be adapted to yield the collapse of similarly defined space hierarchies. As a result,
other variations of the basic strategy are developed in order to illustrate that similarly defined alternating
hierarchies collapse for other space classes -- e.g., O(log” n) and O(n). We then turn our attention to the
problem of whether the related symmetric complementing logspace hierarchy of Reif [20] collapses.
Although we are unable to answer this question, we do establish that Df{gsi‘i’[log]zih 4(SL) -- the closure of
SL under Hausdorff reductions. (SL denotes symmetric logspace. See Lewis and Papadimitriou [16] and
Reif [20]. pLStlogl ang L, 4(SL) are defined analogously to DLNMogl ng L,,(NL).) Hence, with respect
to this hierarchy, the strategies employed here are once again essentially equivalent to those in [15].
Whether the strategy will ultimately work seems to depend on whether certain sets that involve counting

(with respect to undirected graphs) can be recognized in SL. In particular, the relevant proofs in this

paper and in [15, 25], revolve around being able to count reachable states in a graph. This counting (with

respect to undirected graphs) does not seem possible in SL.

In what follows, we assume the reader is familiar with the basic tenets of automata and complexity
theory. Relevent sources might include [5, 6]. The basic computational model used in this paper is the
nondeterministic {deterministic) offline multitape Turing machine. All completeness classes mentioned

in this paper are with respect to deterministic logspace many-one reductions.

The remainder of this paper is organized as follows. In Section 2, we provide most of the formal
definitions used in the paper and illustrate many of the known relationships between the various
complexity classes. In Section 3, we show that DLNLHOd:AZg. Section 4 concerns itself with the
complexity of the various graph problems. Special attention here is paid to the analogies with the work
of Krentel [11]. Section 5 concludes by exploring whether the techniques utilized thus far can be used to

induce the collapse of other "space® hierarchies.

2. Definitions of the relevant complexity classes

Ruzzo, Simon, and Tompa introduced the logspace oracle hierarchy in [23]. Informally, an oracle
Turing machine (OTM) M is a nondeterministic (or deterministic) offline multitape Turing machine with
an additional write-only tape called a query tape and three distinguished states called query, yes, and no
states. In addition, a set A, called the oracle set is always related to the computation of the OTM M. Let
L(MA) denote the language accepted by the OTM M using A as its oracle set (denoted MA). The
computation of an OTM is similar to that of an ordinary NTM except when visiting the query states.
When in a query state, if the string on the query tape is in the oracle set, then the machine enters the yes
state; otherwise, it enters the no state. Moreover, the contents of the query tape will be erased
immediately upon entering the yes or no state. The machine can write a symbol on the query tape in
every state except the query state. Now let X and Y be complexity classes. We define XY as the set of
languages that can be recognized by an OTM M with oracle set A such that M operates within the
complexity constraints of X, and A is in Y. Also, if f is any function on the natural numbers, padiE
defined as the set of languages that can be recognized by an OTM M with oracle set A such that M

operates within the complexity constraints of X, A isin Y, and X makes at most O(f(n}) oracle calls to A.

In order to study complexity classes between NL and P, it seems natural to define classes DLNL,
NLNL, etc., thereby emulating the strategy of Stockmeyer [24] in defining the polynomial time hierarchy
between NP and PSPACE. Unfortunately, when the OTM’s are defined as above, one can easily show
that NLN-NLPY<=NP. That is, the logspace hierarchy jumps into the polynomial time hierarchy on the
second level. As is pointed out in [12, 23], this phenomenon occurs because nondeterminismn when

combined with the ability to write long strings on the query tape boosts the machine’s computing power

dramatically. To limit the undesired boost in the power of the OTM’s, Ruzzo, Simon, and Tompa
[23] require that only strings of logarithmic length be written on the query tape. However, the action of
the query states is modified so that if machine M enters its query state with x on its input tape and v on
its query tape, then M enters its yes state iff x#ty (rather than y) is in the oracle set. {This definition
actually utilizes the alternate characterization provided by Lemma 7 in [23].] When considering

sublinear space complexity classes, we consider only OTM’s of this sort. Using such OTM’s,

the logspace oracle hierarchy was defined in [23] as follows:

N zg_-:DL
£
® ZiH:NL k
L g 5
e Ak+1“DL k

@ ﬂtzco—éfg

In [3], the alternating logspace hierarchy was introduced based on the model of alternating Turing
machines (ATM’s). Basically the concept of alternation is a generalization of nondeterminism in a way
that allows existential and universal quantifiers to alternate during the course of a computation. Four
kinds of states exist in an ATM; namely existential, universal, accepting, and rejecting states. A universal
state can lead to acceptance iff all successors lead to acceptance. On the other hand, an existential state
leads to acceptance iff there exists a successor that leads to acceptance. Details can be found in [3]. In
particular, AZ;E‘ is the set of languages accepted by Of{log n) space bounded ATM’s in which the starting
state is an existential state and the machine is constrained to make at most f(n)-1 alternations during the
course of a computation. {Any computation path of such a machine will have at most f(n) alternation

blocks.) In [3], such machines are called "f(n) alternation bounded.” We adopt this notation here.

The alternating logspace hierarchy was then defined to be Uk>1AZ‘§. {Here the subscript k denotes
the constant function f(n)==k.) The results of [15] show that Lhd(NL):AZ';‘:UkzZAZL, where L, (NL)
is the closure of NL under Hausdorff reductions, which we will now define. Let A and B be two
languages. A is said to be Hausdorff reducible to B iff there exists an Oflog n) space bounded
deterministic transducer M that produces, on input ¥, a list of strings VYo guy such that

X

1. x€A iff yz*HeB and yZ*iéB for some i, lgifnx, and

2. for all i, if yi+1EB’ then y,€B.

Lhd(NL} is now defined as the closure of NL under Hausdorff reducibility.

Combining together the results of many sources (including this paper), we now provide a sequence of

inclusions that will help the reader to put many of these complexity classes into a clear perspective.

