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Abstract

The traffic characteristics of various distributed join algorithms on the Hypercube are analyzed. It is
shown that, regardless of which join strategy is employed, the network bandwidth requirements of the
computation and collection phases are radically different. This imbalance prevents these two phases from
being pipelined (overlapped). To alleviate this problem, the HyperKYKLOS Network is proposed. The

topology of this network is defined and a brief description of the 1/0 nodes presently under construction is
included.
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1 Introduction

To meet the objectives of developing an external memory system commensurate with the
computational power of the next generation of host machines, we have been investigating! and
refining an architecture initially proposed in [BROWS5]. As noted in that paper, the architecture
lends itself to parallel access of databases, and to parallel operations on data objects that are

being streamed from secondary storage toward the host.

The gross architecture of the I/O Engine is shown in Fig. 1. The architecture is partitioned into
four major levels:

e Host processors, which can be either general purpose or specialized processors

e A set of "Node Mappers" which make an associative translation from requested
objects (eg. relation names, attribute name-value pairs and tuples) to base (I/O)
nodes where the objects are stored by generating a routing tag for the
Interconnection Network.

e An Interconnection Network which couples host and base(I/O) processors, and also
interconnects base processors. The ICN topology proposed is based on the
KYKLOS[MENES85a] multiple-tree topology. The switch nodes in this network also

incorporate logic and buffering to support merge operations on data streams.

e I/O nodes each consisting of a general purpose microprocessor, associative disk
cache, a sort engine, and associated conventional moving-head disks.

The ICN topology, as discussed in Section 3 of this paper, allows the I/O nodes to be
interconnected as a Hypercube, with tree connections from this level of the system to the host

level.

Two features of the Hypercube topology are attractive in considering parallel database
processing such as the join operation on relations that are partitioned and distributed over the 1/O
nodes:

1. Topological Properties: The average and worst case distances in the Hypercube
are bounded by n=log,N in a cube with N nodes?. Also, the maximum traffic

carried by a link under the assumption of uniform message distribution is O(N).

IWork reported in this paper was partially supported under ONR grant NO0014-86-K-0499

Zn and logN are used interchangeably
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2. Degrees of Freedom: The fanout of the Hypercube is uniformly n i.e. any given
node has n nearest neighbors, one per dimension. This facilitates broadcast of
attribute values or relation fragments in O(log N) time by using one dimension per
transmission cycle.

Although a Hypercube lends itself to efficient parallel computation of the basic relational
operations (selection, projection, join, set operations), it presents major potential problems
during the collection phase of database transactions when the partial results must be collected at

a given node.

Section 2 of this paper analyzes the traffic properties of various join methods in a Hypercube
and compares traffic loads during the compute phase of a database transaction with traffic loads
generated during the collection phase. This analysis shows the existence of a serious imbalance

in traffic loads between the two phases, and motivates our proposal for the HyperKYKIL.OS
topology discussed in Section 3.

We are pursuing further studies and development of a HyperKYKLOS organized database

engine. In Section 4 of this paper, we describe the architecture of a prototype I/O node which 1is

now under development.

2 Traffic Properties of Join and Merge Operations in a Hypercube

2.1 Preliminaries

Every node in the N-cube consists of a processor, main memory and secondary storage; it has
n incoming channels and n outgoing channels. It is assumed that one or more host machines is
interfaced to a Hypercube node. The relational database is divided into disjoint horizontal

fragments and is distributed uniformly among the N processors.

Formally, the database D, may be viewed as a set of relations, {R,R,, ... R }. Each relation R;
is partitioned int N disjoint horizontal fragments which are stored one per node. We denote by
1., the j* fragment of R, stored at node j satisfying
R;=Uonalyp 1=1,..,xand

1; N1, =0, j#k

Evaluation of a database query proceeds in three major phases:



e Phase ] Transmission of the optimized query to all the processors. This is followed

by access to disk or cache to obtain the desired relation(s).
e Phase 2 (Computation Phase) Evaluation of partial results at each processor.

e Phase 3 (Collection Phase) Transmission of the results to the host.

The transmission involved in Phase 1 is negligible and hence will not be factored into the
traffic computation. Since most queries require the results to be sorted, Phase 3 requires a global

sort of the partial results.

Any query can be decomposed into a sequence of selections, projections and joins. Of these,
the join is the only operation that requires transmission between processors and hence will be

considered in some detail.

