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Abstract

Neural networks have been proposed as computational models for difficult problems such as content
addressable memory, constraint satisfaction, and optimization. Two types of models have emerged: 1)
networks of two-state linear threshold units which are analyzed using methods of statistical physics; and
2) networks of analog devices which are described by a system of coupled non-linear differential equa-
tions. A mean field relationship between these two models has been alluded to in the literature, but an
explicit treatment of such has not appeared.

This thesis establishes a computational correspondence between these two neural network models. A
Markov process analysis of networks of two-state neurons leads to a set of non-linear differential equa-
tions similar to those describing analog neural networks. The derived equations are shown to yeild the
same steady-state solution as those of the analog neural network models. A portion of the thesis is
dedicated to providing an explanation by analogy of the computation performed by neural networks. This
analogy is useful in understanding the computational correspondence between the two neural network
models.

The development of the analog neural network model as provided in this thesis is important in that it
provides a general mechanism for the analysis of networks of two-state neurons. This mechanism
provides the basis of the computational correspondence between the two neural network models.
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Chapter 1

Introduction

Neural networks have been proposed as computational models for
‘hard problems’ that the brain appears to solve easily [20], such as
content addressable memory (CAM) [8], constraint satisfaction [7], and
optimization [10, 22]. Out of recent work, two types of computational

models have emerged:

o Networks of two-state neurons which are analyzed using the
methods of statistical physics [8, 7|; and

» Networks of analog devices which are described by systems of
non-linear differential equations [9].

A correspondence between the computation results provided by these two
models - essentially a result of mean field theory from statistical
physics [21] - has been stated or alluded to in the literature [10, 18].
However, there does not not appear to have been an explicit treatment

of this correspondence in the literature.

This thesis will establish this correspondence in a general form
through a Markov process analysis of the networks of two-state neurons.
Analysis of the probabilistic behavior of the two-state neurons in the
statistical model leads to a set of deterministic, non-linear differential

equations that approximate the neuron state probabilities. These



equations are shown to model a network of non-linear amplifiers similar
to the analog neural networks presented by Hopfield [9, 10], and they
are shown to have the same steady-state solution as Hopfield’s
equations.  Other Markov analyses of networks of two-state neurons

have overlooked the correspondence to analog neural network

models [18].

Previous identification of the correspondence between the two
network models only established that the solution points of the two
networks had a one-to-one correspondence® [9]. The development
presented in this thesis indicates that the solution provided by the
analog network is a mean field approximation of the ezpected state of
the network of two-state neurons. This provides the basis for

interpreting the computation performed by the analog neural network.

1.1 Background

With the development of electronic computing devices,
researchers have had a heightened interest in how the human brain
performs computation. In particular, since the emergence of digital
computers, scientists have searched for corresponding digital computation
models for the brain. One of the earliest investigations into neural
network models was the suggestion by McCulloch and Pitts, in 1943,
that neuron activity corresponded to the evaluation of logical

propositions [16]. Thus, their investigations were centered around the

1Hopfield [9] indentified the property of solution point averaging that is introduced
by a non-zero temperature in the statistical model. In this case, there is a many-to-
few correspondence of solution points.



development of a formal logical calculus to describe the operation of
networks of a formal two-state neuron model, the linear threshold unit

(LTU), shown in Figure 1-1.
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Figure 1-1:  The linear threshold unit (LTU) model of a neuron.

The use of a two-state model for neurons culminated in the
early 1960’s with Rosenblatt’s perceptrons [19]. These were a series of
machines formulated to perform classification and recognition tasks. The
basic perceptron consists of three layers of LTU networks, each layer
making connections to the next. At each time step, the neurons in each
layer are updated according to inputs received from the previous layer.
The connection weights between the neurons in two different layers are
selected such that patterns presented at the ‘input’ layer are classified
into specific patterns at the ‘output’ layer. Rosenblatt presented a
training algorithm and a convergence theorem that guaranteed that
certain perceptron models could be trained to perform classification
tasks. However, an investigation of perceptron properties by Minsky
and Papert in 1969 revealed serious limitations [17], and models of this

kind soon fell out of interest.