G

From gvery node

Initial

configuration Edges originally
of G

To every node
Edges originally in G
Query
configurations
of G

Corresponding
computation
graphs

Figure 4.3: Reduction to C.3.

Theorem 2.1: DL C NL,Go-NL € D" C £, (NL) = As: — pLNHlesl ¢ pp™e ¢

ocoash
C PNDSPACE(log” n). (See Figure 2.1.)

k>2 log

Proof: The fact that L, (NL) = AZIQ‘ = Uk>2AZJ£ was recently shown in [15]. The fact that
DLNL[logleZJQJ is shown in the next section. The fact that Uk>22]1; - AZ‘%; g VVas shown in Lange [14].
The fact that A)Zt . - PﬁDSPACE(Iog2 n} follows from the result attributed to Borodin in [3]. The

remaining facts are either obvious from the definitions or very easy to derive. 0

In the lower bound proofs that follow, we assume that all machines are of a certain canonical form.
First of all, since all of the machines we consider operate under a fully space constructible space bound,
we assume without loss of generality that all computations halt. Also, when considering altermation
bounded ATMs, or OTMs making a limited number of oracle calls, we assume without loss of generality

that these bounds are actually reached on all computations {e.g., all 2 alternation bounded ATMs make

exactly one alternation on every computation path).

3. A deterministic characterization of the alternating logspace
hierarchy
Lange, Jenner and Kirsig in [15] show that Ale’th 4NL). Since the latter is closed wunder
complementation, [15] establishes the surprising result that the alternating logspace hierarchy collapses.
In this section we provide a short proof that DLNL{IOg]zAZg. Since DLNElogl 54 clearly closed wunder
complementation, this yields a succinct proof that the alternating logspace hierarchy collapses. More

importantly, it establishes a deterministic computational model for A)_Tg, Lh d(NL), and the altermating

logspace hierarchy.

In [21], we gave a characterization of the alternating logspace hierachy in terms of OTMs. {See also
[13].) In particular, [21] shows that a language is in AZ% iff it can be accepted by an Olog n) space
bounded nondeterministic OTM that makes a single oracle call to an NL oracle. We will utilize this
characterization in showing that DLNLPOg]_C;AZ%. The main idea behind the proof that AZIQ‘ QDLN‘LHOg} is
similar to that of Lemma 4.1 in [15]. In fact, the AZg-complete problem utilized in [15] can be shown to
be in DLNLlogl using essentially the same strategy; however, we feel that the following proof is more

direct and succinct.

Theorem 3.1: DLNLHO@]ZAZIQ‘ .

Proof: We first show that DLNLFO%}EAZ‘;. Let L be an arbitrary language in DLNLIogl Then there is a
language AENL and an O(log n) space bounded deterministic OTM M, such that LzL(MiA}; and M,

makes [c*log n] oracle calls, for some constant ¢, on any input of length n. Let M, be an Oflog 1} space

bounded NTM that accepts A. We now describe an O{log n) space bounded nondeterministic OTM M that
accepts L using an NL oracle. M will make only a single oracle call during the course of a computation.
M on input x will guess an m-bit binary number z, where m is the number of oracle calls M, makes on
inputs of length |x|. M will then simulate M, on x, using z to determine the outcome of the oracle calls as
follows: the i'" query is assumed to have an outcome of no iff the i bit {(from the left) of 2 1s 0. For all
bits of z that are 1, M verifies the yes response by simulating M2 on x#y, where y is the string on the
query tape of I\/[1 when the oracle call is simulated. If M fails to reach an accepting state of M, by this
procedure, M rejects. It is not hard to see that the largest z for which all 1 bits can be verified represents
the correct computation of MlA. M therefore asks its oracle whether there is a z’' >3z for which the above
procedure also leads to an accepting state of Ml. This question can clearly by answered by an NL oracle.

M accepts iff the oracle response is no. Hence, from results in [21], we have that LEAZ{Q‘.

We now show that AZ% EDLNLHO%I. Let L be an arbitrary language in AZJQJ‘ There exists an Oflog
n) space bounded 2 alternation bounded ATM M such that L(M)=L. We will construct an O(log n) space
bounded deterministic OTM M’ that makes no more than c¢*log n oracle calls {for some constant ¢) on any
input of length n and a set AENL such that L(M"™)=L. Let A — {x#0$i : at least i distinct universal
configurations of M are reachable via only existential moves on input x} U {x#1%i : on input x, there are
at least i universal configurations of M reachable via only existential moves, and from each of these i
configurations, some rejecting configuration is reachable}. Clearly, A€NL. For any input x to M, M’
first determines how many universal configurations are reachable via only existential moves. This
number i can clearly be determined by using a binary search and consulting an oracle for A O(log |x|)
times. Now M rejects x iff x#1%i€A. Therefore, by making one more oracle call, M’ can determine

whether x€L. [

Since DLNLDOg] is clearly closed under complementation, this suffices as a succinct proof for the main
result of [15]. The characterization can be also used to prove other identities that otherwise might seem

NL[1 NLlog]
unlikely. For example, we also have NLNH N PR }M:NLDL [,

4. Directed graph problems

In this section, we examine the complexity of a number of problems involving directed graphs with
unary edge weights. Problems involving directed graphs are very central to the study of computer
science. For example, in [1], Aho, Hoperoft, and Ullman devote an entire chapter of a textbook on data
structures to the discussion of directed graph problems and algorithms. A substantial portion of this
chapter in [1] examines minimum cost path problems. In order to gain a better understanding of the
complexity of these problems, we give in Subsection 4.1 completeness results for several problems related
to computing the minimum cost path in a graph with unary edge weights. In Subsection 4.2, we apply

the techniques employed in Subsection 4.1 to the related problems of finding the minimum length path,

the eccentricity of a vertex, the radius of a vertex, and the center of a graph. See [1] for a discussion of
these problems, and [4], where parallel algorithms are mentioned for many of the same problems using
unary edge weights. In Subsection 4.3, we explore analogies between the class DLNEo8] 4nd the classes

PP and PNP{IOg], comparing our results with those of Krentel [11].

