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Chapter 1

Introduction

The Texas Reconfigurable Array Computer (TRAC) is an
experimental computer that was developed at The University of Texas at
Austin. It is a multiprocessor system with a dynamically reconfigurable
banyan network. TRAC’s interconnection network is the SW - banyan
which supports a path from each apex to each base of the network while
requiring only n log n switch nodes. The banyan network can dynamically
partition and configure the processor, memory, and I/O resources of the
system into different architectural organizations as demanded for efficient

application formulation and solution [Sejnowski 80].

This unique hardware architecture poses several equally unique
problems in the design and implementation of an operating system. A
conceptual design for an operating system for TRAC was developed by
Daniel Canas [Canas 83]. Memory management for TRAC is particularly
interesting because of the spectrum of design options supported by the
interconnection network. This thesis begins with the conceptual design of

Canas for virtualization of physical memory, resolves and details this design,



implements that portion of the TRAC operating system which virtualizes

physical memory, and finally evaluates the properties of the design.

The experimental TRAC hardware has never attained the stability
necessary for support of development of an operating system. It was
necessary, therefore, to use a simulator of the TRAC hardware as the

execution environment.

A TRAC simulator which allows the execution of TRAC binary
programs has been implemented on the DEC-20 computer. The simulator
operates at instruction level and has been enhanced to reflect the
reconfigurability of the TRAC network. These enhancements provide a
simulation of the connection between processors and memory modules,
which therefore allows the execution of operating system routines on the

simulator.

This thesis studics virtual memory on a reconfigurable network
architecture such as TRAC. The environment of the study will be the
TRAC simulator. The approach has been to strengthen the simulator to
handle the execution of a page replacement algorithm, to enlarge the TRAC
instruction set to provide the necessary functionality for an operating
system routine, and finally to code a page replacement algorithm in TRAC

assembly language and to test its performance on the TRAC simulator.

The thesis is organized as follows. Chapter 2 describes the

instruction set and architecture of TRAC. Chapter 3 discusses the page



management system for a reconfigurable network architecture. Chapter 4
gives the results which come from executing test programs on the TRAC
simulator. Chapter 5 summarizes the results of the performance evaluation

and formulates an improved capability for memory management in the

TRAC architecture.



Chapter 2

TRAC Architecture

This chapter describes the TRAC architecture to the extent
necessary to understand the operating system routine which handles page
faults. Additional details can be found in the TRAC Users’ Manual
[Deshpande 85].

The major unique features of the TRAC computer are space
sharing, reconfigurability, inter-task communication ability, varistructuring,
and the fact that its design makes it a virtual machine to the user
[Sejnowski 80]. Space sharing implies that independent or interacting tasks
can all be running simultaneously on the same computer, as opposed to the
time sharing where tasks must await their allotted time slot to execute.
Reconfigurability is the ability of TRAC to dynamically partition its
processors and memories under software control to obtain optimal use and
minimal waste for the set of tasks to be run. The third unique feature,
inter-task communication, is possible by sending packets between tasks or
by tasks sharing a memory. Varistructuring is another unique feature of
TRAC. It allows the execution of programs to take place on machines with

different degrees of parallelism without any change to the program code.



Finally, the machine is virtual in that user programs can be oblivious of the
specific set of memory and processor modules used. A given login
architecture can be realized with different sets of physical resources.
Memories have space-page registers which allow them to be combined in any

way to form address spaces [Sejnowski 80].

Traditional paging algorithms do not take advantage of the unique
features of the TRAC computer. Therefore, a unique paging algorithm has
been developed to handle page faults with better performance on a

reconfigurable network architecture such as the TRAC computer.

2.1 The Banyan Network

The most fundamental concept in the TRAC system is the use of
an SW-banyan network to interconnect the set of processors with the set of
resources. A banyan is represented by a graph in which nodes are divided
into three types: apex, bése and intermediate nodes. In TRAC, apex nodes
represent processors, base nodes represent memory resources, and
intermediate nodes represent switch nodes. An important property of the
network is that there is a unique path between any apex (processor) and
base (memory) node pair through the intermediate (switch) nodes

[Sejnowski 80]. Figure 2-1 shows TRAC’s 4 processor - 9 memory system

built around the banyan interconnection network.
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Figure 2-1: Banyan Network

2.2 Trees

A TRAC task uses the switch nodes of the network to establish
three types of subtrees: data trees, instruction trees, and shared memory
trees. The data tree is used as a data bus to connect a processor with
appropriate memory modules (See figure 2-2). The memory modules
connected to a processor using a data tree are actively attached to the
processor throughout the lifetime of the data tree. These memory modules

are private to the processor and cannot be shared by any other processor.
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Figure 2-2: Data Tree

The second type of subtree, the instruction tree, is used as an
instruction bus to broadcast instructions to a set of processors performing
the same task (SIMD mode). The processors execute the instruction in
lockstep mode. As illustrated in figure 2-3, the instruction tree connects one
memory with a set of processors. Each switch node in the banyan network
includes hardware for a carry-look-ahead tree node. The hardware is
activated by an instruction tree link in the module. The look-ahead tree
makes varistructured arithmetic possible on TRAC. This is discussed in

detail later in this chapter.

Shared memory trees are the third type of subtree. They connect
a set of processors to a single shared memory module for the purpose of
sharing data (See figure 2-4). Parts of the shared memory tree are used to

extend a data bus from time to time in order to share a memory [Sejnowski
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Figure 2-3: Instruction Tree
80]. In order to distinguish between shared trees, each shared tree is

assigned a number from 0 to 3. These shared tree numbers are called

colors in the TRAC literature.

