PADS: A GRAPHICAL INTERFACE FOR
SOFTWARE SYSTEMS MODELING

Dana Mark Whiting
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-17 May 1987

To my family
(past, present, and future).

PADS: A GRAPHICAL INTERFACE
FOR SOFTWARE SYSTEMS

MODELING

BY

DANA MARK WHITING, B.A.

THESIS
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCES

THE UNIVERSITY OF TEXAS AT AUSTIN

May, 1987

ACKNOWLEDGEMENTS

My thanks go to Dr. James C. Browne for proposing this thesis
topic and supervising its development, to Dr. Douglas M. Neuse for his
continuous guidance and numerous helpful recommendations, to Jim
Dutton for his development and maintenance of GPSM, and to all the
employees of Information Research Associates, especially Mohan Rao and
Peter Newton. who helped me work with PAWS and with the various
computer systems at IRA. Special thanks go to my loving wife, Sherri,
for her moral support and encouragement while I worked on this project

through our first vear of marriage.

This work was funded in part by the Navy, under SBIR
contract number N60021-86-C-0145. The final draft of this thesis was

submitted to the Committee on April 9, 1987.

Dana Mark Whiting

The University of Texas at Austin
May. 1987

v

TABLE OF CONTENTS

Acknowledgements

........................

Table of Contents

........................

Chapter 1. Introduction

....................

1.1. Motivation
1.2. Background
1.3. Overview of Methodology
1.4. Overview of Related Work

Chapter 2. Visual Language Interface

2.1. Menus
2.2. Icons
9.3 ATCS « o e e e e
2.4. Cursors
9.5, WINAOWS .« o ¢ o v o oo e e e

2.5.1. Object Windows o oo oo

2.5.2. Help Windows o« o v oo v oo e

Chapter 3. An Extended Example

..............

3.1. Description of the Software System
3.2. The PADS Representation
3.3, Translation . . « o o v v v v s e e e

3.3.1. Hardware Translation

3.3.2. Software Translation
24, SImulation e e e e e e e
3.5. Expansion and Contraction

...................

...................

Chapter 4. Proposed Changes to PADS

...........

b B e el

vi

4.1. Translation Methodology v oo 62
4.2. Impact on Hardware Modelso cvov 63
4.3. Transaction Categories oo o v oo 64

4.4. Future Versions of PAWS 66

4.4.1. Topology Enhancements in ES/PAWS 66
4.4.2. ALTAS Nodes . . . o v v v v v i e i v e e e 67

4.4.3. PAWS Submodel Parameters 68

4.4.4. Avoiding PADS Conflicts with Users 68
Chapter 5. Conclusions oo 70
Appendix A. PADS User’s Manualo 72

Bibliography . . « o . o e e 101

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

-
[
sk

[&
)
© 0= R TR

Coet i 09 B9 ke OO

B B B
T I

PP PR R YRR
T R U e e e

3-7:
3-8:
3-0:

3-10:

3-11:

3-12:

3-13:

LIST OF FIGURES

Overview of the PADS Modeling Methodology
Menu of Existing PADS Models.

A Confirmation Menu

A Secondary Menu

The Tool Box Menu and Associated Cursors
The Icon Menu

GPSM Node Icon Summary

A PADS Hardware Graph

A PADS Software Graph

Opening a File

Opening a Graph

Opening a Node

Opening an Arc

A Help Screen

A Secondary Help Screen

Entering a Node’s Specification

Opening a Software Node (CONFIG)
Opening a Hardware Node (DISK1)

The Hardware Graph and its Node
Specifications

The Graph DRIVER and its Specifications
The Graph SORTRECS and its Specifications
The Graph BACKGROUND and its
Specifications
The Graph RUNPAWS and its Specifications
The Graph CPUIO and its Specifications
The File Specification for the PADS Model
The PAWS Model Translated from the
Hardware Graph

A Conceptual View of a Translated PADS
Model

A Dataflow Diagram of the Translation
Methodology

A Portion of the ASCII File Created by
“Translating” the Software Graphs

vii

11
12
12
13
14
i3
16
16
20
20
21
21
24
25
25
30
30
31

32
33
34

35
36
37
41

48

49

Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

Figure

A Portion of the First Parse of the ASCII
File

A Portion of the “Pre-UNIC” File

The Corresponding Portion of the “UNIC”
File

Portions of the Statistical Results

A PADS Collapse Graph

The Definition of Node “Start”

The Definition of Node “Comp”

The Definition of Node “Finish”

The Actual Translation of the Collapse Graph
into the PADS Language

A Conceptual View of the Egquivalent
Hardware Usage Pattern

viil

[t IR
g b

o1 Ot
O

59
60
60
61

61

Chapter 1

Introduction

1.1 Motivation

Performance deficiencies have been the single largest cause for
the redesign and reimplementation of large software systems. This
problem results from a lack of technology for determining the
performance of a computer system while it is Dbeing designed.
Traditionally, performance problems have been detected only when the
system enters integration testing or production. By that time. the
enormous amounts of time, money, and personnel resources invested in
the development and implementation of the programs make them

extremely costly to redesign and reimplement.

This thesis describes a method for facilitating the performance
evaluation of software systems at design time, which is when design
modifications are the easiest and least expensive to implement. The
approach is to create a natural, graphical interface for the specification
of software systems, and then map this graphical representation onto =2
simulation model of a computer system, or set of hardware devices. This
hardware model then executes a workload that is specified in terms of a
software systems definition. The result is a modified performance
evaluation package that provides additional capabilities for determining

the properties of software systems at the design level.

1.2 Background

For the past six years, the Performance Analyst’s Workbench
System (PAWS) has been one of the best languages available for
simulation modeling of queueing network systems. PAWS provides for
the description and performance evaluation of Information Processing
Graphs. or IPGs, which are pictorial, directed-graph representations of
queueing network systems. It contains many high-level primitive
functions pertaining to memory resource management, queueing
disciplines. probability distributions, and output statistics, making it
ideal for simulating many computer systems [12]. PAWS has been used
successfully to model disk subsystems on the Sperry Univac 1100 [13]. =
retail point-of-sale system [2], a CDC CYBER disk system [6], packet-
switched interprocessor communications (22]. and many other research

and commercial projects.

Recently. a graphical interface to PAWS, known as Graphical
Programming of Simulation Models, or GPSM, has been developed to
provide an automated translation from IPGs to the equivalent PAWS
models. The GPSM system is a tool that allows IPGs to be drawn and
modified directly on the graphics screen of any IBM-PC compatible
machine, using a mouse as a pointing device, and then automatically
translated into simulation programs in the PAWS language. (Currently,
the graphical interface is being implemented on other systems as well.
such as the Sun and MicroVax workstations.) Thus. GPSM enables
modelers to deal directly with the pictorial information in the IPGs in

order to design, execute, and refine their simulations [7].

Both PAWS and GPSM represem’ a2 hardware system model as

a set of directed graphs. The arcs represent the paths that transactions
may take as they flow from node to node, where a transaction may be
thought of as a job or task in a computer system. The nodes represent
real resources, such as CPTUs, disk controllers, and memory and token
allocations, or other operations on the transactions in the system, such
as altering the variables local to a transaction, creating new transactions,
or destroying existing ones. Thus, modeling hardware svstem execution

behavior in PAWS or GPSM is fairly straightforward.

Software system behavior may also be modeled with PAWS or
GPSM. However. this modeling is made somewhat more difficult by the
fact that both packages integrate the description of execution behavior
with the definition of devices. In other words, the usage of a given
resource by each transaction is part of the description of that resource,
and the path taken by each transaction along the arcs connecting the
resources is contained in the definitions of the arcs. Therefore, any
patterns of resource usage defined in the virtual device representation (or
software) must be mapped manually by the user to usage patterns of

1

real devices (or hardware) [11, p. 3].

To provide an appropriate interface for software modeling in
PAWS and GPSM. a new package named Performance Analysis for
Designers of Software, or PADS, is being developed. PADS provides the
user with a graphical interface similar to that used in GPSM. Using the
mouse as a pointing device, the modeler may draw, edit. store, and
retrieve graphs of various types that represent physical devices and the
software load placed upon them. These graphs are then automatically
translated into a program file, written in the PAWS simulation
language, and an auxiliary file of routing instructions that can be

interpreted by the PAWS program during execution of model simulation.

Although a systems analyst could use GPSM or PAWS to
construct models of software system execution behavior directly, the
interface presented by PADS gives it a natural advantage over either
package for software modeling applications. This makes it more

appealing to the software user community.

1.8 Overview of Methodology

When the user invokes the PADS program, the computer will
enter the PADS graphics mode, in which the user’s actions are initiated
by selecting an item from a menu. This selection is accomplished by
moving a cursor, or “tool”. onto the menu with the mouse, and clicking
+he mouse when the tool is on the desired portion of the menu. The
user may create, edit, or delete files, graphs. nodes, and arcs, depending
on the specific tool and object selected. In addition, the user enters
specific information about each object from the keyboard; in this way,
the objects that make up the set of graphs are annotated and defined.
(As used in this thesis, “annotating” refers more precisely to “specifying”
the properties of an object by filling out the appropriate fields of its
windows.) When the PADS file containing graphs, nodes and arcs has
been completely defined, the user then selects the “translate” option to
automatically create the PAWS program file and auxiliary file of
transaction routing and resource usage information. Together these form
an executable version of the model represented in the PADS file, which
may then be edited, re-translated and re-executed if the user desires to

further refine or alter the model.

An overview of the components of a PADS model and of the

PADS modeling methodology is shown in Figure 1-1.

User-Node~

Intecpretable
PADS Model Code File "
User :
Software [
Graphical {and Collapse) B
graphs 0
Interface |femmorecsmco oo Automatic Translation ¢ User
Hardware graphs ! (FORTRAN)
\\\\\\\\Es (B5/) User 7 node reads
Node from
PAWS g.N.1.C-
QUTPUT: STATISTICS P MODEL file.
)
from (ES/) PAWS & =

Figure 1-1: Overview of the PADS Modeling Methodology

The PAWS program file is derived from the translation of the
set of hardware graphs. which are collections of PAWS resource nodes
with no connecting arcs. Thus, it has incomplete information about
transaction routing and resource usage. It describes a set of PAWS
resource nodes connected bi-directionally in a star topology to a central
routing node, which is referred to in PAWS as a USER node. (In
PAWS. a USER node allows the modeler to call an external FORTRAN

subroutine or set of subroutines, as described in [12].)

The USER node has been implemented in FORTRAN as part
of the PADS system. It is the portion of the PAWS program that is
able to interpret the transaction routing and resource usage information
in the auxiliary file, which is the result of translating the software and
collapse graphs. This auxiliary file is referred to in PADS as the User-

Node-Interpretable Code, or UNIC.

The software graphs are directed graphs. where each node

represents a portion of software code, and the arcs between nodes
represent execution control such as branching and looping. Each node
may also contain branching and looping. and software graphs may call
each other to an arbitrary degree of nesting or recursion, subject to the
size of PADS’ run-time and parameter stacks. Therefore, software models

may be structured in a hierarchical manner and to any degree of detail.

The collapse graphs provide an elementary and experimental
method of model simplification, subject to very mnarrow constraints.
Hierarchical structuring of software models has lessened the need for
collapse graphs for model simplification. although they may still be
useful for efficiency during the actual simulation, since they could
diminish the amount of overhead required by an equivalent number of
individual instructions being executed. Collapse graphs are described in

more detail in Section 3.5 of this thesis.

1.4 Overview of Related Work

Methods for performance analysis of software systems have been

extensively described and discussed during the past decade.

Connie Smith has provided a number of papers on this topic.
Her Ph.D. dissertation [16] describes the implementation of ADEPT (A
Design-based Evaluation and Prediction Technique). This technique
requires definition of the performance goals of a system. the execution
environment, the system structure, etc., which are then mapped onto
execution paths, which then make it possible to specify the resource
requirements and to analyvze the resulting system performance. Initially.

the analysis uses only the most optimistic or “best-case” projections.

P

since poor results for the best case are an indisputable indication of a
need to change the overall design or to supply better system resources.
This technigque was used to predict poor performance in the IPAD
system in the early stages of its development (18], as well as to verify
poor design in the TENEX operating system after it had been

completed [15].

Further discussion by Smith of the use of performance goals in
software design, of ADEPT and of performance engineering technigues in
general is found in [17]. which stresses the importance of performance in
determining the quality of software systems. A more recent overview of
software performance engineering tools and graphical interfaces is in [19].
which includes a list of features that tools should have in order to
effectively support analysis of software systems. Smith also provides a
general overview of the approaches to software performance engineering

from the 1960’s to the present, as well as suggested future trends.

in [20].

Another discussion of systematic design is found in [3]. where
the authors present an overall methodology for evaluating the
performance of computer systems: start with 2 broad model and refine it
as needed. The paper shows how modeling languages such as PAWS can

be used with this methodology.

A tool for developing inputs to performance models is described
in [5]. This tool requires the software to be already implemented in
machine language (or compiled). The modeling technique involves the

analysis of “threads” and “paths” through the code.

The current PADS system is very similar in operation to one
described by Ed TUpchurch in 123]. The system to be modeled was

described in that paper as follows:

It was noticed that the system is so large that hundreds of IPG
nodes would be required if each function were implemented
separately. A simple IPG was then implemented driven by a table
defining each system function graph in terms of system primitive
operations....

Entries in the table include: line number, CPU time required,
aumber of times to perform the operation (loops for disk I/0).

memory requirements for those memory requests...and a pointer to
the next table line to process....

The USER node represents a user-written FORTRAN subroutine
that processes the current table entry and sets the routing code
(phase) for the next cycle through the IPG. Local variables attached
by PAWS to each individual transaction are used to save the
current pointer to the table and to save nested macro calls in a
small stack. When the transaction leaves the USER node it will be
directed to one of the primitive functions: allocate, release, fork or

join.... 23]
The last paragraph quoted could be applied to a description of PADS as
well. Originally, an attempt was made to use a PAWS COMPUTE node
in place of a USER node (to avoid modifying the FORTRAN code of
PAWS) and to store the code for the “table” mentioned above in =a
transaction’s local variables. (A COMPUTE node is described in [12] as
an “arithmetic” node used to carry out computational steps and modify
the variables of a model without requiring the use of an external user-
written FORTRAN subroutine.) This approach proved impractical, for
several reasons. One was that each transaction has a limited number of
local variables available to it, and could not hold enough instructions to

perform even a tiny model. Another was the limited amount of space

available for COMPUTE node instructions in a PAWS model. S5till
another was the fact that COMPUTE node instructions are interpreted
by PAWS at run time, a process that is much slower than the
execution of FORTRAN code called by 2 USER node. For these
reasons, the decision was made to implement the translation of software
graphs as a file of instructions that could be interpreted by a special

USER node in order to direct transactions to the appropriate resources.