4.1. Minimum cost path problems

In this subsection, we give completeness results for a number of decision problems related to the
problem of finding the minimum cost path in a directed graph when edge costs are given in unary. Let N
denote the natural numbers, and let w be a special symbol denoting *plus® infinity. In general, an
instance of a problem consists of a graph G with n vertices and a list of triples <u,v k>, 1<i<m,
where u, and v, are vertices in G, and kiENU{w}. Associated with each edge (u,v) in G will be a cost
expressed in unary, denoted cost(u,v). (We also extend this notation so that cost(c) denotes the cost of a
path 0.) Let MCP(u,,v,) be defined as the value of the minimum cost path from u; to v, in G, or w if no
path from u, to v, exists. All of the problems we consider have to do with verifying that certain
minimum cost paths in a graph meet certain requirements. In particular, we consider the following

questions:

A. ¥i MOP(u,v,)<k?
B. Vi MCP(u,,v,)=k!

C.vi MOP(ui,vi) mod k; = 07 {We define k mod w = k and w mod w = 0 for all kéN; w mod k
is undefined for k€N.)

Now for each of the above questions, we consider three problems depending upon the value of m {i.e., the

number of triples allowed in the list):

1. m==1 (i.e., single source, single sink minimum cost path};

2. m is a variable, 1§m§n2 (i.e., arbitrary number of pairs - this includes single source
minimum cost path}; or
3. m=n’ (i.e., all pairs minimum cost path).

Thus, we consider 9 problems, A.1, A2, ..., C.3.

In showing some of our lower bounds, we make use of the graph accessibility problem (GAP), which
is the problem of determining, from a directed graph G and vertices u and v, whether there is a path
from u to v in G. This problem was shown to be NL-complete in [10]. We also use a number of "generic®
reductions. These reductions make use of the compufation graph of an O{log n) space bounded machine
M on a given input x. The computation graph has for its vertex set the set of all possible configurations
of M on x. Its edge set then gives all possible moves between configurations. Clearly, the computation

graph can be deterministically constructed from M and x using only logarithmic space [10].

We now examine the problems A.l, A2 and A.3. It is easy to show that Al and A.2 are
computationally equivalent to GAP; i.e., they are NL-complete. The proof that A.3 is NL-complete is

only slightly more difficult. Hence, we have:
Theorem 4.1: A.1, A2, and A.3 are NL-complete.

Proof: We only consider problem A.3. A.3 is clearly in NL. We will show, using a reduction from
GAP, that A.3 is also NL-hard, and therefore NL-complete. Let <G,u,v> be an instance of GAP, where
G==(V E). Let G'={V,E’), where E' = E U {{x,u) : x€V} U {{v,x}) : x€V}. Let x and y be arbitrary
vertices in V. If there is a path from u to v in G, then there is clearly a path from x to v in G'. Thus, G/
is strongly connected if there is a path from u to v in G. Conversely, if G' is strongly connected, there is a
simple path from u to v in G'. Since all edges in E'\E either enter u or leave v, all of the edges in the
simple path from u to v are in E. Hence, G is strongly connected iff there is a path from u to v in G. If

we now let all edges in G’ have cost 0, then MCP(x,y)<0 for all x,yeG' iff G' is strongly connected iff

there is a path from u to v in G. 0

Notice that in order to decide A.1, A.2, and A.3, it is not necessary to evaluate the exact cost
associated with the minimum cost path. Thus, it might seem reasonable that B.1, B.2, and B.3 might be
more difficult problems. We give positive evidence of this in the case of B.1 and B.2 by showing them to
be DL-complete; however, B.3 remains NL-complete. This result is somewhat surprising, but a similar
result can be shown with respect to the transitive closure problem {for unweighted graphs); i.e., the
problem of verifying whether some subset of bits in a potential transitive closure of a Boolean matrix can
be shown to be DL-compIe’ce, but the problem of verifying an entire transitive closure matrix can be

shown to be NL-complete. The proofs of these facts are similar to those that follow.

Theorem 4.2: B.1 and B.2 are DL-complete.

Proof: We first show B.1 to be D'-hard. Let L be an arbitrary language in D¥. Then L=L1QL2, where
L,€eNL and L,€co-NL. Let M, and M, be NTMs using logarithmic space such that L(I\f,{i)——=L1 and
L(M2)=CO-L2. Let x be an input to M1 and Mz‘ We now construct the computation graphs G, and GQ of
M1 and MQ, respectively, on x, such that Gr1 and G2 have disjoint vertex sets. We then join Gl and G‘2 by
adding edges from the accepting configurations in Gl to the starting configuration in GQ. Also, we add a
new node v and edges from the accepting configurations in G‘2 to v. Finally, we assign a cost of zero to
all existing edges and add an edge with cost 1 from the starting configuration in G2 to v. See Figure 4.1.

Clearly, the minimum cost path from the starting configuration in Gi to v has cost 1 iff

x€L(M,)\L(M,)=L NL,~L.

We now show B.2 to be in D¥. Let A.2' be A.2 modified such that <G, {ui’vi’ki : 1<i<ml> €
A2 T VI MCP(ui,vi)<ki. Clearly A.2€NL. Now any instance of B.2 can be expressed as an instance of
A.2Mco-A.2"; therefore, B.2eD". It now follows that both B.1 and B.2 are DL-complete.]

Theorem 4.3: B.3 is NL-complete.

Proof: The fact that B.3 is NL-hard follows as a corollary to the proof of Theorem 4.1. Hence, we need
only show that B.3 is in NL. Let G=(V,E) be an arbitrary directed graph, with cost{u,v) denoting the
cost of edge {u,v). (If edge (u,v) does not exist, cost{u,v}==w.) Suppose for each ordered pair <u,v> of
vertices in V, we are given a k €NU{w}. We give the following algorithm to verify that each
k =MCP(u,v):

Step 1. Vu,vEV verify that MCP(u,v)<k

v’
Step 2. VueV verify that k\m=0.
Step 3. V(u,v)EE verify that k <cost(u,v).