The shortcomings of perceptrons lay essentially in complexity of



analysis. It was shown that feedback connections between layers was
necessary to perform more complicated classification tasks. But this led
to models that were difficult to analyze, and there was no longer a

convergence theorem for training the networks.

Recently, Hopfield introduced a new class of LTU networks that
are fully interconnected, in which neurons (LTU’s) update their state
asynchronously [8]. Through an analysis based on an energy function, in
analogy with the energy of a physical system, Hopfield was able to
demonstrate that these networks display collective computation properties.
The concept of thermal noise has been added to these mnetworks,
producing stochastic networks of probabilistic LTU’s [13]. Using
methods from statistical physics, global properties of these networks can

be derived from knowledge of only the local neuron behavior [7].

Very few, if any, biologists believe that biological neurons
behave as two-state devices. In response to this observation, Hopfield
‘ntroduced a network model based on analog devices which are thought
to provide a more accurate model of biological neurons [9]. While this
type of model is not unique to Hopfield?, they have received much
attention because Hopfield identified a correspondence between properties
of these networks and the collective properties of his earlier networks.
This correspondence provides an insight into the computation performed
by the analog networks, something that was not apparent in previous

work.

2The most notable examples of analog network models are competitive learning
models; for example, von der Malsberg 23] and Grossberg i51.
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This thesis develops a computational model for analog neural
networks. Derivation of the model from the analysis of LTU networks

provides a basis for the mechanisms of the correspondence between the

two neural network models.

1.2 Reader’s Guide

Chapter 2 provides the operational details of Hopfield’s LTU
networks. These are extended to consider the stochastic networks
produced by application of simulated annealing [13] to Hopfield networks,
such as in the Boltzmann Machine [7]. Effort is given to describe by
analogy the computation being performed by these models. This
discussion provides insight into the wunderlying mechanisms of
computation with neural networks. This insight is particularly useful in
understanding the computation performed by the analog neural networks

defined in Chapter 3.

Chapter 3 presents a Markov process analysis of Hopfield and
stochastic two-state neuron networks. The results of this analysis are
used to define a probability measure on the state of each neuron in the
network. This measure is used to define an analog neural network
similar to Hopfield’s analog networks [9]. Both forms of analog

networks are shown to yield the same steady-state solution.

Chapter 4 contains a discussion of the results of Chapter 3.
The computation model developed in Chapter 3 is interpreted in terms
of the computation performed by networks of two-state neurons. Areas

for further investigation and extension are identified.



A very active area of investigation with neural networks is
concerned with their ability to learn [7, 20, 1]. These aspects will not

be covered here.



Chapter 2

Networks of Two-State Neurons

The networks described in this chapter are based on the use of
a linear threshold unit (LTU), which was presented in Figure 1.1, as a
rough approximation of biological neurons. Under this approximation,
the state of a neuron is interpreted as either ‘firing’ or ‘not firing’. The
use of such an approximation inherently implies an interpretation of a
neural assembly, such as the brain, as a digital machine. This
particular interpretation is convenient as it leads to network models that
resemble magnetic-spin (spin-glass) models from statistical physics [4].
This similarity allows the use of results from statistical physics for the

analysis of the computation performed by such neural networks.

This chapter presents the details of Hopfield’s LTU network [8]
and an interpretation by analogy of the computation performed by this
model. The model is then extended to stochastic networks of
probabilistic LTU’s. These networks are the basis for optimization and

constraint satisfaction applications of neural networks [10, 7].

o}



2.1 Computation with Hopfield Networks

Hopfield showed that a completely connected network of LTU’s
can perform collective computation through the minimization of a global
measure on the state of the network [8]. Consider a network of N LTU

neurons. FEach neuron defines a coordinate s; of the system. The value

of each of the coordinates §;,55, * =« ;8 y is defined by the state of the
corresponding neuron. We can now define a state vector for the
network
S = [51,82, A 751;\& (21}
where
1 if i*® neuron is ‘firing’ ,
s; = , 1=1,2,...,N .
0 otherwise

The collection of all possible values for the state vector S defines the
state space of the network. Thus the instantaneous configuration of the

‘neuron firing’ pattern represents a point in the state space of the

system.

