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Abstract

We present a very simple formalism based on parameterized types and a rule-based algebra to survey and
identify the storage structure and query processing algorithm building blocks of database management
systems. We demonstrate building block reusability by showing how different combinations of a few
blocks yield the structures and algorithms of three different systems, namely System R (centralized), R*
(distributed), and GRACE (database machine). We believe that codifying knowledge of DBMS im-
plementations is an important step toward a technology that assembles DBMSs rapidly and cheaply from
libraries of prewritten components.
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1. Introduction

The algorithms and storage structures of database management systems are very complicated, and their
interrelationships are not well-understood. Existing DBMSs reflect the current understanding; they are ad hoc
and monolithic. DBMSs are expensive to build and exceedingly difficult to modify.

The difficulty of building new DBMSs and altering existing systems has intensified the pressing need o0
develop DBMSs for specialized applications (e.g., VLSI CAD, temporal databases, artificial intelligence), to
reduce technology transfer times, and to provide a means for experimentally evaluating newly proposed algo-
rithms and structures without having to build significant portions of a DBMS to do so. A common solution to
these problems are next-generation database systems that can accommodate new features (algorithms, struc-
tures) easily. Realizing these systems is the primary goal of extensible DBMS research [IEE87a]. A byproduct
of this research is a better understanding of the interrelationships of DBMS algorithms and storage structures.

Database system research has matured to the point where a building-blocks technology to DBMS con-
struction is feasible. The idea is to assemble DBMSs quickly and cheaply through compositions of prewritten
modules. The fundamental barrier in developing such a technology is knowing how to decompose DBMSsina
way in which identified pieces are demonstratably reusable. The solution requires a very general and uncom-
plicated framework in which known algorithms, known storage structures, and operational DBMSs can be cast
and related.

In this paper, we present a simple formalism based on parameterized types and rule-based algebras 0
explain the relationships between storage structures and algorithms in DBMSs. We use this formalism as a
platform for surveying and relating a wide spectrum of network database structures, data models, and query
processing algorithms. The importance in doing so is an identification of the algorithmic and storage structure
building-blocks of DBMSs. We demonstrate building-block reusability by showing how different combinations
of a few blocks leads to the structures and query processing algorithms of three different systems, namely Sys-
tem R [Ast76], R* [Loh8S], and GRACE [Kit83, Fus86]. Our formalism provides a valuable tool in specifying
the design and implementation of DBMSs.

The technical basis for our work has appeared in a sequence of models of database implementation
[Bat82,85,88]. We are currently implementing this formalism in the GENESIS extensible database manage-
ment system. Concurrent and independent of our research, the importance of rule-based algebras in extensible
DBMSs has been recognized by Graefe and DeWitt [Gra87], Freytag [Fre87], and Lohman [Loh87b]. While
all rule-based algebras are basically similar, our work is distinquished in its exposition of the important relation-
ship of parameterized types and rule-based algebras and the validation of our model against a spectrum of exist-
ing research and operational systems.

This paper is not a tutorial on specific algorithms or storage structures; it is a presentation of DBMS
building-blocks and how they fit together. A familarity with basic database concepts is assumed [Teo82,
Kor86].

1.1 Preliminaries

To give relational, network, and hierarchical DBMSs an equal footing, their databases can be described in
terms of files and links. A link expresses a relationship between two files, where one file is the parent and the
other is the child. A link is more general than a CODASYL set in that n:m relationships are permitted, and that
a file can serve as both parent and child in the same link. Links are explicit in network and hierarchical
representations of databases; they are implicit in relational representations.

Links between files are normally specified with join predicates that enable a DBMS (o relate records of
different files automatically as records are being inserted. Some links are not associated with join predicates,
and relationships between individual records must be declared manually. {This distinction is analogous o
automatic and manual sets in CODASYL).

SQL* is a query language that provides a common interface relational, network, and hierarchical data-
bases. One way SQL* differs from SQL [Cha76] is that link names can be used in place of join predicates.
Consider the database containing files P and C (for person and car). Link D relates persons o their cars and has
the predicate P.C#=C.C#. To print the name of a person and the type of his/her car given that the car color is
green can be expressed in two ways:



SELECT P.Name, C.Type SELECT P.Name,C.Type

FROM P.C FROM PC

WHERE  P.C#=C.C# and C.Color="green’ WHERE D and C.Color="green’
(a) ®)

Figure 1.1 SQL* SELECT Statements

If D did not have a join predicate, which could not occur in relational databases but might in network and
hierarchical, (b) would be the only way t0 express the query.

Another way SQL* differs from SQL is that nested SELECTs are disallowed. This causes no loss of gen-
erality; Kim [Kim82] and Ganski and Wong [Gan87] have shown that nested SELECTs have equivalent
expressions as one of more nonnested SELECT statements.

We develop our formalism based on this ’generic’ network model, and use SQL* 1o illustrate its con-
cepls.

1.2 Overview of Formalism

Two concepts are fundamental to a DBMS building-blocks technology: standardized interfaces and lay-
ered DBMSs. Standardized interfaces provide the plug-compatibility necessary for interchangeable building-
blocks. As an example, one can build a monolithic file management system that provides a standard interface
10 all file structures. While the interchangeability of different structures is an important and recognized goal in
DBMSs, there are lower-level primitives on which all file structures rely. The implementation of these primi-
tives should not be duplicated. A better approach is to use a layered architecture, where each layer provides the
primitives on which the next higher layer is defined. A building-blocks technology requires each of these layers
to have a standardized interface.