We next discuss the details of the implementation of widely used join algorithms [VALID&4]
on the Hypercube. Under consideration will be the join between R, and R, where IR | < [R | and
the joining attribute is y. We use lyl to denote the size of the join attribute. Also t, and t, will be
used to denote the width of tuples of relations R, and R,. Finally, by broadcast of a data item x
is meant the transmission of x from a node i to every other node in the network. An N-broadcast
of a set of data items {X,X,, ... , X} is the transmission of X; to network node j, 0 < j <

N. Note that a broadcast is a special case of an N-broadcast in which x=X, 0<i<N.

2.2 Join Strategies

2.2.1 Nested Loop Join

i) Every node, i, broadcasts 1,,; using shortest path routing.

il) At each node i:

e Computer,; N 1,
e On receipt of 1, compute r,; ) 1,,;, O<j<N, j=i.
e Compute Ugy_; [1,; N 1]
Analysis Step i) involves communication and Step ii) involves computation. Hence the

message traffic in this algorithm is due to Step i). Since broadcast of each fragment involves

N-1 links and there are N such broadcasts, the average traffic through a single link in an n-cube



(with Nn links3) is given by

T = NN-1)
al (Nn)
== W-1) fragments/link
n

Since R has t, bytes/tuple and the whole relation is distributed over the N nodes of the

Hypercube, the size of each fragmentis (IR t,) /N. Hence

(N-DIR Iz, bytes/link

b 1e8/1inkK.

o Nn Y .
ForN>>1,
R\, ,
T, ~ bytes/link.
n
2.2.2 Sort Merge Join

This algorithm is similar to the Nested Loop Join in that fragments r,,; are broadcast. However,

both r,, and 1,,; are sorted at each site i before step 1 of the Nested Loop Join Algorithm.

Analysis While the computational requirements are somewhat different, the traffic, T, for this
algorithm is identical to that for the Nested Loop Join Algorithm i.e.
Tsm = Tnl’

2.2.3 Semi-Join based Algorithm

i) Every node, 1, computes ny(rmi) and Tcy(rm-> and broadcasts each of these lists to every other
node.

ii) At each node i:
e On receipt of ny(rmj) and ny(rﬂj), j#1i, compute the semijoins
1, K7, andr,,; K m,(r,)

e Perform an N-broadcast of

1, Ko, T, Km0y, .0 1, X7, ()}

e On receiving 1, K 7(r,), 1#], compute [r,; K (T,0)] M 1, W (1,1

3we assume that each edge in the Hypercube is comprised of two bidirectional links or channels



e Finally compute Uiy 1 {[(r,; K 7,(r, )] N [1,,; K 70,(r, )1}

Analysis Let ly! be the size in bytes of the join attribute y. Part (i) of this algorithm involves a
broadcast of y. Hence the average traffic through this phase, Tg;; may be derived in a manner

similar to that for T,

iR o
Ty, ~ -2 byiesflink
7

Number of distinct values for y in r,

where ©, =
y Ir,;l

ie. Ir, /o is the number of distinct attribute values fory inr, ..

Part (i) of this algorithm involves an N-broadcast. Let each of the N-1 items being broadcast
traverse n’ links on the average. Since there are N such broadcasts, the average traffic per link,

Tgpp0 18

Ty, = @{%ﬁ items/link.

The average distance between a pair of Hypercube nodes is

;o z . 7 - - Nn
ros ;l(i),/(N D =55

Upon substitution of n’,

T, = N2 items/link.

Also each item is a semi-join output i.e. the tuples of R, that participate in a join at another site.
Hence the traffic in this phase, Ty, is given by

R Iz, G,

mom

bytes/link.

TSJZ

where G, is the join selectivity



Ir,; M o7, ji

r,, X r, jl

2.2.4 Hash-based Join

ie. ©, =

This method essentially involves applying a hash function to the fragments of both relations at
each node. For each relation, the function yields a set of hashed fragments, one for each node in

the system.

These fragments are then N-broadcast. Since the hashing is done on the join attribute, a

fragment of R_ arriving at node i joins only with fragments of R, arriving at that node and no

other.

Analysis Assuming that the hash function splits the relation fragments uniformly, each N-
broadcast will involve a fragment of size
R,z IR Iz,
or .
N? N?

