GENERATING SOFT SHADOWS
EFFICIENTLY

Gordon Fossum and Donald Fussell
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-22 June 1987

of any geometry, and of any luminous intensity distribution [16].

2 Previous Methods

As pointed out in [12], several techniques have been used to produce shadows, only

some of which produce soft shadows. These methods fall into just a few categories.

Shadow Volumes Shadow volumes have been used extensively to determine
whether a point is in shadow [6]. The idea is to take the point light source and
the object that will create the shadow, and calculate, in world-space coordinates,
the polygons that bound the shadow thus created. If these polygons are then ren-
dered into a modified depth buffer, the point visible at each pixel in the buffer can be
painted as shadowed or not depending on how its depth compares with the shadow
depths for that pixel. This method can be extended to model a non-point light
source by taking several sample positions on the surface of the light source. Then
each such point source sample can create its own set of shadow volumes, the number
of light source samples visible to the pixel can be computed, and the pixel can be
illuminated appropriately. If the light source is to be modeled with, say, 80 points,
then each polygon in the scene will generate 80 shadows, and each such shadow
must be rendered into the depth buffer [1]. If curved surfaces are to be represented,
they must be first transformed into polygonal facets. Since this results in a very
large number of surfaces, each of which generates at least three shadow polygons,
the technique becomes extremely expensive for modelling scenes with curved sur-
faces illuminated by extended light sources, though it has been done [20]. Proper

organization of the data can be used to ameliorate the computation time [12].

Shadow Polygons Another method computes the portions of polygons which are
hidden from the light source using a hidden-surface computation in object space from
the point of view of the light source [6] [17] and represents the results as polygons
which can be painted as surface detail on the original polygons in the scene when
the scene is rendered. This method does not appear to be well-suited to extension

for soft shadows and has not been so extended.

Depth Buffer Techniques A third technique first scan converts the scene from
the light source point of view using a depth buffer algorithm and then scan converts
again from the observer’s viewpoint [19]. If the visible surface at a given pixel
transformed into the light source coordinate system is behind the visible surface
at that same point in the light source depth buffer, the point is in shadow and
is attenuated, otherwise not. This technique has not previously been viewed as
suited to generating soft shadows, but our new method can be seen as such an
extension since its basic philosophy is similar even though the algorithms and data
structures are significantly different. Such algorithms are well-suited to exploiting
area coherence properiies of objects in the scene and to using scan-line techniques

to perform many computations iteratively and thus to operate at reasonable speed.

Ray Tracing Ray tracing produces a variety of illumination effects from specular
reflection of light among objects to refraction to shadows [18]. Simple ray tracing
only traces a singlé ray through each pixel and therefore cannot sample an area of
a non-point light source to produce soft shadows. If however a bundle of rays is
shot from a given point in a scene to various locations on a non-point light source,
the fraction of those rays which arrive at the light source without intersecting other

objects in the scene can serve as the desired attenuation value for producing soft

Generating Soft Shadows Efficiently

Gordon Fossum Donald Fussell

Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712

Abstract

Historically, generating images with soft shadows has been computation-
ally expensive. This paper describes a new method which uses two techniques:
light buffers to organize and speed up the computation of soft shadows for se-
lected pixels in an image; and an adaptive interpolation algorithm to determine
upon which pixels the computation will be performed. For these pixels, the
exact occlusion is computed by determining the regions of the non-point light
source that can be seen from the pixel. Linear interpolation of these occlusion
percentages is used elsewhere.

Using this algorithm, soft shadows can be accurately computed with less
overall cost than with previous methods. The method models light passing
from a light source which can be modelled as an illumination function of its
surface through a window which can represent a transmission function over
its surface and into the scene. Furthermore, the light intensity can easily be
made a function of the location in the scene, independent of the shadowing
computations. As a result, the method is suitable for generating a number of
realistic lighting effects without undue overhead.