The two instructions which are necessary to implement shared
memory on TRAC are ACQR and SMS. The ACQR instruction activates
the shared tree and makes the variables in the memory module available to
the processor. The shared tree mechanism provides, to the processors
involved, a mutually exclusive access to the memory module and thus to its
storage area. To release the memory module, the processor executes the
SMS instruction which sets an unowned bit in the memory module to signal

the memory is unowned and has no active chain to it [Deshpande 85].
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Figure 2-4: Shared Tree

2.3 Multidimensional Memory System

In an SIMD environment, the processing elements in a given task
execute the same instruction but use different operands. This means that
each processor needs a private memory of its own to store the operands, and
all processors together need a common storage area for instructions. The
TRAC architecture defines four types of storage spaces, each intended for a

specific type of storage necessary during SIMD processing [Deshpande 85].

The four space types are operand, data, program and control. The
first space, the operand space, is a two-dimensional space. A detailed

description of two-dimensional space is given in the next section. The
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operations defined on this space are stack-oriented. The operand stack is
used as a temporary storage area for program routines: the operands are
pushed on the stack by the routines, operations are performed on the stack

and results are popped thereafter [Deshpande 85].

The data space is also a two-dimensional space. The data space is
a global storage area. During processing, the data is transferred from the
data space to the operand stack, processed there, and then the results are
transferred back to the data space. The size of the data space does not

change during the execution of a process [Deshpande 85].

The program space is a one-dimensional space which stores
instructions for a process. To an executing process, the program space
appears as read-only memory. The instruction fetched from program space

is broadcast over the instruction tree spanning the task [Deshpande 85].

The last space, the control space, is also a one-dimensional space.
The control space stores all data that is common to all processors of an
SIMD task. Examples of this type of data are subroutine return addresses,
operand addressing offsets and operand descriptors. The user may read
from and write into the control space [Deshpande 85]. The last two pages
of control space are reserved for paging. The paging algorithm uses these

reserved pages as page buffers.

Page faults can occur on all four of these space types.
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2.4 Two-dimensional Memory

A processor module in TRAC is built around a byte-slice ALU with
flexibly controllable carry linkages. The operation of the ALU and the
carry linkages are controlied by the microcode. By controlling the carry
linkages among the processors, the TRAC architecture is able to create a
processing element of a larger word width. Whereas conventional processors
offer general purpose registers, TRAC instructions refer only to memory-
based operands and execute memory-to-memory operations. This scheme
presents to the user a completely general and modular processing slice and

thus provides a virtual processing resource [Deshpande 85].

The above scheme has three advantages. First, the assembly
language wuser is oblivious to the reconfigurable processing hardware.
Second, the assembly language programs are freé of system specific details.
And lastly, because the final configuration is made by the task, the
performance of the algorithm and/or the use of the system resources can be

optimized at execution time by providing varying amounts of parallelism

[Deshpande 85].

The wvariable word-width capability is made possible through
arithmetic and logic descriptors. These descriptors specify the
properties of the operands. The micro routines that implement the
instructions use the descriptors as parameters. An arithmetic and logic
descriptor can be divided into three parts: the processor configuration
parameters, the element descriptor, and the vector descriptor. This section

describes each of these descriptors in detail [Deshpande 85].
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There are two processor configuration parametfers: the number of
processors in a task and the number of processors per group. The number
of processors in a task is specified by the parameter p. Since each processor
can operate on one byte at a time, at most p bytes can be operated upon
simultaneously. To coordinate the activities among the task processors, the
information of assigned parallelism is supplied by assigning them ID’s ©
through p-1. These processors are connected together via the carry look-
ahead (CLA) tree traversing the task instruction tree. The CLA tree
imposes a default direction of significance on the processors. The least
significant processor is assigned ID 0, and the more significant processor of

any two is assigned the higher ID [Deshpande 85].

The second processor configuration parameter is n, the number of
processors that will handle an operand element. This parameter is
determined after the number of processors dedicated to the task is
determined. The set of processors that work in unison on a single element
is called a group. The number n specifies the number of processors that
are grouped together via the CLA to create the multi-byte processing
element which will operate on a single operand. The parameter p should be

an integral multiple of n [Deshpande 85].

There are two element descriptors: slice count and most
significant processor. A group handles one operand element at a time.
The constituent processors together form a multi-byte processor with a

multi-byte word width. A group is therefore able to handle an n-byte word
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at a time. This n byte word is called a slice. If a data element is larger
than a slice, it is folded over a number of slices in the memory in a manner
similar to the one used to store a double precision operand of a conventional
microprocessor, The minimum number of slices needed to thus
accommodate the entire element is called the slice count (h). The
maximum size of the element accommodated in a group of size n and with a
slice count h, is n times h bytes. When the size of the element is smaller
than n times h, the result is garbage bytes. The number of garbage bytes

is always less than n [Deshpande 85].

The parameter f specifies the position of the most significant byte
of the element to be processed. If the processors within a group were to be
numbered from O through n-1 corresponding to their increasing significance
within the group, f specifies the processor which should handle the most
significant byte of the element under consideration. The purpose of f is to
flag that processor to be the handler of element sign, carry and overflow

status [Deshpande 85].