Since the traffic for each of the 2 N-broadcasts is N/2 hash buckets per link per relation as

explained in the derivation of Tg,,, the traffic T, for this algorithm is

T IR, )z, +IR z, bytes/link
HE = T vees/link.
2.3 The Collection Phase

Assuming a join selectivity of ¢ defined by

R, N R
0 = o,
R, X R)]
the total traffic to the host will be 62IR IR | tuples. Noting that there are n connections to the

host, the traffic, Tp through the maximally congested links in this phase is at least

iR IR It 1, _
Tep = —LT—LT% bytesllink



2.4 Comparison of Traffic in Phases 2 and 3

Tables 1-3 show the ratio of traffic in Phase 3 to that in Phase 2. We have assumed tuples
sizes of 208 bytes‘4 and the join attribute length of 52 bytes. Finally, we have also assumed
worst-case traffic in Phase 2 ie. o=1, o,=1. Calculations are for a Hypercube of 32 nodes
(n=5). As can be seen, the traffic ratio is always greater than 1 for the range of relation sizes and
selectivities under consideration. Further this is true regardless of which join strategy is
employed, though this ratio is highest for the Hash-based strategy and is lowest for the semi-join

based algorithm.

Note that the traffic ratio increases linearly with relation size and quadratically with join
selectivity. The fact is, that even at low selectivity and a relation size of 10,000 tuples, the traffic
ratio is between 2 and 4 orders of magnitude. Also as N increases this ratio gets worse
(increases) in the case of the hash-based join though the ratio in the other two cases are

independent of network size.

3 HyperKYKLOS: The augmented Hypercube

From the tables in Section 2, it is clear that there exists a great imbalance between maximum
link traffic in the compute phase and that in the collection phase. For example, even at 6=0.1, the
raffic ratio is 17.5 for only 1000 tuple sized relations. Further, this is regardless of which
algorithm is actually implemented. If query processing were to be viewed as a three-stage
pipeline as shown in Fig. 2, the latencies through stages 2 and 3 would be related to the
maximum traffic which as explained above is severely imbalanced. The crux of the problem is
that the same physical hardware viz. Hypercube links and switches are used in both stages of the
pipeline while the demands, in terms of bandwidth, are radically different in the two phases.
What is needed is to expeditiously collect the results of the partial joins and present them as a

sorted list (of tuples) to the host.

A solution is to construct a binary tree external to the existing Hypercube with the I/O nodes of
the Hypercube as the leaves. Where multiple joins have to be performed or where the bandwidth
requirements of Phase 3 are not adequately met, two or more trees may be employed. The use of

multiple trees (the tree replication factor is denoted 1) sharing the same set of leaf nodes to

425 in the extended Wisconsin Benchmarks [DeWIB7]



o} R, |=10° IR |=10* R, [=10¢
1 17.5 175 17,500
21 700 700 70,000
51 4375 4375 437,500
1.011750.0 17,500 1,750,000
Table 1: Traffic Ratio in Nested Loop Case
c R, |=103 R |=10 R [=10°
A1 6.36 63.6 63,600
21 254 254.4 254,400
51159.0 1590 1,590,000
1.01636.0 6360 636,000
Table 2: Traffic Ratio in Semi Join Case
o R, |=10° R, |=104 IR [=10°
1 112 1120 112,000
21 448 4480 448,000
51 2800 28,000 2,800,000
1.0 11200 112,000 11,200,000

Table 3: Traffic Ratio in Hash based Case
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improve performance and provide fault tolerance has been studied as the KYKLOS topology
[MENES86,JENES6].

The advantages of such constructions are obvious: the properties of the composite topology
are a superset of the properties of its constituent parts. Algorithms that require message
transmission from each node to every other node would be well suited to the Hypercube; such
algorithms would result in O(N) maximum traffic density. On the other hand for operations that
require merging or sort-merge algorithms the use of tree structures is highly desirable. Though a
tree may be mapped onto a Hypercube, a single connection from the root of this tree to the host
could result in serious traffic bottlenecks at the root with concomitant imbalance in bandwidth
utilization. This would result in a system that is network-bound (i.e. the input capacity of the host
or hosts exceeds the bandwidth of the fastest link(s)) especially in the event that cartesian
products or low selectivity joins be required at the host. As such, we are investigating the
possibility of providing multiple trees - an alternative which seems attractive in the light of the
fact that there may be many hosts and multiple queries to be processed. One such alternative is a
derivation of the KYKL.OS Network explained below.

A special case of the KYKLOS Network is one where r=logN (Fig. 3(a)). Because this
consists of trees built on top of a Hypercube, it has been christened HyperK YKLOS.

