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ABSTRACT

In conventional database systems, an index is maintained on an attribute of a
single class (or a relation) to speed up associative searches. In object-oriented
databases, the access scope of a query against a class in general includes not
only the class but also all subclasses of the class. This means that to support
the evaluation of a query, the system must maintain one index on the attribute
for each of the classes involved in the query. An alternative, and a new,
approach is to maintain one index on the attribute for the class and all its
subclasses. In this paper, we formulate the cost model for the size and
performance of a B-tree index, and present the results of simulation studies
which quantify the tradeoffs between these two indexing techniques in an
object-oriented database system.
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1. INTRODUCTION

In recent years, object-oriented programming [GOLD81, GOLD83, BOBR83, CURRS84,
SYMB84, LMI85] has gained a tremendous popularity in the design and implementation of a
variety of data—-intensive application systems. These include artificial intelligence (Al) [STEF86],
computer-aided design and manufacturing (CAD/CAM)[AFSA86], and office information
systems (OIS) with multi-media documents [IEEE85, AHLS84, WOEL86]. Object-oriented
programming offers a number of important advantages for these applications over traditional
control-oriented programming. One is the modeling of all conceptual entities with a single
concept, namely objects. An object represents anything from a simple number, say, the
number 25, to a complex entity such as an automobile or an insurance agency. The state of an
object is captured in the instance variables. The behavior of an object is captured in messages
to which an object responds. The messages completely define the semantics of an object.
Another advantage of object-oriented programming is the notion of a class hierarchy and
inheritance of properties (instance variables and messages) along the class hierarchy. The
class hierarchy captures the IS-A relationship between a class and its subcl/ass (equivalently, a
class and its superclass). All subclasses of a class inherit all properties defined for the class,
and can have additional properties local to them. The notion of property inheritance along the

hierarchy facilitates top—-down design of the database as well as applications.

in the Database Program at MCC, we have built a prototype object-oriented database
system, called ORION. Presently, it is being used in supporting the data management needs of
PROTEUS, an expert system development environment prototyped in the Al / KBS Program at
MCC. In ORION we have directly implemented the object-oriented paradigm, added persistence
and sharability to objects through transaction support, and provided various advanced functions
that applications from the CAD/CAM, Al, and OIS domains require. Important features
supported in ORION include predicate-based queries, versions, composite objects [BANES87a],

dynamic schema evolution [BANE87b], and multimedia data management [WOEL87].

ORION supports, just as most conventional database systems do, secondary indexes on
user-specified attributes (columns) of specified classes (relations) to speed up associative
searches of the database for queries with search criteria. In formalizing a model of queries

under the ORION object-oriented data model, we recognized that, while the scope of access of



a query against a single relation R in a relational database is just R, that of a query against a
class C in an object-oriented database is in general the class C and all subclasses of C, and
their subclasses, etc. This means that, since an attribute of a class C is inherited into all its
descendant classes, it may make sense to maintain an index on an attribute for all classes on a
class hierarchy rooted at class C, rather than maintaining a separate index on the attribute for

each of the classes in the class hierarchy.

We will refer to an index which is maintained on an attribute of a single class as a
single—class index, and an index on an attribute of all classes on a class hierarchy rooted at a
particular class as a class-hierarchy index. ORION presently supports only single-class indexing.
To determine the merit of class-hierarchy indexing, we have decided to quantify the tradeoffs
between class-hierarchy indexing and single-class indexing, by formulating a reasonably simpie
cost model for the size (number of nodes) and height of a B-tree index. We have used the cost
model for two extensive sets of experiments. One set of experiments was conducted to
compare the size of a class-hierarchy index and the sum of the sizes of the corresponding set
of single—class indexes. The other set of experiments compared the height of a class-hierarchy
index and the sum of the heights of single-class indexes on the corresponding class hierarchy.
The height of an index is a direct measure of performance of an index in evaluating a query
which includes a predicate on an indexed attribute. Our experiments have led us to conclude
that a class-hierarchy index outperforms single-class indexing when the scope of a query
exceeds two classes. The results on the size of an index were inconclusive; sometimes a class
hierarchy requires more storage space, and other times the corresponding set of single-class

indexes takes up more space.

In this paper, we make two original contributions. First, we provide a formal model of a
query under an object-oriented data model, and identify the utility of a class-hierarchy index.
To our knowledge, the concept of a class—hierarchy index has not been discussed before in the
literature. Second, we present the preliminary results of simulation experiments we have
conducted on the size and performance tradeoffs between a class-hierarchy index and a

corresponding set of single-class indexes.

The remainder of this paper is organized as follows. In Section 2, we provide a brief review
of the basic object-oriented concepts which are relevant to understanding the subject matter of

this paper. In Section 3, we describe a formal model of an object-oriented query, and identify



the utility of a class—hierarchy index in evaluating an object-oriented query. We present our
model of a B-tree index in Section 4. Then in Section 5 we discuss the assumptions we have
made in the cost model of an index we have formulated, and organization of the simulation
experiments we have conducted based on the cost model. In Section 5 and 6, we formulate the
cost model for the size and performance of an index, respectively, and present the experimental

results. Section 7 summarizes the paper.
2. REVIEW OF OBJECT-ORIENTED CONCEPTS

In this section, we review basic object-oriented concepts that are relevant to our
discussions in the remainder of this paper. This subsection is extracted from our full paper on

the ORION data model in [BANE87a].

objects, attributes (instance variables), methods, and messages

In object-oriented systems, all conceptual entities are modeled as objects. An ordinary
integer or string is as much an object as is a complex assembly of parts, such as an aircraft or a
submarine. An object consists of some private memory that holds its state. The private memory
is made up of the values for a collection of attributes (often called instance variables). The value
of an attribute is itself an object, and therefore has its own private memory for its state (i.e., its
attributes). A primitive object, such as an integer or a string, has no attributes. It only has a
value, which is the object itself. More complex objects contain attributes, through which they

reference other objects, which in turn contain attributes.

The behavior of an object is encapsulated in methods. Methods consist of code that
manipulate or return the state of an object. Methods are a part of the definition of the object.
However, methods, as well as attributes, are not visible from outside of the object. Objects can
communicate with one another through messages. Messages constitute the public interface of
an object. For each message understood by an object, there is a corresponding method that
executes the message. An object reacts to a message by executing the corresponding method,

and returning an object.
classes, class hierarchy, inheritance, and domains

if every object is to carry its own attribute names and its own methods, the amount of

information to be specified and stored can become unmanageably large. For this reason, as



well as for conceptual simplicity, ‘similar’ objects are grouped together into a c/ass. All objects
belonging to the same ciass are described by the same set of attributes and methods. They all
respond to the same messages. Objects that belong to a class are called instances of that
class. (In this paper, we will use the terms instances and objects interchangeably.) A class
describes the form (attributes) of its instances, and the operations (methods) applicable to its
instances. Thus, when a message is sent to an instance, the method which implements that

message is found in the definition of the class.

Grouping objects into classes helps avoid the specification and storage of much redundant
information. The concept of a class hierarchy extends this information hiding capability one step
further. A class hierarchy is a hierarchy of classes in which an edge between a pair of nodes
represents the IS-A relationship; that is, the lower level node is a specialization of the higher
level node (and conversely, the higher level node is a generalization of the lower level node).
For a pair of classes on a class hierarchy, the higher level class is called a superciass, and the
lower level class a subclass. The attributes and methods (collectively called properties)
specified for a class are inherited (shared) by all its subclasses. Additional properties may be
specified for each of the subclasses. A class inherits properties only from its immediate
superclass. Since the latter inherits properties from its own superclass, it follows that a class

inherits properties from every class in its superclass chain.

In object-oriented systems, the domain (which corresponds to data type in conventional
programming languages) of an attribute is a class. The domain of an attribute of a class C may
be explicitly bound to a specific class D. Then instances of the class C may take on as values

for the attribute instances of the class D as well as instances of subclasses of D.