This approach was also seen as more straightforward than the
one studied by Keh-Chiang Yu and described in (8], that of attempting
a mapping from Extended Execution Graphs (EEGs) to IPGs. However.
a small subset of that approach is found in the implementation of
PADS collapse graphs. which may later be expanded or omitted entirely
in future implementations of PADS. Although the topic of this thesis
was originally inspired by the work of Yu, Connie Smith [16], John
Kelly [9] and others, the final product bears little resemblance to the
approaches they took. An extensive listing of other works and
approaches to the same topic may be found in [21].

The remaining chapters of this thesis present a more detailed
description of the visual language interface, an example of a software
systern modeled with PADS. and the effect of proposed changes to
PAWS and GPSM on future versions of PADS. The appendix contains

the user’s manual for the current version of PADS.

Chapter 2

Visual Language Interface

This chapter outlines the methodology for the creation and
alteration of software models using the PADS graphical interface. This
methodology and interface are basically the same as those used in
GPSM: additional information about them are in [7]. A good overview
of the subjects mentioned in this chapter may be found in [11]. The
graphical portion of PADS currently runs on the IBM-PC and
compatible machines. using any one of the mouse devices and graphics

cards listed in [7]. It is also being implemented on the Sun and

MicroVax workstations.

2.1 Menus

Upon invoking the PADS program, the user is presented with a
menu listing the names of all previously created PADS files in his
directory, as shown in Figure 2.1. From this menu, he may choose to

edit an existing file, or to create and edit a new one.

After a file to be edited has been chosen, the PADS banner
appears at the top of the screen, showing the names of the current file,

graph, and tool (also known as the cursor). The banner acts as a sort

11

PADS Uersion .61 |

gpe\pads\arf V.ot |

T2l |
FADSFULL
HARK
JWERTY

Figure 2-1: Menu of Existing PADS Models.

of “meta-menu” which allows other menus to be selected; for example,
clicking the mouse when the cursor is on the “Tool” portion of the
banner opens the menu for selecting a different tool, and clicking it on
the “Graph” portion of the banner opens one of several menus for

performing operations on graphs, depending on the current tool.

In addition. each tool has a menu associated with it. For
example. the “Erase” tool, when used to select a mnode. arc. or graph.
has a simple “confirmation” menu as shown in Figure 2-2, from which
the user may change his decision to delete an object. Furthermore, the
Draw tool, when clicked on an existing node, displays a “secondary’
menu to allow that node to be changed to another node or to change
its orientation in the graph. as shown in Figure 2-3. Figure 2-4 shows =a

list of the tools available, which are discussed further in Section 2.4.

12

PADS Uengion .81

| o
[a}—-;——:{z;-»—-af r—a-—-)[:ﬂ-%—‘ﬂ am——m T—24 |

cd de ee ot [/ ux 1
e loope
he |
Figure 2-2: A Confirmation Menu

PADS Version .01

a b

Figure 2-3: A Secondary Menu

Help menus are available to the user, either through clicking

the “Help” tool on the object about which more information is desired,

13

S

Draw Erase Open Move
7 J
errt

Square Helx Critigue Copy

Figure 2-4: The Tool Box Menu and Associated Cursors

or through the use of the function keys to list the correct syntax for

entering the definitions of objects.

Finally, there is an “Icon” menu that appears when the “Draw”
tool is clicked on an empty portion of the screen, as shown in Figure
9.5 This is used to place the appropriate components (or “nodes”) of

the graphs on the screen, and is described further in the next section.

2.2 lecons

Each type of graph (hardware, software, and collapse) has its
own set of icons, which represent the nodes of a graph. The icons are
chosen from a menu. or palette, that appears on the screen when the
“Draw” tool is clicked on an empty portion of the screen. Selecting an
icon causes a copy of that icon to appear at the place on the screen

(i.e., in the graph) where the tool was clicked.

The icons for PADS hardware graphs are, for the most part,
identical to those currently used in GPSM graphs, as shown in Figure

2.6. However, the icons for Fork, Join, Split. Submodel Entry (ENTER),

14

Figure 2-5: The Icon Menu

Submodel Call (CALL), and Submodel Exit (RETURN) are not used in
PADS hardware graphs, since those icons do mnot correspond to actual
individual hardware resources. The user gives each hardware node a
unique name, which is used throughout the model (including the
software graphs) to refer to the resources they represent. The definitions
of hardware nodes are written using a syntax very similar to that
currently used for defining nodes in GPSM: this facilitates the
translation of the PADS model into PAWS. A sample hardware graph is

shown in Figure 2-7.

PADS software graphs require a relatively small set of icons.
Each software graph has exactly one ENTER and one RETURN node;
these look like the icons of the same name currently used in GPSM.
There is also a LOOP node (also known as a FOR node), signifying the
beginning of a FOR-loop, and an ENDLOOP (or ENDFOR) node, which

GPSM Icons
[T Submodel Entry =i/ Token Allocation
S Sumodel Gall /- Token Release
—]] Submodel Exit ~fixs Token Creation
[+ Saurce __K.;L., Token Destruction
~] sik
-&—‘ Interrupt
—3[s Compute
—4{G}- User
=i 4 Henory Allocation -)G—g Fork
—{?—/L) Hemory Release f-”yb—-; doin
&+ Service _,(q'_; Split
-)%\-_; Delay —39— Branch
—’f‘* Sot Phase Change

Figure 2-6: GPSM Node Icon Summary
signifies the end of a FOR-loop. Finally. there is a CODE node, which
looks like a CALL node in GPSM. and holds the software instructions
in the PADS language corresponding to the software portion of the

system being modeled.

The current version of PADS reuses the FORK node of GPsM
as a FOR node, and the JOIN node as an ENDFOR node. However.
these nodes should be redesigned in future versions of PADS. especially
if those versions are to include the ability to model parallelism, for

which FORK and JOIN are essential.

i6

o S 2
In CRU ALLOMEM
g
DISKA
Sigs =g

DISKC DISKE

«ﬁﬂl—» -]
RETHEM Qut

Figure 2-T: A PADS Hardware Graph

PADS Uersion .81

loapiy
/ iic AN

B)
ide kxic
/exif
[p— m—ﬁg: 7
a b cd de et fe 0 oxe l
“’Ehjﬁ loope
¢ B

Figure 2-8: A PADS Software Graph

17

Figure 2-8 shows a sample software graph, in which the node
labeled a is an ENTER node, and the node labeled 1 is a RETURN
node. The graph contains two LOOP nodes, labeled ¢4 and i4c, and
two ENDLOOP nodes, labeled gxe and kxic. In this case, the loop
between idc and kxic is totally within the loop between c4 and gxc:
these are referred to as mested loops. All the other nodes are CODE
nodes, which contain instructions in the PADS software description

language.

The PADS language itself contains FOR-loops and GOTOs, as
well as other constructs for controlling the flow of execution (IF, RAND,
etc.), so that the PADS code in the description field of each CODE
node may syntactically represent a miniature software graph. The
PADS language also contains a CALL construct, from which another
software graph may be called; this allows arbitrary nesting of the
structure of PADS software models. (A list of the constructs available in
the PADS language is in Appendix A.) Each CODE node may therefore
represent a single software instruction, an entire set of imstructions, or

any level of detail in between.

2.3 Arcs

Arcs are used in the PADS graphical interface to connect the
nodes in software and collapse graphs. They represent the execution
paths taken by transactions between portions of a software graph. No
connectivity is shown by the user between any nodes in PADS hardware
graphs, since the patterns of usage of hardware resources are determined
solely within the software and collapse nodes. Therefore, hardware

graphs do not contain any arcs.

18

Each arc has exactly one source node (known as its “from-
node”) and one destination node (known as its “to-node”). They are
created by clicking the mouse device on both the from-node and the to-

node, as described in [7].

Several types of branching (unconditional, conditional, and
probabilistic) are available in software graphs, and are described, along
with the arcs used to define loops and premature exits, in Appendix A

of this thesis.

2.4 Cursors

As mentioned previously, several different types of cursors, or
“to0ls”. are available, each with a different function. The tools used in
PADS are identical to those currently used in GPSM. There are eight
tools available. of which four are used more frequently and are referred
to as “top drawer tools,” while the four used less frequently are called

“hottom drawer tools.”

The top drawer tools are: “Draw,” which allows objects (i.e..
arcs, nodes, graphs and files) to be created or altered, “Erase,” which
deletes objects, “Move,” which allows the user to reposition nodes and
arcs on the screen or to change to another graph or file, and “Open.”
which allows the user to view and edit the text in the definition fields
of objects. The user may select any of the four top drawer tools by

cycling through them with one of the mouse buttons.

The bottom drawer tools are: “Copy,” which permits the

copying of PADS objects (nodes, arc specifications, graphs, and files).

19

“Square,” which causes the arcs drawn between nodes to become more
square and regular in appearance, “Help,” which provides general user
assistance about the objects used in PADS, and “Critique,” which 1s
intended to check the correctness and consistency of objects and their
definitions, although the function of this last cursor is not currently
implemented in either PADS or GPSM. These bottom drawer tools are

selected with the “Tools” portion of the banner line.

2.5 Windows

2.5.1 Object Windows

Each object in PADS may be annotated, i.e., its properties may
be specified when the appropriate fields of its windows are filled out.
The user performs this annotation by clicking the “Open” cursor on the
object to be annotated, and then entering from the keyboard the
appropriate information in the various fields of the window which

appears when the object is opened.

Each object type has a window with a specific set of fields. The
windows that appear when a file, graph, node and arc are opened are

found in Figures 2-9 through 2-12, respectively.

Each field in a window may be edited independently of the
others. The “Specification” field can contain several lines of text. which
may extend beyond the lower boundary of the window; hence, the
window editor permits scrolling up or down in this field. All other fields

consist of a single line.

20

paDs Uersion .61 L

Figure 2-9: Opening a File

pADE Version 0L | 1 raph} 50 0ol: Upen
loopl
B
4kxic
Bpecitication Fi-Rel
[—i i
a b gxe \ l
loope

Figure 2-10: Opening a Graph

I

D—'—-—*{Ehiﬂ*———& ;—*——-—*L:]
a ¢
\'ﬂf::]}*/ loope
he AJ

Figure 2-11: Opening a Node

PADS Uersion .81

I

Figure 2-12: Opening an Arc

[
[Q]

The “Description” field of an object is simply an English-
language comment about that object. entered by the user for his own

benefit.

The “File Name” field may contain any name permitted by the
operating system and by the limitations of PADS. It stores the name of

the entire PADS model, as a file is a collection of graphs.

The “Graph Name” determines the type of a PADS graph:
hardware graphs have names starting with “HARD™. collapse graphs
have names starting with “COLL”, and software graphs have names
starting with neither. Each graph within the model must have a unique

name.

The “Node Name” field is required to contain a unigue
identifier only when the node is in a hardware graph, although the user
may want to attach names to nodes in software and collapse graphs for

his own benefit.

The “Arc label” field is significant only if its first four
characters are “LOOP”, in which case it is a LOOP arc, or “EXIT”, in
which case it is an EXIT arc (see Appendix A). In all other cases, it

treated simply as a comment.

The specification of an object contains most of its definition,

and is entered by the user in that object’s “Specification” field.

The file specification contains all the declarations required by a

PAWS model that cannot be deduced from the rest of the file, such as

Bl
OV

those for INTEGER and REAL variables, the INITIAL and RUN
sections, and so on. The optional CONSTANTS section permitted by
PADS appears here as well.

The specification for a hardware node (l.e., a node in a
hardware graph) contains language very similar to that currently used
for nodes in GPSM; it is basically the definition field for a node in
PAWS with the TYPE field omitted and a few PADS extensions added.
The specification for a software node contains text written in the PADS
software language. which describes the patterns of usage of hardware
resources by that software node. The specification for a collapse node
contains a highly constrained, limited syntax description of the usage

pattern of hardware SERVICE resources by that node.

The specifications of ares (and of all other objects mentioned

above) are described in Appendix A.

2.5.2 Help Windows

Help windows, which describe the syntax expected in an object’s
specification, are available when that object’s window has been opened
by pressing the appropriate function keys. For example, if the banner
over an object’s specification reads “Specification F1-Help”. then pressing
F1 produces a help window outlining the syntax expected for that
object’s specification. This outline may contain references to other
function keys, which, if pressed, produce additional help windows

detailing some aspect of the syntax outlined in the previous window.

An example of this feature is in Figures 2-13 and 2-14. Here,

24

the CPU node in the hardware graph of Figure 2-7 has been opened,
and the F1 key has been pressed, resulting in the picture shown in
Figure 2-13. Pressing the F8 key (to receive more information about
the “dist” or service distributions available) produces a second help
screen as shown in Figure 2-14. A partial specification for this node (as
it is being entered or edited by the user) is in Figure 2-15: notice the

cursor at the end of the last line.

[T?SERUICE node syntax) i:=
{DIMENSION {integer)}
QUANTITY {quant/F2) '
) {qdiscipline/FT}

REQUEST (cat,phase) {{prlurltglF3)} (dlst/FB)

(Click to Continue)

Figure 2-13: A Help Screen

25

{dist) 1=
CONSTANT ({const}) » .
TMPIRICAL ({perc) (left) {pight) . .) 1
ERLANG ({mean} {stand_dev?) 1
EXPO ({mean)) 1 S
HPER {({mean {stand_dev)) |
UNIFORM ({nuwher} {nunber})

(Click to Continue)

Figure 2-14: A Secondary Help Screen

UANTITY 2

D FCES
REQUEST (ALL,51) UNLFORM (16.9,26.9)
(ALL, ALLY EXPO (R

Gt
o]

et i

Figure 2-15: Entering a Node’s Specification

Chapter 3

An Extended Example

This chapter illustrates the use of PADS in software systems
modeling by describing the translation and execution of a software
model. The details provided in this example are designed to illustrate
certain features of PADS; they are not intended to denote the most
efficient or accurate modeling methodology for the given system, nor to
reflect the most accurate figures for the execution of any existing

system.

3.1 Description of the Software System

The system to be modeled has two disks, one CPU. and
twenty-five “blocks” of memory available for temporary files, where a
“hlock” represents any arbitrary, constant amount desired by the
modeler. For this example, it is assumed that all requests for disk.
CPU, and memory resources are satisfied using a first-come-first-served
queueing discipline., and that memory space is allocated according to a

“best fit” strategy.

The software using these resources consists of several sets of

processes running concurrently on the same hardware.

26

27

There is a set of background processes entering the system
every eleven seconds. One third of these jobs uses a single burst of
CPU. exponentially distributed with a mean value anywhere between one
and one hundred milliseconds (ms). (The time unit chosen, ms. is
arbitrary, but must remain constant throughout the model.) The
remaining two thirds require between ten and twenty cycles of CPU-I/0O
usage, as follows: each cycle begins with fifty ms of CPU. followed by
either (a) twenty ms of I/O to the first disk, or (b) an amount of I/O
to the first disk. exponentially distributed with mean value thirty ms, or
(¢) an amount of I/O to the second disk, exponentially distributed with
mean value thirtv-five ms. For each cycle, the probability that (a)
occurs is ten percent, that (b) occurs is fifteen percent, and that (c)

occurs is seventy-five percent.