Step 4. Vu,v,w€V verify that kuvﬁkuw+kwv.

From Theorem 4.1, Step 1 can be carried out in nondeterministic logspace, and Steps 2, 3, and 4 can
clearly be carried out in deterministic logspace. Furthermore, the algorithm can clearly accept any
correct input. Suppose the algorithm accepts some input in which some entry kuv is incorrect. From
Step 1, MCP(u,V)<kuv. Let o be a path from u to v with cost less than kuv, and assume without loss of
generality that o is the shortest path in G {in terms of the number of edges) with a lower cost than that
proposed in the input. From Step 2, o has at least one edge. Let w be the vertex following u in o. From
Step 3, cost(u,w)Zkuw. Let o' be that portion of o beginning with w. By our choice of g, cost(o) =k _ .

From Step 4, k, <k _+k__<cost{u,w)+cost{g')==cost(c]} -- a contradiction. The theorem now follows.

O

Now in all of the problems examined thus far, it has not been necessary to compute the exact value
associated with the minimum cost path. This computation turns out to be necessary for C.1, C.2, and
C.3, which are all complete for AZ’;’ . Now since Aﬁé:DLNL[iOg], this result might be expected given the
results in [11, 17]. In [17], Papadimitriou showed that the uniquely optimal travelling salesperson
problem is PNP—Complete‘ Krentel points out in [11] that the inherent complexity in this problem arises
from the necessity of computing the optimal tour, and that the problem of determining whether the
length of the optimal tour is 0 meod k is PNP-comp}ete for the same reason. Now since Al is NL-
complete (rather than NP-complete, like the travelling salesperson problem), one might expect C.1 to be

complete for DLNE, However, it turns out that only O{log n) oracle calls are needed. Hence, the class

10

DN flog] (or equivalently AZ‘;‘) may be considered to be in some sense analogous to PP, {(We discuss
this relationship in more detail in Subsection 4.3.) Note, however, that although DLNMIg] has a natural
characterization in terms of optimization problems (see Subsection 4.3), the problems shown in
[7, 13, 21, 22] to be complete for AEIQ‘ do not appear to be optimization problems; rather, the problems
in [7, 21, 22] have to do with finding particular types of strongly connected components in directed
graphs. Thus, the equivalence of DLNVleg] ¢4 AZE unifies two groups of problems which appear to be
quite different. Furthermore, the alternate characterization of AZJQ’ provides us with another tool for
showing completeness results. We take advantage of this fact in the theorems that follow. The

characterization used in each proof is utilized in the statement of the respective theorem.

Theorem 4.4: C.1lis DLNL[lochomplete.

Proof: We first show C.1€DLNEI8l Given an instance of C.1, let n be the number of vertices and ¢ be
the largest cost of any edge. Then if MCP(ui,vi) is finite, it can be no more than ¢*n. We therefore use a
binary search to find the smallest k such that MCP(ui,vi)_<_k. Bach k can be written in log{c*n) bits, and

at most log(c*n) calls to an oracle for A.1 need to be made. Once MCP(ui,vi) is found, MCP(ui,Vi) mod k
is easily computable in DL. Thus C.1eDLNUIog],

We now show C.1 to be DLNM8Lhard. Let M be an arbitrary Oflog n) space-bounded deterministic
OTM which queries its oracle f{n) times in any computation on an input of length n, where f(n)=={c*log
n] and is fully space constructible, and let A be an arbitrary language in NL. Let x be an arbitrary input
string of length n. We can construct in deterministic logspace a tree T of depth f(n} such that the root
node is the configuration of M at its first oracle query, the left child of a node p is the configuration of M
at its next query after a "no* response from the oracle at configuration p, and the right child of p is the
configuration of M at its next query after a "yes® response from the oracle at p. The leaves of T are the
halting configurations. We now construct a graph G from T as follows. First assign to all left-hand
edges a cost 2f(n)‘d+1, where d is the depth of the head of the edge. Let M’ be an O(log n) space-bounded
nondeterministic TM that accepts A. We now insert between each node p in T and its right-hand child
the computation graph of M’ on the query tape in configuration p such that from all accepting
configurations of M’ there is an edge to the right-hand child of p. See Figure 4.2. Now add an edge with
cost O from every accepting configuration of M to a new vertex v, and add an edge with cost 1 from every

rejecting configuration of M to v. Give a cost of 0 to every edge which has not yet been given a cost.

We now claim that the minimum cost path from the initial configuration to v represents the
computation of M on x. To see this, first observe that from any query node p, if the correct response
from A is "no,” then there can be no path from p to v through the right-hand child of p. Furthermore, if

the correct response from A is "yes,” then the minimum cost path from p to v must be through the

i1

right-hand child of p because the cost of this path is at most Z{ch}i 1 gflekitl g Qf{ﬂ)'d’q, the cost of
the edge to the left-hand child of p. Thus, the minimum cost path must clearly represent the
computation of M* on x. Furthermore, the minimum cost path is even-valued iff it passes through an

accepting configuration. Therefore, the minimum-cost path is even-valued iff M4 accepts X. O

Theorem 4.5: C.2 and C.3 are AEg-complete.

Proof: We will show that C.ZEAEIQ‘ and C.3is AZ%—hard. The result will then follow.

In order to show that C.QEAZ’;‘, we will deseribe an O(log n) space bounded 2 alternation bounded
ATM M that accepts all instances which are not in C.2. From [15], it will then follow that C.QEAZ‘; M
operates as follows. First, M guesses an i, 1<i<m. If ki-—":w, then M guesses a path from u, to v, and
accepts if successful. Otherwise, M guesses as to whether a path exists from u, to v,. We then have the

following two cases, depending upon the guess made by M.