1 Introduction

Many methods for generating realistic shaded images achieve computational effi-
ciency through the assumption that all objects are illuminated only by point light
sources and a constant ambient light. Unfortunately, most real-world light sources
(other than such things as stars and carbon arc lamps) cannot be accurately mod-

elled as point sources, which means that illumination models of this type produce a

number of rendering defects. One noteworthy example of such a defect is the gener-
ation of unrealistic shadows with sharp boundaries. The world around us contains
sharp shadows only very rarely. What usually happens is that there is a penumbra
at the edge of a shadow where the illumination by the light source attenuates grad-
ually from full intensity to full shadow. In order to generate realistic shadows it is

necessary to determine what fraction of each light source illuminates each visible

point in a scene.

In recent years a number of illumination models and associated rendering algo-
rithms have been developed which remedy the defects caused by point light sources
[13] [1] [5] [8] [4] [11] [14] [15]. These methods can produce strikingly realistic im-
ageé, but they entail extreme computational expense. Here we describe an efficient
rendering technique for scenes containing both polygonal and curved surfaces illu-
minated by non-point light sources. The method is based partially on the use of
a modified form of the light buffer [10], in which the idea is to project the scene
from the point of view of the light source, and build a sorted data structure in light
source coordinates which is then used to speed up shadow computations. Once the
objects of interest are determined, they are projected in a novel way so as to simplify
the calculation of the percentage of light source occlusion, which in turn is used to

calculate the intensity of light reaching the point from this partial light source.

The second technique employed by our method is a form of adaptive interpo-
lation, in which the level of occlusion of a given pixel from a given light source is
determined through values of nearby pixels, when possible. This results in a further

significant improvement in the performance of the algorithm.

In addition to allowing the computation of soft shadows with significantly greater

efficiency than previous methods, our algorithm is designed to model a light source

shadows [5]. Typically, the “target points” on the light source are selected randomly,
rather than as a grid of points, in an effort to avoid an effect similar to mach-banding

in the penumbra.

FEach ray from a point in the scene to a selected point on this non-point light
source must be checked against any polygons or patches with which it might in-
tersect. A variety of bounding box techniques exist which can reduce the required
computations, but even so, checking hundreds of rays against thousands of objects
for each visible pixel in the image is a heavy computational burden. It is possible to
exploit ray-to-ray coherence [21], with some increase in efficiency, but the results are
still extremely slow. Of course this technique is good for producing quite a number

of illumination effects besides soft shadows.

Radiosity Radiosity is a method for determining the energy exchange between
the elements of any closed environment based on their bi-directional reflectance
functions [8] [4] [11]. The solution to the radiosity equation describes the activity at
the center of each polygon, and (typically) Gouraud shading [9]is used to interpolate
between these point samples. For shadows to look realistic, the polygons in the
penumbra should be subdivided to fine enough detail so that such interpolation
methods will give the desired result. Unfortunately, finely subdivided polygons

result in 2 massive increase in the computation time, as radiosity is an inherently

n? process.

This technique has been extended to process non-Lambertian objects, but as such

is probably the most computationally expensive rendering technique ever developed.

Although images produced using radiosity methods can be impressive in their

realism and like ray traced images contain many illumination effects besides soft

shadows, the computational expense of rendering even moderately complex scenes

is normally prohibitive.

3 Light Buffers

In September, 1986, Haines and Greenberg of Cornell University first introduced
the concept of a “light buffer” [10], in which objects are projected from the point of
view of a (point) light source, thus organizing the scene in x and y, and sorting it in
z. This, in effect, is a 2D bucket sort, which generates a significant improvement in
the performance of algorithms which need to sort data in space. The method is very
similar to that used by Randolph Franklin in 1980 7] to accomplish hidden sﬁrface
removal. Franklin referred to his creation as a “variable grid data structure”. The
light buffer was used by Haines and Greenberg to speed up the shadow computations
from a point light source, in a ray-tracing environment. This paper represents a third
application of this technique. Here, we organize the scene from the point of view of
the center of a non-point light source, and use the geometric information thus gained
to both limit the number of objects that need to be considered, and to simplify the

calculations required to determine how much shadowing a given object does.