There is also a set of interactive jobs entering the system at an
exponentially distributed rate with a mean of 625 ms. Each job performs
the following actions in =z loop. First, the job uses an amount of CPU
time with mean equal to thirty ms and writes a record to the first disk
for an average twenty-five ms. where both times are exponentially
distributed. When some random number of records between two and
twelve has been written in this way, then an appropriate number of
blocks of main memory (between one and the number of records
written) is requested. The records are read from the first disk and
inserted into memory in some sorted order, then written to the second
disk as blocks, each block requiring twenty-five ms to write. (For each
record, this [insertion] sorting requires fifteen ms seek time on the CPU,
fifteen ms read time on the first disk, and 10 ms CPU time to insert
into memory.) Finally, the job relinquishes its blocks of memory, and

the job has an eighty-three percent probability of repeating the loop

28

again; if it does not, any records accumulated but not yet sorted and

written out are sorted and written as described, and the job leaves the

gystem.

Finally, there is a set of PAWS jobs being executed on the
system, entering at a mean time of six seconds, exponentially
distributed. Thirty percent of them perform all of their I/O operations
on the first disk: the remainder perform all I/O on the second disk.
Most PAWS jobs contain only one RUN section, or “batch”. although
some may contain more than one (the exact distribution is shown in the
specification for node DOPAWS in Figure 3-6). The time required to
compile a job is eight hundred ms, exponentially distributed: twenty
percent of that is spent in the CPU. the rest in the appropriate disk.
Each “batch” in the job requires between five hundred and fifteen
hundred ms to simulate, uniformly distributed: only five percent of that
time involves the disk, the rest being used for the CPU. The reports
generated for each batch require two hundred ms, ten percent of which

involves the CPU, the rest being used for the appropriate disk.

In addition to the usual statistics describing the wusage f
hardware resources, the following statistics are needed: a distribution of
the times required to execute the PAWS jobs as modeled above, and of
the times spent between memory allocation and memory release in the

interactive jobs.

28

3.2 The PADS Representation

The system described in the preceding section may be
represented in PADS as a collection of graphs. In this example, there is
one hardware graph. depicted in Figure 3-3, and five software graphs, as
shown in Figures 3-4 through 3-8. The entire collection of graphs is
referred to as a file or model. In a PADS model, each object (i.e., arc,
node, graph, or the file itself) may have a specification defining its
purpose or behavior in the model, although the specification of a graph
carries no meaning in the current version of PADS. (More detail on the
meaning of the specifications of various objects may be found in

Appendix A.)

The specification of an object, along with its name and one-line
English description, may be viewed and edited by clicking the “Open”
cursor on that object, as shown in the illustrations for opening a
software and hardware node in this model (Figures 3-1 and 3-2). The
specifications of the nodes and arcs in the various graphs are listed
below those graphs in each Figure; the specification for the file is shown

in Figure 3-9.

The hardware graph contains the nodes describing the hardware
resources mentioned in the system, along with a few other nodes. The
source node, NEWTRANS, determines at what rate the various types of
jobs (transactions) will enter the system, and at what places in the
software code (UNIC file) the jobs will begin executing. The branch
nodes, PAWSIN, PAWSOUT, CHECKA and CHECKB, do not
correspond to any hardware resources, but are called from within the
software code to enable PAWS to gather certain statistics (such as

response times) while the system model is running.

30

i Peciiﬁl:ation TI-Tel
use checka
let 1ilVnumblocks] =

uniform(#lower, Hupper)
use guen(lilvnumblocks])

insent

release

end

Figure 3-1: Opening a Software Node (CONFIG)

i Specification
guantity 1

—30d fefs

che(request

{all, $@) constant(})
(all, 817 expo(®);

Figure 3-2: Opening a Hardware Node (DISK1)

| le: exanple B Gr:

—] 4 —§- =g
gHen diskl epu
PHEM disk?
—3§—3 —3—
checka pawsin newtnans
—38— —30—
checkh pawsout
Specification for GMEM:

quantity 25 mainmem bestfit
qd fcis
request
<all,all> constant (#) mainmem 1i [%memadrs]

Specification for RMEM:
request <all,all> all

Specification for DISKI:
quantity 1
gd fcifs
reques?t
<all, $0> constant(#)
<all, $1> expo(¥)

Specifications for DISK2 and CPU
are the same as for DISKI.

Specification for NEWTRANS:

request <inter,%idtrans> expo (625.0)
<batch,%inbatch> constant(11000.0)
<paws,%inpaws> expo(6000.0)

Specifications for CHECKA, CHECKB,
PAWSIN, and PAWSOTUT are blank (empty).

Figure 3-3: The Hardware Graph and its
Node Specifications

83

]

stapt drive

Specification for the node

source %idtrans
let 1i08] = O
Specification for the node

finish

START:

DRIVE:

use cpu($1, %thinktime)
use diski (%31, Fwritetime)

let 1i[8] = 1i(8] + 1
let limit = random+*10
let limit = limit + 2

if 11081 >= 1limit then
call sortrecs(uniform(i,limit),limit,11[81)

let 1i[81 = 0
endif
Specification for the node

call sortrecs(2,
sink

FINISH:
3,181

Specification for the arc labeled “.83":

if random < .83

Specification for the arc from node DRIVE to node FINISH:

else

All other specifications are empty.

Figure 3-4: The Graph DRIVER and its Specifications

- ﬂxlaop

[4——*@—4@}»——% TH—i u-»—ai
hegin config forloop read insert endloop wpite

Specification for the node BEGIN: Z"B" ,D

arms (#lower, #upper, #recs)

Speciﬁcagon for the node CI.)(%NFIG: release end

use checka

let 1il[%numblocks] =

uniform(#lower, #upper)

use gmem(1i[%numblocksl)
Specification for the node FORLOOP:

for #recs
Specification for the node READ:

use cpu($l, %seektime)

use diskl (81, %readtime)
Specification for the node INSERT:

use cpu($l, %inserttime)
Specification for the node ENDLOOP:

endfor
Specification for the node WRITE:

use cpu($l, %seektime)

let writeout =

1i[%numblocks] * %writetime

use disk2($0, writeout)
Specification for the node RELEASE:

use rmem

use checkb
Specification for the node END:

exit
Specification for the arc labeled “loop” is empty.
All other specifications are empty.

Figure 3-5: The Graph SORTRECS and its Specifications

34

PADS Version .0l E3FN DSICHETTINEN K6T

1{’,3_.«“"'_.{ conpute
[Ce—n—C 4 |
in pa}s,jq_l‘: cycle out

'\.\\H‘s
S
dopaus

Specification for the node IN:
source %inbatch
source %inpaws
Specification for the node COMPUTE:
let limit=random*100
use cpu($1,limit)
Specification for the node CYCLE:
for uniform(10,20)
use cpu($0,50)
rand
0.75 : use disk2(81,35)
0.10 : use disk1(80,20)
others :use disk1($1,30);
endrand
endfor
Specification for the node DOPAWS:
if random < .3 then
let disknum=1
else let disknum=2
endif
let batchnum = i+erlang(0.8,0.5)
let size= expo(800)
let runtime = uniform(500,1500)
call runpaws (disknum,batchnum,runtime,size)
(More specifications are on the next page.)

Figure 3-6: The Graph BACKGROUND and its Specifications

Specification for the node OUT:
sink
Specification for the arc labeled “1/3":
cat batch 0.3333
Specification for the arc labeled “2/3":

cat batch .6687
All other specifications are empty.

Figure 3-6. continued.

PADS Uersion .0l

| “loop
[B
in compile compute repont put

Specification for the node IN:
parms (#disknum, #batchnum, #runtime, #size)
use pa¥sin
let 1i[8] = #runtime / #batchnum
Specification for the node COMPILE:
let size=#size
call cpuio(#disknum,size,0.2,0.8)
Specification for the node COMPUTE:
for #batchnum
call cpuio(#disknum,1i(8],0.95,0.05)
! (for-loop continued on next node)
Specification for the node REPORT:
! (for-loop continued from prev. node)
call cpuio(#disknum, 200, 0.1, 0.9
endfor
use pawsoutb
Specification for the node OUT:
exit
Specification for the arc labeled “loop” is empty.
All other specifications are empty.

Figure 3-7: The Graph RUNPAWS and its Specifications

prepape Usage leave

Specification for the node PREPARE:
parms (#disknum, #runitme, #cpu, #io)
let 1ilBl=#runtime * #cpu
let 1i[71=#runtime * #io

Specification for the node USAGE:
let 1i[6]=11[61/2
use cpu(lil61)
if #disknum=1 then

use disk1(1il71)
else use disk2(1il71)
endif
use cpu(lil61)

Specification for the node LEAVE:
exit

All other specifications are empty.

Figure 3-8: The Graph CPUIO and its Specifications

36

constants

%memadrs = 5 ! index of 1ill for memory
ynumblocks = 6 ! index of 1ill : # of mem. blocks
%readtime = 15 ! avg. ms to read record fm disk

ywritetime = 25! avg. ms to write block to disk

%inserttime = 10! ms for cpu to insert record in memory

%seektime = 15! avg. ms for seek on disk

37

%thinktime = 30! avg compute time between record writings to disk

%inbatch = 1! labels source of batch transactions
%inpaws = 2! where paws jobs enter
7idtrans = 3! labels source of inter transactions

¥’

integers

wribeout ! time to write set of blocks to memory
limit ! spare integer variable

disknum ! Disk number to run paws job on

batchnum ! How many batches in PAWS run section
runtime ! Total run time (ms) of PAWS modeling job
size ! Total compile time (ms) of PAWS model

£

categories inter
batch
pavws
Itransaction categ.

memories mainmem; !type of memory avail.

statistics report
response checka checkb gran 800.0
response pawsin pawsout gran 1000.0

s

run
go 50000.0 100.0
dump;

Figure 3-9: The File Specification for the PADS Model

38

The software graphs are similar to flowcharts, and represent the
code executed by the jobs. They determine which resources a job uses.
in what order they are used, and in what fashion (e.g.., how long). The
PADS software language used in the specifications of the nodes and arcs

in the software graphs is explained in detail in Appendix A.

2.3 Translation

As described in Chapter 1, the model is translated by PADS
into a PAWS program and a file of routing instructions, or USER-node-

interpretable code.

The first step in the translation process alters the specifications
of all nodes and arcs in the model by replacing all references to user-
defined constants (which begin with a percent sign) with their
corresponding constant values as defined in the CONSTANTS section of
the file specification. For example, the expression “mainmem
lif%memadrs]” in the specification of node GMEM in the hardware
graph is replaced by “MAINMEM LI 5 |, since the line “Cmemadrs =
5" appears in the CONSTANTS section. (The CONSTANTS section and
other PADS language constructs mentioned in this chapter are described
more fully in Appendix A.) Furthermore. all lower-case letters in the
model (except those following the comment symbol, “”) are replaced by

the corresponding upper-case letters.

39

2 3 1 Hardware Translation

The specifications of the hardware nodes are further modified in
several wavs to bring their syntax into conformity with that required by
PAWS nodes. The language used in the hardware node specifications is
very similar to that used in PAWS (and GPSM), in order to make this

transformation fairly straightforward.

First, each semicolon not inside a comment is deleted, and a
single semicolon is placed at the end of the specification, in order to
bring the specification language into conformity with the equivalent node

definition in PAWS,

Next, the pound signs (which represent a simple form of
parameterization of a hardware node) are replaced by actual references
to the local real variables (LR[i]) of a transaction, since that is how
those parameter values are transmitted in PAWS. TFor example, the

expression “constant (#)” in the node GMEM mentioned above becomes

“CONSTANT (LR[1])".

Finally, the “modes” in a node definition are replaced by actual
phase values (which is accomplished in the current version by merely
deleting the dollar signs preceding the mode numbers). and appropriate
lines are added to the specification of SERVICE nodes that have been
declared GEXPO. (GEXPO means that service time distributions may
use mean and coefficient of variation as parameters in place of the usual

PAWS distributions.)

Definitions and examples of the use of pound signs, “modes.”

40

and GEXPO are in the PADS User's Manual located in Appendix A of
this thesis. An explanation of transaction categories and phases is in
[12]. Briefly, each transaction in PAWS has associated with it a
category, which remains constant throughout the lifetime of the
transaction, and a phase, which is a number which can change as
directed by the modeler. Both the category and the phase are used in
PAWS to control the routing and behavior of transactions; in PADS,
the category of a transaction and the mode In which it “uses” a
resource determines its behavior while within the resource, as explained

in Appendix A.

Other hardware nodes (such as the default SINK node and the
intermediate nodes needed to set the phases of resources using “modes™)
are created automatically by the translator and integrated into the final
PAWS model. These nodes have names beginning with the letters “QQ~
The nodes beginning with “QQO0000..." are needed to initialize the phase
of a transaction before it is sent on to a PAWS resource node that uses

“modes,” since those modes correspond to PAWS phases.

Figure 3-10 shows the PAWS model that results from the

translation of the hardware graph in Figure 3-3.

The hardware graphs are translated into an executable model
written in PAWS 2.0. This model has a “star” topology. where each
hardware resource is bi-directionally connected to a central USER node.
This central node. named “QQUSER”, routes all incoming transactions
to the appropriate hardware resources, each of which was represented by

a node in the hardware graphs.

41

IExample of PADS for thesis illustration
DECLARE

INTEGERS

WRITEOUT ! time to write set of blocks to memory
LIMIT ! spare integer variable

DISKNUM ! Disk number to run paws job on

BATCHNUM ! How many batches in PAWS run section
RUNTIME ! Total run time (ms) of PAWS modeling job
SIZE ! Total compile time (ms) of PAWS model

2

NODES
QQSINK ! Default sink node
! From hardware graph HARDWARE:

GMEM
RMEM
DISK1
gRo0o000004
DISK2
gQ00000005
CPU
gQ00000006
NEWTRANS
CHECKA
CHECKB
PAWSOUT
PAWSIN

iDefault nodes:
QQINIT QQUSER;

CATEGORIES INTER
BATCH
PAWS
ftransaction categ.

MEMORIES MAINMEM; !type of memory avail.