Building blocks of DBMSs are data types (data + operations) and algorithms (implementations of
operations). Each data type corresponds to a layer in the above discussions, and the interfaces to its operations
are standardized. Algorithms realize the operation mappings of these types. Reusability is a consequence of
this formalization: each data type and its algorithms are defined independently of any DBMS in which it will be
used. For this reason, it can be combined with other data types in many DBMSs.

The fundamental data types of DBMSs fall into three classes: FILE, LINK, and MODEL. FILE is the
class of data types that correspond to file implementations (e.g., B+ trees, inverted files, etc.). LINK is the class
of data types that correspond 10 implementations of links (e.g., join algorithms, CODASYL sets). MODEL is
the class of data models and their corresponding data languages.

Data types that are parameterized (e.g., STACK_OFIx]) can be composed with other types (e.g., INT) o
form more complicated types (e.g. STACK_OF[INT]). Many of the types within the FILE, LINK, and
MODEL classes are parameterized, and combinations of them can be identified with the architectures of recog-
nized DBMSs. Section 2 explains this relationship in detail.

Associated with each class is a small set of generic operations that all members support. It is always pos-
sible for every member of the FILE class, for example, to perform record retrieval and record insertions. By
cataloging algorithms that implement the generic operations of each of type in the FILE, LINK, and MODEL
classes, it is possible to codify DBMS implementation knowledge as rewrite rules and to express and manipu-
late DBMS designs as equations. A rule-based algebra that accomplishes is outlined in Section 3. Catalogs of
query processing algorithms in MODEL, LINK, and FILE classes are presenied in Sections 4-6.

Computations in centralized DBMSs are unified with the distributed and parallel computations of data-
base machines and distributed DBMSs in Section 7. The unification is captured in the algebra by special
rewrite rules and execution site assignments for algorithms.

We illustrate the utility of our model in Section 8 where specifications of DBMSs are given. In Section 9,
we review research relevant to our formalism.



2. Database Systems and Parameterized Types

Generic or parameterized types were introduced many years ago as a way to simplify software
development and to promote software reusability [Lis77, Gog84]. A classical example of a parameterized type
is STACK_OF(x]. One can define and implement stacks and stack operations independently of the objects that
are placed on a stack. Parameterizing the STACK_OF type and the module/layer that implements the
STACK_OF algorithms attains this independence. So if MATRIX is a type, STACK_OF[MATRIX] defines 2
type that is a stack of matrices. The implementation of the composite type is a composition of the STACK_OF
and MATRIX modules. Because both types and their modules were developed independently, they are building
blocks of other systems.

Implementations of database management systems can also be viewed as a composition of types. Con-
sider the types BPLUS, ISAM, and HEAP. Instances of these types are specific B+ tree, isam, and heap file
structures.

Let FILE denote the class of all file implementations, of which BPLUS, ISAM, and HEAP are members.
To promote uniformity and module interchangability, all members of the FILE class support exactly the same
interface. This is possible, as one can always retrieve records, insert records, delete records, etc. from a file
regardless of how it’s records are stored. By imposing a standardized interface, a program that references a file
F whose type is BPLUS will still work if F’s implementation is changed 1o HEAP. ! (Providing, of course, that
a type conversion - ¢.g., file unload and reload - takes place).

FILE types can have parameters. Let INDEX[Af:FILE, xf:FILE] be the type that specifies a parameter-
ized implementation of an inverted file. The notation df:FILE means that parameter df can be assigned one of a
set of types belonging to the FILE class. When a file is of type INDEX, the INDEX module/layer maps the file
(henceforth called an abstract file) 10 a data file and zero or more index files (henceforth called concrete files).
The key idea behind the parameterization is that the data and operation mappings of INDEX do nor rely on the
implementations of the concrete data file and concrete index files. For this reason, the file types of the data and
index files are parameters to INDEX.

A common implementation of indexed files has data files implemented as heaps and index files as B+
trees. This corresponds to the type expression INDEX[HEAP,BPLUS). Assigning different file structures to
the data file and index files yields different inverted file implementations.

Each FILE type encapsulates the data and operation mappings from an abstract file to one or more con-
crete files, As a few examples, ENCODE[ef:FILE] maps an unencoded/uncompressed file to an
encoded/compressed file whose implementation is ef; XPOSE[sf:FILE] maps an untransposed file to a tran-
sposed file, where sf is the subfile implementation; and HPART([pf:FILE] horizontally partitions an abstract file,
where pf is the implementation of a concrete file partition. The class of FILE implementations is quite large,
having hundreds of members. A comprehensive list of known file structures and file mappings is given in
[Bat84-85].

FILE is a class of building blocks. LINK is another. Let LINK be the class of all link implementations,
whose members include relational implementations, such as ALG (join algorithms) and LINDEX[li:FILE] (link
indices [Val87], [Hae78]), and CODASYL set implementations, such as PARRAY (pointer array) and RLIST
(ring list). (Note that the LINDEX generates files, called link indices, as a result of its mapping of a link. The
implementation of these files is specified by parameter li).

It is often the case that links are generated in the abstract-to-concrete mappings of files. The inverted
files of INDEX, for example, use links to connect index files with data files. A more general parameterization
of INDEX would be INDEX[df:FILE, xf:FILE, k:LINK], where k would specify the implementation of index-
to-data file links. Common implementations for k are pointer arrays and linear lists [Teo82].