3. EVALUATION OF AN OBJECT-ORIENTED QUERY

The object-oriented data model, in its conventional form, is powerful enough to represent a
complex object as a recursively nested object. An object may be defined with a set of instance
variables. A class may be specified as the domain of an instance variable, and the domain
class, unless it is a primitive class (such as the string, integer, or boolean class), in turn
consists of a set of instance variables, and so on. The internal state of an object consists of the
values of all its instance variables. The value of an instance variable is an instance of its

domain, if the domain is a primitive class; and a reference to (object identifier of) an instance of



the domain, otherwise. For example, in Figure 1, we show the schema of a Vehicle class in
terms of the instance variables Manufacturer, Body, Drivetrain, and Color. The domain of the
Color instance variable is the primitive String class. The domain of the Manufacturer instance
variable is the class Company, the instance variable Body has Autobody as its domain, and the
domain of Drivetrain is the AutoDrivetrain class. The classes Company, AutoBody, and
AutoDrivetrain each consist of their own set of instance variables, which in turn have associated

domains (which for simplicity we do not show).

The nesting of an object through the domains of its attributes immediately suggests that to
fully fetch an instance, the instance and all instances the instance references through its
attributes must be recursively fetched. This means that to fetch one or more instances of a
class, the class and ali classes specified as non-primitive domains of the attributes of the class
must be recursively traversed. For example, to fetch instances of the class Vehicle in Figure 1,
the classes which need to be traversed include not only Vehicle, but also the non-primitive
domains of Vehicle, namely, Company, AutoBody, AutoDrivetrain, as well as non-primitive

domains of these classes.

In general, a query may be formulated against an object-oriented schema, which will fetch

instances of a class which satisfy certain search criteria and to output only specified attributes of

company
name
location
vehicle divisions
manufacturer autobody
body chassis
drivetrain \ interior
color doors

autodrivetrain
engine
transmission

Figure 1. Nested Attributes of the Vehicle Class



the instances fetched. A query may restrict the instances of a class to be fetched by specifying
predicates against any instance variables of the class. An example of a query, against the

schema of Figure 1, is the following
Q1. Find all blue vehicles manufactured by Ford Motor Company

In an object-oriented database, an attribute may be one of two types: simple and complex.
A simple attribute is one whose domain is a primitive class. A complex attribute is one whose
domain is a class with one or more attributes, including complex attributes. A predicate on a
simple attribute will be called a simple predicate; while one on a complex attribute will be called a
complex predicate. Further, a query that involves only simple predicates will be called a simple

query; and one that involves one or more complex predicates will be called a complex query.

We may represent a class and the domains of all its complex attributes in the form of a
directed graph, which we will call the query graph. Each node on a query graph represents a
class, and an edge from a node A to a node B means that the class B is the domain of a
complex attribute of a class A. A query graph has only one root, the class whose instances are
to be fetched. Each leaf node of a query graph has only simple attributes. A query graph may

contain cycles.

The process of fetching nested objects, which we will call object instantiation, is similar to
relational query evaluation. We may view a class as a relation and an attribute of a class as a
column of a relation, and a relation to be augmented with a system-defined unique identifier
(UID) column for the identifier of the tuples. Then the retrieval of an instance of the domain
class D of an attribute A of a class C is similar to the relational join of a tuple of a relation C with
a tuple of a relation D; where the join columns are column A of relation C and the UID column of
relation D. We hasten to remark that, despite these similarities, there are a few significant
differences between relational query evaluation and object instantiation. We will present a

detailed discussion of these issues in a forthcoming report.

There is in general more than one way (often called a query-evaluation plan [SELI79]) for
evaluating a query which will yield the correct result. However, each plan incurs a different cost.
There are two fundamental options in plans for traversing the nested classes for object
instantiation: forward and reverse traversal. The query optimizer of a database system is to
consider a number of reasonable plans based on these options (and their combinations) for

evaluating any given query, and to select one with the minimum expected cost.



In the forward traversal, the classes on a query graph are traversed in a depth-first order
starting from the root of the query graph, and following through the successive domains of each
complex instance variable. As an example, let us consider the example query Q1. A forward
traversal of the query graph will start off with the set of all instances of the class Vehicle in which
the Color attribute has a value ‘blue.” For each of these instances, the value of its attribute
Manufacturer is extracted; that value is an instance of the class Company. The value of the
attribute Name in the Company instance is then examined. If the value is the string “Ford”, the
Company instance qualifies, and in turn, the Vehicle instance which has that Company instance

as its manufacturer satisfies the query.

Another way to perform object instantiation is the reverse traversal, in which the leaf classes
of a query graph are visited first, and then their parents, working toward the root class. As an
example, lst us consider once again the query Q1. Instead of starting with the set of all
instances of Vehicle, query evaluation starts with the class Company. All instances of Company
are identified which have the string “Ford” in the Name attribute. The UIDs of these instances
are then looked up in the Manufacturer attribute of the class Vehicle. The result of the query is
the set of instances of Vehicle which has the string ‘blue’ in the Color attribute and which contain

in the Manufacturer attribute a UID that is in the list of UIDs for Ford Motor Company instances.

To support efficient retrieval of tuples that satisfy search predicates, the storage subsystem
of relational database systems usually support secondary indexes on user-specified columns of
relations [STON76, IBM81]. Similarly, object-oriented database systems may maintain an index
on an attribute of a class. For example, if an index is maintained on the primitive attribute Name
of the class Company, it can be used to advantage in a reverse traversal of the query graph for
our example query Q1. On the other hand, if there is an index on the Color attribute of the class
Vehicle, it may be used in a forward traversal of the query graph. In either case, the use of an

index can significantly reduce the I/0 cost of traversing the query graph for object instantiation.

One of the major differences between a relational database and an object-oriented
database is that in an object-oriented database a class may be specialized into a number of
subclasses. For example, in Figure 2, we show a database class hierarchy which includes the
class Vehicle and the domain classes of the attributes of the class Vehicle. The class Vehicle is
shown to have been specialized into the class Automobile and the class Truck. Similarly, the

class Company has subclasses VehicleCompany and ComputerCompany. In general, a class



may have any number of subclasses and/or superclasses. The root of a class hierarchy is a

system-defined class OBJECT, and any class the user defines without a superclass is by default

—

a subclass of the class OBJECT [BANES87b].

company
vehicle
—
_— .
automobile truck cvoerlﬂ'g;!\?\y 88% %{Fﬁ’{
autodrivetrain
autobody

Figure 2. A Class Hierarchy

The fact that an object-oriented database schema explicitly captures the IS-A relationship
between a pair of classes has two major impacts on the semantics of object instantiation. One
is that the access scope of a query against a class may be only the instances of the class, or it
may encompass the instances of the class and those of all subclasses of the class. For
example, the user may issue a query against the class Vehicle to fetch only the instances of the
class Vehicle, or may issue a single query against the class Vehicle to fetch all qualified

instances of the class Vehicle and subclasses of Vehicle.

Another major impact is that the domain D of an attribute of a class C is really the class D
and all subclasses of D. For example, the Manufacturer attribute of the class Vehicle may take
on as value an instance of the class Company or an instance of any subclass of Company. This
means that in the reverse traversal of the query graph for Q1, the class Company and all its

subclasses must be traversed.

These semantics of object instantiation force major changes in the way a database system

can use indexes. Traditionally, an index has been maintained on an attribute of a single class



(or a relation). This means that to support the evaluation of a query whose access scope is a
class hierarchy, the system must maintain one index on the attribute for each of the classes in
the class hierarchy. However, it is clear that often it may make sense to maintain one index on
the attribute for a class hierarchy, and use it to evaluate queries against any single class in the
class hierarchy or any sub-hierarchy of the class hierarchy. We will call the traditional approach
of maintaining one index per class single-class indexing, and refer to the alternative approach of

maintaining one index on an attribute for a hierarchy of classes class-hierarchy indexing.

Intuitively, it appears that a class-hierarchy index may in general be more effective in
evaluating a query whose access scope spans a major subset of the classes in the indexed
class hierarchy, while a single-class index should be more appropriate for a query against a
single class. In the remainder of this paper, we quantify the tradeoffs between these two
indexing techniques in an object-oriented database in terms of storage requirements and 1/0

performance in object instantiation.

4. INDEX STRUCTURE

In this section we describe the formats of the nodes of the B-tree index which we will
model. These formats are based on the single—class B-tree index we have implemented in
ORION. It is also similar to that used in |BM’s relational database system SQL/DS [IBM81]. In a
relational database, the columns have primitive data types; as such, the key values in an index
are primitive data such as integers or strings. In an object-oriented database, the domain of an
attribute may be either a primitive class or some user-defined class. Therefore, the key values

in an index can be either the UIDs of the instances of the domain class or some primitive values.