Case 1: M guesses that there is a path from u, to v,. M will now attempt to verify this guess and to
show that MCP(ui,vi) mod k, ## 0. M first guesses a path from u, to v, and computes the cost k. If M
fails to find a path with cost k, where k mod ki £ 0, it rejects. If such a path is found, M enters a
universal state. M will now attempt to show that MCP(ui,Vi)zk. It does this by computing the cost of

each path from u, that contains no more than n edges. If some path leads to v, and has cost < k, M

rejects; otherwise, M accepts.

Case 2: M guesses that there is no path from u, to v, M will enter a universal state, and follow all
paths from u, no longer than n. If any path reaches v, M will enter a rejecting state; thus, if no path

ends in v,, M accepts its input.
Clearly, M accepts all instances for which there is an i such that MCP(ui,vi) mod ké £ 0.

We will now show that C.3 is Ale‘—hard. Let L be an arbitrary language in AZJE;. From [21], there is
an Oflog n) space-bounded nondeterministic OTM M and a set AENL such that L(M*)=L. Furthermore,
we can assume that in any computation, M makes exactly one oracle call and accepts iff the response is
“po%. We can construct, in deterministic logspace, the computation graph G of M on a given input x,
such that the query configurations have no outgoing edges. We assign a cost of 0 to every edge in
G. Now from every query configuration q in G, we add an edge having cost 1 to a new vertex Yy Let M/
be an Oflog n) space-bounded nondeterministic TM such that L(M)=A. We now construct, for every
query configuration q in G, the computation graph Gq of M! on x#ty, where v is the string on the query

tape in q. We assign a cost of 0 to every edge in Gq. We now combine G with all of the Gq’s by adding

edges with cost 0 from each query configuration q to the initial configuration of Gq, and from each
accepting configuration of Gq to Vo Finally, we add edges having cost 2 from the initial configuration of

M to every vertex in the graph, and from every vertex in the graph to the initial configuration. Call the

resulting graph G'. See Figure 4.3.

Now let ki be defined as follows. I u, is the initial configuration of M and V=V, for some query
configuration ¢, then kir—-2; otherwise, kézl. We now claim that there is an i, 1§i§n2, such that
MCP(ui,vi) mod ki £ 0 iff x€L. Suppose such an i exists. Since G' is clearly strongly connected, it must
be the case that k§=2; thus, u, must be the initial configuration of M, and v, must be A for some query
configuration q. Since there is an edge from u, to v, with cost 2, MCP(ui,vi) must be 1; thus, no edges
having cost 2 are in the minimum cost path. It is therefore easy to see that configuration q is reachable
in a computation of M on x, and that the response from the oracle call in g must be *no*. Therefore,
x€L. Now suppose, conversely, that x€L. It is again easily seen that MCP(ui,Vi)zl, where u, is the
initial configuration of M and V=, for some query configuration q. Therefore, since Aéj‘[z‘ is closed

under complementation, C.3 1s Azlz‘—hard. r

4.2. Applications to related problems

In this subsection, we apply the techniques used in the previous subsection to several related
problems. These problems include minimum length path problems (i.e., the problems considered in the
previous section in which all edge weights are 1), as well as problems involving the eccentricity of a

vertex, the radius of a vertex, and the center of a graph.

Let v be a vertex in a directed weighted graph G=(V,E}. The eccentricity of v is defined in [1] to be
maxueV{MCP(u;v)}. A metric closely related to the eccentricity of a vertex v is the radius of v, defined
as ma,xuev{MCP(v,u)}. As was done above in defining the minimum length path problems, we can
modify in an obvious way the problems A.1, A.2, ..., C.3, from the previous subsection to ask questions
about the eccentricities {or radii) of vertices. For example, A.1 can be modified to ask whether a given
vertex has eccentricity < k; A.2 can be modified to ask whether a given list of vertices VoV have
eccentricities < kl,...,km, etc. It can be shown that whether we are talking about minimum length path,
eccentricity, or radius, the complexities are the same as the corresponding problem from Subsection 4.1

except for those corresponding to problem B.3.

Consider the problem B.3 restricted to edge weights of 1. Recall that in the unrestricted case, the NL
upper bound was somewhat surprising. We now show an even more surprising result, that when edge
weights are restricted to be 1, the problem can be solved in deterministic logspace. Consider the following

algorithm.

for each vertex u, verify that kuu:()

13

for each k__, verily that either k_<nor k ==w
uv uy uv
for i==1,...,n-1
for each k =i, verify that there is an edge (u,w) such that k =i-1

for each edge (u,v) and each k__==i-1, verify that k__ <i
YW uw -

Clearly, the above algorithm requires Oflog n} space. Furthermore, it is not hard to show that it

successfully terminates iff all kuv are correct. We therefore have the following theorem.

Theorem 4.68: The problem B.3 restricted to cases in which all edge weights are 1 can be solved in

deterministic logspace.

We now consider the problems of verifying the eccentricity (or radius) of every vertex in a graph (i.e.,
the problems corresponding to B.3). These problems are easily seen to be in DY In the following

theorem, we show the problems to be DL-complete.

Theorem 4.7: Given a directed graph G with m vertices and edge weights in unary, and an integer kif
1<i<m, for each vertex u, the problem of deciding whether, for all vertices u, the eccentricity (or

radius) of u, is k; is DY complete.

Proof: Let <G,u,v> be an instance of GAP, and let <G, v/,v'> be an instance of co-GAP. We will
construct a graph Gl with unary edge weights such that the eccentricity (radius) of every vertex in Gl is 1
iff there is a path from u to v in G and there is no path from v’ to v/ in G'. First, let G" be a copy of G
such that for each vertex w' in G/, the vertex w" in " is isomorphic to w'. We now combine G, G', and
G" into a graph G, as follows. First, add edges from v (v/, v¥}) to every vertex in G (G, G", resp.) and
from every vertex in G (G, G") to u (v, u”, resp.). See Figure 4.4. Now add the edges (v, u'), (v, u”), (v,
u), (u”, u), (+', u), and {v", u}. Assign to all edges currently in G, a cost of 0. Finally, add the edges (u/,
v!) and (u”, v") with costs of 1. It is now a straightforward matter to show that all vertices have

eccentricity (radius) 1 iff there is a path from u to v in G but no path from v’ to v/ in G 0

A related and perhaps more interesting problem is that of finding the center of a graph. A center of
a graph G is defined defined in [1] as any vertex with minimum eccentricity. {In [19], a center of a graph
is defined as any vertex with minimum radius. Clearly, any two problems that differ only by these
definitions can be shown to be equivalent by reversing the direction on all edges.) In what follows, we
will show that the problem of determining whether a given vertex v is the center of a given graph G is

DLNL{lOg}—complete.