Assume that a scene is composed of opaque curved surface patches or polygons
which are then decomposed into triangles, and that all objects that can cause shad-
ows are within the viewing frustums of the eye and of each light source (note that
our algorithm will extend to allow light sources within the scene by using six buffers
per light source in the style of radiosity hemicubes [10], but the efficiency of the
algorithm will suffer somewhat). The idea is to scan this scene from the point of
view of the eye as well as from the point of view of the “center” of each light source.

We will further assume that the light source can be modeled as planar. Of course,

since real world light sources are often three-dimensional, the planarity assumption
can cause some theoretical error in the illumination, but this is negligible if the light
source is somewhat removed from the scene, and will not degrade the appearance

of the image even for a light source which is within the scene.

Note that the basic algorithm is not limited to triangles, but the present imple-
mentation uses surface patches subdivided until they meet a planarity criterion [22].
At that point, we are faced with a (probably not quite planar) quadrilateral, which
we merely draw a diagonal across, creating two triangles. The algorithm would
change in a straightforward manner to handle (possibly non-convex) polygons, as

the only change would involve a somewhat more complex scan-conversion routine

“in the final step of the process.

Note further that enough parametric information is retained within the algorithm
to allow computation of the exact normals at the vertices of each triangle, for the

purpose of Phong shading [2] the surfaces.

3.1 Light Coordinate Systems

Let a point somewhere near the center of the scene define a light vector from the
light source center to the scene center and assume that the light source plane is the

plane containing the light source center which is orthogonal to this light vector.

A light source can be represented geometrically as a planar surface bounded by
curves of any desired degree. It can also be represented in a discrete format as a set
of point light sources. There are a numbe; of ways to decide what point light sources
to select. One solution is a grid of points chosen with fine enough granularity to

avoid aliasing effects. A second solution is to choose a set of sample points randomly

[5].

Such a point set should be selected to accurately represent the size and shape
of the non-point light source since, for example, a long narrow light source should
generate very large penumbrae along gradients paralle] with the long axis of the light
source and rather narrow, sharp penumbrae along gradients perpendicular with that
axis. Further, points should be chosen so that as you move along the gradient of any
penumbra the set of points which are visible will change as smoothly as possible.
We have chosen the second solution, in/ which the light source is represented as a
square bitmap with a 1 in each position which is within the light source area and a 0
elsewhere. This will always accurately represent the surface area of the light source
and will not produce aliasing effects if enough points are used. Each bit represents

_a point on the light source plane, and we will refer to these points as luzels.

It would be easy to represent a light source with varying intensities across its
surface by allocating, say, a full byte of information to each location in the “bitmap”,
so that the representation of a light source with around 144 points would occupy
36 full words of memory. Our implementation presently assumes a homogeneous

source, though more complex sources are not noticeably more time-consuming.

An illumination frustum in light source space is constructed by first selecting a
projection plane which is parallel to the light source plane and includes the point
in the scene closest to the light source. Next a minimum size rectangular window
centered on the light vector is selected to ensure that all objects in the scene are
included. (Again, this would generalize to multiple windows, one for each face of a
cube, if the light source is within or very close to the scene). The coordinates of a
point in the scene in a light coordinate system are z, y, and d, where z and y are
the coordinates of the point’s perspective projection onto this window and d is the
distance from the plane of the light source to the point in world coordinates. A light

coordinate system is shown in Figure 1.

3.2 Scene Organization in Light Coordinates

A light buffer, in our usage, is a representation of the screen in light coordinates
consisting of a two-dimensional array of linked lists. We will avoid the obvious
acronym (“libel”) and call such a list element an [b-list. Each 1b-list is associated
with a square (or rectangular) region of the light source’s projection plane (its Ib-
region), and contains pointers to descriptions of the objects which project at least
partially onto its Ib-region. This structure is an analog to pixels in a frame buffer,
where the “region” can be viewed as an address in the buffer, and the “list” is the
collection of bits located at that address. There are two key differences between
frame buffers and light buffers, however. The first is, of course, that light buffers
are defined from the point of view of a light source rather than an observer. The
second, less obvious difference is that the resolution of the light source window (i.e.
the size of an lb-region) is variable, and can be selected to optimize the computations
as a function of the distribution of objects in the scene vis & vis the light source,
and has no effect on the final appearance of the image, because the light buffer in
no way discretizes the scene. Each Ib-list is ordered by increasing distance from the
light source. The distance of an object from the light source as used in this ordering
is the smallest depth in light coordinates of any point on the object. Each node
in this list contains a pointer to the object and this distance. Note that the light
coordinates are in floating point, and when z and y are truncated to integer, the