Figure 3-10: The PAWS Model Translated from the
Hardware Graph

TOPOLOGY

QQUSER QQSINK <ALL, 1> 1.0;
QRINIT QQUSER <ALL,ALL> 1.0;

iFrom hardware graph HARDWARE:

GMEM QQUSER <ALL,ALL> 1.0;
QQUSER GMEM <ALL, 2> 1.0;

RMEM QQUSER <ALL,ALL> 1.0;
QQUSER RMEM <ALL, 3> 1.0;

DISK1 QQUSER <ALL,ALL> 1.0;
QQUSER QRO0000004 <ALL, 4> 1.0;
QQ0O0000004 DISK1 <ALL,ALL> 1.0;

DISK2 QQUSER <ALL,ALL> 1.0;
QQUSER QQO0000005 <ALL, 5> 1.0;
QRO0000005 DISK2 <ALL,ALL> 1.0;

CPU QQUSER <ALL,ALL> 1.0;

QQUSER QQO0O000006 <ALL, 6> 1.0;
QR00000006 CPU <ALL,ALL> 1.0;
NEWTRANS QQINIT <ALL,ALL> 1.0;

CHECKA QQUSER <ALL,ALL> 1.0;
QRUSER CHECKA <ALL, 8> 1.0;

CHECKB QRUSER <ALL,ALL> 1.0;
QQUSER CHECKB <ALL, 9> 1.0;

PAWSOUT QQUSER <ALL,ALL> 1.0;
QQUSER PAWSOUT <ALL, 10> 1.0;

PAWSIN QQUSER <ALL,ALL> 1.0;
QQUSER PAWSIN <ALL, 11> 1.0;

Figure 3-10, continued.

DEFINE

QQSINK ! Default sink node
TYPE SINK;

QQUSER ! Central user node
TYPE USER
REQUEST <ALL,ALL> 1;

QQINIT ! Initializes new processes
TYPE USER
REQUEST <ALL,ALL> 2;

{From hardware graph HARDWARE:

GMEM
Imemory is allocated here
TYPE GETMEM
QUANTITY 25 MAINMEM BESTFIT
@D FCFS
REQUEST
<ALL,ALL> CONSTANT (LR[1]) MAINMEM LI[5]

2

RMEM
TYPE RELMEM
REQUEST <ALL,ALL> ALL

&

DISK1

IFirst disk

TYPE SERVICE

QUANTITY 1

gD FCFS

REQUEST

<ALL, O> CONSTANT(LRI1D)
<ALL, 1> EXPO(LRIID)

z

QRo0000004
TYPE COMPUTE
REQUEST <ALL,ALL> LETEQ TPHASE LI[4];

Figure 3-10, continued.

43

DISKZ

1Second disk

TYPE SERVICE

QUANTITY 1

gD FCFS

REQUEST

<ALL, O> CONSTANT(LRI11)
<ALL, 1> EXPOCLRILD

2

gRO0000005
SAME GR00000004 ;

CPU

iCentral processor

TYPE SERVICE

QUANTITY 1

QD FCFS

REQUEST

<ALL, 0> CONSTANT(LRI[1D)
<ALL, 1> EXPOCLRIID

z

gR00000006
SAME Q00000004 ;

NEWTRARNS

1ISource of new transactions

TYPE SOURCE

REQUEST <INTER, 3 > EXPO (625.0)
<BATCH, 1 > CONSTANT(11000.0)
<PAWS, 2 > EXP0(8000.0)

s

CHECKA
TYPE BRANCH

&

CHECKB
TYPE BRANCH

»

Figure 3-10, continued.

PAWSOUT
TYPE BRANCH

2

PAWSIN
TYPE BRANCH

&

STATISTICS REPORT
RESPONSE CHECKA CHECKB GRAN 600.0
RESPONSE PAWSIN PAWSOUT GRAN 1000.0

E

RUN
G0 50000.0 100.0
DUNP;

ICONSTANTS

%MEMADRS = 5 ! index of 1ill for memory

%NUMBLOCKS = 6 ! index of 1ill : # of mem. blocks
wREADTIME = 15 ! avg. ms to read record fm disk
wWRITETIME = 25! avg. ms to write block to disk
%INSERTTIME = 10! ms for cpu to insert record in memory
%SEEKTIME = 15! avg. ms for seek on disk

wTHINKTIME = 30! avg compute time between record writings to disk
%INBATCH = 1! labels source of batch transactions
%INPAWS = 2! where paws jobs enter

%IDTRANS = 3! labels source of inter transactions

END;

i 0 errors detected.

Figure 3-10, continued.

The TUSER node accomplishes this routing by reading
instructions from a file that represents the translation of the software
and collapse graphs, and by using some of the variables local to each
transaction to keep track of which instruction in the file each

transaction is currently executing. This file is known as the “USER-

46

Node-Interpretable Code” file, which is abbreviated as “UNIC.” Its

creation from those graphs is described in the next section.

/
U om mE gaamumns msml
rzm[(=-—31 g~
L I 4@9@_@3@% %}Séi
- . |
e 4{;+

NEHTRANS g

5

’s |f"'j'1 5
L Lk T

paubort’

o

igggﬁﬁﬂﬁﬂﬁﬁ CPU QOSINK
T— |

e E—p—"t—s
PAWSIN CHECKR CHECKS

Figure 3-11: A Conceptual View of a Translated PADS Model

As an illustration, Figure 3-11 depicts the graphical equivalent
in GPSM of the PAWS model in Figure 3-10. The transactions are
created at the source node NEWTRANS, initialized at QQINIT, and
sent to QQUSER, where their phases and other local variables are
altered before they are sent along the appropriate arc to the correct
resource (sometimes via an intermediate node). Here, the number on
each arc from QQUSER corresponds to the PAWS phase that a
transaction must have in order to follow that arc. After using a
resource, transactions return to QQUSER, unless they were directed to

QQSINK, in which case they leave the model.

3.8 .2 Software Translation

Figure 3-12 is a dataflow diagram presenting an overview of the
software translation process.
Output (from hardware):

Executable PAWS model
(including USER node)

Input: N PADS
PADS model Translator
(graphical) ASCII file (from software)

S

Lexical analyzer
and parser

File of "arc" numbers
in the PADS grammar

PADS compiler

"Pre-UNIC" file

Outpub: ¢ Post-
"UNIC® compiler

Figure 3-12: A Dataflow Diagram of the Translation Methodology

The software graphs are translated first into an ASCII file
representing the code and calls found in each software and transformed
collapse graph. The ASCII file duplicates the structure and code content
of the graphs, using special symbols to indicate the arcs connecting the
nodes and the boundaries of software graphs and nodes. Each software
graph is translated separately from the others and given its own section
in the file; similarly, each node within a graph is given its own section
within that software graph’s section. Connections (arcs) between nodes
are represented by pieces of PADS code- containing translator-generated
GOTOs, and FOR-loops of nodes are arranged in the translation so that

the nodes within their scope are correctly traversed.

48

The file is then parsed using 2 recursive descent technique
similar to that described in [1], and translated into a second file which
consists of formatted instructions for the central USER node mentioned
above. The second file is referred to as the “pre-UNIC” file, since it
contains many of the same ‘nstructions as the final UNIC file, but
implements GOTO and other branching instructions by referring to label

numbers instead of to actual locations in the code.

The third and final phase of the software graph translation
alters these instructions by replacing references to labels with actual
UNIC instruction locations. Sample portions of the files produced at
each step of the translation of the software graphs in this example are

listed in Figures 3-13 through 3-16.

9.4 Simulation

After the PAWS model and UNIC file have been produced,
they may be transferred to any computer that runs the PAWS
smulation language. The PADS simulation system is the same as the
one for PAWS. but has additional FORTRAN code in subroutine “uss”
to allow the UNIC to be interpreted during the simulation. When the
model is simulated, the output is a set of statistical results produced by

PAWS.

Portions of the statistics files produced by PAWS when our
example model is executed are in Figure 3-17. (Some of this output has
been compressed horizontally, in order to allow it to fit on the pages of
this thesis.) The throughput statistice for some of the hardware resources

are listed by transaction category, followed by lists of the queue length

7S DRIVER

P.start

7N N0802

SOURCE 3

LET LI[8] = O

?E NO802

?C ALLLLLLLLL

?G NO803

:drive

7N NO803

USE CPU(81, 30

USE DISK1(81,

LET LI[8] = LII

LET LIMIT = RAN

LET LIMIT = LI¥

IF LI[8] >= LIM
CALL SORTRECS
LET LI[8] =0

ENDIF

?E NO803

?C ALLLLLLLLL

IF RANDOM <

THEN ?G NO803

ENDIF

?G N0O804

I:finish

7N NO804

CALL SORTRECS(2

SINK

?E N0804

?X DRIVER

7S SORTRECS

!:begin

?N NO701

PARMS (#LOVER,

?E NO701

?C ALLLLLLLLL

?G NO702

I:forloop

7N NO703

FOR #RECS

?E NO703

Figure 3-13:

)
25)
8] + 1
DOM*10
IT + 2
IT THEN
(UNIFORM(1,LIMIT) ,LIMIT,LI[81)

.83

,3,L1081)

#UPPER, #RECS)

A Portion of the ASCII File Created by
“Translating” the Software Graphs

49

017S DRIVER
94
161%S
182*DRIVER
Oit:start
Ol 7N NO802
11
4
8
94
161%N
162*N0802
O!SOURCE 3
i1
4
8
3
B/3
OILET LII8] =0
8
83
95
108
110/8
111
113
114
82/0
85/0
193/0
74/0
01 7E HO802
199
115
120
11
4
8
94
1681=*E
182*N0802

Figure 3-14: A Portion of the First Parse of the ASCII File

i 0 |LET LI[8] =0

t 0 |?E NOBOZ

0==L11+#10 2
8 0

LENN0O802 i

i 0 1?C ALLLLLLLLL

1 0 1?7G NO803

GTNNO8O3 -1
2

1 0 |!l:drive

I 0 |?N NO803

LBNNO803 2

i 0 |USE CPU(Si, 30)

0==PI$+410 2
0 6

0==L11+%10 2
4 1

0==LR1+#I0 2
1 30

I O |USE DISK1($1, 25)

FRE 0

0==PI%+#10 2
0 4

0==LI1+#I0 2
4 i

==LR1+#10 2
i 25

1 0 |LET LI[8] = LI[8] + 1

FRE 0

! 0 ILET LIMIT = RANDOM*10
DADLI{+LI1;+#I0 3

8 8 1
i 0 ILET LIMIT = LIMIT + 2
OMUSI1+RRS;+#10 3

2 0 10
t 0 |IF LI[8] >= LIMIT THEN
OADSI1+SI1;+#I0 3

2 2 2

OGEABS+LI1;+SI1 3

0 8 2

GTF -1
1001

Figure 3-15: A Portion of the “Pre-UNIC” File

t 0 ILET LI[8] = O

i 0 |?E NO802

0==LI1+%#I0 2 #4
8 0

QENN0802Z 0 #5 (1: 1

1 0 |?C ALLLLLLLLL

i 0 1?G NO803

GTONO8O3 -1 %6
7

1 0 lt:drive

1 O |?N NO8O3

@BNNO803 o #7 a: 2)

i 0 |USE CPU($1, 30D

==PI1§+#10 2 48

0 8

0==L11+#10 2 49
4 1

0==LR1+#I0 2 #10
1 30

i O |USE DISK1($1, 25)

FRE 0 #i1

0==PI8$+#10 2 #12
0 4

==1.11+#10 2 #13

4 1

0==LR1+#I0 2 #14
i 25

i 0 ILET LI[8] = LI[8] + 1

FRE 0 #15b

1 O |LET LIMIT = RANDOM*10

0ADLI1+LI1;+#I10 3 #16
8 8 i

i O ILET LIMIT = LIMIT + 2

OMUSI{+RRS;+#10 3 #17
2 0 10

' 0 |IF LI[8] >= LIMIT THEN

0ADSI1+SI1;+#10 3 %18

2 2 2
OGEAB$+LI1;+SI1 3 #19
0 8 2
GTF -1 #20

27

Figure 3-16: The Corresponding Portion of the “UNIC” File

(1]
[&5]

and queueing time for those resources. (Interestingly, when the initial
amount of memory Iis incréased from twenty-five to thirty blocks, the
queueing time for memory becomes zero in this example.) These are
followed by the utilization statistics for the “servers” (DISK1, DISK2
and CPU) and for the memory. A distribution of the times required to
execute the PAWS jobs is in the statistics report of the “RESPONSES”
from node PAWSIN to node PAWSOUT. A similar report of the times

spent between memory allocation and memory release in the interactive

jobs is found In the “RESPONSES” from CHECKA to CHECKB.

3.5 Expansion and Contraction

An experimental function of the current version of PADS is the
ability to perform a very limited form of the operations known as
scollapse” and “serialize” on a special form of software graph known as
a collapse graph. The collapse operation refers to the “contraction” of a
graph into 2 simpler, more generalized list of the resources it uses and
the amount of use it requests for each; the serialize operation takes the
results of a collapse and “expands” it onto a generic pattern of usage
for those resources. The desired result is an approximation of the
original graph which does not seriously affect 1ts accuracy and is simpler
+o simulate. As the precise functions involved in performing a collapse
and serialize are not known at this time, it is difficult to provide a
more detailed description of those operations than the one Just
mentioned. However, the current version of PADS does attempt to
implement a limited version of the type of operations omne would expect

from collapse and serialize; these are described in this section.

Currently, a collapse graph has exactly one ENTER node and

/GMEM (
/INTER
/BATCH
/PAWS

/RMEM (
/INTER
/BATCH
/PAVWS

THROUGHPUT INPUT
RATE COUNT RATE COUNT
*
0.003 152. * 0.003 152.
0.000 0. * 0.000 0.
0.000 0. * 0.000 0.
0.003 152. * 0.003 152.
b 4
0.003 149. *
0.000 0. *
0.000 0. *
0.003 149. =

/DISK1 (
/INTER
/BATCH
/PAVWS

0.017 848.

0.300e-03 15.

*

: X
0.300e-03 15. * 0.300e-03 i5.

*®

3

0.018 878.

/QR00000004 (
/INTER
/BATCH
/PAWS

&
0.017 848. *
0.300e-03 ib. =
0.300e-03 15, *

0.018 878. *

/DISK2 (
/INTER
/BATCH
/PAWS

/QR00000005 (
/INTER
/BATCH
/PAVS

/CPU (
/INTER
/BATCH
/PAWS
/ALL

Figure 3-17:

0.028 1416.

0.108e-02 54 .

0.029 1419.

0.108e-02 54.

&
E
0.780e-03 3g. * 0.780e-03 39.
s
F 3

0.030 1509.

Portions of the Statistical Results

0.030 1512.

QUEUE AT NODE: /GMEM
CATEGORY: /INTER
QUEUE-LENGTH
SUMMARY
MEAN: 0.
VAR : 0.
QUEUEING-TIME
SUMMARY
MEAN: 50.
VAR: 23048.
CATEGORY: /ALL
QUEUE-LENGTH
SUMMARY
MEAN: 0.
VAR 0.
QUEUEING-TIME
SUMMARY
MEAN: 50
VAR: 23048.
QUEUE AT NODE: /DISK1
CATEGORY : /INTER
QUEUE-LENGTH
SUMMARY
MEAN: i
VAR: 11
QUEUEING-TIME
SUMMARY
MEAN: 113,
VAR: 226356
CATEGORY: /BATCH
QUEUE-LENGTH
SUMMARY
MEAN: 0
VAR: 0
QUEUEING-TIME
SUMMARY
MEAN: 38.
VAR: 2341

Figure 3-17.

.440

.924
.592

422

012
011

« D

153
378

440
904

153
378

904

D

472

305 2ND MOMENT:
.313 STNDRD DEV:

continued.