Theorem 4.8: The problem of determining whether a vertex v is a center of a directed graph G is

DLNL8L complete.

i4

Proof: First note that v is not a center of G iff there exist a vertex u and an integer m such that the
eccentricity of u is < m and the eccentricity of v is > m. Therefore, the complement of the problem is
in AZ’;, so the problem itself is in AZ’Ig’zDLNLHOgl. We now will show the problem to be DLNMIO8_narq.
Consider the construction given in Theorem 4.4. We will modify the graph G constructed there so that v
is a center of the resulting graph G' iff XEL(MA). We first add edges with cost O from all vertices except
v to the starting configuration. We then add edges with cost 0 from every halting configuration to a new
node u. Finally, we add edge (u,v) with cost 1 and edge (v,u) with cost 0. See Figure 4.5. Now there is a
path in the resulting graph G/ from every vertex to both u and v, but there is no path from u or v to any
vertex outside of {u,v}. Hence, only u and v have finite eccentricities. Clearly, the vertex with the
highest minimum cost path to either u or v is the starting configuration. By reasoning as in Theorem
4.4, this minimum cost path represents the actual computation of M with oracle A. Therefore, u1 is a

center of G, and v can be a center iff x€L(M™). O

4.3. Analogies from PNP and pNPlog] 4o ppMuflog]

In [11], Krentel characterized the classes PP and PNPIo8] i terms of optimization functions followed
by polynomial-time computations. In particular, he defined a meiric TM as a nondeterministic
transducer whose output is defined to be the largest integer that can be written to its output tape in any
computation. He then defined OptP to be the set of functions computable by polynomial time bounded
metric TMs, and OptPlz] to be the set of functions computable by polynomial time bounded metric TMs
whose outputs are bounded by z(n) bits. He was then able to show that for sufficiently "nice® 3,
£:5% — {0,1} is in PN iff there exist functions g:Z* XN — {0,1} in P and h:Z* — N in OptP|[z] such
that f(x)=g(x,h(x}).

It is not hard to see that these techniques can be used to show a similar result for pLNEllog], I.e., let
OptL[z] be the set of functions computable by O(log n) space bounded metric TMs whose outputs are
bounded by z{n) bits. We then have the following theorem, which can be shown in the same way as

Theorems 3 and 4 in [11].

Theorem 4.9: If z is a nondecreasing function such that the function gﬁ(ln)zlz(n) is computable in
deterministic logspace and z(n}=O(log n), then f:Z* — {0,1} is in DLNM iff there exist fumctions
g: ¥ XN — {0,1} in DL and h:Z* — N in OptL[z] such that f(x}==g(x,h(x)).

Thus, any language in DLNHO8] can be recognized by an OptL[log] computation followed by a DL
computation. This is somewhat surprising, since the problems shown in [7, 21, 22] have to do with
finding particular types of strongly connected components, and hence do not have the appearamce of

optimization problems. One of the chief reasons the generalizations go through for DLNL[ZE; when

16

5. Applications to other hierarchies involving space

Given the fact that the alternating logspace hierarchy collapses, one might wonder if alternating
hierarchies based on space bounds other than log n also collapse. A partial answer to this question
follows from a result attributed to Borodin in [3], namely, if L is accepted by an S(n) space bounded A(n)
alternation bounded ATM with S(n)>log n, then L is accepted by an S(n)*A(n)+S%(n) space bounded
deterministic TM. From this, it follows that any polynomial space-bounded k alternation bounded ATM
can be simulated by a polynomial space-bounded deterministic TM. However, Borodin’s result clearly
cannot be applied to Iogz n space or linear space, for example, to imply a similar collapse. We address
this issue by showing that any alternating hierarchy based upon S(n) space-bounded ATMs with S{n)>log
n must collapse. This is stated more formally in the following theorem and its corollary. The proof of

this theorem again uses the same key ideas as were used in [15], and in fact, generalizes the main result of

[15] very succinctly.

Theorem 5.1: If 3 is a fully space constructible function such that S{(n)>log n, then for any S(n) space
bounded 2 alternation bounded ATM M, there is an S(n) space bounded 2 alternation bounded ATM M/

such that L(M/)=L (M).

Proof: We construct M’ as follows. M’ first generates in some canonical order the universal
configurations of M on a given input x, keeping only one configuration at a time written on its work tape.
Since S(n) is fully space-constructible, each configuration can be generated and written down in O(S(n))
space. (Since the input tape remains unchanged, we do not include it in the description of a
configuration. We only need a pointer to the tape head position.) For each configuration o, M’ guesses
whether that configuration is reachable by some path in M in which all configurations except o are
existential. If M’ guesses o to be unreachable, it generates the next configuration in the canonical
ordering; otherwise, it guesses a path to o through only existential states, then from o through only
universal configurations until it reaches a halting state. If M fails to reach o or reaches an accepting
state of M, M rejects x. Otherwise, o is counted, and the next configuration is generated. Clearly, the
paths described above can be guessed using O(S(n)) space. Since the total number of configurations of M
is 1*¢5®™ for some constant ¢, the counter can be stored in log n + S(n)*log ¢ = O(S(n)) bits. After all
configurations have been generated, M’ enters a universal state. Suppose the counter at this point is i. M

now verifies that no more than i universal configurations can be reached by M in its existential phase. M

can clearly do this in a manner similar to that described above, rejecting if more than 1 universal

configurations are found to be reachable. Clearly, L(M’):E(M), and by a tape compression argument, M

can be made to operate in S(n) space. O

Corollary 5.1: If S is a fully space-constructible function such that S(n)>log n, then any S(n} space-