result is the address of the appropriate lb-region/1b-list.

It is important to note that the depth that is stored is not the projected depth
that results from a perspective transformation, but represents world-space depth
from the light source plane to the object. As will be shown below, this format for

describing which objects in the scene appear in each 1b-list makes it easy to compute

light source occlusions by projecting objects from the point of view of any point in

the scene.

In order to make use of light buffers, and to successfully interpolate between

points where the occlusion levels are exactly calculated, some auxiliary data struc-

tures are required. These are

e an object list containing nodes describing the triangles in the scene, including
the coordinates of each vertex in world-space and in each light source space

along with information about normals for intensity calculations, and

e a traditional depth buffer from the cobserver’s point of view, which contains
the projected depth of the nearest intersection of a ray through the center of
a pixel with an object in the scene, a pointer to this visible triangle, and the
values of the parameters u and v at that point on the original surface if the

triangle was obtained from a parametric patch.

e a linked list of records to describe where, along each scanline, one patch stops,
and another begins. Furthermore, within each patch, the boundaries of fully

lit, partially lit, and fully shadowed regions are stored.
4 Shading Using Adaptive Light Buffers

Shading of the scene using light buffers is done in two passes. In the first pass,
a light buffer for each light source along with the depth buffer and object list are
built. The second step is the actual shad}ng calculation. The algorithm paints the
picture in a series of strips, each several pixels wide. Refer to Figure 2. The steps

taken for each strip are as follows: scan the first and last lines of the strip (in the

10

figure, these are lines A and B), computing shadow occlusions for all light sources
for some subset of the pixels on the scan line, being sure to note (through the use of
a binary search within the scan line) those locations where the scan line moves from
one patch to another, and where the light intensity changes state. In the figure, the

numbers on each line represent the order in which the points are investigated.

There are three states: umbra (occlusion = 1.0), penumbra (0.0 < occlusion <
1.0) and fully lit (occlusion = 0.0). Whenever an exact occlusion calculation is done,
save the result. The occlusion calculations are detailed below. If the order in which
these state changes occur in the two scan lines is not identical, perform a binary
search on the scan lines between these two, to find the location of the discrepancy
(in the figure, these are scan lines C, D and E). Next, linearly interpolate between
all of the occlusion values computed so far, to generate values for every pixel for
every light source within the strip. (Note here that, since the method is presently
used on bi-cubic patches, that the shadow curves that result are cubic, and that a
cubic interpolation could be used which would give exact results, but at the scale

at which these calculations would occur, we have found linear interpolation to be

quite satisfactory).

Set these interpolated results aside for the moment. For each pixel visible to the
observer on the screen, the values for v and v stored in the depth buffer for that
pixel are used to calculate the world space location of the visible surface and its
tangents along u and v. These are used to calculate unit vectors to the eye and to
each light source, the normal vector to the surface at that point, and the (z,y,d)

coordinates of the point for each light source.

Now the contribution of each light source to the intensity of the pixel proceeds

as follows. For a given light source, the intensity of the light illuminating the pixel

11

is a product of two factors. First there is an attenuation factor which is a function
of the location of the pixel being painted (this location already being known, this
factor is effectively free). This factor can be used to model directional light sources,
as well as the effects of increasing distance from the light source. Second comes
the occlusion factor, which is the data which we previously computed and set aside.
Having computed the intensity as the attenuation factor times (1 - the occlusion
factor), our algorithm multiplies it by the standard cosine and cosine-raised-to-a-

power terms to yield diffuse and specular components, and proceeds to paint the

pixel.
4.1 Computation of Light Source Occlusion

Occlusion is the fraction of a light source’s full intensity, and is necessarily a function
of the visibility of each luxel as seen from the point being illuminated. For light
sources of constant intensity, this fraction can be easily determined as the number
of visible luxels divided by the number of luxels on the light source. If the light

source is not homogeneous, the computation is more involved, but the base problem

remains to determine luxel visibility in an efficient manner.