Hopfield was interested in the use of neural networks as a
content-addressable memory (CAM). In such a memory system, it is
desired to retrieve a stored item that is closest in some sense to the
given input. Hopfield suggested that a system whose evolution in state
space is described by a phase-flow with several distinct attractors could
be used as a CAM. A two-dimensional example of a phase-flow is

e

shown in Figure 2-1.

By starting at any point in the state space and following the
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Figure 2-1: Example of a phase-flow in two dimensions.

phase-flow lines, the system reaches a stable point. The phase-flow can
be considered as having been generated by a state space ‘landscape’ of
hills and valleys, such that the system state always flows toward the
landscape  valleys. A two-dimensional state space landscape
corresponding to the phase-flow of Figure 2-1 is shown in Figure 2-2.
This landscape defines a measure on the system state, which we will call
the system energy. Therefore, a system governed by a phase-flow with
distinct attractors will evolve such that the system energy evolves to a

local energy minimum.

If each of the energy minima is considered to be a stored piece

of information, the information can be retrieved by starting the system
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Figure 2-2: Energy landscape that produced phase-flow
shown in Figure 2-1.

at some point near the minima. This is the essence of computation
with LTU neural networks. Information, or knowledge, is stored in the
form of minima in the network energy function. In other words, the
network state defined by an energy minima corresponds to a stored
item. Similarly, the initial network state corresponds to an ‘input’ to
the network. Information is retrieved by allowing the initial network
state to evolve to the nearest state corresponding to stored information.

This forms the basis of the use of neural networks for CAM.
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2.2 Details of the Hopfield Model

Now consider the network of N LTU neurons. Each neuron ¢

has a connection to neuron j with a synaptic strength of Tij , and
Tz'j:sz’ . In general, each neuron has a threshold I, . Each neuron
modifies its state according to the LTU rule
N
1 if Y T..s.—1I. >0
1 1
§. = =1 7 . (22)

0 otherwise

Hopfield gives the energy function for the network as

[y

A T
‘ZZT,SS +ZI.9
i=1

777y
22 1=1

The change in energy due to a change in the state of neuron k is given

by the partial derivative

N N
. GE
k z 1 ,7'-
N
.?—

where we utilize the fact that Tij= sz' and As, denotes the state change
make by neuron k. Because we only want state changes that cause the

energy to decrease, we require that AE, <0, which yields

N
20 if ) Tje—I; >0
Ask = 3:1

<{ otherwise
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This is simply the LTU update rule from equation (2.2). Thus, if
neurons change their state asynchronously (one at a time) the network
will evolve to an energy minimum. Typically, neurons are selected to
change state randomly, although by the above result, the network will

settle to a minimum for any selection scheme.

For the given energy function, the energy of a given state is a
function of the Tij . Therefore, information is stored in this network
through proper selection of the Tij . Given a number of states S to
be stored, Hopfield gives the following Hebbian [6] learning rule for
selection of the Téj:

44 & .
T;; = Z(Zsi—l)(Zs].—-l) with T, = 0.
41
This rule produces minima in the energy function for each of the stored
patterns S, up to some storage capacity limit. Thus the network will
perform a CAM function. There are many interesting issues related to

storage and retrieval in Hopfield network [8, 18] that are beyond the

scope of this analysis.

2.3 Optimization with Neural Networks

A different sort of problem from CAM’s is that of optimization,
or constraint satisfaction. In this problem, constraints are stored in the
Tij such that energy minima correspond to network configurations that
satisfy the constraints. There are typically many such energy minima.
The goal is to have the network find the state that optimally satisfies
the constraints. This is equivalent to finding the global, rather than

local, minimum of the network energy function.
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In terms of the energy landscape analogy, the goal is to find
the lowest valley in the state space. The problem with the Hopfield
networks described in Section 2.2 is that they get stuck in local minima;
they only perform gradient descent until they get to the bottom of the
nearest valley. Omne way to try to find the global minimum would be
to start the Hopfield Net at different random starting points in state
space and observe which of the resulting solutions has the lowest energy.
However, this does not prove to be a practical or reliable method (we

may be dealing with systems that have many, many stable states).