Figure 3 shows the format of a non-leaf node. The node consists of f records, where each
record is a pair (key, pointer), and key in turn is a pair (key-length, key-value), where
key-length is the length in bytes of the key-value. The fanout, f, is between d and 2d, where d
is the order of a B-tree. The fanout of the root node can be between 2 to 2d records. The
pointer in each record contains the physical address of the next-level index node. if a record
needs to be inserted into a node that contains 2d records, the node is split and the 2d+1 records

are distributed to 2 nodes.

A leaf node of an index has a different format from that of a non-leaf node. Further, the

format of a leaf node of a single-class index is different from that of a class-hierarchy index, as



shown in Figures 4a and 4b. An index record in a leaf node of a single-class index consists of

the record-length, key-iength, key-value, overflow-page pointer, the number of elements in

the list of UIDs of the cbjects which hold the key-value in the indexed attribute, and the list of

UlDs

record capacity: 2d records
—ns—
KEY1 KEY2 PR KEYn ..
/ / /

J

|

Figure 3.

A Non-Leaf Node

N

An index record in a leaf node of a class-hierarchy index consists of the record-length,

key—iength, key-value, overflow—-page pointer, key-directory, and, for each class in the class

hierarchy, the number of elements in the list of UIDs for the objects which hold the key-value in

the indexed attribute, and the list of UIDs. The key-directory consists of the number of classes

10

record
record | key- | key- | cverflow; no. id1 an
length | length [value | page | uids {uid1, ... , vidi}
Figure 4a. A Leaf Node of a Single-Class Index
record
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classes | id-1 offset 2 offset n offset
Figure 4b. A Leaf Node of a Class-Hierarchy Index




shown in Figures 4a and 4b. An index record in a leaf node of a single-class index consists of

the record-length, key-iength, key-value, overflow-page pointer, the number of elements in

the list of UIDs of the cbjects which hold the key-value in the indexed attribute, and the list of

UlDs

record capacity: 2d records
—ns—
KEY1 KEY2 PR KEYn ..
/ / /

J

|

Figure 3.

A Non-Leaf Node

N

An index record in a leaf node of a class-hierarchy index consists of the record-length,

key—iength, key-value, overflow—-page pointer, key-directory, and, for each class in the class

hierarchy, the number of elements in the list of UIDs for the objects which hold the key-value in

the indexed attribute, and the list of UIDs. The key-directory consists of the number of classes

10

record
record | key- | key- | cverflow; no. id1 an
length | length [value | page | uids {uid1, ... , vidi}
Figure 4a. A Leaf Node of a Single-Class Index
record
record | Kkey- | key- |overflow| key- no. ; P no. i idit | o
length | length |value | page direc?ory uigs | Ui - uidip § e uigs | tuidt. - uidi}
no. class class| atfaat | venn class
classes | id-1 offset 2 offset n offset
Figure 4b. A Leaf Node of a Class-Hierarchy Index




which contain objects with the key-value in the indexad attribute, and, for each such class, the
class identifier and the offset in the index record which hold the list of UIDs of the objects. The
leaf node of a class-hierarchy index groups the list of UIDs for & key-value in terms of the

classes to which thay belong.

The rationale for this organization is that a class—hierarchy index is maintained on an
attribute for a class hierarchy consisting of n classes rooted at a class C, and that the index may
often need to be used for a query which is directed to a subclass of the class C. If the leaf node
is organized as in a single-class index, an exhaustive scan of the entire list of UDs for a
key-value is necessary to screen the UIDs which do not belong to the classes relevant to a
query. Further, if a class in the class hierarchy is dropped, the UIDs of instances for the class
must be deleted from the class-hierarchy index; and the organization shown in Figure 4b

facilitates deletion of a list of UIDs for any class on a class hierarchy.

A leaf-node index record may be srmali {not larger than the size of an index page) or large
{larger than the index-page size}. A small index record can grow to a large index record or
simply grow out of bounds of its current index page. There are a number of ways to deal with
these leaf-nods averfiow situations. The approach we have adopted for purposes of the present
study is as follows. On one hand, if a small index record grows out of bounds of its index page,
but remains a small record, the index page is split. On the other hand, it an index record
becomes a large record, an entire leaf node is assigned to it, and the part of the record which
still does not fit in the node is stored in overflow page(s). This is the use of the overflow-page
pointer field in a leaf-node index record; if the value of this field is zero, the index record can be

prasumed to be fully contained in the current index page.

5. SIMULATION EXPERIMENTS

The cost model we developed for our simulation experiments usas a number of

parameters. The following set of parameters captures the characteristics of the database.

Di : number of distinct keys for an attribute of a class Ci
Ni : cardinality of a class Ci (number of instances of Ci}

Ki : average number of UIDs per Key in an attribute of a class Ci (Ki = [Ni 7 Di])

11
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in any given index, leaf-node index records are either all smai/ (not larger than the size of an

index page) or all large (larger than the index-page size).

Without this assumption, we have the unenviable task of having to incorporate into the cost
model the fact that each leaf-node index record has a different size. This assumption may not
be realistic; however, most of the simulation studies of the performance of database systems
have made the same assumption, and the results of such studies nonstheless have proven to

be useful.

We note that in the next sections we provide separate cost formulations for the two sizes of
leaf-node index records. The separate treatment was deemed necessary to account for the

overflow pages for the large index records.

4. The root class C of a class hierarchy for which a class-hierarchy index is maintained is also
the class against which a query is directed. This assumption is necessary to allow a fair
comparison betwsen single—class indexing and class-hierarchy indexing. In general, a query
may be directed against a descendant class of C, and the class-hierarchy index on C may have
to be used to evaluate the query. Than only a part of the index contains entries which
correspond to the classes relevant to the query. The choice of a class for which a
class-hierarchy index is maintained must be carefully made, possibly with computerized

physical database design tools.

5. Each non-leaf (and non-root) index nade has the same fanout f, both in a single-class index
and a class-hierarchy index. This assumption is also necessary to aliow a fair comparison of the

two types of indexing technigques.

6. The cardinality of a class in & class hierarchy is independent of the cardinality of any of its
supserclass or subclass; that is, there is no correlation between the number of instances of a
class and that of any other class on the same class hierarchy. When a class § is created as a
subclass of a class C, a subset of the instances of C may migrate to S. If the class C has not
been partitioned into a sufficient number of subclasses, C may have more instances than any of
its subclasses. However, a class C may sometimes ba an abstract class and have no instances

associated with it, while its subclass $ may have many instances.

The distribution of the key values across the classes of a class hierarchy has significant

impacts on the tradeoffs between single-class indexing and class—hierarchy indexing. For
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example, if the key value of an indexed attribute is confined to instances of only one class C,a
class-hierarchy index may be less efficient than a single-class index on the class C. However, if
the key value is contained in instances of all the classes in the class hierarchy, traversing a
class-hierarchy index may be more efficient than traversing a single—class index on each of the

classes in the class hierarchy.

In general, each class of a class higrarchy may contain a unique value for the key. There
are two extreme cases for the distribution of key values: disjcint distribution and inclusive
distribution. In a disjoint distribution, sach key value of an indexed attribute is found in only one
class; that is, all values of the attribute are unique to each class of the class hierarchy. In a
disjoint distribution, each class in a class hierarchy has unique values on the indexed attribute.
The total number of unique key values is

SUM OF (D1, D2, ..., Di) for classes C1, C2, ..., Ci
In an inclusive distribution, one class of the class hisrarchy has all key values for an indexed
attribute. The total number of unique key values with an inclusive distribution is

MAX (D1, D2, ..., Di) for classes C1, C2, ..., Ci

Obviously, these distributions represent two extreme cases. Nevertheless, they represent
the best or worst cases for the indexing techniques with which we are concerned. Further, a
realistic distribution of key values will be somewhere between these extremes. Tharefore, we
have made some efforts to analyze the behavior of these two extrems distributions of key

values.

To simplify the presentation of our cost model, we have used explicit figures in the
expression of some of the parameters, as follows. These figures are based largely on the

B+—tree index implementation in ORION.

1. For the key-length and next-level~page pointer fields in a non-leaf node index record, we
use 2 and 4 bytes, respectively. The record-length, number of UIDs, and overflow-page pointer
fields in a leai-node index record take up 2, 2, and 4 bytes, respsctively. The
number-of-classes field in the key-directory in a leaf-node record of a class-hierarchy index

needs 2 bytes, and each offset field takes up 2 bytes. The class id requires 4 bytes.