This is accomplished in two steps. In the first step, an attempt is made to limit
the number of world-space objects that will be considered as possible shadowers.

In the second step, each of these objects is analyzed geometrically to determine

whether it contributes to the occlusion of the light source.

The triangles which might occlude each light source are selected by examining
each lb-list in the light buffer in a neighborhood of the light-space (z, y) position of
the point being shaded. A point’s neighborhood is that collection of 1b-regions in

2 light source’s screen within which objects might occlude the light source as seen

12

from the point. Any object which is totally outside of the neighborhood can be
ignored when calculating shadows for the point from that light source. The size of
the neighborhood is computed from the size and shape of the light source and the
distances of the point being shaded to the light source plane and to the projection
plane in light space. For instance, if the light source is roughly circular, then the
radius of the light source, r, the viewing angle, §, the number of luxels across one
scanline of the light source’s screen, p, and the ratio between the point’s distance
from the minimum z and its distance to the light source make it possible to calculate

an upper bound of rp(d; — di)/(didrtan(8/2)) on the radius of the neighborhood.

This situation is illustrated in Figure 3.

It is in the limitation of the number of triangles that must be considered in
the occlusion computation that light buffers play their key role in the rendering
process. The organization of the data in the light buffer makes it possible to quickly
determine the set of triangles which have a reasonable probability of occluding at
least part of the light source for any point in the scene. It is easy to see that light
buffers are most effective for scenes where the ratio of the size of the light source
to its distance from the scene is small, since in such cases the neighborhood of 2
point covers a small portion of the overall area of the window, and it is possible to
select a correspondingly small percentage of the objects in the scene as candidates

for occlusion when apprpriate using light buffers.

For each Ib-list in the neighborhood, each triangle it references is examined in
turn to see if it occludes any of the light source. This process continues until all the
1b-lists in the neighborhood are visited or the light source is completely occluded.
Note that each 1b-list is traversed only to the depth of the point being rendered. To
compute occlusion, it is necessary to project each triangle in the neighborhood onto

the plane of the light source from the point of view of the point being shaded, since

13

the area on the light source surface that is occluded by a triangle is a function of the
locations of the triangle and the point being rendered. {Occlusion can be determined
analytically with our model if the light source is represented geometrically.) In the
implementation described below, we use a discrete light source representation with
the goal of speeding up the computation. While this method has the potential to
produce aliasing effects, we have not yet found them to be a problem, as long as a

reasonable number of luxels is chosen.

Once the triangles are projected, they are scanned onto the light source screen,
and each point in the triangle is checked to see if it covers part of the light source.
This is done by constructing a working light source bitmap with each location within
the unoccluded light source set to 1 and other locations set to 0. Once the endpoints
of a scan segment of the projected triangle are computed, a precomputed boolean
vector can be selected and bitwise ANDed into the scanline. For small light sources
this often allows the comparisons of all the positions on a scanline of the light
source against the projected triangle to be done in a single operation. When the
entire neighborhood has been processed, the unobscured luxels are counted and the
result is used to determine an occlusion factor as the fraction of the uncovered light
source luxels to the total number of luxels on the light source. (Again, for non-
homogeneous light sources, the computation would be more complicated, but the
method by which it could be done should be obvious). The full intensity of the light
determined previously is multiplied by this attenuation factor, and the resulting
corrected intensity is used to determine the specular and diffuse contributions to

the intensity of the pixel being painted for that light source using a traditional

illumination model such as Phong’s [2].