A method of solving problems of this sort is through simulated
annealing [13]. The name of this technique comes from an analogy with
the physical process of annealing. This is a process used to form
crystalline structures in solids, the crystal being a low energy state.
The process consists of melting the material at a high temperature and
allowing it to cool very slowly. The initially high temperature of the
system has the effect of giving the molecules enough mobility (energy) so
that they realign into an ordered arrangement {order having the effect of

lowering the energy).

By an analogy with the energy landscape, the heat introduced
by annealing gives the system enough thermal energy to occasionally
make uphill jumps in the energy landscape. This would be as if the
state of the system were represented by a marble rolling around the
energy landscape. With annealing, the marble is occasionally given
additional energy in the form of thermal notse, thus allowing the marble
to jump over a hill into a possibly lower valley. If the size of the
thermally induced jumps are slowly decreased, the marble will tend to

stay in the deeper valleys. This is the essence of annealing.
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From statistical physics, it is known that the result of annealing
will be to put the system into states of lowest energy. The probability
of being in a particular state is proportional to a function of the system
energy at that state, E. , and the system temperature, T .  This
probability is given by the Boltzmann factor [14]

P{S=i} « e~ E/T

Thus the relative probability of finding the system in state ¢ with
respect to the probability of finding it in state k is given by

p{s=i} ¢ EIT
= = ¢

- — J-EAEY/T — —AE, /T
P{S=k} ~ BT z o

where AE,, denotes the energy difference in going from state k to state
;. This is the Boltzmann distribution, which is shown in Figure 2-3.
Notice, that as 7T is increased, the relative probability of being in any
state approaches 1 . At high temperatures, all states are equally likely,
while at low temperatures, states with low energy become more likely

than high energy states.

9 4 Stochastic Networks of Probabilistic LTU’s

Simulated annealing has been applied to Hopfield networks,
resulting in stochastic network models [18], the best known example
being the Boltzmann Machine [7). Use of simulated annealing gives rise
to a probabilistic update rule for the LTU’s. The form of the new
update rule is [7]
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Figure 2-3:  Relative state probabilities given
by the Boltzmann distribution.

p; = P{s;—1} = S (2.3)

0
1+e’&Ei/T

2| e

[1+tanh(aE}/2T)]

= G(aE.,T)

where
N
0
AE, = E(5;=0) - E(s;=1) = Z:lTij.sj_Ii
]:

This function is shown in Figure 2.4. Operation of the network under

this rule has the effect that the final states produced by the network



16

will conform to the Boltzmann distribution. States with the lowest

global energy will be produced with a higher probability than states

with higher energies.
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Figure 2-4: Stochastic LTU update function, G(AE?,T).

Notice that for T=0, this update rule degenerates to the normal
LTU rule for Hopfield networks. Therefore, the Hopfield network
corresponds to the special case T=0 of the stochastic network, and both

networks can with modeled by the stochastic network model.



Chapter 3

Derivation of Analog Neural Network Models

The neural network models of Chapter 2 have been shown to
be capable of  performing useful CAM and  optimization
computations [10, 22, 7. However, there are two motivations for the

analysis presented in this chapter:

1. Simulation of the networks described in Chapter 2 are very
time consuming, particularly those of the stochastic networks;
and,

2. To establish an a posteriori derivation of analog neural
network models, after Hopfield’s analog networks [9].

In a sense the LTU networks of Chapter 2 are suboptimal in
terms of a space-time cost. By their definition, the models are multiple-
instruction, multiple-data (MIMD) computations. It is required that
neurons change state asynchronously, one at a time. Thus, only -le of
the computation space is begin used. For parallel computation, it is
desirable to find a single-instruction, multiple-data (SIMD) computation,
such that all of the computation space is used. Furthermore, the

stochastic networks require a large number of updates, due to their

probabilistic nature, to assure that an equilibrium solution is acheived.
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By deriving an analog neural network model, it is found that
computations can be performed in only a few model time constants [10].
This does not have immediate implications for computational speed, as
simulation of the network requires solving a coupled system of non-linear
differential equations.  Numerical techniques forb this computation are

still computation intensive. However, two benefits are realized:

1. An understanding of analog neural network computation in
terms of the analogies presented in Chapter 2; and

2. A computational model to motivate and guide development of
implementation technologies.

3 1 Markov Process Model of LTU Networks

Markov processes provide useful models for analyzing the states
of stochastic systems. We defined the state 52[31,52, SR .?SN} of a
LTU network in equation (2.1). Also recall that the Hopfield network
was found to be the special case T=0 of the stochastic LTU network.
A discrete time system can be modeled as a Markov process if the
transitions from one state to the next satisfy the Markovian

assumption [11]
P{5(n+1)=j| 8(n)=i,58(n—1)=k,...,S(0)=m}
= P{S(n+1)=j|S(n)=1}

This property states that the probability that the system will enter state
j on the next transition depends only on the current state. Any
information regarding the past states of the system does not affect the
next state probabilities. We can immediately see that the LTU

networks described in Chapter 2 satisfy this property.
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For a network of N two-state neurons, there are 2N values for
the state vector S. Because the temperature T is usually varied slowly
with respect to mneuron updates, we can treat the neuron update
probabilities p.(n) as a function only of the network state. Under these
conditions, we can model the network as a time-invariant Markov

process. We define the state probability vector

where the state probabilities

m,(n) = P{S(n)=c} , a=1.2,...,2%"

satisfy the condition

oV
> T,(n) = 1.
a=1

Then the state probability evolution equation is given by
M(n+l) = O(n)P , n=01, . .. (3.1)

where P is the state probability transition matrix

P = EPQQ}

with elements p_,, the state transition probabilities, given b
af y

Pop = P{S(n+1)=8|S(n)=0} ; a,f=12,.2" .

The definition of the network requires that the neurons change state one
at a time. Therefore, a single step change in the system state,
S(n) — S(n+1), is due to a change in only one neuron state. We can
relate the state transition probabilities p_ 5 to the neuron update

probabilities by
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1

NP ifas;=1
paﬁ - 1

~(1-p,) otherwise

1
where N is the probability that neuron k changes state, p, is the kP

neuron update function given by equation (2.3), and As==1 is the
change made by neuron k in taking the system from S=a to S=f. If
the network states S=a and S=p differ in more than one neuron state,

paE:O.

The quantity 7,(n) gives us the probability that the ith system
state is occupied at time n. It has been shown that for stochastic LTU

networks, the limiting state probabilities, lim Tl (n), are given by the
- OO

Boltzmann distribution [18]. This is the same result as was given in
the discussion on stochastic networks in section 2.3. Therefore, we can
use the state probability evolution equations (3.1) to find the limiting
state probabilities of the network. As T'—0, we know that the network
will settle into a stable state corresponding to an energy minimum.
This state will be identified by the limiting state probability vector.
However, we have not gained much because there are 2V state

probability equations to be solved for a network of N neurons.

Another analysis of the network can be based on modeling each
neuron as a Markov process, and applying the concepts we have just
discussed to these Markov processes. Now we have N two-state Markov
processes, as shown in Figure 3-1. However, these processes are not
time-invariant. At each time step, the neuron transition probabilities
pz{n} are 2 function of the network energy, which is a function of the
current states of the NN two-state processes. The neuron state

probabilities for the {th pneuron are given by
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Mi(n) = [7'(n) 7'(n)] , i=L2..N

where

ri(n) = P{s;(n)=0}

72’;(71) = P{s,(n)=1}

and s.(n) is the state of the it" neuron at time n. The neuron state

probability evolution equation is given by
M (n+1) = ni{n)Pi(n) , n=0,12.... , 1=1,2,..N

where P'(n) is the time-varying neuron update matrix for the ith neuron

pooln) Py (] _ | (1=pi(n) pilw)

pi(n) = | .
Pigln) ot (n) (1-p;(n)) p,(n)

Now we have only 2N state probability equations to be solved.
These equations describe only the statistics of the N neuron Markov
processes. But each neuron transition probability pi(n) is a function of
the N neuron states sj(n) . The i*h Markov process cannot know the
current state of the other processes because only the statistics are given.
So these equations cannot be solved directly. However, they can be
solved after making an approximation for the neuron states sz(n) , and

hence the system state S(n).



Figure 3-1:

Resulting vector Markov process when each neuron
is modeled as a two-state Markov process.

22
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3.2 Solution of the State Probability Equations

Before making the neuron state approximation, it is convenient
to transform the network to a continuous-time process. It would be
possible to make this transformation after solving for the state
probabilities with an Euler difference approximation. But for reasons of

generality and convenience, we will make the transform now.