2ND MOMENT:
STNDRD DEV:

2ND MOMENT:
STNDRD DEV:

2ND MOMENT:
STNDRD DEV:

2ND MOMENT:
STNDRD DEV:

2ND MOMENT:
STNDRD DEV:

2ND MOMENT:
STNDRD DEV:

2ND MOMENT:
STNDRD DEV:

25593
151

25593.

151

239232

3808.
48.

.401
.615

113
.819

.401
615

113

.819

.296
.405

.391
475.

769

.012
107

602
387

(%2}

[$3]

CATEGORY:

CATEGORY:

QUEUE:
CATEGORY

QUEUE:
CATEGORY

QUEUE:
CATEGORY

/PAWS
QUEUE-LENGTH
SUNMARY
MEAN:
VAR

QUEUEING-TIME
SUMMARY
MEAN
VAR:

/ALL
QUEUE-LENGTH
SUMMARY
MEAN:
VAR:

QUEUEING-TIME
SUMMARY
MEAN:
VAR:

/D1SK1

/INTER
/BATCH
/PAWS
/ALL

/DISKZ

/INTER
/BATCH
/PAWS
/ALL

/CPU

/INTER
/BATCH
/PAVS
/ALL

0.153 2ND MOMENT: 0.169
0.146 STNDRD DEV: 0.382
0.510e+03 2ND MOMENT: 0.151e+07
0.125e+07 STNDRD DEV: 0.112e+04
2.089 2ND MOMENT: 17.925
13.561 STNDRD DEV: 3.682
118.964 2ND MOMENT: 256893.266
242740.766 STNDRD DEV: 492 .687
(1) NUMBER OF SERVERS: 1
MEAN SERVICE TIME UTILIZATION
20.145 34.17
21.587 0.65
473.133 14.19
27.909 49.01
(1) NUMBER OF SERVERS: 1
MEAN SERVICE TIME UTILIZATION
46.644 13.90
21.916 1.01
184.750 4.43
52.560 19.34
(1) NUMBER OF SERVERS: 1
MEAN SERVICE TIME UTILIZATION
18.616 52.72
49.248 3.84
163.037 17.61
24.576 74.17

Figure 3-17, continued.

o

g

YEMORY : /MAINMEM
CATEGORY UTILIZATION
/INTER 33.11
/BATCH 0.00
/PAWS 0.00
ALL 33.11
RESPONSES FROM /CHECKA ¢ 1 TO /CHECKB D
CATEGORY: /INTER
RESPONSE-TIME
INTERVAL NUMBER IN % 1IN HISTOGRAM
INTERVAL INTERVAL O 10 20 30
0.000 <= X <« B600.000 46.000 30.8B7 Isssssssxxsssxxxd
6800.000 <= X < 1200.000 34.000 22.82 THsskwkskiixd
1200.000 <= X < 1800.000 22.000 14.77 Issxxkkxg
1800.000 <= X < 2400.000 14.000 9.40 Ixxxx<
2400.000 <= X < *INFINITY* 33.000 22.15 Tasssssswksxg
TOTAL: 149 .000
SUMMARY
MEAN: 0.153e+04 2ND MOMENT: 0.501e+07
VAR: 0.266e+07 STNDRD DEV: 0.163e+04
RESPONSES FROM /PAWSIH ¢ 1 70 /PAWSOUT (D
CATEGORY: /PAVWS
RESPONSE~-TIME
INTERVAL NUMBER IN % IR HISTOGRAM
INTERVAL INTERVAL 0 10 20 30 40
0.000 <= X < 1000.000 0.000 0.00 I<
1000.000 <= X < 2000.000 1.000 14 .29 Isssxxxk]
2000.000 <= X < 3000.000 2.000 28,57 Ixkssswsskkdkkxnd
3000.000 <= X < 4000.000 3.000 42 86 Ixkskkkwkkkkkkdkkdkais<
4000.000 <= X < *INFINITY* 1.000 14 .29 TIwwskksxxng
TOTAL: 7.000
SUMMARY
MEAN: 0.388e+04 2ND MOMENT: 0.203e+08
VAR: 0.526e+07 STNDRD DEV: 0.229e+04

Figure 3-17, continued.

one RETURN node, both of which have blank specifications and serve
only to mark the entry and exit points of the graph. The other nodes
are all of type CODE and have specifications containing lines of the
form:
freq \ resource-id (total-req)

where resource-id is the name of the hardware resource being used
(which must be of type SERVICE), total-req is the total time that a
transaction requests service from that resource while (conceptually)
within the current node. and freq is the number of times the transaction
requests the use of that resource during that time. The letter C may be
used in place of a number for freg. in which case the resource is treated
like a CPU and is requested n+1 times, where n is the sum of the
other Jfregs (not including any other C’s) in that node. The arcs
connecting the nodes in a collapse graph all have specifications consisting
of simple probabilities (literal real numbers between 0.0 and 1.0); a

blank arc specification defaults to 1.0.

The collapse is performed as follows: the average number of
times each node is invoked is calculated analytically using the visit ratio
equations described in [4], and a Gaussian elimination routine as shown
in [14]. The values of freg and total-reg are then multiplied by the visit

ratio of each node and used to form a nested FOR-RAND construct.

As is the case with software graphs, each collapse graph is
given its own section in the ASCII file. Unlike software graphs, however.
collapse graphs are converted into a nested FOR-RAND comstruct
instead of having their nodes translated separately. An example of =
collapse graph and its conceptual equivalent, as well as the construct

resulting from its translation, are in Figures 3-18 through 3-23.

PADS Uersion 81

& COMP
- —D<FIFTH

START
\T—i]

FINISH

Figure 3-18: A PADS Collapse Graph

PADS Version .01 EOFE BiM¥ paph: collapse ® lool: Openfg

C\CPU(3@) []
TADISKA(10@)
I\DISKB(208) 5

Figure 3-19: The Definition of Node “Start”

PADS Version ,A!

Figure 3-20:

The Definition of Node “Comp”

C\CPU(500)
18\ DISKC(300);

Figure 3-21:

The Definition of Node “Finish”

60

? S COLLAPSE

FOR 110 TIMES
RAND
0.409090900 : CPU (GEXPO, 5.556, 0);
0.227272700 : DISKA (GEXPO, 20.000, 0J;
0.136363600 : DISKB (GEXPO, 66.667, 0);
0.036363640 : CPU (GEXPO, 500.000, 0O);
0.100000000 : CPU (GEXPO, 45.455, 0);
1 0. 090909090) :
OTHERS . DISKC (GEXPO, 30.000, O
ENDRAND
ENDFOR

? X COLLAPSE

Figure 3-22: The Actual Translation of the Collapse
Graph into the PADS Language

s
(5.556)
yay: 4 \
;’f &@363&__.—(5@3.9)—%—@%—? LOOP
/s /o R
' 45,455 s
FOR 118 70 TiroR

2
(20,0 —57 3
13636 ISKA

56 61—+

89909 msxn
_(39 0 —i¢~
msxc

Figure 3-23: A Conceptual View of the Equivalent
Hardware Usage Pattern

Chapter 4

Proposed Changes to PADS

The preceding chapters have described a preliminary version of
PADS. This chapter discusses a number of improvements that are being

considered for future versions of PADS.

4.1 Translation Methodology

Several improvements can be made to the automatic translation
processes used in PADS. Choosing the “Translate” option (when the
“Draw” cursor is clicked on the “File” portion of the banner) causes
two files to be created, as described in Section 7.4.2 of the PADS User’s
Manual. (That manual is found in Appendix A of this thesis.) Both the
hardware and software file are created using a rather “ad hoc” method:
the PADS translator has relatively little information about the correct
syntax and semantics of the graphical objects or their specifications.
Furthermore, the software file must undergo a three-pass translation into
the “UNIC” file after PADS has relinquished control to the operating
system. For both these reasons, relatively few errors in a model can be

detected by PADS at translation time.

A possible solution to the above problem would be to create

62

63

the “UNIC” file (or at least the “pre-UNIC” file) directly from the
software graphs by traversing and parsing the actual graphs, instead of
by parsing a file created from them. The hardware graphs could be
parsed in the same manner. This method would make it possible to
show the source of a syntactic or semantic error to the user while
translation is taking place. Notice that this parsing capability would be

equivalent to the unimplemented “Critique” function described earlier.

4.2 Impact on Hardware Models

The current PADS system is subject to several constraints with
regard to the types of hardware systems that can be modeled. Many, if
not all, of these constraints were imposed to simplify the implementation
of the first version of PADS, and could be eliminated in future versions
of PADS. This is especially true if the method for translating PADS
graphs into PAWS is simplified, or if the PADS graphical interface is
modified. For example, FORK and JOIN nodes are not currently
permitted in PADS hardware models, partly because parallel execution
within software was deemed too complex to be worth implementing in &
preliminary version of PADS, and partly because PADS currently uses
the GPSM wversion of the icon palette for all its graphs, and uses the
FORK and JOIN icons to represent FOR- and ENDFOR- nodes. A
similar statement can be made for SPLIT nodes. It is hoped that future
implementations of the PADS graphical interface will use 2 different icom
palette for each type of graph, thus freeing the FORK, JOIN, and
SPLIT nodes for use (with an appropriate software language interface) in

describing parallelism.

Currently, the hardware graphs consist of disjointed PAWS

64

resource nodes with no arcs connecting them (recall that the routing of
transactions between resource nodes is described in the software graphs).
One possible extension to the current PADS hardware graphs is the
addition of CALL nodes, which are similar to the submodels currently
represented by subgraphs in GPSM. These would allow commonly-used
patterns of hardware usage (such as a disk controller system) to be
specified directly as physical connections rather than indirectly as logical

connections through the central USER node.

However, this extension would probably require the
implementation of ALIAS nodes in PAWS (nodes which share a queue
and which represent the same resource), and would require a more
sophisticated method of parameterization than is currently available in
PAWS or PADS. These changes are currently scheduled to be
incorporated into a later version of PAWS, and are outlined in Section
4.4. Precise statements about the feasibility of their implementation

must, however, be postponed until the target language has been precisely

defined.

4.3 Transaction Categories

Currently, categories are used in PADS to partially determine
the behavior of a transaction within a software or a hardware node; this
is similar to their use in PAWS. Another use of categories in PADS 1is
to facilitate the grouping of statistics, since PAWS groups a model’s
performance statistics by category, mnot by phase. As in PAWS, the

category of a transaction does not change throughout its lifetime.

The chief advantage to this approach is that it corresponds to

85

the way categories are currently treated in PAWS. Therefore, it is
simple to implement and to understand. Its main disadvantage is that
statistical results in PAWS are separated by category, which makes it
difficult to determine which portions of the software require a given

amount of resources.

A second possible approach would be to equate the category of
2 transaction with the software graph it is currently executing, i.e., to
change the category of a transaction each time it calls a new software
graph. This approach resolves the difficulties posed by the current
approach; it also frees the user from having to know about PAWS
categories. However, it introduces some additional problems. A PAWS
transaction cannot actually change its category. In order to achieve the
same effect, the transaction must first create & copy of itself at a SPLIT
node (giving that copy the new category), pass all its passive resources
(such as tokens and memory) to the copy, and then leave the system at
s SINK node. This procedure is more difficult to implement and may
create more overhead during the simulation process. Furthermore, the
user still does not have full control over the grouping of statistics,
although the correspondence between categories and PADS software

graphs may be sufficient for grouping purposes.

If the current treatment of categories is to be altered in PADS,
the best approach would be the following: the category of a transaction
is determined by the user when ‘the transaction is created, but 1is
changed whenever the transaction encounters the statement “NEWCAT
new-category-name” in the software graphs. This allows the user full
control over the grouping of statistics, and ensures that any resultant
overhead occurs only when the user specifically requests a category

change.

66

4.4 Future Versions of PAWS

The current version of PADS produces models that run under
version 2.0 of PAWS, which is basically a subset of version 3.0. At the
same time that PADS was being developed, a new version of PAWS,
called ES/PAWS, was being designed. The “ES” stands for “Electronic
Systems”; ES/PAWS is an enhancement to PAWS designed for high-
level simulation of electronic systems, and was first described in [10].
Most of the enhancements that would affect PADS are listed in [11].

PADS, when appropriately modified, would provide an ideal interface for
ES/PAWS.

4.4.1 Topology Enhancements in ES/PAWS

The current proposal for ES/PAWS extends the syntax for arcs
(edges between mnodes) to include specifications of the form “FOR
integer” and “IF boolean” in addition to the “probability” currently
allowed in PAWS [11, p. 36]. However, PADS currently uses FOR-
nodes instead of FOR-arcs. Changing the PADS methodology of
representing FOR-loops to conform to that used in ES/PAWS would
make the resulting PADS model easier to translate, and would prevent
the user from having to learn two different graphical interfaces for loops

in PADS and in ES/PAWS.

Although WHILE-loops are currently not directly implemented
in PADS, these same icons could be used to denote the beginning and
end of WHILE-loops, the difference between the two being determined
by the text in the definition fields of the LOOP node. However, since

the proposed version of ES/PAWS does not make any provision for

67

WHILE-loops, it is not clear that providing them in PADS would offer
much advantage over conforming to ES/PAWS usage by not providing

them.

4.4.2 ALIAS Nodes

Version 3.0 of PAWS permits the use of submodels, which‘may
be called by a transaction in the PAWS model. Currently, a given node
can appear in only one PAWS submodel; the same resource cannot
therefore be represented directly in different submodels. This limitation
severely inhibits the development of independent PAWS and GPSM
submodels. as well as any future ability to integrate GPSM submodels
‘into a PADS model, since there is no way to allow two hardware
resources named in separate places to be serviced by the same queue

(i.e., to act as aliases for each other).

This problem may be solved by including the concept of a
snode alias” in future versions of PAWS. For example. if a SERVICE

node named “CPU” is defined (without a REQUEST section) as

QUANTITY 1
QD FCFS

then this resource may be referred to by a different name and with a
different REQUEST section in each of several submodels, as follows:
SUBMODEL A
PROCESSOR

ALIAS CPU
REQUEST <ALL,ALL> EXPO(10.0);

END ! of SUBMODEL A

68

SUBMODEL B

CPU2
ALIAS CPU
REQUEST <ALL,ALL> UNIFORM(5.0, 20.0);

END ! of SUBMODEL B
Thus, transactions arriving at the two nodes PROCESSOR and CPU2

will enter the same queue and compete for the same resource, CPU. If
future versions of PADS will have the capability to “USE” GPSM
submodels as well as individual hardware resources, then node aliasing

would allow a hardware resource declared in a PADS hardware graph to

be referred to in a GPSM submodel.

4.4.3 PAWS Submodel Parameters

In order for a PADS model to “USE” GPSM submodels. they
must have an appropriate method of parameterization. The
enhancements proposed in [11] include both compile-time and call-time
parameters for submodels. If a similar method of parameterization were
offered at the mode level, the need to reserve local real variables for

node parameters (as mentioned in the next section) would be eliminated

in PADS.