There are two vector descriptors: band count b and highest order
group g. The concept of band count is similar to that of the slice count.
What slice count is to an element, the band count is to a vector of elements.
A vector of elements are distributed over the available groups in a task. If
the number of elements in the vector is larger than the number of groups,
the vector is folded into a number of bands. The minimum number of
bands necessary to accommodate the entire vector is specified by b

[Deshpande 85].
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Descriptor g has a function similar to descriptor f, except that it
used for describing a vector of elements. If the number of elements in the
vector being considered is less than the maximum that ecan be
accommodated, the last band will have less than p/n valid elements. The

group that handles the highest order element of the vector is designated by
g [Deshpande 85].

Figure 2-5 graphically captures the essence of the arithmetic and
logic descriptors. Figure 2-6 shows an alternate arrangement for the same
vector. The more efficient schema is figure 2-6 because it has fewer garbage

bytes and fewer slices per processor.

2.5 Pointer Registers

Each space type has two 16-bit pointers or address registers
dedicated to it. All registers are located in every memory module
[Deshpande 85]. These 16-bit address registers limit the memory size of
each space type to 64K bytes. The operand space and the data space are
two-dimensional space types and can have four pages of each space type for

each processor in the task.

The two pointers of the operand space are the T pointer and the IN
pointer. The T pointer points to the top, filled location in the operand
stack. During arithmetic operations, the T pointer points to the element on
top of the stack. In comparison, during diadic arithmetic operations, the IN

pointer points to the element next to the top of the stack [Deshpande 85].
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Figure 2-5: Arithmetic and Logic Descriptors

The data space has two pointers used for general purpose
addressing of data space. These two address registers are the X pointer and

the Y pointer [Deshpande 85].

The program space, where instructions are stored, has a P pointer
which is the program counter for the task. The other pointer for the
program space is the W pointer, which is used as a shadow register. The

user cannot access the program space via this register [Deshpande 85].
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Figure 2-8: Alternate Storage Schema

The two pointers of the control space are the S pointer and the D
pointer. The S pointer always points to the top of the control stack.
Conversely, the D pointer points to the bottom of the control stack. All
accesses made to the control space are made with offsets to one of these

pointers [Deshpande 85].

2.6 Primary Memory

On the actual TRAC machine, each memory module in TRAC is
64K bytes in size, and is divided into four 16K byte pages. However, on the
TRAC simulator, where the paging algorithm is implemented, the memory
modules are 4K bytes in size and are divided into four 1K byte pages.
Nevertheless, on both TRAC and the simulator, each page in each memory

module can be any of the four memory space types.
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Each page has a corresponding virtual page number register. This
register has eight bits, with two bits specifying the memory space type and
two bits specifying the page number. Since the address size of each space
type is limited by the 16-bit address registers to 64K bytes, there can only

be four pages of each space type and only two bits are needed to specify the

page number.

2.7 Secondary Memory

In addition to primary memories;, TRAC has self-managing
secondary memory (SMSM). A key use of the SMSM’s in the TRAC
architecture is to virtualize the memory. If a processor accesses memory
which is not currently in one of the memory modules attached to the
processor, the SMSM is used to page out a current page in one of the
modules, and then read in the desired page of memory in the now free

memory module [Sejnowski 80].

The SMSM’s are attached to primary memories. A primary
memory need not have an SMSM attached to it, and SMSM’s can be
detached from one primary memory and attached to another when neither
primary memory is being used. A page buffer must be reserved for paging
operations in each memory module with an SMSM attached to it. This will

be the last page in control space.

Two TRAC instructions which access the SMSM and are necessary
for the page fault routines are WDAT and ONRD. The WDAT instruction
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is used to write data to the backup device. The ONRD instruction is used

to read data from the backup device. The read is non-destructive.

2.8 Packets

Because a desired shared tree structure may be impossible to
generate because of blockage by other preestablished circuits, TRAC has
packets to ensure feasibility of all possible permutations of interprocessor
communication circuits. The packets allow interprocessor and inter-data
tree communication. Packet communication is necessary to handle a page
fault when the page which caused the fault is in a shared memory currently

not attached to the processor [Deshpande 85].

In packet-switching, the data is stored and forwarded by
intermediate switch nodes. Each packet is eight bytes long. The first byte
of the packet corresponds to the network-ID of the destination processor.

The remaining seven bytes are data [Deshpande 85].

The SIP instruction is used to send a packet. The packet may be

received by executing an RCVIP instruction [Deshpande 85].

2.9 Interrupts

An explanation of interrupts on TRAC will be helpful in
understanding the page handler. Page faults occur when a physical
realization in the primary memory cannot be found. They happen during
the execution of an instruction, and execution cannot continue until the

page fault is serviced [Deshpande 82].
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When an interrupt occurs, control goes to a fixed address in the
microcode where the interrupt register is tested to find the source of the
interrupt. The interrupt register has eight bits. Seven of the bits signal
different types of interrupts (See Figure 2-6). Bit 0, the Reset bit (RST), is
set by the system wide reset signal and is equivalent to restarting the
system. Bit 1 is the Page Fault Status bit (PFS). It signals three cases: a
page fault, a memory protection fault, and a supervisor protection fault.
Page faults cannot be masked and must be serviced as they occur. Bits 2
and 3 are the Interrupt Timer Slow and Fast bits (ITS and ITF). They
indicate a timeout condition on the corresponding slow and fast timers on
the processor modules. Bit 4, the Input/Output Interrupt bit (IOI), is set
by the SMSM and it signals that the last search for a file has ended and
that it is ready to tranéfer data to or from that file within a certain fixed
time period. Bit 5, the Interrupting Packet Arrival bit (IPA), is set on
reception of a global packet over the banyan interconnection network. And
finally, the halt bit (HLT), bit 6, is set by the halt line going to each
processor module. When this bit is set, the processor goes into a halt state

and waits for a restart or synchronizing signal [Deshpande 82].