17

bounded k alternation bounded ATM can be simulated by an S{n) space-bounded 2 alternation bounded

ATM; ie., AZSM=AZSE),

Another question ome might ask is whether other hierarchies similar to the alternating logspace
hierarchy also collapse. Perhaps the most closely related hierarchy is the symmetric complementing
logspace hierarchy of Reif [20]. The machine used to define this hierarchy is the complementing Turing
machine (CTM). Informally, a complementing Turing machine is an NTM M with two types of
transitions, symmetric transitions, and complement transitions. The symmetric transitions must have
the property that for any configurations I and T of M, if ¢ is a symmetric transition such that I }——t T
then there is a symmetric transition t' such that T’ t—y L For a formal definition of CTMs, see [20].
Acceptance in a CTM is defined inductively as follows. Any accepting configuration is said to lead to
acceptance. A nonaccepting configuration I of M leads to acceptance iff either some successor of I via a
symmetric transition leads to acceptance, or there is at least one complement transition enabled at I and
no successor of I via any complement transition leads to acceptance. A CTM is said to accept its input iff
its initial configuration leads to acceptance. Let SL be the set of languages accepted by Oflog n} space
bounded CTMs that take no complement transitions. (We also call these machines symmetric TMs; see
also [16].) Let CZ’?L be the set of languages accepted by O(log n) space bounded CTMs that take at most
f(n}-1 complement transitions during the course of a computation. The complementing symmetric

logspace hierarchy is then defined to be Uk>ICZSkL. It is not hard to see that CSSKL - AZ% (see [20]);

hence, Uk>1CZiL - AZJQ‘.

Two questions one might ask regarding this hierarchy are
L
oIs L, (SL) = O™

o Is DS llog] — ozl

Clearly, a positive answer to either of the above questions would imply the collapse of the symmetric
complementing logspace hierarchy. Although we are unable to resolve either of the above questions or to
show the collapse of the hierarchy, we show in this section that L d(SL)zDLSLﬁog]gCZ‘zL. We then
point out why the strategies employed in [15] and Theorem 3.1 of this paper do not appear to extend to

the symmetric complementing logspace hierarchy.

We first observe that techniques employed in [21] may be used to show the following theorem, which
gives an alternative characterization of CLSQL in terms of symmetric OTMs making at most one call to an
SL oracle. {In defining symmetric OTMs, the transitions to and from query states are neither symmetric

nor complementing.)

Theorem 5.2: SLSLH}:CZ‘;L

18

Theorem 5.3: L, (SL)=DL%].

Proof: Let L€L, (SL). Then there is a set BESL such that for any input x, we can compute, using only
Ollog n) space, a list of strings YoV gy such that for all i, if yi+1€B} then inB, and such that x&L, iff
for some i, yQ*HEB and y2*i¢B. We can j;iearly use a binary search to find the smallest i such that yiﬁB.
This requires only Oflog n) space and Olog n) oracle calls to B. Thus, LEDLSL{lOg].

Now let LEDLSV!8] Then there is a deterministic O(log n) space bounded OTM M and a set AeSL
such that M makes [c¢*log n] oracle calls on any input of length n, and L=L(MA). Now for an input x,
assign to each computation path in M a [c*log n]-bit binary number b such that the i*f bit from the left

is 1 iff the i'" oracle response in the computation is yes. Now consider the following questions:

qz*i+1zls there a number j>i such that in the path associated with j, M accepts and for all k, if the k'
bit of j is 1, then x#y€A, where y is the content of the query tape at the kP query?

q2*1+2:Is Qo trUE, and is there a number j>1i such that in the path associated with j, if the k*® bit of j
is 1, then x#y€A, where y is the content of the query tape at the K query?

‘We now claim that the above questions can be answered in SL. Both questions involve guessing a number

j of logarithmic length (reversible), comparing it with i (deterministic), and verifying a series of

undirected graph accessibility problems which are generated deterministically. Using techniques from

[16], both questions can be seen to be in SL. Furthermore, it is not hard to see that for all i, if s is

true, then q is true, and that there is an i such that Qos; y is true and g is false iff XEL(MA). Therefore,
LELh d(SL). O

Theorem 5.4: DLSLIlog]gSLSLm.

Proof: Consider the construction of the machine M given in Theorem 3.1. We will show that if MQ is
symmetric, then M can be made to be symmetric. M must be able to guess a number z of logarithmic
length (reversible), simulate a deterministic TM (deterministic), and simulate a symmetric machine
(symmetric). Thus, using techniques from [16], M can be made to be symmetric. Furthermore, it follows

from the proof of Theorem 5.8 that the oracle required by M is in SL. This completes the proof. O

At this time, we would like to be able to show that either CE‘S,ZLQ L, 4(8L) or CZngDLSLﬁOg].
Either of these containments would imply the equality of all three sets and the collapse of the symmetric
complementing logspace hierarchy. However, an important feature of both the proof that AE;‘ g[.h d(NL)
given in [15] and the proof of Theorem 3.1 is the ability of an NTM to count guesses. For example, in

the proof of Theorem 3.1, the NTM tries to find i reachable configurations. It can do this by generating

18

configurations, and for each configuration, guess whether it is reachable. If it guesses "yes®™, it verifies
that the configuration is reachable and counts it; otherwise, it doesn’t count it. Now i is potentially large
enough that there will not be room enough to store all i reachable configurations. Therefore, if this
algorithm were to be implemented on a symmetric machine, the machine would not be able to detect
when reversing its moves whether a particular configuration had been counted. Hence, in attempting to
reverse a move, it might not *uncount® a configuration it had previously counted. This would allow it to

count the configuration arbitrarily many times. We do not yet see any way around this difficulty, even

at higher levels of the hierarchy.