4.4.4 Avoiding PADS Conflicts with Users

Currently, PADS reserves the first four local integer variables of
each transaction for its own purposes (instruction pointer, stack pointers,
etc.), as well as reserving function codes 1 and 2 in the USER node.
The PADS user should not attempt to reuse any of these objects for his

own purposes, or unpredictable errors will result.

69

To avoid these conflicts and still allow the user full access to
the items mentioned above, two features can be added to future versions
of PAWS. First, a new node type. called XUSER, would behave exactly
like a USER node except that It would call FORTRAN subroutine
XUSS instead of subroutine USS. The XTUSER node type would be
available to PADS but not to the person writing a PADS model. All
PADS-related code in USS would be moved to XUSS, freeing the entire
TUSER node for the modeler to use. Second, a new set of local variables
for each transaction, called XI and XR instead of LI and LR, could be
implemented in the same way. freeing all the current PAWS local
variables for the modeler’s use. (Currently, PADS does not reserve the
use of local boolean variables. and the local real variables are reserved
only when passing parameter values to hardware resources from a TUSE

statement in the software graphs. as explained in Appendix Al

Chapter 5

Conclusions

The graphical interface described in this thesis enables a
designer of software systems 10 specify his workload and hardware
configuration separately. A set of hardware devices and a set of software
workloads for these devices are combined in a PADS model to determine
how effectively the hardware devices can perform wunder the given
workload. Software specifications and hardware configurations can be
changed separately and conveniently to allow the evaluation of alternate

system designs.

There is a very close integration of the software representation
with the hardware representation. This integration allows the designer to

+hink about hardware and software in compatible terms.

The software load is described in terms of virtual devices (i.e.,
software graphs) which are mapped onto physical devices. These virtual
devices may themselves be hierarchically defined. so that specifications
for workloads can be structured hierarchically to match the resolution of
the hardware specification. Therefore, the hardware devices can be

represented down to any level of detail desired.

71

The output generated by PAWS for a PADS software systems

model may then be used to evaluate alternate designs for hardware

configurations under a variety of workloads.

Appendix A.

PADS User’s Manual

This user’s manual assumes that the reader is familiar with
PAWS and GPSM, and has read the user’s manuals for both [7, 12].
Its purpose is to highlight the differences between PADS and GPSM,
and to describe the functions of PADS at the same level of detail as

found in the GPSM User's Manual [7].

Where used, section numbers refer to the same sections in 17].
An empty or missing section indicates that the text for that section
‘n this manual would be identical to its corresponding section in [7].
with the exception that the word *GPSM” would be replaced by the
word “PADS” throughout the text.

A note on punctuation: contrary to current English usage, most
punctuation marks that are not actually part of the item being quoted
are left outside the quotation marks instead of being placed inside them.
This is done to avoid confusion as to whether or not the punctuation
mark should be included along with the item quoted when It is entered
into the computer, program, etc. If the item quoted is not actually
entered or stored in the computer, then the punctuation Is included in

the quotation marks, as required by the rules of English.

Preface

[An introduction to the purpose and background of PADS is
found in Chapter 1 of this thesis.]

1.1. PADS graphs vs. GPSM IPGs

In GPSM, each graph is considered to be an Information
Processing Graph (IPG), which consists of information processing nodes
connected by arcs. In PADS, there are three distinct types of graphs:

hardware graphs. software graphs. and collapse graphs.

Hardware graphs provide the definitions of the hardware
resources available to the entire model. Software graphs represent the
software instructions that control the usage of the hardware resources.
Collapse graphs provide an elementary and experimental method of

model simplification.

The hardware graphs are collections of resource nodes with no
connecting arcs (similar to GPSM IPGs with the arcs removed). They
may contain any nodes found in a GPSM IPG except CALL,
CHANGE. ENTER, FORK, JOIN, RETURN, or SPLIT. All hardware
graphs must have names beginning with the letters “HARD”. Their node
definitions are very similar to those of GPSM IPG nodes, except that
any phase numbers appearing in the definitions are replaced by “mode”

numbers, which are preceded by dollar signs.

The software graphs are similar in structure to GPSM IPGs,
since they consist of nodes connected by arcs. However, they may
contain only the following nodes: ENTER, RETURN, CODE (which
looks like a CALL node), FOR (which looks like a FORK node), and

74

ENDFOR (which looks like a JOIN node). Software graphs may have
names beginning with any letters except “HARD” and “COLL”. Their
node definitions consist of special statements in the PADS software
language describing the usage patterns of the resources in the hardware
graphs, as well as operations on user-controlled variables internal to the
model. Their arc definitions describe the conditions under which a
transaction would begin following the instructions in one node after

finishing the instructions in a previous node.

The collapse graphs are similar to software graphs, but contain
only ENTER, RETURN, and CODE nodes. Collapse graphs must have
names beginning with the letters “«COLL”. They provide a very limited
description of the usage patterns of SERVICE nodes, and the definitions

of their nodes and arcs are similarly constrained.

Further details on the usage of these types of graphs may be

found starting at Section 17 of this user’s guide.

1.2. Files, Graphs, Nodes, and Arcs
[This section is basically the same as in [7], with the following

exceptions:]

The term “graphs” is extended to include hardware, software,
and collapse graphs, although only the last two types of graphs have

arcs connecting their nodes.

Only software graphs may call or be called by other graphs.
This is accomplished by using the CALL statement within a CODE

node or other node of a software graph. This statement is defined with

-
(<X}

+he other constructs of the PADS software language in Section 17.2 of

this user’s manual. Recursive calls are permitted.

There is no such thing as a “main” graph. Transactions may
enter the model at any point in any software graph where the SOURCE
statement is encountered. The rate at which transactions enter, their
categories, and the SOURCE statements at which they enter are
determined by the definitions of the SOURCE nodes in the hardware
graphs. Transactions leave the model when they encounter an instruction

routing them to a SINK node.

2.3.2. Routing Nodes
FORK, JOIN, and SPLIT are not permitted in PADS hardware

graphs, as this version of PADS does not support modeling of parallel

execution of programs.

2.3.3. Arithmetic Nodes

Most of the functions of the COMPUTE node are available in
the PADS software language constructs. However, the few that are not
available (such as PRINT, NTOKEN., QL, etc.) may be accessed by
creating a COMPUTE node in the hardware graphs and using it in the
software code just like any other hardware resource. The global, local,
and user-declared variables of PAWS are accessible through both the
PADS software language and the COMPUTE node.

CHANGE nodes are not used in PADS hardware graphs. The
reason is that PADS uses a transaction’s phase to determine which
hardware resource it will be sent to next, and thus PADS constantly
changes the transaction’s phase internally. Therefore, any phase change

‘nitiated at a hardware node would have no lasting effect, since the

76

phase would be automatically reset by PADS before the transaction

could reach the next hardware node.

The phase of a transaction may be changed within a
COMPUTE node by use of the statement “LETEQ TPHASE whatever”
just as any other variable may be changed. The COMPUTE node may
then be used within a software node in the same manner as any other
hardware resource node. However, such changes last only until the next
hardware resource is called, and so should be used only to implement
branching conditions internal to the PADS statements in the software

nodes.

2.3.4. INTERRUPT Nodes
The new phase assigned to a tranmsaction by an INTERRUPT

node lasts only until the transaction uses the next hardware node, as

explained in 2.3.3., above.

2.3.5. USER Nodes

PADS runs a version of PAWS with a rather large USER node
already implemented. This TUSER node, referred to in the resulting
PAWS model as “QQUSER”, is the central routing node that executes
the PADS software code, and determines to which hardware nodes
transactions are to be routed during execution of a model. The
FORTRAN code for the main routine of this USER node is found in
subroutine USS of the PAWS FORTRAN code, which is where all
USER node code must reside. PADS reserves “user-function-codes™ 1
and 2 for its own use. Therefore, if the user wishes to implement his
own USER node functions in PADS, he must be careful not 1to
overwrite the PADS USER-node code and to use user-function-codes

other than 1 or 2.

-

o

2.3.6. Subgraph Nodes

Subgraph nodes (ENTER, RETURN, and CALL nodes) are not
used in PADS hardware graphs. Each software and collapse graph in
PADS must have exactly one ENTER node and one RETURN node.
The CODE node has the same shape as the CALL node, and is used

only in software and collapse graphs.

3. Introduction to PADS
[The word “IPG” is replaced throughout by the word “graph”.]

In addition to the PAWS program file with the extension
«DAT”, a second file is produced with extension “.88S87. This file is
the ASCII representation of the software graphs. and is processed by the
post-translator (outside the graphical interface) to produce a final file
with extension *“UNI’, which is the actual “User-Node-Interpretable
Code”, or UNIC, that the PADS TUSER node interprets at simulation

time to determine the routing of transactions.

4.1 Command Line Format and Signon
PADS is invoked by typing
PADS graphfilename

in response to the operating system’s prompt, where graphfilename has

ne extension.

7 4.2. Translating to a PAWS model

The PADS translator produces two output text files. One
contains a PAWS program. Its name is the same as that of the graph
file being edited but its extension (file type) is “DAT”. The other file
that is created in the graph file directory is the software file, and it has

the same name as the previous file but with the extension “.SSS”.

78

During translation, error or warning messages may appear on
the screen to indicate that the PADS translator found an error or
irregularity in the set of graphs and where the problem was found.
These messages disappear when translation is completed, but may be
reviewed by running the translation again (without exiting PADS) or by
examining the .DAT and .SS5 files created by the translator (after
exiting PADS). Not all errors can be detected by the current translator;
some are detected by the post-translator (described below), some by
PAWS at compile time, and some only while the PAWS model is

el

running.

After PADS is exited, the software file must be retranslated
into the code that the PAWS model can interpret during model
simulation. This is accomplished by typing

mu graphfilename
in response to the operating system’s prompt, where graphfilename has
no extension. Mu is an abbreviation for “make UNIC.” and is the post-
translator for PADS software files. It calls a sequence of programs to
produce three intermediate files, all of which have the extension “.PAD”,
and each of which requires the previous file for its own creation. If an
error occurs at any point in the post-translation, mu halts execution,
displays an error message, and tells the user in which file the source of
the error may be found. Since the PADS software statements (as written
by the user in the CODE nodes) are echoed in each file produced by
mu just before their corresponding translations or error messages. the
error is usually easily retraced to its source. If no errors occur, the two
files with extension .DAT and .UNI may be uploaded or transferred to
some other computer that runs PAWS. (Currently, the version of PAWS
that runs PADS expects the UNIC file to have the name “unic”. This

79

renaming is easily accomplished with a batch file command to copy the

« UNT® file to file “unic” before PAWS is run.)

12. Using the HELP Tool
Currently, the messages produced in PADS with the HELP tool
are the same as those produced in GPSM. Therefore, the HELP message

produced for some of the items may not be much help. Future versions

of PADS will have the correct HELP messages.

13. Using the CRITIQUE Tool

The CRITIQUE tool has not been implemented in PADS (nor
in GPSM).

16. On-Line Help

Using the function keys (F1I, etc.) for syntax help produces
syntax descriptions ‘dentical to those issued for GPSM. In most cases.
these are almost the same as those needed for PADS. Future versions of

PADS will have the correct syntax descriptions.
17. Node Specifications

17.1 Hardware Node Specifications

Each hardware node in a PADS model must have a unique
name, which is entered by the user in the node’s name field. Since the
nodes generated internally by PADS have names beginning with the

letters “QQ”, the user should avoid names that begin with “QQ”.

As in GPSM, the description field for a hardware node consists

of a one-line comment and does not affect the node’s meaning.

The specification fields for hardware nodes in PADS have a

syntax that is very similar to that of their corresponding nodes 1in

80

GPSM. As in GPSM, the node name and type are omitted. Comment
lines in hardware nodes must begin with an exclamation point (!}, not a
percent sign (%). The reason is that a percent sign in PADS indicates a
gser-defined constant (see Section 20 of this manual for more details).
The phase number Is replaced by the word “ALL” or by a “mode
number.” which is a dollar sign followed by a single digit. The mode
number is used by the instructions in the PADS software graphs to
determine which section of the hardware node specification will be
followed: in this sense it acts like a PAWS phase. Categories are treated
the same as in PAWS and GPSM. If a pound sign (#) appears
anywhere in the REQUEST field, it is treated as a point of insertion of
a parameter value, and is considered equivalent to its corresponding LR]]
variable. (See the example that follows.) Semicolons need not appear in
hardware nodes and are ignored if specified. Finally, if the word
GEXPO appears on a line by itself in the REQUEST fleld of =a
SERVICE node. it adds the following lines to the hardware node

specification:

<ALL, $6> CONSTANT (LR[1])
<ALL, $7> ERLANG (LR[1] LR[2])
<ALL, $8> EXPO (LR[1] |

<ALL, $9> HYPER (LR[1] LR[2])

The purpose of GEXPO (Generalized EXPOnential) is to allow the user
to refer to the usage of SERVICE nodes in terms of mean and
coefficient of variation instead of mean and standard deviation. It 1is
also used to allow service resources to be included in a collapse graph,
since the collapse graph assumes all resources to have CONSTANT
usage under GEXPO (with coefficient of variation equal to 0). GEXPO
is not permitted for nodes other than SERVICE nodes. (Since the

collapse graphs may be eliminated in future versions of PADS, and the

81

GAMMA distribution in version 3.0 of PAWS provides basically the
same function as GEXPO, the GEXPO construct may be eliminated as

well in future versions of PADS.)

Notice that in the GEXPO example, if all instances of LR[1]
and LR[2] were replaced by pound signs, as in ... CONSTANT (#) ...
ERLANG (# #) .. etc., the code would have the same meaning.
This illustrates the use of pound signs in providing parameters for
hardware node usage. For example, if we define a SERVICE node,

named DISK. as follows:

! This is a comment.

DIMENSION 3 ! Declares DISK[1], DISK[2], DISK[3].

QUANTITY 1

QD DELAY

REQUEST <BATCH, $1> CONSTANT(#)
<INTER, $1> ERLANG(# #)
<ALL, $2> UNIFORM (1.0, #)
<ALL., ALL> EXPO (5.0

then DISK may be used within the PADS software graphs as follows:

USE DISK[1] ($1. 3.0)
Uses DISK[1] for CONSTANT (3.0), assuming the
iransaction’s category is BATCH. The value 3.0 is
passed to the hardware node through the transaction’s
local real variable LR[1].

USE DISK[1] ($1. 3.0, 0.5)
Uses DISK[1] for ERLANG (3.0, 0.5)., assuming the
iransaction’s category is INTER. The value 3.0 is
passed through LR([1], and 0.5 is passed through LR[2].

USE DISK[3] ($2, 8.5)
Uses DISK|3] for UNIFORM (1.0, 8.5) regardless of the

transaction’s category. Again, 8.5 s passed through
LR[1].