7 6 5 4 3 2 { 0
HLT|IPA | IOl | ITF ITS |PFS|RST

Figure 2-7: The Interrupt Register

Examining the interrupt register determines the type of interrupt

which in turn dictates what microcode is then executed. For all types of
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interrupts, the microcode saves the status in a reserved page in data space.
During a page fault, the machine status must be saved in a fixed location on
a page that will always be in primary memory. For this purpose, page zero
of data space has been reserved. In order to maintain consistency, all other

interrupts also store the status in page zero of data space [Deshpande 82].

The status information that must be saved and the address at
which it is stored are determined by the type of the interrupt [Deshpande
82]. During a page fault interrupt, the following information is saved: the
ALU registers, the status bits on the TRAC processor module, the condition
codes, the last microcommand that caused the page fault, the last

microaddress, the last opcode, and the X and P (program counter) pointers

[Deshpande 82].

In addition to storing status information, page zero of the data
space stores addresses for the software service routines for interrupts. The
address of the page fault handler is stored in two bytes of data space: the
high byte of the routine is in address 2 and the low byte is in address 3

[Deshpande 82].

A return from interrupt (RTI) instruction has been added to the
TRAC instruction set given in the TRAC Users’ Manual [Deshpande 85].
This instruction is necessary to implement a page fault interrupt. Program
counter, register X, loop counter and other values saved on the stack when
the interrupt occurred are restored. RTI then returns control to the

interrupted program.



Chapter 3

Paging Algorithm

This chapter describes a paging algorithm designed by Daniel
Canas for a reconfigurable network architecture (RNA) such as TRAC
[Canas 83]. This algorithm is implemented and tested on the TRAC

simulator. The results of the tests are described in Chapter 4.

The paging algorithm for an RNA is complicated by the unique
features of such an architecture and by the desire for optimum parallelism.
Because TRAC is intended to support high degrees of parallel processing,
the memory virtualization mechanisms must avoid serialization due to

paging [De Groot 81].

Three features of TRAC which directly augment the paging
problem are shared memory, reconfigurability, and two-dimensional
memories. Shared memory complicates the paging problem because two
situations instead of one can cause a task executing in lockstep mode to
encounter a page fault. Either the page in question is stored in a shared
memory module currently not attached to the task, or the page is stored in

a backup device [Canas 83]. Therefore, when a page fault occurs, the

21
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shared memory tables must be searched to determine which type of fault

has occurred.

Reconfigurability causes additional problems because a task does
not know the topology of its configuration until load time. Different
execution requests for the same task may execute on different hardware
configurations. Processors may or may not have access to backup devices
where its pages are stored [Canas 83]. Therefore, paging tasks must be

created, so that a task can have virtual memory on any given configuration.

The third complication to the paging problem is two-dimensional
memory. When a page fault occurs on a two-dimensional memory space,
more than one page must be replaced. That is, more than one page must
be read into primary memory, and more than one page must be written to

secondary memory [Canas 83].

Section 1 gives an overview of the paging algorithm for a page
fault when the page in question is stored in a backup device. Sections 2, 3,
and 4 describe specific parts of the paging algorithm for this type of fault in
more detail. Section 2 describes breaking up the task-wide instruction tree.
Section 3 discusses the actual page transfer, and Section 4 describes
recreating the task. Section 5 describes how a shared memory fault is

handled by the paging algorithm.
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3.1 Overview of the Paging Process

If the fault is not a shared memory fault, then the page in question
is located in a backup device. What follows is an overview of the paging

algorithm to handle this type of fault.

All processors of an SISD or SIMD task on TRAC execute in
lockstep. Each memory access for data is always to the same virtual page
in each column and to the same address within a page. Consequently, each
time a page fault occurs, all processors within the task fault at the same
time. If the page fault occurs on a two-dimensional memory type, then
each processor must perform a paging operation on its column of the
memory [De Groot 81]. If the memory type is one-dimensional, only one
processor, specifically the processor at the root of the instruction tree, need

perform 2 paging operation.

When a physical memory page is to be swapped out, the backup
device to which the page is to be written must be determined. If both the
page-out and the backup device belong to the same processor, that processor
can output the page to the backup device. This operation is called a local
write. If, however, the page-out belongs to one processor and the backup
device to which the page is to be written belongs to another processor, then
the two processors must cooperate to output the page. This operation is
called 2 non-local write. The operations local read and non-local read

are similarly defined [De Groot 81].
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While loading a task, two restrictions must be imposed. First, a
page buffer must be reserved in each memory module which has an SMSM
and which will be page 3 of Control Space (CS-3). Second, each processor
that is not a paging task must have a page buffer for non-local reads and
writes. Page 2 of control space has been reserved for this purpose. Both
these pages are required for the transfer of pages among processors [Canas
83]. Pages 2 and 3 of control space were chosen to be page buffers ad hoc

because a one-dimensional space is needed for paging.

Eight instructions have been added to the TRAC instruction set to
move bytes into and out of the page buffers. MsB moves bytes from one of
the four spaces to the page buffer. The s can be O, P, C, or D for operand,
program, control or data space, respectively. MBs moves bytes from the

buffer to the memory space specified in the instruction by s.