In the discrete-time LTU networks, there is no significance to a
time delay between neuron updates. The only requirement is that
updates be made one at a time, and that the results of this update are
immediately available for the next update evaluation. Any other timing
characteristic has no effect on the computation. But in order to
transform to a continuous-time Markov process, an assumption must be
made regarding the time between neuron updates. We require that the
time between updates for a given neuron be exponentially distributed
with mean X [12]. In general, it is possible to have a different A for
the two different neuron states, but we will assume they are equal.
With this assumption, the state probability equations for the continuous-

time :*® neuron Markov process are given by [12]

SI) = Wi(t) A [Pi(r)—1]

where

. Ao 10
A = |
0 A 01

Now we will derive an approximate solution for the neuron
state probability equations. Since we do not have information regarding
the current neuron states s,(t), we will approximate the s;(t) by their

expected values <s.(t)>, which we will denote as V(1) :
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i
1 t
Vit) = <s,(t)> = 2 nm(t) = ().
n=0
We now evaluate the time derivative of V,(t) :

d . S R,
TVit) = i) = mo(t) N pgy + 1y (1) X (P 1)

7

But Wé:(l—-ﬂ;), and pgl(t):pn(t):pi(t)s so
S VAt) = Ap(t) = N (¢) p{t) + Ay (t) py(t) = ATy (2)
= X7y (t) + 2 p;(t)
= ATV (1) + AT p;(t)

Setting A=) and substituting the update function from equation (2.3)
for p,(t) vields

0
V(1) = —AV,(8) + AG (8E;, T)
N
= —AV,(t) + AG ( Zl T ;si)=1;, T)
J:

Finally, we make the approximation s(t)~ <s(t)>=V,(t), which gives us

the following set of coupled differential equations

N
d
SVit) = =AV,(t) + AG( ZlTijVj(t)—~Ii, T) , i=12,.N . (3.2)
J:
The approximation s ~<s,(t)> is effectively a mean field
method [21]. This technique from statistical physics allows replacement
of wvariables, such as sz.(t)f} with their expected value when taking the

expected value of some other variable.



3.3 Analog Neural Network Model

The coupled set of equations (3.2) can be realized by a network
of nonlinear amplifiers. The general form of the circuit for this analog
neural network is shown in Figure 3-2. These should be compared with

the network given by Hopfield shown in Figure 3-3.

%

resistor

RU: 1/Tt.j .

Figure 3-2:  Analog neural network circuit for equations (3.2).

It should be emphasized that the solutions provided by the

mean field method yield steady-state solutions. We can solve for the



— inputs ™x

\resistor

R,=1T,; .

f Juw 7] ]
VY UV e VUV

The equations that model this circuil are

du (t)/dt = —u(t)/7 + L T V) +
with Vj(t) =G| uj(t)) ‘
and r is an RC time constant determined by the parameters of the circuit,

I, is an external input to neuron i, and the neuron has a zero threshold, 8.

The exiernal input has the effect of lowering the threshold of the neuron. Here
we redefine the threshold to be 1':6-]1. We will use the f{ollowing

equations when referring to Hopfield's network. usually with 7=1:

du (t)/dt = —u(t)/7 + Z U AN

Figure 3-3: Neural network circuit given by Hopfield [10]. The
equations used for comparison are derived
from those given by Hopfield.
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steady-state solution to equations (3.2) by setting dV,(t)/dt =0, which
yields, with the temperature T fixed,

N
Vi(t) = G L T,V - 1)
7=1

With r=1, Hopfield’s equations [10] (see Figure 3-3) are given by

N
d
7=1

where V. =G (u;) . At steady-state,
‘Af
ut) = T VA - I
=1
Applying V, = G (u;) gives
]VT
Vi(t) = G }: T, Vi) - 1) .
=1

Therefore, both analog neural networks have the same steady-state

solution; only the dynamics of the networks differ.