Acknowledgment: We would like to thank Lane Hemachandra for his comments concerning an earlier

version of this paper.

References

[1] Aho, A., Hopcroft, J., and Ullman, J., Data Structures and Algorithms, (Addison-Wesley,
Reading, Mass., 1983).

2] Bentley, J., Ottmann, T., and Widmayer, P., The Complexity of Manipulating Hierarchically
Defined Sets of Rectangles, in: Advances in Computing Research 1 (JAI Press Inc., 1983),
127-158.

3] Chandra, A., Kozen, D. and Stockmeyer, L., Alternation, JACM 28, 1 (January 1981), pp.
114-133.

[4] Cook, 8., A Taxonomy of Problems with Fast Parallel Algorithms, Information and Control 64
(1985), 2-22.

5] Garey, M. and Johnson, D., Computers and Intraciability: A Guide to the Theory of NF-
Completeness, (W.H. Freeman and Company, San Francisco, 1979).

6] Hoperoft, J. and Ullman, J., Introduction to Automata Theory, Languages, and Computation,
(Addison-Wesley, Reading, Mass., 1979).

[7] Howell, R., Rosier, L., Huynh, D., and Yen, H., Some Complexity Bounds for Problems Concerning
Finite and 2-Dimensional Vector Addition Systems with States, Theoret. Comp. Sci. 46 (1986},
107-140.

8] Howell, R., and Rosier, L., Completeness Results for Reachability, Containment, and Equivalence
with Respect to Conflict-Free Vector Replacement Systems, to be presented at the 14th
International Colloquium on Automata, Languages, and Programming, July, 1987, Karlsruhe,
FR.G. Also Rep. 86-21, The University of Texas at Austin, Austin, Texas, 78712, 1936.

[9] Huynh, D., A Simple Proof for the Z’g Upper Bound of the Inequivalence Problem for Semilinear
Sets, Flektronische Informationsverarbeitung und Kybernetik 22 (1986), pp. 147-156.

[10] Jones, N., Space-Bounded Reducibility Among Combinatorial Problems, J. of Computer and
System Sciences 11 (1975), 68-75.

[11]

20

Krentel, M., The Complexity of Optimization Problems, to appear in J. of Computer and System

Sciences. A preliminary version was presented at the 18th Ann. ACM Symp. on Theory of
Computing.

Ladner, R., and Lynch, N., Relativization of Questions about Log Space Computability, Math.
Systems Theory 10 (1976}, 19-32.

Lange, K., Two Characterizations of the Logarithmic Alternation Hierarchy, Proc. of the 12th
Symp. of Math. Foundations of Comput. Science (1986), 518-526.

Lange, K., Decompositions of Nondeterministic Reductions, Proc. of the 13th International
Colloguium on Automata, Languages, and Programming (1986), 206-214.

Lange, K., Jenner, B., and Kirsig, B., The Logarithmic Alternation Hierarchy Collapses: AZ’é ==

AU;, to be presented at the 14th International Colloguium on Automata, Languages, and
Programming, July, 1987, Karlsruhe, F.R.G.

Lewis, H., and Papadimitriou, C., Symmetric Space-Bounded Computation, Theoret. Comput. Sci.
19 (1982), 161-187.

Papadimitriou, C., On the Complexity of Unique Solutions, JACM 81 (1984), 392-400.

Papadimitriou, C., and Yannakakis, M., The Complexity of Facets (and Some Facets of
Complexity), J. of Computer and System Sciences 28 (1984), 244-259.

Preparata, F., and Yeh, R., Introduction to Discrete Structures for Computer Science and
Engineering, (Addison-Wesley, Reading, Mass., 1973).

Reif, J., Symmetric Complementation, JACM 31 (1984), 401-421.

Rosier, L. and Yen, H., Logspace Hierarchies, Polynomial Time and the Complexity of Fairness
Problems Concerning w-Machines, Proceedings of the 8rd Annual Symposium on Theoretical
Aspects of Computer Seience, LNCS 210 (1986), pp. 306-320. To appear in SIAM J. Compudt.
Rosier, L. and Yen, H., On the Complexity of Deciding Fair Termination of Probabilistic
Concurrent Finite-State Programs, Proceedings of the 13th International Colloguium on

Automata, Languages and Programming, LNCS 226 (1986), 334-343.

Ruzzo, W., Simon, J., and Tompa, M., Space-Bounded Hierarchies and Probabilistic
Computations, J. of Computer and System Sciences 28 (1984), 216-230.

Stockmeyer, L., The Polynomial-Time Hierarchy, Theoret. Comp. Sci. 8 (1977), 1-22.

Tompa, M., personal communication.

e PTIMEDN DSPACE (log2n)

L
; AZIog

L
; kLszEk
® DLNL
|

|

o Lhd(NL)=AZ{2‘=DLNL[Og}
f
@ DL

Co-NL e e NL

y
AN

DL

Figure 2.1: Inclusions among some sublinear space complexity classes.
{Each directed line "—#" should beread as " € "))

Initial configuration
of M1

Initial configuration
of M2

© indicates accepting configuration

Figure 4.1: Reduction to B.1.

Rootof T

Computation
graph of M

lLeavesof T

indicates accepting configuration

indicates rejecting configuration

@)

Figure 4.2: Reduction o C.1.

G
From every node
initial

configuration
of G

Edges originally

To every node
Edges originally in G

Query
configurations
of G

Corresponding
computation
graphs

Figure 4.3: Reduction to C.3.

0/ 0 0
0 ool 7o 0
Lo N
0
0 0

Figure 4.4: Eccentricily (radius) of all nodes is 1 iff <G,u,v>e GAP and <G',u",v'> € co-GAP.

Rootof T

Computation
graph of M*

Thetree T

from all nodes
exceptuandv

leavesof T

indicates rejecting configuration

© indicates accepting configuration

Figure 4.5: Reduction 1o center of a graph.