When paging two-dimensional memory, one page from each
column must be replaced by each processor. Maximal paging performance
obviously occurs when all processors perform their own paging operations
concurrently. Therefore, the task must be broken up so that processors can
discontinue lockstep execution mode and begin operating independently.
Each processor performs its own paging code. The paging code executed
depends on the following three attributes:

1. Is the processor a paging task?;

2. Is the processor the owner of the page to be replaced in main
memory?;
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3. Is the page which caused the fault a one-dimensional or two-
dimensional memory space?

The processors execute the paging code asynchronously and can complete at
different times. Upon completion of all the page replacements, the

processors must resynchronize and once again enter lockstep execution mode

[De Groot 81].

The creation of paging tasks implies the deletion of the task-wide
instruction tree. Page in/out is accomplished among two processors which
must be connected by an instruction tree. Therefore, these trees must be
created and deleted dynamically at the request of the paging tasks [Canas
83]. For this purpose, the instructions DINST and CINST have been added
to the TRAC instruction set given in the TRAC Users’ Manual [Deshpande
85]. DINST deletes an instruction tree and CINST creates an instruction
tree. Both of these instructions are used repeatedly to create and delete
instruction trees between the paging task and a selected processor from the

group.

Thus, the three steps of the paging process are:

1. break up task;
2. perform page transfer;

3. recreate task.

The following sections describe each of these steps in detail.
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3.2 Breaking Up Task

As mentioned in the previous section, the first step of the paging
algorithm is breaking up the task into smaller t.asks which will execute in
parallel. Processors which do not have access to backup devices are not
able to replace pages in their memory modules. Therefore, paging tasks are
created in order to transfer pages in these cases. A paging task is defined as
the smallest execution unit capable of performing page-in and page-out
operations. In practice a paging task is a one processor task with access to
a backup device [Canas 83]. Paging tasks will execute in parallel unless

they share the same backup device, in which case they must compete for the

use of the device.

A paging task must perform the paging operations for all
processors which have their pages stored in the backup device and which do
not have access to the device. A paging group is defined as a group of
processors whose pages are stored in the same backup device, but only one
of whose processors has access to the device. Therefore, a paging task must
perform all paging operations for the paging group. A paging group can
consist of only one processor, being the paging task itself, or it can consist

of one paging task and several processors [Canas 83].

Before the task-wide instruction tree is broken up, a hardware bit
called the processor resident monitor bit is saved so that the original task
can be reconstructed when paging is finished. Two instructions, RPRM and

SPRM, have been added to the TRAC instruction set [Deshpande 85] to
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manipulate this hardware bit. RPRM reads the bit and stores its value in
the least significant bit position on top of the operand stack. SPRM sets
the bit with the least significant bit of the value on top of the operand

stack.

The page which caused the fault is determined by searching the
page tables. The page to be swapped out is determined by executing an
LRU instruction. In order to implement the paging algorithm, this
instruction was added to the instruction set outlined in the TRAC Users’
Manual [Deshpande 85]. This instruction determines which page in primary
memory was least recently used (LRU) and pushes the virtual page number
onto the operand stack. Page zero of each space type and the page buffers
are exempt from paging out. The page type of the page selected to be

replaced is the same as the page type on which the fault occurred.

A semaphore register is present at the memory module which is at
the root of the task’s instruction tree. This semaphore is used to count the
number of processors which have completed their paging operations [Canas
83]. The semaphore is set to the number of processors. When the
semaphore reaches a value of zero, all processors have completed their
paging code. Two instructions have been added to the TRAC instruction
set [Deshpande 85] to implement the semaphore. These two instructions are
GSEM and SSEM. GSEM reads the semaphore and pushes the value on top
of the operand stack. SSEM pops the value on top of operand stack into

the semaphore register.
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After the semaphore is set to the number of processors in the task,
a DINST instruction is executed to delete the task-wide instruction tree.

Each processor then begins executing the following page transfer algorithm

independently.

3.3 Page Transfer

Each processor must test for six different cases and must handle
them accordingly. Each processor will satisfy only one case and execute the
code for that case. These six situations and how to manage them are
described in this section. The first four situations exist when the fault
occurs on a one-dimensional space and the last two cases are for a fault on a
two-dimensional space. The task-wide instruction tree has been deactivated
at this point, and each processor executes this code independently. The
questions that each processor must ask to determine the paging code to

execute are outlined in Figure 3-1.

3.3.1 Paging Task Owns Page

In this case, the fault has occurred on a one-dimensional space.
The précessor owns the page-out and is a paging task. The processor
performs its own local page transfer. If the page-out is "dirty", it is moved
to the page buffer and then written to the SMSM. The page-in is then
transferred from the backup device to the page buffer and on to the former
position of page-out in primary memory. Figure 3-2 is a detailed picture of

how the operating system handles a local page transfer.
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The page table is updated and the paging transfer is complete.

3.3.2 Non-Paging Task Owns Page

The fault in this case is also on a one-dimensional space. The
processor again owns the page-out but in this case is not a paging task.

Therefore, a non-local transfer must be done.

The page-out is moved to the page that is reserved in control space
for non-local transfers, that is, CS-2. The processor waits for an instruction
tree to be created between itself and the paging task. Once the tree is
created, the two processors cooperate to execute the code for a non-local

transfer.

In 2 non-local transfer, page-out is moved from CS-2 of the
processor which owns the task to the page buffer, CS-3, of the paging task.
From there, the page is moved to the SMSM. The page-in is read from the
SMSM to CS-3 of the paging task. It is them moved to CS-2 of the non-
paging task and onward to the position in primary memory from which
page-out came. At this point, the processor has completed its page transfer,

and the page table is updated.