A third class of building blocks is MODEL. A network interface 10 databases is archaic by today’s stan-
dards. DBMSs therefore provide data models and data languages as their user interfaces. A MODEL type
encapsulates the data and operation mappings that occur between a DBMS’s user interface and its representa- -
tion of databases as networks. QUEL[f'FILE, n:LINK] is a member of the MODEL class. It represents the

! The imposition of 2 standardized interface is evident conceptually, but it is VERY rare 10 find DBMSs implemented in
this way. The suthor is not sware of an exception where the interface 1o conceptual files matches that of intemal files.
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data model and data language of INGRES, and is parameterized by f and n, which are respectively the imple-
mentations of the underlying files and links of INGRES databases [St076]. Other members of MODEL are
SQL[f:FILE, n:LINK], the data model and data language of System R [Ast76], DBTGIf:FILE, n:LINK], the
primitive data model and data language of CODASYL [Kor86], and NETWORKI[{:FILE, m:LINK], a program-
ming language interface 10 FILE and LINK types.

Three comments. First, just as STACK_OF and MATRIX can be recognized as building blocks of other
systems, so 100 can the instances of FILE, LINK, and MODEL classes be recognized as building blocks of
database management sysiems. INGRES, for example, corresponds 1o the composition:

QUEL[ INDEX] dfile, ifile, PARRAY ], ALG]
where dfile = { HEAP, ISAM, HASH, COMP_ISAM, COMP_HASH }
and ifile = { HEAP, ISAM, HASH, COMP_ISAM, COMP_HASH }

That is, INGRES presents a QUEL front-end, maps relations to inverted files and implements relation-to-
relation links by join algorithms. The data file and index files of inverted files can be stored in one of five struc-
tures: heaps, isam, hash, compressed isam, and compressed hash. (The latter two apply compression techniques
as part of their file structure algorithms. The actual file structure that is used for a given data file or index file is
specified by the physical database directive MODIFY-TO [Sto76]). Index-to-data links are implemented as
pointer arrays.

As another example, RAPID, a statistical DBMS built by Statistics Canada in the mid-70’s to process the
Canadian census, has no data model front-end (i.e., RAPID has only a programming language interface),
encodes conceptual files, uses join algorithms to link conceptual files together, creates indices over selected
encoded fields, stores index files in B+ trees, transposes the data file, and stores subfiles in heaps. Pointer arrays
connect index files to data files [Tur78]. This corresponds to the type expression:

NETWORK[ ENCODE[ INDEX[ XPOSE[ HEAP ], BPLUS,PARRAY 1], ALG ]

Taking other combinations of FILE, MODEL, and LINK modules yields other database systems. Additional
examples are given in [Bat84-85.,87a,88].

Second, note the extensibility of describing DBMS implementations as type expressions. New file imple-
mentations, link implementations, and data model/data languages are constantly being invented. They are
accommodated easily as new FILE, LINK, and MODEL types.

Third, the ANSI/SPARC notions of a conceptual level and an internal level are present in our composite
types [Kor86]. For every type expression, the most abstract files are conceptual and the most concrete files are
internal. In the case of INGRES, relations correspond 1o the conceptual files (i.., the abstract files of QUEL)
and the files swored in HEAP, ISAM, HASH, COMP_ISAM, and COMP_HASH structures are internal. For
RAPID, unencoded files are conceptual and the files stored in HEAP and BPLUS structures are internal.



3. A Rule-Based Algebra

We lay the groundwork for our rule-based algebra in this section. We present its general framework, a
means by which algebraic expressions can be simplified, and rewrite rules which can be used (o generate new
algorithms.

3.1 The Algebraic Framework

Algorithms process streams of records. Records can be ordered within streams, and records can be
duplicated. Computations on streams are accomplished by functions, where a function represents either an
algorithm or an operation. The distinction is that algorithms implement operations.

Files are distinguished from streams in that they are stored (rather than computed) sequences of records.
Files and streams may be interchangeable as arguments to some functions. To promote uniformity, we will
henceforth refer 1o them as stored files and stream files.

In general, there are many algorithms for a given operation. For example, the sort operation can be
implemented by a bubble sort algorithm, a quicksort algorithm, a radix sort algorithm, etc. We express the rela-
tionship between an operation O and the class of algorithms A, A,, - - - that implement O as algebraic identi-
ties or catalogs of the form:

O = A, ; algorithm #1
A, ; algorithm #2

Catalogs promote the extensibility and interchangeability of algorithms. If a new algorithm A, for operation O
is invented, we simply add it to the catalog for O. A, can then be used in the design and specification of new
DBMSs. This is algorithm extensibility. If algorithm A, does not exhibit the desired performance characteris-
tics, it could be swapped with another implementation of O which might yield better performance. This is algo-
rithm interchangeability.

Algorithms are either atomic or nonatomic. The most primitive algorithms, those whose decompositions
are not considered interesting, are atomic. Compositions of atomic algorithms yield more complicated or
nonatomic algorithms. Determining which algorithms are atomic is subjective; convenience is the best guide.

Algorithms are either robust or nonrobust. A robust algorithm processes all instances of its operation;
nonrobust algorithms do not. All popular sorting algorithms are robust. However, one can imagine a sorting
algorithm that takes advantage of a preordering of its input elements. Because it works only under special con-
ditions, it is nonrobust. In general, robust algorithms can always be used as operation implementations, but
using a nonrobust algorithm is legal only if restrictions are met. We encounter nonrobust algorithms in Sections
4,5, and 6.

For the above framework to be useful, there must be agreement on what operations to catalog. Describ-
ing DBMSs as compositions of generic types provides the answer. The interface standardization of the FILE
and LINK classes identifies a small set of operations. One can retrieve, insert, delete, etc. records from files,
and one can traverse (i.e., compute joins), connect, and disconnect records from links. The MODEL class, in
contrast, does not have a standardized interface; each MODEL type supports its own (but fixed) set of opera-
tions. Another source of operations are those that are performed on record streams (e.g., sort, filter, merge,
split, etc.). The number of operations on streams is unrestricted. The file, link, and stream operations that we
use in this paper are listed with their definitions in Appendix 1. We show in [Bat88] how new operations on
FILEs and LINKs, beyond those in the fixed set, can be admitted without sacraficing the simplicity of this
framework.