2. The index page size used was 4K (4096} bytes. Further, we will assume that average length
of a key value is equal to the size of a UID. The length of a UID is 8 bytes. This in turn means

that L = 14, XS =Ki 8 + 18, and XC =Ki * 8 + ¢ * 10 + 16 bytes.
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3. For the value of f we used 218, assuming & UID size of 8 bytes and the block size of 4k bytes.

The order d of 2 B-tres is P / L. = 146.

The following summarize the organization of the simulation experiments we have

conductad. A detailed description of it is provided in the Appendix.

1. We constructed 8 experiments. Within each experiment, we made 20 simulation runs by
varying the parameters Ni and Di, as well as ¢n. The total number of simulation runs we made

was thus 180.
2. The number of classes in the class hierarchy was varied between 2 and 6.

3. Inthe first 5 experiments, we used the values for Ni between 20,000 and 200,000; and in the

last 4 experiments, Ni was varied between 50,000 and 255,000.

4. Diranged, for the 8 experiments, from 100 to 400 (so that Ki was varied from 200 to 500), 40
to 1000 (for Ki between 500 and 200}, 100 to 1000 (for Ki to be about 200), 40 to 400 (for Ki 10
be about 500), 60 to 575 (for Ki to be about 350), 350 and 600 (for Ki between 150 and 500),
500 and 1300 (for Ki to be around 200), 100 to 600 (for Ki to be about 500}, and 150 to 750 (for
Ki to be about 350).

6. INDEX SIZES

To compare the secondary storage reguiremants of a class~hierarchy index on a class
hierarchy and a carresponding set of single-class indexes, we have formulated a cost model for
the size of an index. The size of an index is the total number of index nodes, where each nade
occupies a physical page on secondary storage. In this section, we will present our cost model
for the size of both a single-class index and a class-hierarchy index, and then present the

results of our simulation experiments.
6.1 Cost Model for the Size of an Index

[KNUT73] derives bounds for the height of a B-tree and the number of nodes in each level
of the B-tree, given the order and the number of keys. [COME78] also provides asymptotic
bounds for the height and number of nodes in each level of a B-tree using a slightly different
definition. We have derived our own formulas largely to reflect the implemantation details of a
B-tree index in a database system. Further, the variation of the B-tree we are considering is

somewhat different from that used in [KNUT73] and [COMET7S9].
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The cost model formulated below uses the parameters we defined in Section 5. We
provide separate sets of formulas for a single-class index and a class—hierarchy index. Further,
for each type index, we provide separate formulas for small and large leaf-node index records.

We also introduce the following additional symbols:

LO: number of leaf-level index pages, including overflow pages
L1: number of leaf-lavel index pages, excluding overflow pages
NL: number of non-leaf level index pages

(1) Single-Class Index

small leaf-node index records (XS <= P)

F1: number of leaf pages, L0 = [Di / [P/ X8]]

F2: number of non-leaf pages, NL= L0/ f]+ Lo/ fi/fl+ ...+ X
wheare each term is successively divided by f until the tast term X is less than f. If the fast term X

is not 1, then 1 is added o the total (for the root nods).

Example 1: Let Di = 100, Ni = 20000, and f = 5. Then Ki = 20000/100 = 200. The number of
records in a leaf page is 2. Thus LO = 100/2 = 50. NL = 50/5 + {50/5)/6 + 1 = 13.

large leaf-node Iindex records (XS > P)

F3: number of leaf pages, excluding the overflow pages, L1 = Di

F4: number of non-feaf pages, NL = [L1 / ]+ LT/ fl/fl+ ...+ X

where F4 is defined simifarly as in F2
F5: number of leaf pagses, inciuding the overflow pages, L0 = L1 * [XS / P}

Example 2: Let Di = 50, Ni = 30000 and f = 5. Then Ki = 30000/50 = 600. L1 =250. NL=50/5+
(50/5)/5 + 1 =13, L0 =50 * 2 =100,

F&: total number of index pages for a class Ci = L0 + NL
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(2) Class-Hierarchy Index

small leaf-node index records (XC <= P)
F7: number of leaf pages, LO = [Di /[Pt XC]]
F8: number of non—leaf pages, NL = [LO / f]+ [[LO/FFl/Ff]+.... + X

where each term is successively divided by f untif the last terrm X is less than f. If the last term X

is not 1, then 1 is added to the total, as in F2.

Example 3: Let Di = 220, Ni = 50000, ¢c=3, and f = §. Then Ki = 50000/220 = 228. The number of

I

records in a leaf page is 2. Thus LO = 220/2 = 110. NL = 110/6 + (110/5)/5% + 1 = 27,

large leaf-node index records (XC > P)

Di

F9: nurnber of leal pages exciuding overfiow pages, L7

F10: number of non-leaf pages, NL = LT/ f]+ LY /] /f]+ ... +X

where F10 is defined similarly as in F8
F11; number of isaf pages including overflow, LO = L1 * [XC ! P)

Example 4: Let Di = 200, Ni = 110000, ¢=3, and f = 5. Then Ki = 110000/200 = 550. L1 = 200.
NL = 200/5 + (200/5)/5 + ({200/5}/5)/5 = 45. L0 = 200.

F12: total number of class-hierarchy Index pages = L0 + NL

6.2 Results of Experiments

In this section we present and analyze the results of our experiments with the cost model
presented in Section 6.1. We implemented a simulation program and made a large number of

simulation runs by varying the parameters of the cost model.

Figure 5 shows the results of one of our nine experiments, in which Ni varied between
50,000 and 255,000, Di between 500 to 1300, and Ki about 200. The details of this experiment
is described in Table 7 in the Appendix. The figure shows the number of index pages created for

a class-hierarchy index and single-class indexes; for class-hierarchy indexing, we show the
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results for 3 different distributions of key values: inclusive, disjoint, and mixed. The index size of
a class-hierarchy index, for any distribution, is sometimes larger and sometimes smaller than
the sum of the sizes of the corresponding set of single—class indexes. For different distributions
of key values, the size of a class-hierarchy index may be larger than the sum of the sizes of the
corresponding single-class indexes, largely because of tha overflow pages created as the

lsaf-node index records become large.

The number of index pages created for a class-hisrarchy index ranges from a 37%
decrease to a 50% increase, when compared to single-class indexing. With an inclusive
distribution, the range is from a decrease of 27% to a 48% increase, relative to single-class
indexing. With a disjoint distribution, the range is from a 16% decrease to an increase of 15%

compared to single—-class indexing.
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Figure 5. Comparison of Index Sizes
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7. PERFORMANCE

In this section, we first formulate a cost model for the performance of a single—class index
and a class-hierarchy index. We then present the results of performance comparison between
the two types of indexes. The performance comparison was conducted for two types of
queries: single—key queries and range queries. For either type of query. we computed the
number of index pages which need to be fetched to evaluate a given query. A single-key query
is one in which the search condition consists of a single predicate of the form (key = value)}. A
range query is one in which the predicate is of the form (key < value), (key > value}, or (key
between value—1 and value-2). Since our results for a query with a single predicata readily
generalize to a query involving a conjunction (predicate AND predicate AND ...} or a disjuncticn

(predicate OR predicate OR ...} of single pradicates, we do not consider the latter explicitly.

7.1 Single-Key Query Evaluation

7.1.1 Cost Model

The number of index pages fetched to evaluate a query is precisely the height of the index
used. To compute the height of an index, a formula similar to F2 or F4 used to calculate the

number of non-leaf pages can be used.

F13: height of an index = number of terms in (LO + [LO/ f)+ [[LO/f]/ 1]+ ... + X)

where a previous term is successively divided by f. LO is the number of ieaf pages. The division
by f stops when the vaiue of the last term X is less than . If Xis not 1, add 1 to the height. if the
index contains overflow pages, average number of overflow pages per feaf page needs to be
added to the height. The formula is used for both single-class indexes and a class-hierarchy

index.

Example 5: Let Di = 100, Ni = 20000, and f = 5. Then Ki = 20000/100 = 200. Using F1, LO =
100/2 = 50. The number of terms in (60 + 50/5 + (50/5)/5) is 3. Since the last term is not 1,

and there are no overflow pages, the height of the index is 4.