82

USE DISK[2] ($3) or USE DISK|[2] ($4) , ete.
Uses DISK[2] for EXPO(5.0), regardless of the
transaction’s category. No values are passed to any
LR[] variables. As DISK is defined above, $3 or $4
could be replaced by any mode number other than §1
or $2, and the statement would have the same effect.

If the last line in the definition of DISK were replaced by the
word “GEXPO”, the following uses of DISK could also be made:

USE DISK[2] (GEXPO. 5.0, 0.0)
Uses DISK[2] for CONSTANT(5.0), since the c.wv.
(coefficient of variation) is equal to 0.

USE DISK[2] (GEXPO. 5.0, 1.0)
Uses DISK[2] for EXPO(5.0), since the c.v. is equal to
1.0 (c.v = standard deviation (s.d.) divided by mean).

USE DISK[2] (GEXPO, 5.0, 0.5)
Uses DISK|[2] for ERLANG (5.0, 2.5), since c.v. (0.5) is
less than 1.0, and s.d. (2.5) equals mean (5.0) times
c.v. (0.5).

USE DISK[2] (GEXPO, 5.0, 1.5)
Uses DISK[2] for HYPER (5.0, 7.5), since c.v. (1.5) is
greater than 1.0, and s.d. (7.5) equals mean (5.0) times
c.v. (1.3).
When using GEXPO as part of a hardware SERVICE node definition,
care must be taken not to define other parts of the node that will
interfere with the automatically defined GEXPO sections mentioned
above. In particular, a section defined as <ALL,ALL> will produce a
PAWS compilation error when combined with the GEXPO sections,
since those sections always appear after any other defined sections. See
the PAWS user’s manual [12] for more details on the meaning and

proper placement of the kevword ALL.

B3

While GEXPO cannot be specified in the definition of non-
SERVICE hardware nodes,. the “mode” numbers are used in the same
way. For example, if the ALLOCATE node named “GETTOKEN” is
defined as:

QUANTITY 10 MSGBUF

QD FCFS

REQUEST <ALL, $1> CONSTANT(3.0)
<ALL, $2> CONSTANT(#)

then the PADS software statement “USE GETTOKEN (§1)” would
cause three tokens of type MSGBUF to be allocated to the current
transaction, while “USE GETTOKEN ($2,4)” would cause four of those

tokens to be allocated.

The word USE is always optional within a PADS software
statement, so that “GETTOKEN($1)” means the same as “USE
GETTOKEN($1)”, and “USE DISK[2] (GEXPO, 5.0, 1.0)” means the
same thing as “DISK[2] (GEXPO. 5.0, 1.0)". Further details on PADS

software syntax may be found in Section 17.2 of this user’s manual.

The SOURCE node is the only hardware node that has no
PADS mode number speééﬁed in place of a GPSM phase number. Its
syntax is identical to that for the SOURCE node in GPSM; however,
the “phase” number is treated as an ‘entry point” number. The entry
point number corresponds to the identical number following a SOURCE
statement in the PADS software graph. For example, if the SOURCE

node named SRC is defined as:

REQUEST <BATCH, 3> EXPO(1.0)
<BATCH, 4> CONSTANT(6.0)
<BATCH, 7> HYPER(1.0, 10.0)
<INTER, 4> EXPO(2.0)

84

then the PADS software statement “SOURCE 3" will cause BATCH
transactions to enter the software model at an exponentially distributed
rate with a mean value of 1.0. These transactions will begin executing
the software statements following the “SOURCE 3" statement. Similarly,
the statement “SOURCE 4" will cause transactions of type BATCH and
INTER to enter the software model at their respective rates of arrival.
all of which will begin executing the software statements following the
“«gOURCE 4" statement. While entry point numbers need not be unique
within or among SOURCE nodes. they must be unique within the set of
all PADS software SOURCE statements within a model (e.g.. the
statement “SOURCE 4”7 may not appear more than once throughout the
model). The entry point number must be =a literal positive integer:
currently it may have a value between 1 and 50 inclusive, the upper
limit being determined by the value of the FORTRAN parameter

“mxinjb” in subroutine “uss”.

Notice that the name of the SOURCE node is not referenced in
the SOURCE statement. It would have made no difference if the four
<category, entry-point> clauses had been placed in separate SOURCE
nodes. In fact, the use of multiple SOURCE nodes (which must. of
course, have distinct names) can act as an aid in the gathering and
grouping of statistics, as can the use of named SINK nodes and

BRANCH nodes in the PADS hardware graphs.

17.2 Software Node Specifications

Software nodes need not have unigue names, Or any names at
all. Any names or descriptions specified are for the user’s Owm

documentation purposes only.

85

The specification fields for most software nodes in PADS
contain statements in the PADS software language. The ENTER, EXIT
and CODE nodes contain PADS software statements which may
optionally be grouped into category sections. Category sections are

explained later in this section of the manual.

The FOR nodes must contain exactly one FOR statement that
is not paired with an ENDFOR statement: the ENDFOR nodes may
contain at most one unpaired ENDFOR statement (if none is found, an
ENDFOR is inserted at the end of the node during translation). FOR
and ENDFOR nodes may contain other statements as well, but it is
customary for them to contain only the statements just described. If a
FOR node contains additional statements. only the ones after the
unpaired FOR statement may be grouped into category sections. If an
ENDFOR node contains statements that are grouped into category
sections, they must all appear after an unpaired ENDFOR statement,

which must then be explicitly written.

The following list describes the statements available in the
PADS software language. Portions in braces {} are optional; the braces
themselves are not included in the statements. PADS keywords are in
UPPERCASE and should be typed as shown (although PADS will
accept either upper- or lowercase); words in lowercase italics, possibly
containing hyphens, are defined following each statement and symbolize
other constructs to be entered at that point in the statement. If a set of
symbols appears between the pairs of characters “[+” and “]”, as in

El

[+ construct +], it means that the construct may be repeated one or

more times; the “[4+” and “+]” themselves are not included in the

statements. Quotation marks are never included in PADS software

86

statements. Other symbols (parentheses, pound signs, etc.) are to be

entered as shown.

IF condition {THEN}
statement-list

{ELSE

statement-list }

ENDIF

A statement-list is a series of one or more of the PADS software

language statements, and condition may have one of the following forms:

value arithcomp value
{NOT} boolean
{NOT} boolean boolcomp {NOT} boolean

The entire condition may be surrounded by parentheses, but parentheses
may not be used to separate the parts of a condition, including the
word “NOT”. from each other. Therefore, the parentheses may be

omitted without changing condition’s meaning.

A wvalue is a numeric Or a distribution.

A numeric may be any one of the following: LI[sub], LR[sub],
G1|subl, GR[sub], RANDOM, TIME, TID, TPHASE, unsigned-integer,
unsigned-real, identifier, or #identifier. The last construct in this list,
#identifier, corresponds to the parameter of the same name in the
PARMS statement (described later) for the current software graph. The
construct before it, identifier, refers to a user-declared integer or real
variable, which must be declared in the specification of the current
PADS file (see Section 20 of this user’s manual). The unsigned-integer
and unsigned-real are strings of digits (and other characters, in the
unsigned-real) of up to fourteen characters representing legal integer and

real values, respectively. The unsigned-real may be written in

87

FORTRAN “E-format” as well A user-defined constant (percent sign
followed by an identifier) of type integer or real may always be
substituted for an unsigned-integer and unsigned-real, respectively. The
other numeric constructs refer to the same variables as their PAWS
counterparts, and are explained in [12]. However, the local integer
variables LI[1] through LI[4] have uses internal to PADS, and thus
should not have their values altered by any software statements. A sub
may be an unsigned-integer or an identifier representing a user-declared
integer or real (if real, its value is automatically truncated). Finally, a
numeric may always be preceded by a prefiz. A prefiz is an optional
plus or minus sign, optionally followed by “FIX” or “FLOAT”.
Parentheses are not used after the prefiz. The word “FLOAT” has no
effect, since type conversion from integer to real s performed
automatically in PADS. The word “FIX” is used to truncate a real

value, but it must not be used within a sub.

A distribution may be any of the following:

UNIFORM (numeric , numeric)
HYPER (numeric , numeric)
ERLANG (numeric . numeric)
EXPO (numeric)

CONSTANT (numeric)

preceded optionally by a prefiz, as explained above. The commas are
optional; the parentheses are mandatory. They have the same meaning
as in PAWS. Other PAWS distributions (such as EMPIRICAL) may
have their values computed by using a COMPUTE node in the

hardware graphs (see the USE statement. below).

An arithcomp is one of the following six symbols: = (is equal

to), > (is greater than), < (is less than), <> (is not equal to), <= (is

B8

not greater than), >= (is not less than). The last three symbols may

not contain any embedded spaces.

A boolean may be any of the following: TRUE, FALSE,
GBlsub], GI[sub], or a user-defined constant of type boolean. These

symbols have the same meaning as in PAWS.

A boolcomp is one of the following four symbols: AND, OR, =
(is equivalent to), <> (is mnot equivalent to). These symbols may not

contain any embedded spaces.

The IF statement has the usual semantic effect, similar to that

of the structured IF in FORTRAN-77. IF statements may be nested.

LET boolvar = condition
LET numvar = value {op value}

A boolvar is either GB[sub] or GI[subl. A numvar is one of the following:
LI[sub], LR[sub], GI[sub], GR[sub], or an {dentifier representing a user-
declared integer or real variable. An op 1s one of the following four
symbols: + (addition), - (subtraction), * (multiplication). or / (division).
The keyword “LET” may mnot be omitted. The “=" symbol may be

b

replaced by “=" (as in Pascal) if desired.

The LET statement assigns the value of the expression on the

right side of the “=" (or “:=") symbol to the variable on the left side.

USE hu-resource { [numeric] } { (parameter-list) }

The keyword “USE” is optional and may be omitted. The hw-resource is

the name of a hardware resource node that has been defined by the

89

user in the hardware graph. If specified, {numeric] refers to the subscript
of a hardware resource node with DIMENSION greater than one. The

parameter-list, if specified, is of one of the two forms

({$mode} {numeric-list})
or

(GEXPO {,} numeric {.} unsigned-real)

The second form (GEXPO...) was explained in Section 17.1 of this user’s
manual. In the first form, $mode is a dollar sign (§) followed by a
single digit, and numeric-list is a list of numerics, separated by commas
or blanks. Either $mode or numeric-list may be omitted in the first
form; if both are omitted, then so is the entire parameter-list (i.e., no
empty parentheses pairs (] are allowed). The $mode corresponds to the
same number in the hardware resource definition and indicates which
portion of the definition is to be used by the transaction. If no modes
are specified in the hardware node, or if the only mode specified is
“«ALL”, then $mode should be omitted from the parameter-list. The
‘tems in numeric-list refer, in order, to the values to be substituted for
the “pound signs” in the corresponding hardware resource node

definition, as explained in Section 17.1 of this user’s manual.

FOR (count) {TIMES}
statement-list

ENDFOR

The count is a numeric or a disirthution as defined above, and
statement-list is as defined above. FOR statements may be nested. The
meaning of this statement is similar to that of “FOR I := 1 TO count
DO statement-list” in Pascal. The value of count is computed and
truncated to an integer, and if the result is less than one, the construct
has no effect and is skipped. Otherwise, the instructions in statement-list

are executed count times.

90

Since the FOR statement contains no explicitly defined index
variable, the wuser may access the number of iterations yet to be
executed in the current FOR statement with the identifier
“«,OOPCOUNT”. *“LOOPCOUNT” may be used, within the
staternent-list of a FOR statement, anywhere that an identifier
representing a user-defined integer variable may be used, except that its
value may not be altered (e.g. LOOPCOUNT may not be used on the
left side of the equals sign in a LET statement.) LOOPCOUNT refers
to the number of iterations (not including the current one) yet to be
performed in the innermost FOR statement at the instruction where
LOOPCOUNT is found. If the FOR statements are nested, and the user
needs to access this same value for an outer FOR statement while
within an inner ome, he will need to use an expression similar to “LET
LI[5] = LOOPCOUNT” while in the outer FOR statement to save its
value for access in the inner one. (FOR statements may be replaced

with IF statements and GOTOs, if explicit index variables are required.)

GOTO number

LABEL number

Each number is an unsigned integer between 0 and 32767, which must
be unique for each LABEL statement within a given software node. The
GOTO statement passes control to the LABEL statement with the
corresponding number in the same software node; a GOTO may mnot

pass control to a statement in another software node.

RAND
[+ probability : statement-list ; +]
{ OTHERS : statement-list {;} }
ENDRAND

Each probability is a numeric or a distribution as defined above, (but

kS

91

representing a real numerical value between 0.0 and 1.0), and
siatement-list is defined as above (except that RAND constructs may not
be nested). The colons are optional. The semicolons are required, except
that the semicolon before the word ENDRAND may be omitted. The
semicolons indicate the end of each statement-list, and signal to the
PADS compiler that a probability (or the word “OTHERS”) is the next
thing that will be written; they are mot use to separate the statements
within a statement-list. If the optional OTHERS clause is included, the
probabﬂities must sum to not more than 1.0; otherwise. they must sum
1o exactly 1.0. One of the statement-lists is chosen and executed at
random; the probability that a statement-list is chosen Is equal to the
probability value preceding it, the value of OTHERS being considered
equal to 1.0 minus the sum of the other probabilities in the RAND

construct.

PARMS ([+ #ideniifier +])

The #identifiers are separated from each other by commas or by blanks.
Each #identifier in the list refers to a parameter of the current software
graph. They are given values when the software graph is called by the
CALL statement (described below) in another software graph: they may
not be assigned values directly by any other statement within a software
graph. (If different values are to be returned to a calling graph, the
unused local variables of a transaction may be used for this purpose.)
The PARMS statement need not be the first statement encountered by
2 transaction in the called software graph, but it must be encountered
by the transaction before any other statement containing one of the
#identifiers is encountered. 1f the called software graph has mno

parameters, the entire PARMS statement should be omitted.

92

CALL sw-module-name { (value-list } }

The sw-module-name is the name of any other declared software graph.
If specified, (value-list) is a list of one or more values separated by
commas or blanks, and enclosed in parentheses. A wvalue is a numeric or
a distributton. This statement causes control to pass to the first line of
the ENTER node of the called graph. The values in value-list, if it 1is
specified, are assigned in order to the parameters specified in the
PARMS statement of the called software graph; if the called graph has
no PARMS statement, then value-list and its surrounding parentheses
should be omitted as well. Control returns to the line after the CALL

when complete.

EXIT

causes a transaction to leave the current software graph with no further
processing. If the current graph was CALLed from another graph,
control passes to the statement following that CALL statement. If no
graph called the current one, the EXIT statement produces an “empty

stack” run-time error in PADS.

SINK

causes a transaction to be routed to the default hardware SINK node.
Therefore, this statement is equivalent to “{USE} QQSINK”, since
QQSINK is the name of the default hardware SINK node in PADS.
Routing a transaction to any SINK node causes it to clear all its run-
time and parameter stacks and immediately leave the entire model with

no further processing.

Comments are preceded by an exclamation point and continue

to the end of the line.