The size of individual catalogs is potentially very large. We appeal to the transformational approach
[Par83, Fre86] which enables a large class of algorithms to be expressed as a smaller class plus some rewrite
rules. The idea is to enumerate identities which can transform one algorithm into another. Algorithms listed in
the smaller class are basic, and those that can be derived via identities are variants. Generally, basic algo-
rithms are more "simple’ than their variants,



Given the existence of catalogs (which themselves are rewrite rules), the types of additional rewrites
needed is limited. Those that we will use are very general; they express relationships among operations and do
not reference specific algorithms. (Again, relationships among algorithms are expressed by catalogs). Let
Eg E;, - -+ be equivalent expressions formed by the composition of operations, where Eq is the "simplest’. We
express transformational rewrite rules in our algebra as:

E, <> E ; rewrite rule #1

E,; ; rewrite rule #2

Note that <-> implies bidirectionality (i.€., E, can be rewritten as Eq and vice versa).

As an example, let RET(F ,Q,0) be the operation that retrieves records from file F in O order that satisfy
predicate Q. Let SORT(S,0) be the operation that sorts records in stream S in O order, and let FILTER(S,Q)
eliminate records from stream S that do not satisfy query Q. The following rewrites capture relationships
among the RET, SORT, and FILTER operations:

RET(F,QandP,0) <> SORT(RET(F, Qand P, 01), 0) R1)
FILTER(RET(F,Q,0).P) (R2)

(R1) states that retrieving records from file F in O1 order and then resorting into O order is the same as retriev-
ing records from Fin O order. (R2) states that retrieving records and filtering is equivalent to retrieving records
with a more restricted predicate. Additional rewrites are given Sections 3.3,5.4,6.2, and 7.

3.2 File Characteristics

Stored and stream files have characteristics that are essential in manipulating and simplifying nonatomic
algorithms. These characteristics are ordering, record membership, and query fragment.

Let S be a stream file. ORDER(S) is the order in which records of S are sequenced. A random order is
indicated by ORDER(S)=*. MEMBER(S) is the predicate that all records of S satisfy.

Let F be a stored file. ORDER(F) is the order in which records of F are stored. MEMBER(F) is defined
as MEMBER(S). Unless F is a partition of some larger file, MEMBER(F)=true.

Stored files have an additional characteristic. Selection predicates of SQL* SELECT statements can be
decomposed into a conjunction of join predicates and subpredicates over individual stored files. Let Q(FR) be
the subpredicate, or query fragment, of SELECT statement R over file F. Using the SELECT of Figure 1.1
(reproduced below) as an example, Q(C.R)=(C.Color="green’) and QP R)=true.

SELECT P.Name, C.Type
FROM pP.C
WHERE D and C.Color="green’

Ceri and Pelagatti were among the first to recognize the utility of assigning characteristics to files
[{Cer84]. They showed how distributed query processing algorithms could be simplified using record member-
ship and query fragment characteristics. We will show how these same ideas have been used 1o simplify
designs of database machines in Section 7. Rewrites that take advantage of file characteristics are listed in
Appendix 2. Others are found in [Cer84, Fre86].



3.3 Conversion Rewrite Rules

Some functions have arguments that make no distinction between stored and stream files. When a file
argument can be either, it is possible to replace a stored file with its equivalent stream expression (and vice
versa) without altering the function’s result. Rules that accomplish this exchange are conversion rewrites.

Let G be a function which accepts a stored or stream file as its argument. Let F be a stored file with
query fragment Q (an abbreviation of Q(F R)) and let S be a stream file. The basic conversion rewriles are:

GFE <> G(RETFQO)) ; stored-to-stream (A1)

G(S) <-> STORE_TMP(T.S,0); G(T) ; stream-to-stored (A2)

STORE_TMP(T.,S,0) stores stream S in temporary file T in O order. Note that the order O in which records are
read from F or stored in T is an optimization variable. Also note in (A2) that the expression "A;B’ means exe-
cute A before B.

Combinations of (A1) and (A2) can be taken 1o produce other rewrites:

G(F) <> STORE_TMP(T,RET(F,Q.,01), 02); G(T) : stored-to-stored (A1*A2)
G(S) <-> STORE_TMP(T,S,01); GRET(T,true,02)) ; stream-to-siream {A2*AT)
STORE_TMP(T, RETF,Q,01), 02); GRET(T,true,03)) ; stored-to-stream?2 (AT*A2%AD)

Further compositions of (A1) and (A2) yield redundancies, so the number of distinct conversion rewrites is lim-
ited.

3.4 Recap

In the following successive sections, we use this algebraic framework to catalog and unify query process-
ing algorithms in MODEL, LINK, and FILE types. By doing so, we identify algorithmic building blocks of
DBMSs.