7.1.2 Simulation Experiments

In Figure 6, we observe that irrespective of key distributions and the number of classes in

the class-hierarchy, the number of index pages fetched with a class-hierarchy index is always
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equal or smaller than in single—class index if there are at least two classes in a class-hierarchy.

Figure 6 summarizes the results of our experiment described in Table 7 in the Appendix.

In the case of single-class indexing, with an inclusive distribution of the key values among
all classes in the indexed class hierarchy, the height of a single—class index must be traversed
for each of the classes. With a disjoint distribution, only those single—class indexes need to be
traversed which contain the desired key value. In all other indexes, only the root page needs to

be accessed.

In the case of class-hierarchy indexing, the number of index pages that need to be
accessed for a single-key query is equal to the height of the index, regardless of how the key
values are distributed. However, the values of parameters Di, Ni, Ki, and XC cause the height of

the index to be different for inclusive and disjoint distributions.
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Figure 6. Comparison of Single-Key Query Performance



For a class—hierarchy index, with an inclusive distribution of key values, the reduction in the
number of index pages fetched is between 25% tc 73% over single-class indexing. The
reduction is betwesn 0% to 63% for a disjoint distribution. For a mixed distribution, the reduction
is between 25% and 80% over single-class indexing with an inclusive distribution, and between

0% and 63% over single—class indexing with a disjoint distribution.

7.2 Range Query Evaluation

7.2.1 Cost Model

An important consideration in range query evaluation is the distribution of the key values in
the range among the classes in a class hierarchy. In the casse of an inclusive distribution, the
range of key values is obviously confined to one class. This means that, in the case of
single-class indexing, we have tc fully traverse an index for each class on a class hierarchy.
Wwith a disjoint distribution, the range values are scattered among all classes of a class
higrarchy. In the case of single—class indexing, only the indexes for those classes in the class
hierarchy that contain a value in the range need to be fully traversed; only the roct pages need

to be accessed for all other indexes on the classes.

Before we derive the formula for the number of index pages fetched, we need to introduce

symbols UKi and NRQ, as follows,

UKi: number of unique keys in a leaf~level index node

NRQ: number of key values in the range specified for a given query
In a single—class index,

UKi= P/ XS]

for small leaf-node index records (XS <= P}, and

UKi =1

for large leaf-node index racords (XS > P).

In a class-hierarchy index,

UKi = [P/ XC|

for small leaf-node index records (XC <= P}, and
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Uki=1

for large leaf-node index records (XC > P}.

We now deriva formulas for the number of index pages to be fstched. We need the

foliowing additional symbaols:

RL: number of ieaf pages fetched, excluding overflow pages

nRL: sum of leaf pages fetched, excluding overflow pages, from n singie—class indexes
SRL: sum of leaf pages fetched, including overflow pages, from n single-class indexes
SRN; sum of non-leaf pages fetched from n single-class indexes

P1: total number of index pages fetched, excluding overfiow nodes

IP2: total number of index pages fetched, including overflow nodes

(1) range values in one class

First, we consider the case when all range values are in one class. As mentioned earlier,
indexes on the attribute for all classes in a class hierarchy have to be searched for an inclusive
distribution of the key values; while, for a disjoint distribution, only those indexes of the classes

which contain any valus in the ranga need to be fully traversed.

if NRQ = 1, that is, in the limiting case where the range consists of only one key value,

RL=1
F14: IfUKi=1, RL= NRQ

Example 6: For a single-class index, let Di = 50, Ni = 30000, and f = 6. Ki = 30000/50 = 600.
Since Ki*8+18 > 40868, UKi = 1. If we have NRQ = 20, RL is 20. Since UKi, the number of

different keys in a leaf page, is 1, the number of leaf pages that neads to be fetched is NRQ.

F15: fUKi>1, RL=|NRQ/UKi|+1,ifnisQorl
AL = NRQ/ UKi|+ 2 ifn>1,
where n = mod (NRQ, UKi)

Example 7: For a class-hierarchy index, fet Di = 220, Ni = 50000, ¢ = 3, and f = 5. Ki=
50000/220 = 228. Since Ki*8+46 < 4086, UKi = 4096/(228*8+42) = 2. If NRQ = 15, n = 1 and
thus RL = 15/2 + 1 = 8 pages.
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F16: If X8 <= P for a single—class index, or If XC <= P for & class—hierarchy index, maximum
number of index pages fetched,

Pt =RL+ (lRL/Fl+ X+ (IIRLIF+XIf] +X)+... 41
where the total number of additions of the terms in the formula is equal to the helght of the index

for the class. X is 1 if the remainder of division by f in the term is either 0 or 1; otherwise X is 2.

Example 8: For a single-class index, let Di = 100, Ni = 20000, and f = 5. Then Ki = 200. Since
Ki*8+18 <= 4006, UKi = 4096/(200*8+18) = 2. If NRQ = 10, RL = 6. The height of the index with
the above paramster values is 4. Thus IP1 = 6 + (6/5+1) + ((6/5+1)/542) +1=6+2+ 2+ 1 =
11.

F17: For large leaf-node index records (X8 > P) in a single-class index,
P2 =IP1 + AL " | XS ! P]
where RL and IP1 have been defined in F14 (or F15), and F16, respectively.

F18: For large leaf-node index records (XC > P), in a class-hierarchy index,
IP2 = IP1T + AL * |XC ! P]
where RL and iP1 have been defined in F14 {or F15} and F18, respectively.

Example 9: For a clags-hierarchy index, let Di = 200, Ni = 110000, c = &, and f = 5. Then Ki =
550. Since Ki*8+66 > 4098, UKi = 1.

#f NRQ = 10, RL = 10. Since the height of the index is 4, 1IP1 = 10 + (10/5+1) + (3/5+2) + 1 =18
pages. P2 = 16 + (10* ({550~ 8+66)/4096)) = 26 pages.

(2) range values scattered among more than one class

For single-class indexing, if the key values in a given range are scattered among more than
one class, each of the indexes of the classes whose instances contain any of the values in the
range needs to be fully traversed. SRL, the number of leaf pages to be fetched, is the sum of
the RL's, including overflow pages, for all indexes that must be fully searched. To computs

SRL, we can make use of the formulas for RL, namely, F14 and F15.

F19: SAL = sum of RL * [XS / F] of each index.

In computing SRN, the nRL used is the sum of the RL's for all indexes which must be fully

traversed.
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F20: SAN=(lnRL/fl+X)+ ..+ Vit Vi+ .+ Wi+ W+ + X

Each term (except the first} is successively divided by f, and then 1 or 2 is added to the result,
as in F16, except for the terms whose position in the formula is the same as the heights of their
respective indexes, such as Vj and Wj. Let Vi be the term produced when the number of
additions of terms is equal to the (height-1) of one of the index. Vjis then ({(Vi-1} / f} + X}.
Tha next term to ba added after V| is then {(Vj / f} + X). The addition of terms continues until
the total number of additions of terms in the formula is next equal to the (height-1} of another
index involved. Let that term be Wi. The value of Wj is then (((Wi-1) / f) + X). This additicn of
terms continues until the total number of additions of terms equals (height-1) of the largest
index. Hence Xi is the last term added when (height-1) of the largest index is reached. [f two
indexes have the same height and both are the largest index, the terms are added until the

number of additions is equal to {height-1) of any one of them.

F21: maximum number of index pages fetched = SRL + SAN

Example 10: For a single-class index, let Di = 50, Ni = 10000, and f = 5. Then Ki = 200. RL =6,
if NRQ = 10. The height of this index is 3. Assume that there is another index with Di = 120, Ni =
30000 and f = 5. The Ki for the second index is 250 and RL = 6, if NRQ = 10. The height of this
indexis 4. SRL=12. ThenewRL=6+6=12. SRN = (12/6+2) + (4/5+2} + ((2-1}/B+1} =4 + 2
+1 = 7 pages. Thus if the range values are scattered over two classes as defined above, the

total number of index pages is 12 + 7 = 19,

When comparing the number of index pages fetched between single-class indexing and
class-hierarchy indexing for a range query, the foliowing observations can be made. In
single-class indexing, with an inclusive distribution of key values, indexes for all classes in the
class hierarchy must be searched. For each class, the number of index pages that need ta be
fetched is given in formula F16 or F17. With a disjoint distribution, indexes for only those classes
containing instances with one of the values in the range are searched. When the key values in
the range are all in one class, the number of index pages to be fetched is given in formula F16 or
F17. When the values are scattered over several classes, the maximum number of index pages

fetched is given in formula F21.