Nonlocal transfers must go through two page buffers on TRAC
because a byte cannot move from an SMSM to a primary memory other
than the one to which it is attached in one clock cycle. Processor 1 in
Figure 3-3 depicts a processor which is not a paging task but which owns

the page-out.
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5) Move page-in out of page buffer.
data tree

/ s

memory
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3.3.3 Paging Task of Owner of Page

Once again, the fault is on 2 one-dimensional space in this case.
The processor does not own the page-out itself but is the paging task of the
owner of the page-out. Therefore, this processor must perform a non-local

transfer for the processor which does own the page.

In order to do the non-local transfer, this processor executes the
CINST instruction to establish an instruction tree with the processor that
owns the page. These two processors then execute the nonlocal transfer
outlined in Section 3.3.2. Processor 0 in Figure 3-3 depicts this case. The

two processors are cooperating to execute the page transfer.
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3.3.4 Processor Not Needed in Page Fault

This is the final case for a one dimensional fault. The processor
does not own the page-out nor is it the paging task of the owner of the

page-out. Therefore, this processor need not perform a page transfer.

3.3.5 Non-Paging Task for Two-Dimensional Fault

The last two page fault cases which must be dealt with occur on a
two-dimensional memory space. In these cases, each processor will have a
page transfer. In this case, the processor is not a paging task whereas in

Section 3.3.6, the processor is its own paging task.
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Since the processor is not a paging task in this case, it cannot
perform its own paging operations. The processor moves the page-out to
the reserved page in control space, that is, CS-2. This converts the two-
dimensional space to a one-dimensional space. At this point, the processor
waits for an instruction tree to be created between itself and the paging

task. The paging task creates the instruction tree.

The two processors must then work together to execute a non-local
transfer. The paging task moves page-out from CS-2 of the non-paging
task to CS-3 of the paging task and then onward to the SMSM. Then, the
paging task reads page-in from the SMSM to its CS-3 and on to CS-2 of the
non-paging task. The page-in is then moved from CS-2 to the position in
primary memory from which page-out came. The page table is updated
and the instruction tree between the paging task and the owner of page-out
is deleted. This ends the page transfer for this case. Figure 3-3 depicts how
the operating system handles a nonlocal transfer. Processor 1 is the

nonpaging task described above.

3.3.6 Paging Task for Two-Dimensional Fault

The final case occurs when a paging task has a fault on a two-
dimensional space. The processor first performs a local transfer to manage
its own page fault. Its page-out is moved to the page buffer and then
written to the SMSM (if the page is "dirty") and its page-in is read to the
page buffer from the SMSM. The page-in is then moved from the page

buffer to its position in primary memory. The processor updates the page
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table for this page transfer. Figure 3-2 illustrates how a local transfer such

as this is executed on TRAC.

The processor then must perform non-local transfers for each
processor in its group as described in Section 3.3.5. The processor executes
the CINST instruction to form an instruction tree between itsell and a

selected processor in its grcup.

As outlined in Section 3.3.5, the paging task and the non-paging
task cooperate to form a non-local transfer and then the instruction tree
between them is deleted with the DINST instruction. Processor 0 in Figure

3-3 depicts this case.

3.4 Task Resynchronization

After each processor handles its appropriate case as detailed in the
previous section, it decrements the semaphore register. If the semaphore
register is still greater than zero after decrementing, then the processor
executes a WAIT instruction and walts for the other processors to finish
their respective paging code. WAIT has been added to the instruction set
[Deshpande 85] for this purpose. When the semaphore register reaches a
value of zero, all paging operations are completed. At this time, the task-

wide instruction tree must be recreated.

Before the task was broken up, a hardware bit called the processor

resident monitor bit was saved so the original task could be reconstructed
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when paging is finished. Therefore, the processor resident monitor bit is
now restored to its original value and the task-wide instruction tree is
recreated with the CINST instruction. At this point, lockstep execution is

resumed and control can be returned to the executing task [Canas 83].

3.5 Shared Memory Fault

Page faults can be of two types on TRAC. Either the page which
caused the fault can be in a shared memory module currently not attached
to the processor, or the page can be in a backup device. The previous
sections described a fault when the page is in a backup device. This section

describes a shared memory fault.

When a page fault occurs, the processor at the root of the
instruction tree (the task head) will search the shared memory page table.
The table contains an entry for every page stored in a shared memory
module along with the description of its memory space and the color of the

shared memory module in which it resides [Canas 83].

If the page causing the fault is found in the table, then the shared
memory of the specified color must be acquired. If the page in question is

not in the table, then the task head will proceed as explained previously

[Canas 83].

Pages with the same page number of different processors of the

task may or may not be stored in shared memories of the same color. If
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they are not the same color, more than one memory will need to be acquired

[Canas 83].

In order to avoid deadlock situations, the acquisition of shared
modules is under the control of the Job Monitor (JM). This means that the
processor which is the task head must send requests for the shared modules
to the JM. To handle this situation, each processor of the task will be
requested to send the color of the shared memory it needs to the task head.
The task head will in turn send a request for all shared memory needed to

the job monitor [Canas 83].

At this point the task head is waiting for a message from the JM
instructing it to acquire the shared memories [Canas 83]. When the JM
sends the acquire message, the task head will in turn send a message to the
other processors of the task. Each processor will issue an acquire instruction
for its shared memory module. The task is then resynchronized [Canas 83].
Figure 3-4 illustrates a processor before and after handling a shared memory

fault.