4. MODEL Retrieval Algorithms

Let R be a retrieval statement in the data language of MODEL M. (R could be a SQL* SELECT, a non-
nested SELECT statement in SQL[ ], a RETRIEVE statement in QUEL] 1, etc.). The most abstract description

of query processing in database systems is captured by the following expression:

EVAL(Q_OPT(R))

Q_OPT is the query optimization operation which maps R 10 an executable expression. EVAL(E) executes
expression E. Different DBMSs implement Q_OPT in different ways. To survey recognized implementations,
we note that Q_OPT is a well-known, albeit intuitive, composition of three lower-level operations:

Q OPT(R) => ] OINING_PHASE( REDUCING_PHASE( Q_GRAPH(R)))

Q_GRAPH:R—G maps retrieval statements the data language of M to query graphs (see [Ber8la, Yu84a-bl).
REDUCING_PHASE:G—G maps query graphs with unreduced files to graphs with reduced files, and
JOINING_PHASE:G—E maps query graphs 1o executable expressions. All of these functions rely on a com-
mon definition of query graphs. (It is this standardization which enables their implementations to be plug-
compatible). The details of this query graph definition are not essential to this paper, nor are descriptions of the
internal mechanics of Q_GRAPH, REDUCING_PHASE, and JOINING_PHASE algorithms. Such details are
found in [Bat87¢].

The catalog of Q_GRAPH(R) has one algorithm for each MODEL type M:

Q_GRAPH(R) => SQL_GRAPH(R) ;if Mis SQLI ]
QUEL_GRAPH(R) :if Mis QUEL[ ]

In the following sections, recognized REDUCING_PHASE and JOINING_PHASE algorithms are surveyed.

4.1 REDUCING_PHASE Algorithms

REDUCING_PHASE represents the class of algorithms that map query graphs with unreduced files to
graphs with reduced files. A file is reduced if records (and fields) that are unneeded in processing a query have
been eliminated. Reductions are accomplished by RET operations (€.8., selections and projections), JF opera-
tions, and JOIN operations.

The JOIN(F1,F2,J,0) operation forms the join of files F1 and F2 over predicate or link J and produces
joined records in O order. Nested loops and hash joins are among its implementations. The jfilter operation,
JF(F1,F2,,0), eliminates records from file F1 that cannot participate in a join with F2. J is the joining predicate
or link, and the selected F1 records are returned in O order. Semijoins and Bloom semijoins are among JF
implementations [Mac86a-b]. JFisa generalization of operations that are familiar to most readers; it is a basic
operation in our algebra).

With this in mind, three subclasses of REDUCING_PHASE algorithms can be identfied: those that deal
with JF and RET operations only, those that also consider JOINSs, and those that use rule-based reductions:

REDUCING_PHASE(G) =>

NO_JOINS(G) - JF and RET operations only
WITH_JOINS(G) < JOIN, JF, and RET operations
RULE_REDUCE(G,RS) : not yet investigated. RS is the rule set

NO_JOINS represents the most familiar class of REDUCING_PHASE algorithms, namely those that perform
semijoin reductions. Many of these algorithms are not robust as they are applicable only to special classes of



-10-

guery graphs, e.g., trees, chains, and simple cliques: 23
NO_JOINS(G) => : robust algorithms
G ; identity
HOME(G) ; transfer all files to query site
SDDI(G) : SDD-1 algorithm [Ber81b]
AHY(G) ; Apers, Hevner, Yao [Ape83]

; tree gueries only
BC(TREE(G)) : Bernstein and Chiu [Ber81a]
YOL({TREE(G)) : Yu, Ozsoyoglu, Lam [Yu84a]

; chain queries only
CBH(CHAIN(G)) : Chiu, Bernstein, and Ho [Chi84]

; simple clique only
HY(SIMPLE_CLIQUE(G)) : Hevner and Yao [Hev79]

The first two NO_JOINS implementations, G and HOME(G), do not perform JF operations. G is the identity
function. It is the most common REDUCING_PHASE implementation used in operational DBMSs,
HOME(G) is the simple strategy of locally processing the files of a query (by RET operations), and transferring
the results for subsequent joining to the site at which the query was issued.

G and HOME are among the few NO_JOINS implementations that are robust. SDD1 and AHY are two
others. The remaining have limited applicability, as special difficulties arise when reducing query graphs with
cycles [Ber81a, Yu84b]. The TREE, CHAIN, and SIMPLE_CLIQUE functions represent classes of algorithms
that map query graphs (typically with cycles) to equivalent tree, chain, or simple-clique graphs. (Equivalence
here means that the same output results by executing the queries represented by either graph). Although imple-
mentations of CHAIN and SIMPLE_CLIQUE are not known, implementations of TREE have been discussed:

TREE(G) => KG(G) : Kambayashi and Yoshikawa [Kam83]
KAM(G) : Kambayashi [Kam85]
GS(G) : Goodman and Shmueli [Goo82]

Two papers have recently proposed that JOINs also be considered in the reduction phase. This leads to
the second subclass of REDUCING_PHASE algorithms, WITH_JOINS:

2 Algorithms 10 test whether of not query graphs are tree-equivalent are described in [YuB4bl.

34 simple clique iz s clique where the label on all join edges is the same.
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WITH_JOINS(G) => LW2( G) : Laforiune and Wong algorithm with semijoins [LafB6]
IS(G) : I-Strategy of Kang and Roussopoulos [Kan87]

Both of these algorithms are robust; IS is driven by heuristics and LWZ2 is enumerative.

A third subclass of REDUCING_PHASE is RULE_REDUCE, which represents the class of rule-based
reduction algorithms. Presently there are no implementations of RULE_REDUCE, although we note that rule-
based algorithms for the joining phase have recently been proposed and could be modified easily to become
RULE_REDUCE implementations. 4 Further discussion is given in Section 4.4.

43 JOINING_PHASE Algorithms

JOINING_PHASE represents the class of algorithms that transform query graphs into executable expres-
sions. The expressions that JOINING_PHASE algorithms output are compositions of RET, JF, JOIN, and
PROD operations. The PROD(F1,F2,0) operation forms the cross product of files F1 and F2 and sorts the
result in O order.