In clagss—hierarchy indexing, since we have a single index, the situation is identical to the

case where all range values are in one class. The number of index pages to be fetched, given in
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formula F16 or F18, is not affected by the type of key-vaiue distribution. It is affected only by

the values of the parameters Di, Ni, Ki and UKi.
7.2.2 Simulation Experiments

We studied two different cases, both for the same set of range values which we varied for
each experiment, In one case, all the values are assumed to be in any cne of the classes in the
class hierarchy. Figure 7, which summarizes the results of our experiment described in Table 7
in the Appendix, shows that, when the number of values in the range is 20, class-hierarchy
indexing requires fewer index pages tc be fetched than single-class indexing for the same
key-value distribution, if there are at least two classes in the class hierarchy. In class—hierarchy
indexing, disjoint distribution generally requires fewer index pages to be fetched than is the case
with an inclusive key distribution. One reason for this is because of the overfiow nodes being
created in an inclusive distribution. Another reason is that the value of UKi is normally greater in
a disjoint distribution than in an inclusive distribution; this results in more keys being packed per
leaf page, and as a consequence in fewer lpaf pages to be fetched for a fixed number of range

values.

In another case, the range key values are scattered evenly in two classes, that is, each
class contains half the key values. Figure 8, which once again represents the experiment
described in Table 7, shows that the result is similar to the first case, for 20 key values in the
range. We only consider a disjoint distribution, since inclusive distribution is meaningless.
Sometimes, single-class indexing requires fewer index pages to be fetched than
class-higrarchy indexing. This is because, in a disjoint distribution of key values, only the
indexes for the classes containing the range values need to be searched, and the size of the

individual single—class index is smaller than the class-hierarchy index.

We have also compared the maximum number of index pages fetched for class-hierarchy
indexing and single-class indexing. Class-hierarchy indexing resuits in a reduction of betwseen
5% and 38% in the number of index pages fatched compared to single~class indexing, in the
case of an inclusive distribution. For a disjoint distribution, the range is from a reduction of 38%
1o an increase of 10%. In the case of a mixed distribution, the range is from a reduction of 20%
to an increase of 28% over single-class indexing with a disjoint distribution. The reduction is
between 40% and 65% compared to single-class indexing with an inclusive distribution of key

values among classes in the class hierarchy.
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For a range query in which the key values are scattered over two classes, we only consider

disjoint and mixed key distribution because inclusive key distribution is not meaningful for this

scenario. The maximum number of index pages fetched ara as follows for class—hierarchy index

and single-class index. For disjoint key distribution, the reduction in the number of index pages

fetched is 42% and the increase is 20% for class—hierarchy indexing over single-class indexing.

For mixed key distribution class-hierarchy index, the range is between a reduction of 8% to an

increase of 27% over disjoint key distribution single—class index.

We note that a disjoint distribution represents the best case for single-class indexing, in

terms of the number of index pages that needs to ba fetched, for both single-key query and

range—query evaluation.

Only indexss for the classes containing the key values need 1o be

traversed, and as such only the single-class indexes for the classes need to be fstched.
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8. SUMMARY

In an object-oriented database, the scope of a query is often a class-hierarchy rooted at a
particular class. This means that 1o support the evaluation of a query whose access scope is a
class hiararchy, the system must maintain one index for sach of the classes involved in the
query. A single-class index is the traditional index which is maintained on an attribute of a single
class. A class—hierarchy index is one which rmay be maintained on an attribute of all classes on

a class hierarchy.

In this paper, we formulated the cost model for the size and performance of a single—class
index and a class-hierarchy index. We then preseanted the results of simulation experiments we
have conducted to quantify the tradeoffs between the two types of index. The preliminary
results show that a class—hierarchy index tends to be more efficient than a single-class index in
terms of the number of index pages that need tc be fetched for a given query, as long as there
are at least two classes in a class hierarchy. As for the index size, a class-hierarchy index may
be smaller or larger than the sum of the corresponding singie-class indexes. For the index
structure that we modeled, the index size depends on how many overflow nodes are created

and how afficiently each leaf-level node is utilized.
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APPENDIX

Each of the 9 tables included here describes the organization of an experiment we have
congducted, along with the results of each of the 20 simulation runs within the experiment. The
number of classes in the class hierarchy was varied between 2 and 6 for some fixed values of
the parameters Ki and NRQ. Each row in the table shows the performance measure for a
specified number of classes in the class hierarchy. It also shows the values of Ni and Di used
for each class in the class hierarchy. The columns indicate the key distributions assumed, for

both single—class indexing and class-hierarchy indexing.

Concerning the Ni and Di in the table, we note the following. Ni and Di are specified for
each class in the class-hierarchy for single-class indexing, while only one pair of Ni and Di
values are specifisd for each distribution of key values for a class-hierarchy index. This is
because an index is maintained for each of the classes in the class hierarchy in single-class
indexing, while a single index is maintained for all classes in the ciass hierarchy in
class—hierarchy indexing. For a class-hierarchy containing more than 2 classes, we have only
specified one pair of Di and Ni values for singie-class indexing. The assumption is that it also

includes all pairs of Di and Ni values from the pravious category.

The category range-key (1) denctes range query evaluation where all range values are
in one class, while range-key (2) denotes range query evaluation where range values are

scattered in two different classes.
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TABLE 18 Kj = 200 - 500: NRQ = 1/10 of mixed dist. keys

KEY SINGLE-CLASS
DISTRIBUTION
DISJOINT INCLUSIVE M
DISJOINT| INCLUSIVE S IXED
CLASS-HIERARCHY | CLASS-HIERARCHY | CLASS-HIERARCHY
CLASSES
DK 1= 100; N,=20000
- DK = 220; N= 50000 |DK = 120; N= = 170: N=
DKi : Ni DK 2= 120; N;=30000 ¢ = 50000 DK = 120; Ne= 50000 } DK = 176; Ne= 50000
5 | INDEX SIZE 112 111 121 171
SINGLE-KEY QUERY 3 4 2 2 2
RANGE-KEY (1) T 20 10 18 18
RANGE-KEY (2) 12 10 18

DKi ; Ni DK 3= 200; N;=60000 DK = 420; N=110000 [ DK = 200: N=110000| DK = 310; N=110000
3 INDEX SIZE 313 421 401 311
SINGLE-KEY QUERY 4 6 2 3 2
RANGE-KEY (1) 34 66 32 63 32
RANGE-KEY (2} 27 12 32
DKi ; Ni DK 4= 250; N,=100000 |BK & 670: N=210000 | DK = 250: N=210000| DK = 460; N=210000
4 INDEX SIZE 564 674 501 463
SINGLE-KEY QUERY 3 8 3 3 3
RANGE-KEY (1) 50 144 49 83 44
RANGE-KEY (2} 50 49 49

DKi ; Ni DK 5=340; N,=150000|DK =1010;N=360000 | DK = 340; N=360000 | DK = 675; N=360000
INDEX SIZE 205 1015 1021 1354
SINGLE-KEY QUERY 6 10 3 4 ]
RANGE-KEY (1) 73 279 71 203 139
RANGE-KEY (2) 73 71 139

DKi ; Ni

DK =400; N =200000

DK S 1410; N =560000

DK = 400; N=560000

DK = 505; N=560000

INDEX SIZE 13086 1417 1201 1818
SINGLE-KEY OUERY 7 12 3 4 4
RANGE-KEY {1} 96 458 93 271 183
RANGE-KEY (2) 26 53 183




TABLE 28 K; 3500 - 200; NRQ = 1/50 of inclusive dist. keys

KEY SINGLE-CLASS
DISTRIBUTION
DISJOINT INCLUSIVE MIXED
DISJOINT| INCLUSIVE Us
CLASSES CLASS—-HIERARCHY| CLASS-HIERARCHY | CLASS-HIERARCHY
DK=40; N;=2000
o DK = 110; N,= 50000 {DK = 7¢; N-= = o0 N=
DK N DK3=70; N,=30000 | ° : & 70; N 50000 DK = 90; N= 50000
INDEX SIZE 112 111 141 181
SINGLE-KEY QUERY | 3 4 2 3 3
RANGE-KEY (1) C 4 6 3 5 5
RANGE-KEY (2) 4 3 3