After the task halts or executes 1000 instructions, whichever comes
first, a time-out interrupt will occur and the shared memory module(s) will
be released. The number 1000 was chosed ad hoc. The fewer instructions
executed before releasing the memory, the greater the overhead is because
the memory module may need to be acquired again. However, if too many
instructions are executed before releasing, other tasks may be starved of the

shared memory module.
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By acquiring the shared memory when a shared memory fault
occurs and by releasing the shared memory after a specified time period, the

operating system can virtualize the shared memory to writers of TRAC

software.



Chapter 4

Results

The paging algorithm outlined in the previous chapter was coded
in TRAC assembly language. The paging code was then executed on the
TRAC simulator. This chapter describes the results of some test programs

which have page faults handled by the paging code.

The purpose of the implementation is to show that this paging
algorithm can indeed provide virtual memory and virtual shared memory on
a reconfigurable network architecture. Therefore, in order to concentrate
on the paging code rather than the test programs which generate page

faults, the test code is very simple.

The results of the tests are given b.y telling the number of
instructions that are executed by the operating system as it handles a2
particular type of page fault. These results are not exact numbers because
time spent searching tables and determining space type may vary by a few

instructions. However, these results are very close approximations.

The TRAC loader loads only page zero of each space in main
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memory when the program is initially loaded. Therefore, the first access to
any page other than page zero will definitely cause a fault. All processors
need a page reserved for paging in order to execute the paging algorithm.
Each paging task processor needs a page CS-3 to execute the paging code.
Each non-paging task processor needs page CS-2 to perform the paging
code. These requirements for page buffers and the fact that page zero of
each space is always in main memory necessitate a certain number of
memory modules in order to have virtual memory on the current TRAC
architecture. Because the LRU instruction alwéys replaces a page with a
page of the same space type (i.e., operand, data, program, or control), at
least four pages must be available for a one processor task to have paging.
These four pages are in addition to page buffers and page zero of each
space. If p is the number of processors in a task, 2+(2*p) is the least
number of pages necessary for paging. This represents one page to be used
for paging control space, one page to be used for paging program space, and

a page for each processor for both operand and data space.

A two-processor task requires at least five memory modules for
paging. A three-processor task requires seven memory modules, and a four-
processor task requires nine memory modules. These numbers are given to
illustrate that even with virtual memory, a certain number of resources are
required in order to execute a program on a reconfigurable architecture.
Without virtual memory, a one-processor task which only uses page zero of

each space can execute with only one memory module.
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In addition to the memory requirements, virtual memory also
requires access to at least one backup device. Therefore, the necessary

memory modules and backup devices must be available for a task to execute

with virtual memory on TRAC.

4.1 One-dimensional Faults

The test program for a one-dimensional fault is a simple program
which pushes register values onto the control stack enough times to cause a
fault in the control space. The register values are then popped off the

control stack into the appropriate register.

When this test program is executed on the TRAC simulator, the
paging task takes approximately 120 instructions to execute its paging
algorithm if no page must be written to the backup device. Two of these
instructions are very time-consuming. One of the costly instructions reads
an entire page from the backup device to the page buffer, and one of them

moves a whole page out of the page buffer.

If a page must be written out to the backup device in order to
have an available frame in main memory, the processor executes about 250
instructions. In this case, there are four very time-consuming instructions.
The same two instructions as before read the page from the backup device,
but two more instructions move page-out out of main memory. One
instruction moves the page-out to a page buffer, and one instruction writes

the page on the backup device.
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The processors which do not own the page and which do not
perform =a page transfer still must search the page table to determine if they
own the page which caused the fault. When a one-dimensional fault occurs,
all processors in the task which are not the paging task execute

approximately 100 instructions.

4.2 Two-dimensional Faults

The test program for a two-dimensional fault is a program which
has a large vector. The vector occupies more than one page of memory in
data space. Some accesses to the vector will therefore cause page faults.
The test program simply assigns values to different positions in the vector,

thus causing page faults.

When this test program is executed on the TRAC simulator, each
processor executes approximately 245 instructions to perform a page
transfer, if no page must be written to the backup device. Once again, two
of these instructions are very costly. Omne expensive instruction reads page-
in from the backup device and into the page buffer, and the other moves

page-in out of the page buffer.

The paging operation takes a processor about 380 instructions
when a page must be written to the SMSM. In this case, four instructions
take a great deal of time. The two instructions which read the page in are
the same, plus an instruction which moves page-out to the page buffer and

an instruction which writes the page buffer onto the backup device.
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For a two-dimensional fault, some of the processors may share 2
backup device. Therefore, the two processors must compete for use of the
backup device. Only one processor at a time can own the backup device.
The other processors must wait. When two processors share a backup
device, the required time to handle the page fault can almost double since
only one processor at a time can execute its page transfer. In the best case,

no processors share an SMSM.

4.3 Shared Memory Fault

A shared memory fault occurs when a page is accessed that is in a
shared tree not currently owned by the processor. This type of fault can

also occur on a one-dimensional space or a two-dimensional space.

The test program for a one-dimensional fault accesses page two of
program space, which is in a shared memory tree. A programmer might
want to keep a long routine which is used by many tasks in 2 shared

memory module so that the routine is not duplicated in main memory.