In order to calculate the amount of the planar light source which is shadowed

by a triangle T as seen from a point p in light space, it is necessary to know the

14

distances from T and p to the light source plane in world-space coordinates. Each
vertex of a triangle is stored as seen from the center of the light source, as (z,y) on
the light source’s screen, and as a world-space distance from the plane of the light
source to the vertex. As illustrated in Figure 4, the vertex can be projected onto

the plane of the light source as seen from p as follows

ef(zy — zp)dsd,

T o=
: d, — d;
_ oSy = yp)dedy

Here, d, is the depth of the point p from the plane of the light source, d; is the
depth of the vertex under consideration, z; is the z location of the vertex in the
light source’s screen in floating point and zp is the z location of p on the screen.
The conversion factor, ¢f, is a scale factor, calculated once, to accommodate the
different coordinate systems in use (one system has units of the size of an lb-region
on the light source’s screen, and the other has units of the size of a luxel on the
plane of the light source). These are independent of each other, but their ratio is
a constant for each light source. The computation of a projected vertex costs 3

subtractions, one division, and 4 multiplications.

In order to perform these projections, light buffer data structures mix screen-
space (z,y) values with world-space depths. In this mixed coordinate system, care
must be taken in interpolating values during the scan conversion of the triangle onto
the light source plane. If two points at different (z, y) locations with different depths
are connected by a straight line in this space, the depth changes linearly with linear
parametric movement along the line, bu‘t the z and y values change non-linearly.
This can be seen most easily be noticing that the midpoint of the projection of a
line segment (¢’ = 0.5) is not the projection of the midpoint of the line segment

itself (£ = 0.5) as is shown in Figure 5. As a result, if interpolations are to be done,

15

a reparametrization of the line is required.

Since the length of the projection of a line segment is proportional to the distance
of the projection plane from the center of projection, if we assume unit width at
depth d;, the plane containing the closest endpoint of the line segment, the width at
dy, the depth of the plane containing the farthest endpoint of the line segment (that
is, the length of the base of the whole triangle of Figure 5) is d2/d;. To calculate '
as a function of ¢, pick any point p along the line. It has some value of ¢ between
0 and 1. A ray from the eye through this point forms a pair of similar triangles, as
shown with the dotted lines in Figure 5. Now, t' is just the distance along the d;
projection from d; to the projection of p and the length of the d, projection from
the projection of p to dj is (1 —1')(d2/dy). Since the height of the first triangle is ¢,

and the height of the second is 1 — ¢, the similarity of the triangles gives us
/(1 =1)d2/dr) =1/(1-1)
#(1- 1) = (do/di (1 — ¥')
dit’ — dit't = dyt — dyt't
'(dy + (dg — di)t) = dat

t = dgt/(dl -+ (d2 — d;)t).

Another complication: it is possible that, given a shadowing triangle, one or
two of its vertices will be at a depth greater than the point whose shadow we are
computing. In this event, it is necessary to compute the two points where the
shadowing triangle intersects the plane normal to the lookat vector which contains
the point being shadowed. Then these two intersection points can be compared to
the point being shadowed to yield two direction vectors which can be hung off of the

one or two valid transformed triangle vertices, yielding the correct infinite planar

[10]

[11]

(12]

[13]

Cohen, Michael and Donald Greenberg, “A Radiosity Solution for Complex

Environments,” Computer Graphics, 19(3), July 1985.

Cook, Robert, Thomas Porter and Loren Carpenter, “Distributed Ray Trac-

ing,” Computer Graphics, 18(3), July 1984.

Crow, Franklin, “Shadow Algorithms for Computer Graphics,” Computer

Graphics, 11(3), July 1978.

Franklin, W. R., “A Linear Time Exact Hidden-Surface Algorithm,” Computer
Graphics, 13(3), July 1980.

Goral, Cindy, Kenneth Torrance, Donald Greenberg and Bennett Battaile,
“Modeling the Interaction of Light Between Diffuse Surfaces,” Computer
Graphics, 18(3), July 1984.

Gouraud, Henri, “Continuous Shading of Curved Surfaces,” IEEFE Transaciions

on Computers, 20(6), June 1971.