There are two subclasses of JOINING_PHASE algorithms: JNP and DECOMPOSE. JNP algorithms are
in some sense primitive as they reduce a graph directly to a single node. On the other hand, DECOMPOSE
algorithms identify subgraphs to be reduced by JOINING_PHASE algorithms. By shrinking subgraphs to sin-
gle nodes, and jteratively applying DECOMPOSE algorithms on the shrunken graph, a query graph can be
reduced. When a single node is reached, the label of the node is the expression (i.e., output) of the reduction.
Using the underscore _ 10 denote a formal variable, we have:

JOINING_PHASE(G) => INK G) ' ; primitive algorithms
DECOMPOSE( G, JOINING_PHASE() ) subgraph reduction algorithms

INP(G) => - robust algorithms
SYS_R(G) : System R, Selinger et al. [Sel79]
RSTAR(G) : R*, Selinger et al. [Sel80]
RR(G) : Rosenthal and Reiner [Ros82]
LWi(G) - Lafortune and Wong algorithm (without semijoins) [Laf86]
FS(G) : F-Strategy of Kang and Roussopoulos [Kang87]
RULE_JOIN(G,RS) - rule-based optimization, RS is rule set

: tree gueries only
BBC(TREE(G)) - Baldissera, Brachi, and Ceri [Bal79]

4 RULE_REDUCE algorithms behave like NO_JOINS aigorithms if the set of rules does not contain JOIN operators, else
they behave like WITH_JOINS slgorithms. Because of this inherent ambiguity, we chose o place RULE_REDUCE salgo-
rithons in @ separste class.
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RULE_JOIN(GRS) => CH(G,RS) ; Chu and Hurley [Chu82]
EXODUS(G,RS) : Graefe and DeWitt [Gra87]
SO(G,RS) : Shenoy and Ozsoyoglu [She87]

STARBURST{G,RS) ;Lohman [Loh87b]

DECOMPOSE( G, JOINING_PHASE()) =>

; robust algorithms

DECOMP( G, JOINING_PHASE( )) ; Wong and Youseffi [Won76]
SUBSTITUTION( G, JOINING_PHASE( )) : Wong and Youseffi [Won76]

D_INGRES( G, JOINING_PHASE()) ; Distributed INGRES: Epstein, et al. [Eps78]
ES(G, JOINING_PHASE( ) ; Epstein and Stonebraker [Eps80]

Wong and Youseffi [Won76] proposed the first two decomposition algorithms: SUBSTITUTION and
DECOMP. SUBSTITUTION simplifies a query graph G by selecting the node containing the smallest file F,
and performing wple substitution for each tuple/record in F. A sequence of subgraphs is generated, one sub-
graph for each tuple in F. If the query is over a single file, SUBSTITUTION processes the query directly.
DECOMP decomposes a query graph G into irreducible components. The query processing algorithm of
University INGRES is expressable as a pair of mutually recursive functions:

UINGRES(G)
SUB(G)

DECOMP( G, SUB())
SUBSTITUTION( G, UINGRES( ) )

I

That is, query graphs are decomposed by DECOMP, and each component is simplified by SUB. The sequence
of graphs that result from substitution are decomposed recursively by UINGRES. When graphs have been
reduced 1o a single node, SUBSTITUTION evaluates the query directly.

4.4 Recap and Observations

The result of mapping a retrieval statement R in the data language of MODEL M to a network database
interface is an expression composed of RET, JF, JOIN, and PROD operations. No reference is made in this
expression to implementations of RET, JF, JOIN, and PROD operations; e.g., indices, join algorithms, etc. As
an example, the SQL* SELECT statement of Figure 1.1b (which we reproduce in Figure 4.1a) could be pro-
cessed by many possible expressions. One such expression is given in Figure 4.1b:

SELECT P.Name, C.Type JOIN(, JF(CP.D,*), D, *)
FROM PLC
WHERE D and C.Color="green’

@ ()

Figure 4.1 Example Output of Q_OPT Operation

5 1t is possible to evalt smplicated gueries solely by calls o SUBSTITUTION using the following recursive function:
SB(G) = SUBSTITUTION(G,SB())
However, it is not poszible 1o do the same with DECOMP.
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The execution strategy of the expression in Figure 4.1b is 1o jfilier (e.g., semijoin) file C with file P before it is
joined with P. The restriction predicate "C.Color=" green’" is captured by the query fragment Q(CR) of fle C.

A Q_OPT expression can be executed once algorithms are chosen (0 implement RET, JF, JOIN, and
PROD. We survey implementations of these operations in Sections 5 and 6. Before doing so, we make two
observations.

Observation 1. The primary reason why rule-based algebras play a central role in extensible DBMSs is
the ease with which new algorithms can be added to existing catalogs and to new DBMSs. Further, these alge-
bras provide a very concise way 10 explain the different permutations of algorithms that one finds in comparing
different DBMSs. The class of Q_OPT implementations, for example, is approximately the cross product of the
classes that implement Q_GRAPH, REDUCING_PHASE, and JOINING_PHASE algorithms.

Not all combinations of algorithms yield robust Q_OPT algorithms. By pairing nonrobust algorithms,
such as CBH and HY, with a robust counterpart, G, a new robust algorithm can be formed:

HY( SIMPLE_CLIQUE(G)) - if G is a simple clique
NEW_ROBUST(G) = BC(TREE(G)) - if G is not a simple clique but is a tree
G ; give up otherwise

In this way, the number of different nonatomic algorithms that could be synthesized is enormous. 6

Observation 2. Understanding rule-based query optimization is currently an important research topic.
By grouping algorithms into catalogs, is it possible 1o use rule-based optimizers for both the
REDUCING_PHASE and JOINING_PHASE of a query. As rule-optimizers run faster on smaller sets of rules,

performance might be enhanced by optimizing on smaller rule sets, one set at a time, rather than using a single
large set [Fre87, Bat8'c, Loh87].