DKi ; Ni DK 3= 150; Ny=60000 |DK = 260; N=110000 | DK = 150; N=110000 | DK = 205; N=110000
INDEX SIZE 263 261 301 411
SINGLE-KEY QUERY 4 6 2 3 3
RANGE-KEY (1) é 12 4 7 7

6 4 7

RANGE-KEY (2)

DKi - Ni DK, =335; N,=100000 [DK = 595: N;=210000 [ DK = 335; N=210000] DK = 465; N=210000
INDEX SIZE 599 598 671 466
SINGLE-KEY QUERY 5 8 3 3 2
RANGE-KEY (1) 11 32 10 15 8
RANGE-KEY (2) 11 10 8

DKi : Ni DK 5=600; N=150000 DKc=119S;Nc=360000 DK = 600; N=360000 | DK = 897, N=350000
INDEX SIZE 900 1200 1203 901
SINGLE-KEY QUERY 6 10 3 4 3
RANGE-KEY (1} 17 60 L5 27 i5
RANGE-KEY (2) 17 15 15

DKi ; Ni DK §=1000; N,=200000 | DK =2195; N=560000 | DK =1000; N=560000 | DK =1557; N,=560000
INDEX SIZE 1403 2206 2005 1605
SINGLE-KEY QUERY 7 12 3 4 3
RANGE-KEY (1) 26 110 23 43 23

26 23 23

RANGE-KEY (2)




TABLE 3% K; = 200; NRQ = /20 of inclusive dist. keys

KEY SINGLE-CLASS
DISTRIBUTION
DISJOINT LUSIVE ED
DISJOINT| INCLUSIVE 1sJ INC MIX
CLASS-HIERARCHY| CLASS-HIERARCHY | CLASS-HIERARCHY
CLASSES
DK 1= 100; N;=2000
- DK = 250; N= 50000{DK = 150; N= = 200; N=
DKi ; Ni DK,= 150; N,=30000 & 250; Ne= 30 K = 150; N= 50000 | DK = 200; N= 50000
INDEX SIZE 127 126 151 101
SINGLE-KEY QUERY 3 4 2 2 2
RANGE-KEY (1) ? 12 6 9 6
RANGE-KEY (2) 8 6 6

DXi : Ni DK 3= 300; N,=60000 DK = 550; N=110000 | DK = 300; N=110000} DK = 425; N=110000
INDEX SIZE 278 276 301 426
SINGLE-KEY QUERY 4 6 2 2 y)
RANGE-KEY (1) 1 27 g 16 16
RANGE-KEY (2) 12 9 16

DKi ; Ni DK4= 500; N, =100000 DK==1050;NC=210000 DK = 500; N=210000| DK = 775; N=210000
INDEX SIZE 529 528 501 779
SINGLE-KEY QUERY 5 8 3 2 3
RANGE-KEY (1) 17 56 16 26 28
RANGE-KEY (2) 18 16 8

DKi : Ni DK s= 750; N,=150000 [DK =1800;N=360000 | DK = 750; N=360000 | DK =1275; N=360000
INDEX SIZE 905 905 754 1280
SINGLE-KEY QUERY 6 10 3 3 3
RANGE-KEY (1) 25 105 23 41 41
RANGE-KEY (2) 26 23 41

DKi ; Ni DK 4=1000; Ng=200000 |DK =2800;N=560000 | DK =1000; N=560000 | DK =1900; N=560000
INDEX SIZE 1406 1407 2005 1909
SINGLE-KEY QUERY ? 12 3 4 3
RANGE-KEY (1) 32 162 29 103 53
RANGE-KEY (2) 32 2% 53




TABLE 4 8 K; o 500; NRQ = 1/100 of disjoint dist. keys

KEY SINGLE-CLASS
DISTRIBUTION
DISJIOINT INCLUSIVE MI
DiSJOINT| INCLUSIVE I XED
CLASSES CLASS-HIERARCHY| CLASS-HIERARCHY | CLASS-HIERARCHY
DK ;= 40; N,=2000
C N DK = 100; 0000 |DK = 0; N= - 80: N=
DKi : Ni DKz= 60; N;=30000 | °© N 50000 DK = 60; Ng= 50000 |DK = 80; Ng= 50000
5 [ INDEX SIZE 102 101 121 161
SINGLE-KEY QUERY | : 3 4 2 3 3
RANGE-KEY (1) 3 4 2 3 3
RANGE-KEY (2) 3 2 3
DKi ; Ni DK 3=120; N,=60000 |DK = 220; N=110000 | DK = 120; N=110000| DK = 170; N=110000
3 | INDEX SIZE 223 221 241 341
SINGLE-KEY QUERY 4 6 2 3 3
RANGE-KEY (1) 6 12 4 7 7
RANGE-KEY (2} 6 4 7
DKi ; Ni DK ,= 200; N,=100000 [DK = 420; N=210000 [ DK = 200; N=210000| DK = 310; N=210000
4 INDEX SIZE 424 421 601 621
SINGLE-KEY QUERY 5 8 2 4 3
RANGE-KEY (1) 9 24 6 16 11
RANGE-KEY (2) 9 6 11
DK ; Ni DK 5= 300; N;=150000 | DK =720; N=360000 | DK = 300; N=360000 | DK = 510; N.=360000
p INDEX SIZE 725 724 501 1023
SINGLE-KEY QUERY 6 10 3 4 3
RANGE-KEY (1) 13 45 11 25 17
RANGE-KEY (2) 13 11 17
DKi ; Ni DK 6= 400; Ng=200000 [DK =1120;N=560000 | DK =400; N=560000 DK =760; Nz=560000
6 INDEX SIZE 1126 1126 1201 1524
SINGLE-KEY QUERY 7 12 3 4 4
RANGE-KEY (1) 18 78 15 37 27
RANGE-KEY (2) 18 15 27




TABLE 58 K; == 350; NRQ = 1/20 of mixed dist. keys

RANGE-KEY (2)

KEY SINGLE-CLASS
DISTRIBUTION
DISJOINT INCLUSIVE
DISJOINT| INCLUSIVE § us MIXED
CLASSES CLASS-HIERARCHY| CLASS-HIERARCHY | CLASS-HIERARCHY
DK = 60; N;=2000
C N DK = 145: N= Do = . = = CN=
DKi ; Ni D= 85 N,=30000 | Do 145 Nom 30000 D= 85 N2 50000 1DE £~ 115: Ne= 50009
INDEX SIZE 147 146 171 116
SINGLE-KEY QUERY | 3 4 2 3 2
RANGE-KEY (1) © 8 14 7 13 7
B 7 7

DK = 315; N2110000

DKi : Ni DK 3= 170; N,=60000 DK = 170; N=110006| DK = 243; N=110000
INDEX SIZE 318 316 341 244
SINGLE-KEY QUERY 4 6 2 3 2
RANGE-KEY (1) 15 39 13 25 13

15 13 13

RANGE-KEY (2)

DK = 615; N=210000

DKi ; Ni DK = 300; N,=100000 DK = 300; N=210000 | DK = 458; N=210000
INDEX SIZE 619 618 601 459
SINGLE-KEY _QUERY 5 8 3 3 3
RANGE-KEY (1} 27 96 26 47 24
RANGE-KEY (2) 27 26 24

DKi ; Ni DK 5= 430; N;=150000 | DK =1045;N.=360000 | DK = 430; N=360000 | DK = 738; N=360000
INDEX SIZE 1050 1050 861 742
SINGLE-KEY QUERY 6 10 3 3 3
RANGE-KEY (1) 42 190 40 75 40

42 40 40

RANGE-KEY (2)

DKi ; Ni DK = 575; N,=200000 [DK =1620;N 2560000 [DK =575; N=560000 [ DK =1098;N_=560000
INDEX SIZE 1628 1628 1153 1103
SINGLE-KEY QUERY 7 12 3 4 3
RANGE-KEY (1) 63 338 58 113 58

62 58 58

RANGE-KEY (2)