It is interesting to note that Hopfield’s equations [10], as given
in Figure 3-3, can be derived directly from the discrete time Markov

model by solving for a different quantity:

Let

N
un) = AEY(n) = 2 Tps{n)~1I, ;

then, using equation (2.3)



Vi(n) = G(u;(n)) = P{s,(n+1)=1} ;

using an Euler approximation,

d u,(nr+7)—u (n7)
T un7) = -
1 N 1 N
~ D[ 2Ty nrtr) = L] = S| 22 Tyjsnr) = I; ]
=1 =1
1 1 N
~ —Tu(nr) + 7] > Tusj(nr%-f) ~I.7;
=1

making the same mean field approximation,

s {nT+7) = <sj(n7'+r)>
~ P{s]-(nr+r)=1} = V].(nr) ,

yields
d i 1 N
T u(nr) = —-;ui(nr) + ;[ Z TijVj(nT) - Ii] ;
7=1
with r=1 and n=t, we get
d N
aut) = —ul) + TV - I
=1

which are the same as Hopfield’s equations given in Figure 3-3.
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Chapter 4

Discussion

4.1 Interpretation of the Computation Model

In Chapter 3, we derived a set of equations that model an
analog circuit of amplifiers and interconnection resistors. This circuit is
similar to a conventional analog computer. We will now interpret the

computation that this circuit performs.

Recall that equations (3.2) were derived from a description of a
LTU neural network. Typically, this LTU network is defined to perform
some sort of computation such as a CAM or optimization. The network
computes by evolving to a steady-state configuration from a given initial
configuration. The final configuration represents the solution to the

computation.

Likewise, for the analog neural network defined by equations
(3.2), the solution to its computation is represented in the final, or
steady-state, values of the variables V. (t). These variables represent a
probability measure on the neurons in the underlying LTU network from
which equations (3.2) were derived. Each variable V (f) represents the

probability that the ;" peuron in the LTU network is ‘firing’.

29
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Thus, if the LTU network has some final stable configuration,
§=1[1,0,1,1,...,0], we can say that each neuron has some probability, 0.0
or 1.0, of being in the ‘firing’ state. The final state
V(t)=[V,(¢t),..Vp(t)], will represent these probabilities under a

mean-field approximation.

Consider a CAM computation where the initial state is exactly
between two (or more) stored states. In terms of the energy landscape
analogy, the marble starts at the peak of a hill. Because the Hopfield
LTU network makes a neuron update randomly, the first neuron state
change may move the system towards any one of the surrounding stable
states. On different simulations of the computation, different stable
states make occur. The marble may fall into any of the surrounding
valleys, and on different trials will fall into different valleys. In this
case, the solution given by the analog network will indicate the average
state of each neuron, averaged over the possible final states of the LTU
network. A similar situation arises for the stochastic network at a non-
zero temperature. In this case, there is a non-zero probability that each
neuron will ‘fire’, due to thermal noise. Thus, the probability that the
it LTU neuron is ‘firing’ will be represented by a corresponding non-

zero value for Vi(t).

4.9 Extensions and Future Work

The key issue regarding this computation model is the accuracy
of the mean-field approximation. Its application in statistical physics
typically relies on a large numbers of particles to take an average over.
There are examples in which the mean-field theory fails to accurately

mode] system properties [2]. Cited examples of computation with analog



31

neural networks are all based on networks a priori designed for the
computation [10, 22], so they cannot be used as verification of the mean
field approximation of an wunderlying LTU network computation.
Further analysis is required to determine the conditions under which the
approximation is valid. A possible extension of the approximation

method wused here is approximation through Markov random
fields [3, 21].

The analog neural networks presented by Hopfield have
previously been identified as being mean-field approximations to the
corresponding LTU networks [10]. However, a derivation and general
form of the approximation has not appeared in the literature. One of
the advantages provided by the general derivation given in Chapter 3 is
its possible extension to approximating the statistics of systems of units
with more than two states. It is felt that the computational model
developed can be extended, at least under certain conditions, to model a
very general system of continuously-valued units. In such a system,
each unit (neuron) is described not by a two-state transition rule, but
by a probability density function (pdf). It is expected that such an
extension would lead to a system of stochastic differential equations for
V.(t), in place of the deterministic differential equations (3.2). There is
a growing body of theory related to stochastic non-linear systems in the
areas of control and signal estimation [15] from which the study of such

computational models could draw from.
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