& 9y have tsken liberiies with functional synlax in this example. More accurately, & user would provide & function
STRATEGY(E1( ), E20) £3( ), G) which would encode the conditions for executing E1(G), E2(G). or BE3(G).
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g, LINK Retrieval Algorithms

JOIN and JF are the basic retrieval operations on LINKs. In this section we survey their implementations
for several LINK types: links with structures (PARRAY, RLIST), links without structures (ALG), and concrete
links (CONL{ ]). Other LINK types are discussed in [Hae78, Bat85, Val87]. Rewrite rules are also presented
that are specific to JOIN and JF operations. These rewrites have been implicitly used in designs of distributed
DBMSs and database machines [Ker79, Val85, Ger86, Seg86].

8.1 The ALG Type

ALG (short for ’algorithm”) is the LINK type that implements links solely by algorithms, and not by spe-
cial storage structures. Common join and semijoin algorithms are realizations of this type.

1t is well-known that many join algorithms do not treat F1 and F2 identically. For this reason, researchers

have distinguished F1 and F2 by the terms ’inner’ and "outer’. Let JN(Fo,Fi,J,0) be the class of algorithms that

realize the join of outer file Fo with inner file Fi. Thus, JOIN has two JN implementations, where the roles of
inner and outer are swapped between F1 and F2:

JOIN(F1,F2,1,0) => IN(F1,F2,J.0) ; F1 is outer file P1)

IN(F2,FL,1,0) s F2 is outer file ®2)

Three subclasses of JN algorithms are recognizable: sort-merge, hashing, and nested-loop:

JN(Fo,Fi,J,0) => SORT_MERGE_JN(Fo,Fi,J,0) ; sort merge joins Jn
HASHING_JN(Fo, Fi, J,0) ; hashing joins J2)
NESTED_LOOP_JN(Fo,Fi,1,0) ; nested loop joins J3

JN algorithms have two requirements. First, their J parameter must be a predicate (not a link). Second, both Fo
and Fi must be stream files. If they are not, they must be converted. The conversions are achieved, in part, by
the following function. Let STR(F,s) be the stream of F records in s order:

RET(F, QFR).s) :if Fis stored @
STREFs) = SORT(, 5) . if F is stream (b)

F is stored in case (a); records that satisfy Q(F R) are retrieved from F in s order. F is a stream file in case (b); F
is sorted in s order.

Let So(s)=STR(Fo,s) be the stream of Fo records in s order. Converting Fi to a stream is more compli-
cated as the inner file of nested loop algorithms requires an extra parameter. Let Si(j, s) be the stream of Fi
records in s order that have join value j. Parameter j can be assigned a data value or the wild card (*). In the
latter case, Si(*, s) denotes the stream of all Fi records in s order. Let P(j, J) be the predicate which specifies
that the join value of a record must equal j. Si(j, s) is given by:

i STR{Fi, s) s if j=* {c)

SiGS) = 1 FILTER(STR(F,s),PG.))) ;if je* @
In case (d), stream Fi is filtered of all records that do not satisfy predicate P(j, J). By implication, Fi is recom-
puted for each value of j. Although this is among the simplest algorithms for (d), it certainly is not the most
efficient. A more efficient algorithm might be to store Fi in a temporary file (thus computing Fi only once), and,

then retrieving temporary file records in s order for each value of j. Variants such as this are derivable from (d)
using (A1), (A2), (R1), and (R2) rewriies.

In the following, sort-merge, hashing, and nested loop join algorithms are surveyed. We will assume J is
a predicate and will use JFLD(J) to denote the join field of predicate J. Lastly, we’ll catalog classes of JF
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algorithms for the ALG type.

§.1.1 Sort-Merge Join Algorithms

Let MERGE_SCAN(Go, Gi, J) be the class of algorithms that perform merge-scan joins on streams Go
and Gi using equijoin predicate J [Bla77]. Gi and Go must be in join field JFLD(]) order. The resulting stream
of records is produced in JFLD(J) order.

SORT_MERGE_IN(Fo, Fi,J,0) => SORT( MERGE_SCAN( So(JFLD(J)), Si(*, JFLD()), 1).0) (J1.1)

1t is worth noting that when there are groups of records in Go and Gi that have the same join value, existing
sort-merge joins require the rereading of Gi records [Loh87a]. In our model, Go and Gi cannot be reread. (To
allow rereading would cause enormous complications in the definitions and implementations of every function
in our algebra). Instead of rereading, functions (e.g., MERGE_SCAN) internally buffer records that might need
to be reread, thereby keeping their exiernal mechanics simple.

5.1.2 Hashing Join Algorithms

Let HASH_JN(Go, Gi, J) be the class of algorithms that perform hash joins on streams Go and Gi using
equijoin predicate J. Go and Gi need not be in any specific order. The resulting stream of records is produced
in (essentially) a random order.

HASHING_JN(Fo, Fi,J,0) => SORT( HASH_IN(So(*), Si(*, %), 1), 0) J2.1)
HASH_JN(Go, Gi,J) => GRACE_HJ(Go, Gi, D : Kitsuregawa [Sha86, Kit83] (HI1)
SIMPLE_HI(Go, Gi, 1) ; Shapiro [Sha86] (HJ2)
HYBRID_HJ(Go, Gi, D) ; Shapiro [Sha86] (HI3)
CLASSICAL_HIJ(Go, Gi, J) ; Shapiro [Sha86] (HJ4)
FRAG_HIJ(Go,Gi, 1) : Sacco [Sac86] (HIS)

CLASSICAL_HJ, as described by Shapiro [Sha86], is not robust. It can only be used if Go can fit into main
memory. See [Sha86, Ger86] for analyses and performance comparisons of several hash-join algorithms.