Topology Definition We have defined KYKLOS as a multiple-tree structure sharing a set of
leaf nodes. We could redraw each tree separately as a full binary tree with no link crossovers.
(Fig. 3(c)). Each tree may then be characterized by a Labelling Sequence (LS) [MENES6] of leaf
nodes. As an example, the LS’s for each tree of Fig. 3(c) are
L,=01234567
L,=02461357
L,=04152637
Since a HyperKYKLOS of N leaf nodes has n = logN trees, the interconnection strategy for such
a structure could be defined by means of the tuple
<Ly Ly, o L >
where L, is the LS for the i tree. We have chosen a simple interconnection strategy for the
version of HyperKYKLOS presented in this paper which we call HyperKYKLOS-1. The LS’s for
HyperKYKLOS-I are defined below
Let L(j) be the j** term of L,. Then
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LG) = pj) where
j is an n-bit binary string and

p,(j) is the number obtained rotating j a total of 1 bits to the left.

In HyperKYKLOS, there are logN paths (through the roots of each tree) to the host. This
provides a logN-fold improvement in traffic to the host especially when a low-selectivity join is
to be performed with the result returning to the host. Where selectivity is low and cost
considerations dominate, only a small subset of trees may be used (i.e. r < log N). In this case

any subset of r LS’s may be used to define the r trees.

Finally we emphasize that if Stage 3 of the pipeline (Fig.2) is to cease to be a bottleneck it is
not sufficient to merely have the extra tree(s). In fact, two requirements of the tree structure are
clearly identifiable:

e High speed comparator logic at each non-leaf node to perform on-the-fly merge

operations.

e High-speed links especially at the root of the tree

Given that the host may be a high-speed computer (or supercomputer), the onus of providing

high performance lies with the designer of the I/O system.

4 The Architectural Prototype
We have identified at the gross system level the two major components of the architecture viz.
e The 1/O nodes linked in a Hypercube configuration
e The sort/merge trees for Phase 3.

We next present a brief description of the architecture of the I/O node prototype under

construction (Fig. 4).

4.1 1/O Node Prototype
Each I/0 node will be composed of the following blocks (shown in dashed lines).

{(a) Control Processor (CP)
(b) Sort/Search/Set Engine (S°E)

(c) Disk System (DS) including disk cache, MC68020 and
Mass Storage
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(d) Network Interface Unit (NIU)

The VAX8250 (CP) with 4MByte of local memory is being used to control the I/O node
system. The NIU multiplexes the log N incoming channels and routes data through the
appropriate link(s). Block transfers between CP and NIU/S’E/DS are through a high-speed BI
bus which operates at 13.3 MByte DMA transfer rate. The BI bus was chosen because it uses

distributed arbitration thus eliminating the need for a dedicated arbiter.

The S3E is the heart of the I/O node design, so called because it performs sorting, search and
set operations (union, intersection,etc.). It is being designed utilizing an array of Content
Addressable Data Manager (CADM) chips designed by Advanced Micro Devices Corporation
(AMD). Each CADM chip has 1 KByte of memory. We are currently building a 16K S°E using
an array of 16 CADM chips. We have made provision for S°E expansion of upto 64K bytes
(Fig. 4). The Motorola MC68020 is being used to provide the control for the CADM array’s
sort/search/set operations as well as for interfacing the S®E to the CP. Our choice of the CADM
chips was based on results of a simulation which indicated an expected 15-50 speedup in sorting

over the VAX 11/780 and a speedup of 1.5 over software sort on the CRAY X/MP-24.

The DS will use a Disk Controller and nominally between one and four 500 MByte Disk
Drives. The cache capacity has been targeted at 8% of mass storage. We are currently
simulating the performance of the cache system. The actual design of this block will be driven
by results of this simulation. Our tentative design envisages a track-organized design so that the
minimum granularity for disk transfer is a track. The data filter can resolve the location of an
object within a track residing in cache in 6 psec. The data filter is currently being implemented
in software on the MC68020.

The BI/VME converters are controllable bus interfaces between the BI and VME busses. This
means that transfer through these converters occurs only by command of the CP. This bus
structure will allow the cache subsystem, S3E subsystem and CPU/NIU subsystems to function

concurrently thus providing speedup due to the overlap of their respective operations.
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5 Conclusion

We have shown that implementing queries on a Hypercube with horizontally fragmented data
causes a serious traffic imbalance when the results are sent to the host, particularly if they are
required to be sorted. The architecture proposed remedies this imbalance by having a tree
structure for the collection phase. This architecture also has some other nice properties as
demonstrated in [MENES§5].

We strongly believe that the performance of the architecture proposed will be superior to that

of a multiprocessor based purely on the Hypercube.
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