Haines, Eric and Donald Greenberg, “The Light Buffer: A Shadow-Testing Ac-

celerator,” IEEE Computer Graphics and Applications, 6(9), September 1986,
pp- 6-16.

Immel, David, Michael Cohen and Donald Greenberg, “A Radiosity Method

for Non-Diffuse Environments,” Computer Graphics, 20(3), August 1986, pp.
133-142.

Max, Nelson, “Atmospheric Illumination and Shadows,” Computer Graphics,

20(3), August 1986, pp. 117-124.

Nishita, Tomoyuki and Eihachiro Nakamae, “Half-Tone Representation of 3-D

Objects Tlluminated by Area Sources or Polyhedron Sources,” IEEE Compsac

20

techniques such as distributed ray tracing or radiosity. The use of adaptive interpo-
lation has been found to greatly enhance the speed of this technique, by minimizing
the amount of work done in non-complex areas. It should be noted that both as-
pects of this technique are applicable to ray-tracing with soft shadows. Note also
that a conscious decision to trade off memory for computation time was made, Thus
the light buffers approach is quite memory intensive, but since memory is a much
more readily available resource than computation speed today, this type of tradeoff
is quite a reasonable one to make, as 1 megabit memory chips are widely available

now, and 4 and 16 megabit chips will be available from a variety of sources in the

near future.
7 Acknowledgements

Many thanks are due to A. T. Campbell, who freely offered constructive criticism

and suggestions.

References

[1] Brotman, Lynne Shapiro and Norman I. Badler, “Generating Soft Shadows

with a Depth Buffer Algorithm,” IEEFE Computer Graphics and Applications,
October 1984.

[2] Bui Tuong, Phong, lllumination for Computer Generated Images, PhD Disser-

tation, University of Utah, July 1973.

[3] Carpenter, L., “The A-buffer, An Antialiased Hidden Surface Method,” Com-
puter Graphics, 18(3), July 1984.

19

region to which the triangle maps as seen from the point being shadowed. Figure 6
shows an example of such a situation. This requires a few more operations than a

simple projection of a vertex, but it does not happen often.
5 Implementation and Results

Our light buffer rendering implementation serves as the back end of an object design
program which allows users to design and manipulate scenes composed of cubic
B-spline patches and then render them either in wireframe or with shading. All
software in the system is written in “c”, and runs on a Silicon Graphics IRIS 2500
workstation with a 68020 CPU, 2 megabytes of main memory, and a Weitek floating
point accelerator. This workstation is rated in the range of 1.5 to 2.0 times the
speed of a VAX 780 on floating point and non-floating point computations. In
wireframe mode, interactive display update speeds can be achieved to allow effective
interactive patch manipulation. Stereo pairs are also used to enhance depth cueing
with stereopsis. Figure 7 contains a stereoscopic wireframe examples of a simple
scene designed with this system. The reader is invited to try out the stereopsis by
viewing the figure with red/blue glasses. The scene is composed of three patches
which subdivided comprise 1200 triangles and cover about 25% of the pixels on a
768 % 768 screen. Figure 8 shows the subdivided triangles. Notice that in areas of

high curvature the patches are subdivided more finely as is expected.

The remaining figures were rendered using our algorithm. Each light source is a
circular configuration of 100 intensities embedded in a 16 x 16 array. While the res-
olution of the light sources was not deterﬁined in any theoretically justifiable way,
the results are certainly acceptably free of aliasing defects. Figure 9 shows the ren-

dered scene with two point-light sources (actually, sources with radii approximately

17

one screen pixel in size). Figure 10 shows the light sources changed to have radii of
0.5 and 1.5 units (at a distance of 17.0 from the center of the scene). (The largest
patch in the scene is about one unit across.) Figure 11 shows the same scene with
light sources of radii 1.5 and 4.5. Figure 12 is an adaptively interpolated version of
figure 10, using a sampling density of 8x8. Note that the timing results reported
below are for versions of the figures which were not anti-aliased for publication. The
figures were photographed directly from the graphics screen, while it was displaying |

images which were oversampled by a factor of nine (3x3 grid).