As mentioned earlier in this section, PADS software statements
may be grouped by category sections within each software node. Each
category section begins with the words “CAT cat-id’, although the last
category section in a node may begin with the word “ALL” instead.
Each cat-id is the name of a category that has been declared in the
CATEGORIES section of the current PADS file specification, as

explained in Section 20 of this user’s manual.

Here is an illustration of the use of category sections within a

software node:

'‘Beginning of software node
statement-list-1
CAT BATCH
statement-list-2
CAT INTER
statement-list-8
ALL
statement-list-4

‘End of software node

In the above illustration, a transaction entering the software node first
executes all statements in statement-list-1. 1If the transaction’s category is
BATCH, it will then execute all statements in siatement-lisi-2 and leave
the software node. However, if the transaction’s category is INTER. it
will execute all statements in statement-lisi-3 and leave the software
node. Finally, if the transaction’s category is anyvthing but BATCH or
INTER, it will execute all statements in statement-list-4 and leave the

software node.

This illustration assumes that flow of control is not interrupted
by GOTOs, SINKs, etc. within the statement-lists. 1f statement-list-2

above is replaced by the statement “GOTO 10" and the first statement

94

‘n statement-list-3 is “LABEL 107, then all transactions of category
BATCH or INTER will execute statement-list-1 and statement-list-3 and
leave the software node. The same would be true if statement-list-3
above is replaced by the statement “«GOTO 107 and the first statement
in statement-list-2 is “LABEL 107. (This would not result in an infinite
loop. since every “CAT” or “ALL” statement after the first one in the
node causes a transaction whose category has already been matched to
leave the software node.) On the other hand, if statement-list-2 is deleted
in the original illustration, then a transaction of category BATCH will

execute only statement-lisi-1 before leaving the software node.

The limitations on the use of category sections in FOR and

ENDFOR nodes were described at the beginning of this section.

17.2.1 Software Arc Specifications

Software nodes are connected by software arcs. The labels and
specifications of software arcs define under what conditions a transaction
will begin executing the statements in a software node after leaving
another software node. Each arc has exactly one source node {or “from-

node”) and one destination node (or “to-node”).

Several types of arcs are available, representing different types

of branching or flow control.

An unconditional branch (or GOTO) from a node 1is
represented by a single arc from that node to the destination node. This
arc has an empty specification. If software node A is connected to
software node B by an unconditional branch, then all transactions

finishing the instructions in A will begin executing the instructions in B.

85

A conditional branch from a node A to a set C of nodes is
represented by a set of “IF-arcs,” each of which has A as its from-node
and a distinct node in C as its to-node. The specification of each of the
IF-arcs begins with the word “IF” or “IFnnn’, where nnn is a series of
one to three decimal digits; however, exactly one of the IF-arcs may
begin with the word “ELSE”, which is considered equivalent to “IF9997.
The purpose of nnn is to control the order of evaluation of the IF-arcs.
¥ nnn is omitted, it is considered equal to zero. If more than one arc
has the same value for nnn, e.g., if all arcs begin with “IF”, the PADS
translator fixes an arbitrary order for their evaluation. However, no
more than one IF-arc from a node may have nnn equal to 999 (i.e., =
et of IF arcs may have no more than one “ELSE” arc). Following the
word “IF" or “IFnnn” (but not the word “ELSE” or “IF999") is a
condition as defined in Section 17.2 of this user’s manual, defining under
what condition a transaction will follow that arc after completing the
instructions in node A. At run time (i.e., while the PADS model is
being simulated), the conditions are evaluated in the order described
above, and the first condition that evaluates to TRUE results in the
iransaction following the corresponding arc. If no condition is found to
be TRUE, the “ELSE” or “IF999” arc is followed if there is one; if
there is no such arc, a PADS run-time error (*“ERR=NOELSE") occurs,

and the model simulation terminates.

A probabilistic branch from a node A to a set C of nodes 1is
also represented by a set of arcs, called “RAND arcs.” The specification
of each RAND arc in the set is a probability (i.e., a numeric or a
distribution) as defined in Section 17.2 of this user’s manual; however, at
most one arc in the set may have the word “OTHERS” instead of a

probability. The result of adding the values of each probability in a set of

96

RAND-arcs must be exactly 1.0, unless an arc marked “OTHERS” is
included in the set, in which case the sum may be no more than 1.0.
The probability that an arc is traversed is equivalent to the value of its
attached probability at run time. If no “OTHERS” arc is included and
the sum of the probability values at run time is less than 1.0, a PADS
run-time error “ERR=NOPROBAB” may result.

A software graph containing FOR and ENDFOR nodes has two
additional types of arcs: LOOP arcs and EXIT arcs. A LOOP arc is a
specially labeled arc from an ENDFOR node to its corresponding FOR
node. The first four letters in the label of a LOOP arc must be
“LOOP”. As long as the FOR-loop is to be executed by a transaction,
that transaction follows the LOOP arc when it leaves the ENDFOR
node. After its last pass through the loop. the transaction follows a
different arc from the ENDFOR node, depending on the type of
branching represented by the other arcs from that ENDFOR node. An
EXIT arc is a special case of a RAND-, IF-, or GOTO-arc, one which
has “EXIT” as the first four letters of its label. This label is required
whenever the traversal of an arc results in the premature exit of a

FOR-loop.

A single physical arc between two nodes may represent several
different types of branching, i.e., one type of branching for each of
several different transaction categories. For example, if the arc from

node A to node B has the following specification:

CAT BATCH IF GI2] > 4
CAT INTER 0.45
ALL IF LB[1]

and the arc from node A to node C has this specification:

CAT BATCH ELSE
ALL ELSE

and the arc from node A to node D has this specification:
CAT INTER OTHERS

and there are no other arcs leaving node A, then all transactions leaving
node A will act as follows: The BATCH transactions will go to node B
if GI[2] is greater than four, and to node C otherwise; the INTER
transactions will go to node B with probability 0.45, and to node D
with probability 0.55; the transactions of all other categories will go to

node B if LB[1] is true, and to node C otherwise.

The word “ALL” may be specified in place of “CAT
category-name” to refer only to categories that have not been specified
in any other arc from the same from-node. In the specification of the
arc from A to C, “ALL” cannot refer to category INTER, since this
category is specified in at least one other arc from node A. Mixing IF-
and RAND-arc specifications from the same node for the same category

results in an error at translation time.

A LOOP arc is the only arc that may not have “CAT” or

“ALL” (or any other significant words) in its specification.

17.8 Collapse Node and Arc Specifications
A collapse graph has exactly one ENTER node and one
RETURN node, both of which have blank specifications. The other
nodes are all of type CODE and have specifications whose lines are all
of the following form:
freq \ resource-id { [numeric] } (total-req)

Here, resource-id is the name of the hardware resource being used

o8

(which must be of type SERVICE and have the word “GEXPO” as
part of its specification), [numeric] is the subscript (if any) of that
resource, total-req is an unsigned-real representing the total amount of
service time that a transaction requests from that resource while
(conceptually) within the collapse node, and freg is an wunsigned-integer
representing the number of times the transaction visits that resource
while within the collapse node. The letter “C” may be used in place of
freg, in which case the SERVICE resource is treated like a CPU and is
requested n+1 times, where n is the sum of the fregs (not including

“C”s) in that collapse node.

The arcs connecting the nodes in a collapse graph all have
specifications consisting of unsigned-reals whose values are between 0.0

and 1.0; a blank specification defaults to 1.0.

[The method of collapsing and an example of a collapsed graph

are described in this thesis.]

18. Arc Specifications
[These are explained in Sections 17.2.1 and 17.3 of this user’s

manual.]

19. Graph Specifications

There may be specifications attached to each graph in PADS.
The primary use of graph specifications is to store comment lines
explaining the graph or its purpose. The specifications (and description
fields) of hardware, software, and collapse graphs are ignored by PADS,
and may contain any text whatsoever. The name field of a graph is
used to determine the type of a graph: hardware graphs must have

names beginning with the letters “HARD", collapse graphs must have

99

names beginning with the letters “COLL”, and software graphs must
have names beginning with neither “HARD” nor “COLL”. In addition,
the name of a software or collapse graph allows it to be called by a
software “CALL” statement; the name of a hardware graph has no

further significance.

20. File Specifications

The specifications attached to a file in PADS are used to
provide information about the model as a whole. In particular, the file
specification contains declarations for objects used anywhere within the
hardware, software, or collapse graphs of the PADS model. The detailed
syntax for each of the declarations listed below (except CONSTANTS) is
:dentical to that used in PAWS and is described in [12]. The overall

syntax for the file specification is as follows:

CONSTANTS constant-list :
OPTIONS EFORMAT ;
INTEGERS [+ int-scalar +] ;
REALS [+ real-scalar +] ;
CATEGORIES [+ category +] ;
TOKENS [+ token +] ;
MEMORIES [+ memory +] ;
INITIAL pop

STATISTICS report :

RUN run-stmt

Any combination of these sections may appear in the file specification
and in any order. None of them are required. However, each of the
keywords that begin a section (CONSTANTS, OPTIONS, INTEGERS,
etc.) must begin the line on which they are placed, and each section
must end with a semicolon. Comments in the specification begin with an

exclamation point and continue to the end of the line.

The syntax for the constant-list is a series of constant

definitions, each of which has the form

100

Y%identifier = constant-value
where constant-value may be an unsigned-integer, an unsigned-real, the
string “TRUE”, or the string “FALSE” (the quotation marks are mot
entered as part of the definition). Therefore, the form of the
constant-value implicitly determines whether the constant is integer, real,
or boolean. Constant definitions should not be split across lines,
although there may be more than one constant definition per line. The
percent sign at the beginning of a constant name is part of the name
and is included whenever the constant is .ﬁsed in the model; it signals
the PADS translator to replace that %identifier, wherever it appears,
with the appropriate constant-value. Therefore, “ZFNUMSER”, a constant,
is not the same as “NUMSER”, a user-defined variable, and both may
be used within the same model. Constants may not be redefined or have

new values assigned to them anywhere in the model.

Bibliography

1. Aho, Alfred V. and Ullman, Jeffrey D. Principles of Comptler
Design. Addison-Wesley Publishing Company, Reading, Massachusetts,
1977.

2. Anderson, Gordon E. “The Coordinated Use of Five Performance
Evaluation Methodologies”. Communications of the ACM 27, 2
(February 1984), 119-125.

3. Chandy, KM., et al. The Use of Performance Models in Systematic
Design. Proceedings of the National Computer Conference, AFIPS,
Houston, June, 1982, pp. 251-256.

4. Denning, Peter J. and Buzen, Jeffrey P. “"The Operational Analysis
of Queueing Network Models”. Computing Surveys 10, 3 (September
1978), 236-237.

5. Franklin, Jeffrey L., et al. Software Analysis Tools: A Method for
Developing Performance Model Inputs. Proceedings of CMG 85, Dallas,
December, 1985, pp. 400-410.

6. Garbo, Martin J. and Bingham, Paris E. Disk System Modeling in
a2 CYBER Environment. Proceedings of the CMG XV International
Conference, Computer Measurement Group, December, 1984, pp. 181-188.

m GPSM User’s Manual. Information Research Associates, Austin,
Texas, 1987.

8. Information Research Associates. Graphical Programming for
Simulation Models of Computer Systems. Final Project Report, NSF
SBIR - 1983 Phase I, Award Number DCR-8360779, Information
Research Associates, July 31, 1984.

101

9. Kelly, John Clifford. The Theory of Repetition Networks with
Application to Computer Programs. Ph.D. Th., Purdue University,
December 1974.

10. Neuse, D. M. and Browne, J. C. High Level Simulation of
Electronic Systems. Final Report, Contract Number N60921-85-C-A026,
Report Number A003, Information Research Associates, July 26, 1985.

11. Neuse, D. M., et al. Definition of Software Module Interface, Task
1 of Navy SBIR Phase II Project: High Level Simulation of Electronic
Systems. Technical Interim Report, Contract Number N60921-86-C-0145,
Report Number A001, Information Research Associates, October 15,
1986.

12. PAWS 2.0 User’s Manual. Information Research Associates,
Austin, Texas, 1984.

13. Seelinger, Deborah J. Application of PAWS in the Sperry Univac
Environment. Proceedings of the CMG XIII International Conference,
Computer Measurement Group, December, 1982, pp. 200-219.

14. Shampine, Lawrence F. and Allen, Richard C., Jr. Numeriecal
Computing: An Introduction. W. B. Saunders Company, Philadelphia,
1073. pp. 252-235.

15. Smith, Connie U. and Browne, J. C. Performance Specfications
and Analysis of Software Designs. Proceedings of the Conference on

Simulation Measurement and Modeling of Computer Systems, Boulder,
August, 1970.

16. Smith, Connie Umland. The Prediction and Evaluation of the
Performance of Software from Eztended Design Specifications. Ph.D.
Th., The University of Texas at Austin, August 1980.

17. Smith, Connie U. Software Performance Engineering. Proceedings
of the Computer Measurement Group Conference XII, December, 1981,
pp. 5-14.

18. Smith, C. U. and Browne, J. C. Performance Engineering of
Software Systems: A Case Study. Proceedings of the National Computer
Conference, AFIPS, Houston, June, 1982, pp. 217-224.

19. Smith, Connie U. Experience with Tools for Software Performance
Engineering. Proceedings of CMG 85, Dallas, December, 1985, pp.
411-417.

103

20. Smith, Connie U. The Evolution of Software Performance
Engineering: A Survey. Proceedings of the Fall Joint Computer
Conference, Dallas, November, 1986, pp. 778-783.

21. Smith, Connie U. ”Performance Engineering: A Bibliography”.
CMG Transactions 55 (Winter 1987), 115-122.

22. Upchurch, E. T. Modeling Packet Switched Interprocessor
Communications. Proceedings of the 15th Annual Modeling and
Simulation Conference, April, 1984.

23. Upchurch, E. T. Top-Down Performance Modeling of a Large C°I
Hardware/Software System Using PAWS. Proceedings of the 15th
Annual Modeling and Simulation Conference, April, 1984.

VITA

Dana Mark Whiting was born in Cincinnati, Ohio, on June 27, 1959,
and is the son of Margaret Puccini Whiting and Dana Cutler Whiting.
After completing his work at Anderson High School, Cincinnati, Ohio, in
1077, he entered Wabash College in Crawfordsville, Indiana. He received
the degree of Bachelor of Arts, Summa Cum Laude, from Wabash
College in May, 1981, and entered the Graduate School of the University
of Texas with a University Fellowship in August of that year. While
attending school, he worked as a teaching assistant from 1982 to 1986, a
Summer Associate for IBM Corporation from 1982 to 1984, and a Senior
Analyst for Information Research Associates from 1984 to 1987. He is a
member of Phi Beta Kappa, Phi Kappa Phi, and the Mathematical

Association of America.

Permanent Address: 502 Longspur Blvd., Apt. 6-203
Austin, Texas 78753

This thesis was typed by the author.

	tr87001-20
	tr87001-22