TABLE 6% X; =

150 - 500; NRQ = 1/100 of mixed dist. Keys

KEY SINGLE-CLASS
DISTRIBUTION
DISIOINT INCLUSIVE MIXE
DISJOINT| INCLUSIVE D
CLASS-HIERARCHY| CLASS-HIERARCHY | CLASS-HIERARCHY
CLASSES
DK 1= 350; Ny=50000
NG DX =950; N=170 DK = 600; N= = 775: N=
DKi ; Ni DK g= 600; Ny=120000 |- & 230¢ Nes170000 DK = 600; N=170000 | BE 2 773; N=170000
INDEX SIZE 419 476 603 389
SINGLE-KEY QUERY 3 4 2 3 2
RANGE-KEY (1) 7 11 6 11 6
RANGE-KEY {2} 7 6 6

DKi ; Ni DK 3=600; N,=180000 |DK =1550;N=350000 | DK = 600; N=350000 | DK =1075; N350000
INDEX SIZE 1022 179 1203 1080
SINGLE-KEY QUERY 3 7 3 4 3
RANGE-KEY (1} 16 27 9 25 14
RANGE-KEY (2) 13 9 14

DKi ; Ni DK ,=715; N=250000 DK =2265;N=600000 | DK = 715; N=600000 DK =1490:N,=600000
INDEX SIZE 1740 2274 1433 1498
SINGLE-KEY QUERY 6 10 3 4 4
RANGE-KEY (1) 21 52 18 33 18
RANGE-KEY (2) 21 18 18

DKi ; Ni DK 5=700; N;=280000 {DK =2965;N=880000 | DK = 715; N=880000 | DK =1840; N=880000
INDEX SIZE 2443 2979 2148 1848
SINGLE-KEY QUERY 7 13 3 5 3
RANGE-KEY (1) 25 82 21 57 21
RANGE-KEY (2) 25 21 21
DK =3565: DK =715; DK =2140;
DKi ; Ni DK =600; Ng=300000;  N=1210000 Nz=1210000 N=1210000
INDEX SIZE 3048 3582 2864 4285
SINGLE-KEY QUERY 8 16 3 6 4
RANGE-KEY (1) 29 117 24 87 43
RANGE-KEY (2) 29 24 as




TABLE 78 Kj = 200; NRQ = 20 keys

KEY SINGLE-CLASS
DISTRIBUTION
DISIOINT INCLUSIVE MIXED
DISJOINT| INCLUSIVE
CLASS-HIERARCHY| CLASS-HIERARCHY | CLASS-HIERARCHY
CLASSES
DK 1= 500; N;=50000
R DK =1500; N =200000 |DK = P N= = ‘N=
DKi ; Ni DK 2 =1000; N;=150000 S1500;N; =1000; N=200000 | DK =1250; N=200000
INDEX SIZE 436 503 503 418
SINGLE-KEY QUERY 3 4 3 3 3
RANGE-KEY (1) 10 15 11 14 9
RANGE-KEY (2} g 11 9

DK =2500; N=360000

DKi ; Ni DK 3=1000;N,=160000 DK =1000;N_=360000 | DK =1750; N=360000
INDEX S1ZE 771 838 1005 830
SINGLE-KEY QUERY 4 6 3 3 3
RANGE-KEY (1} 11 24 11 23 14
RANGE-KEY {2) 1 11 14

DK : Ni DK ,=1150; N,=200000 DK =3650; N=560000 | DK =1150;N=560000{ DK =2400; N.=560000
INDEX SIZE 1349 1223 1156 1206
SINGLE-KEY QUERY 6 9 3 3 3
RANGE-KEY (1} 17 38 11 23 14
RANGE-KEY (2) 15 11 14

DKi : Ni DK 5=1250;N5=250000 | DK =4900; N=810000 | DK =1250; N810000 { DK =3075; N=810000
INDEX SIZE 1977 1642 2506 3090
SINGLE-KEY QUERY 7 12 3 4 3
RANGE-KEY (1) 18 52 11 43 23
RANGE-KEY (2) 19 11 23

DK =6200; DK =1300; DK =3750:

DKi ; Ni DK =1300: N;=255000 Nz=1065000 N=1065000 N=1065000
INDEX SIZE 2630 3115 2606 3768
SINGLE-KEY QUERY 8 15 3 4 3
RANGE-KEY (1) 19 66 14 43 23
RANGE-KEY {2) 20 14 23




TABLE 8 8 K == 500; NRQ = 20 keys
KEY SINGLE-CLASS
DISTRIBUTION
DISIOINT| INCLUSIVE DISIQINT INCLUSIVE MIXED
CLASSES CLASS-HIERARCHY| CLASS-HIERARCHY | CLASS-HIERARCHY
DK 1= 100; N;=50000
DKi : Ni DK = 300 Ny=150000 DK = 400; N;=200000 | DK = 300; N=200000 [ DK = 350; N=200000
INDEX SIZE 402 401 601 701
SINGLE-KEY QUERY [ 3 4 2 3 3
RANGE-KEY (1) ©o22 42 21 41 4t
RANGE-KEY (2} 22 21 41

DKi : Ni DK y=350; N3=160000 DK: 750; Nc=360000 DK:=350'. Nc=360000 DKC= 550; Nc:360000
INDEX SIZE 753 753 1051 1103
SINGLE-KEY QUERY 4 5 3 4 4
RANGE-KEY (1) 23 63 23 61 43
RANGE-KEY (2) 23 23 43

DKi ; Ni DK = 420; N,=200000 | DK =1170:N=560000 | DK = 420; N.=560000| DK = 795; N=560000
INDEX SIZE 1174 1176 1261 1594
SINGLE-KEY QUERY 5 8 3 4 4
RANGE-KEY (1) 24 84 23 61 43
RANGE-KEY (2) 24 23 43

DKi ; Ni DK 5= §50; Ng=250000 [ DK =1720;N=810000 | DK = §50; N=B10000 | DK =1135; N=810000
INDEX SIZE 1727 1728 1653 1140
SINGLE-KEY QUERY 7 11 3 5 4
RANGE-KEY (1) 17 107 23 3 43
RANGE-KEY (2) 26 23 a3

DK =2320, DK = 600, DK =1450,

DKi ; Ni DKg=600; Ng=255000( N <1065000 N=1065000 N=1065000
INDEX SIZE 2330 2331 2403 1466
SINGLE-KEY QUERY 8 14 3 5 4
RANGE-KEY (1) 28 130 23 83 43
RANGE-KEY (2) 28 23 a3




TABLE 98 Kj = 350; NRQ = 20 keys

KEY SINGLE-CLASS
DISTRIBUTION
DISIOINT INCLUSIVE IXED
DISJOINT| INCLUSIVE v M
CLASSES CLASS-HIERARCHY| CLASS-HIERARCHY | CLASS-HIERARCHY
DK 1= 150; Ny=50000
N DK = 550; N=200000 = 400, N= = 475; N=
DKi ; Ni DK 3= 400; Ny=150000 | € 200 N DK = 400; N=200000 | DK = 475; N=200000
5 | INDEX SIZE 552 553 401 476
SINGLE-KEY QUERY 3 4 3 2 2
RANGE-KEY {1} ) 2z 42 23 21 21
RANGE-KEY (2) 22 23 21
DKi : Ni DK 3= 430; N;=160000 [DK =1030; N=360000 | DK = 480; N=360000| DK = 755; Nz=360000
5 | INDEX SIZE 1033 1035 561 758
SINGLE-KEY QUERY 4 6 3 3 3
RANGE-KEY (1) 23 63 23 41 23
RANGE-KEY (2} 23 23 23
DKi : Ni DK = 600; N,=200000 | DK =1630; N=560000 | DK = 600; N=560000| DK =1115:N=560000
4 INDEX SIZE 1636 1638 1203 1120
SINGLE-KEY QUERY 6 9 3 4 3
RANGE-XEY (1} 26 86 23 43 23
RANGE-KEY (2) 25 23 23
DKi : Ni DK 5= 700; N;=250000 | DK =2330; N=810000 | DK = 700: N=810000 | DK =1515;N=810000
s INDEX SIZE 2339 2341 2104 3037
SINGLE-KEY QUERY 7 12 3 5 4
RANGE-KEY (1) 27 m 23 63 a3
RANGE-KEY (2) 27 23 43
DK =3080; DK =750; DK =1915;
DKi : Ni DKg=750; Ng=255000 N=1065000 N=1065000 N=1065000
6 | INDEX SIZE 2092 3095 2254 3834
SINGLE-KEY QUERY 8 15 3 5 4
RANGE-KEY (1) 28 134 23 63 43
RANGE-KEY {2) 28 23 43
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