Figure 13 shows the timing results for several executions of the program. There
are three variables under consideration. These are: size of light source, sampling
density, and light buffer granularity. The figure shows the point light sources on

the left, the medium light sources (0.5 and 1.5) in the middle, and the large light
sources (1.5 and 4.5) on the right.

Note that performance improves greatly with the use of either of our tools iﬁ
isolation, but when used together, the results are most gratifying: what took about
830 minutes with no assistance from our method was reduced to 90 minutes with an
8x8 sampling density (and no light buffer assistance), to 55 minutes with a 64x64
light buffer (and full saturation sampling density), and to 11.7 minutes when both

64x64 buffer and 8x8 sampling density are included.

6 Conclusions

Our results demonstrate that soft shadowed illumination effects can be generated
efficiently using light buffers and adaptive interpolation. The goal of the research
was to develop a method that permits more realistic renderings than those achieved

using point light source techniques without the overhead of existing more advanced

18

[16]

[20]

[21]

[22]

proceedings, 1983, pp. 237-241.

Nishita, Tomoyuki, I. Okamura and Eihachiro Nakamae, “Shading Models for
Point and Linear Sources,” ACM Transactions on Graphics, 4(2), 1985, pp.
124~146.

Nishita, Tomoyuki and Eihachiro Nakamae, “Continuous Tone Representation
of Three-Dimensional Objects Taking Account of Shadows and Interreflection,”

Computer Graphics, 19(3), August 1985, pp. 23-30.

Verbeck, Channing and Donald Greenberg, “A Comprehensive Light-Source
Description for Computer Graphics” IEEE Computer Graphics and Applica-
tions, 4(7), July 1984, pp. 66-75.

Weiler, Kevin, Peter Atherton and Donald Greenberg, “Polygon Shadow Gen-
eration,” Computer Graphics, 11(3), July 1978, pp. 275-281.

Whitted, Turner, “An Improved llumination Model for Shaded Display,” Com-

munications of the ACM, 23(6), June 1980, pp. 343-349.

Williams, Lance, “Casting Curved Shadows on Curved Surfaces,” Computer

Graphics, 12(3), August 1978.

Bergeron, Philippe, “General Version of Crow’s Shadow Volumes,” IEEE Com-

puter Graphics and Applications, 6(9), September 1986, pp. 17-28.

Speer, L. Richard, Tony DeRose, Brian Barsky, “A Theoretical and Empirical
Analysis of Coherent Ray-Tracing,” Graphics Interface ’§5, May 1985.

Lane, Jeff and Loren Carpenter, “A Generalized Scan Line Algorithm for the
Computer Display of Parametrically Defined Surfaces,” Computer Graphics and

Image Processing 11, 1979, pp. 290-297.

21

Light Source

— S

4

d
7 Hither Plane
/ x.y)
L P

Figure 1: A Light Coordinate System

\/ Yon Plane

Figure 2: Adaptively Selecting Data Points

Light Source

Neighborhood of P

Hither (view) plane

P Yon plane

Figure 3: Neighborhood of a Point

%><} B
/ B
pl

Figure 4: Projecting p2 from the point of view of pl

Center of Light Source

t=1t"=0

=0.0 / | |
, Gtk L
=05

th = dl

Figure 5: Parametric Non-Linearity

This region will not be shaded

i)
' Thisregion p

', will be shaded S

Figure 6: Calculation of infinite shading regions

7

igure

F

8

Y

igure

F

Figure 10

Figure 11

Figure 12

)
e
<
<::>___g
<=
=
e
N j_.s
S
R"
Sampligg -y -! n
Denm]ty. ‘..! . !‘ll .\.. -+
5 'i‘é:".‘_.._. '.!;l. U 1 hour
. \“. .l-‘ N S>—=7 1 -+
: \&'0*"/ |

64x64 16x16 434 ixi
Resolution of Light Buffer

Figure 13: Timing Results, under different condifions