When the fault occurs on a one-dimensional space, the task need
not be broken up. The fault requires about 60 instructions to acquire the
memory module. None of these instructions is especially time-consuming
either, although there may be some delay if the shared memory module is
currently owned by another task. However, this delay would occur whether

shared memory is virtualized or not.
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The test program for a two-dimensional fault in shared memory
has a large vector which is shared by two tasks. A task with a two-
dimensional fault must be broken up so that more than one memory can be
acquired. Each processor executes approximately 60 instructions in order to
acquire the memory module. None of these instructions takes very long to
execute, but as with the one-dimensional space, a processor may have to

wait for its memory module to be released before it can acquire the

memory.

The interrupt routine which releases the shared memory modules
after a specified amount of time is 30 instructions. This routine has no
time-consuming instructions and will never have delays because it is simply

releasing a shared memory.

4.4 Summary of Results

This chapter has given results of test programs run on the TRAC
simulator. These test programs generate page faults and shared memory
faults. The results are given by telling how many instructions are executed
by the operating system to handle the fault. The paging code for a page
fault is very time-consuming. However, the paging code for a shared
memory fault has few instructions and does not take much more time than
an explicit request by a TRAC program to acquire the memory module.
The interrupt routine which releases the shared memory does not require
much more time than an explicit release instruction. Virtualized shared
memory has the advantage of not requiring the TRAC programmer to know

the details of shared memory.



Chapter 5

Conclusion

The purpose of the paging algorithm outlined in this thesis is to
provide virtual memory and virtual shared memory on a reconfigurable
network architecture such as TRAC. TRAC was originally formulated as a
high capacity scientific computer which would provide efficient application
and formulation [Sejnowski 80]. Because one of the main goals of a parallel
architecture is to optimize performance, one of the main goals of the
operating system should also be to optimize performance. This goal can be
accomplished in the operating system by optimizing use of the resources
(processors, memories, I/O resources, backup devices, etc.) and by having as

much parallelism as possible.

One way the paging algorithm optimizes the use of resources is by
deleting the task-wide instruction tree and by creating paging groups. This
allows all of the processors which have access to a backup device to perform

their page transfers in parallel.

However, two situations exist which decrease the amount of
parallelism that can be achieved by the creation of paging tasks. One such

situation occurs when blockage in the network prevents a processor from

51
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being its own paging task and performing its own page transfers. The
blockage prevents the creation of a shared tree between a processor and the

backup device, so a more time-consuming nonlocal transfer must be

performed.

The second situation occurs when one or more paging tasks shares
a backup device. These processors will have to éompe’oe for the memory.
Only one processor at a time can acquire the memory with the backup
device and perform its page transfers. This problem may be solved by
increasing the number of SMSM’s in the configuration, so that each
processor has exclusive access to one SMSM. However, sometimes this is not

physically or economically feasible.

This paging algorithm is most efficient when each processor in the
task is a paging task and each processor has exclusive access to a backup
device. This will mean that each processor needs to perform only one page

transfer, and that page transfer will be local.

Even in the optimum case, however, the algorithm takes so much
time execute a page transfer that this algorithm would only be feasible if it

were implemented efficiently in hardware.

One way to optimize performance of this paging routine in
hardware is to use pipeline processing. Pipeline is a technique of
decomposing a sequential process into subprocesses with each subprocess

being executed in a special dedicated segment that operates concurrently
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with all other segments [Mano82]. A pipeline can be visualized as a
collection of processing segments through which information flows. Each
segment performs partial processing dictated by the way the task is
partitioned. The result obtained from the computation in each segment is
transferred to the next segment in the pipeline. The final result is obtained
after the data has passed through all segments. In pipelines, several

computations can be in progress at once [Mano82].

In the paging algorithm, an obvious use of pipelines occurs when
writing the page-out to the backup device. One processing segment can
move the page-out to the page buffer and one processing segment can write

the page buffer to the SMSM. Figure 5-1 depicts this use of pipelines.

move page-out i
to page buffer i
write page i I
buffer to SMSM | |
—
Time

Figure 5-1: Pipeline Processing During Write

In addition, pipelines could be used to read the page-in from the
backup device. As bytes of page-in are read from the backup device into
the page buffer, some bytes can be moved out of the page buffer into their
final page in main memory. Figure 5-2 illustrates pipeline processing on the

read operation.
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read page-in from i i
SMSM to page buffer | |
move page buffer i i
to final page i i
&
Time

Figure 5-2: Pipeline Processing During Read

Because these page transfer operations are the bulk of the paging
code, pipelining these operations should almost half the time needed to

handle a page fault.

Virtual shared memory is another operating sytem issue discussed
and tested in this thesis. The results obtained from testing this idea showed
it took relatively few TRAC assembly language instructions to implement,
and none of the instructions was especially time-consuming. Once again,
one might consider putting this operating system routine in hardware to
make it more efficient; however, it seems feasible in software as well.
Shared memory provides a way for processors to share large segments of
memory. By virtualizing shared memory, writers of TRAC programs can be
oblivious to the hardware configuration and yet write powerful software.
Virtual shared memory is a feature unique to TRAC and seems to be a

worthwhile characteristic.



55

This thesis has described the TRAC hardware to the extent
necessary to understand the paging algorithm. Next, the paging algorithm
designed by Daniel Canas for a reconfigurable network architecture such as
TRAC was described. This algorithm was resolved and implemented on the
TRAC simulator and results of the tests were given. Finally, an analysis of

these results was given along with possible improvements.

The purpose of this thesis is to prove the concept of virtual
memory and virtual shared memory on TRAC. Parallel computing gives
rise to many interesting design issues in hardware as well as in software.
Because of the importance of virtual memory in all systems, it will continue

to be an important issue in parallel computing for many years.
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