5.1.3 Nested Loop Join Algorithms

Let NESTED_LOOPS(Go, Gi(), J) be the class of algorithms that perform a nested-loops join on
streams Go and Gi() using equijoin predicate J. (The underscore _ denotes a formal parameter of Gi; Gi(x) is
the stream of inner records that have x as their join value). The basic algorithm is to adjoin each record r in Go
with each record in Gi(x), where x is the join value of record r. The resulting stream of records are produced in
ORDER(Go).

NESTED_LOOP_JN(Fo,Fi,J,0) => SORT( NESTED_LOOPS(So(*), Si(,*, 1. 0) (J3.1)
NESTED_LOOPS(Go, Gi(_),J) =>
BASIC_NL(Go, Gi( ), J)  basic nested loops [Bla77] (%)
BLOCK_NL(Go, Gi(), 1) - block nested loops 1.2)
HASH_BLOCK_NL(Go, Gi(J),J) - hash-block nested loops [Ger86] L3

BLOCK_NL differs from HASH_BLOCK_NL in that buffered records of Go are stored in a hash-based data
structure rather than a heap. The change in data structure reduces main-memory search times.
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514 JF Algorithms

JF(Fo, Fi, J, O) represents the class of algorithms that eliminate Fo records that do not participate in a join
with Fi. There are two subclasses, semijoins and Bloom semijoins:

JF(Fo,Fi,J,0) => SEMUOIN(Fo,Fi, ], 0} ; semijoin filtering 36)
BLOOM(Fo,Fi, §,0) ; Bloom semijoin filtering a7

Semijoins are the most widely-known JF implementations. They are implemented as special cases of
standard join algorithms; i.e., there are semijoin algorithms based on sori-merge, hashing, and nested-loops. As
these algorithms are fundamentally no different than their JN counterparts, we do not consider them further,

Bloom semijoins appear to be a practical alternative to semijoins. Rather than transmitting join values of
the inner relation to the outer, a bit map is transmitted instead [Blo70]. The map is initialized by hashing each
join value in Fi to one (or several) bits. During the filtering process, a record of Fo can be discarded if the
corresponding bit(s) for its join value are not set. By its nature, a Bloom semijoin does not eliminate every
record of Fo that does not participate in a join with Fi as would a semijoin. However, the number of ’false
drop’ records can be statistically controlled. Furthermore, as Bloom semijoins are easy to implement, they are
being used in database machines [DeW86, Ger86] and are being considering for use in distributed DBMSs
[Mac86a-b]. '

5.2 The Linkset Types

PARRAY (pointer arrays) and RLIST (ring lists) are among a large class of LINK types that rely on spe-
cial storage structures called linksets. In order for JOIN(F1,F2,],0) and JF(F1,F2,J,0) operations on linksets to
make sense, the J parameter must always be a link name, and F1 or F2 or both must be stored files. (This con-
trasts with join algorithms where J must be a predicate and F1 and F2 are streams. The reason why F1 or F2
must be stored is to take advantage of linkset structures).

Let FOLLOW(S, 1, A()) be the operation that takes each record r in stream S and concatenates it with
each record that is connected to it via link J. The operation A(p) is used to access a record given its pointer p.
FOLLOW has a catalog entry for each linkset type L {Bat82, Teo82]:

FOLLOW(S,J,A()) => PA_FOLLOW(S,J, A(}) ;ifL isPARRAY
RL_FOLLOW(S,J,A(QD) ;if L is RLIST

Let ACC(F,Q.S) be the FILE operation which takes a stream of pointers S and follows each pointer to a
record in file F. If the record satisfies predicate Q, it is output. The implementation of JOIN for linkset types is
captured by following pointers from F1 to F2 and vice versa:

JOIN(F1,F2,],0) => SORT(FOLLOW(STR(F1),J, ACC(F2,Q(F2,R), ). 0) s if F2 is stored
SORT( FOLLOW(STR(F2), J, ACC(F1, Q(F1,R), .)), O) ; if F1 is stored

Linkset implementations of the JF operation are no different than that of JOIN operations.

§3 The CONL[ ] Type

There are several join algorithms that exploit storage structures which are introduced by FILE types. The
join indices algorithm of Blasgen and Eswaren is an example [Bla77]. Relations (i.e., abstract files) are imple- *
mented by inverted files. Traversing a link (i.e., join) connecting two relations is realized by a merge-scan or
nested loop join of secondary index files over the join keys of both relations. (A more detailed explanation of
the algorithm is given in Section 6.2).
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Rather than defining a special LINK type for each FILE type to account for these algorithms, we use a
single LINK type, called CONLI[n:LINK] (for concrete link). CONL[ ] states that the implemeniation of an
abstract link exploits the FILE type of its connecting abstract files. Thus, if a DBMS supporting MODEL M
implements conceptual files by inverted files and conceptual links by the above join indices algorithm, its type
expression would be:

M[ INDEX[df x[k], CONL{ ALG ]1]

Specific values for df, xf, and k are not needed for this example.

The CONL type maps JOIN and JF operations directly to CJOIN and CJF (concrete JOIN and concrete
JF) operations, whose implementations are FILE type dependent:

JOIN(F1,F2,],0) => CJOIN(F1,F2,J,0) ; concrete (lower layer) join algorithms
JF(F1,F2,1,0) => CJF(FLF2,J, 10)] - concrete (lower layer) jfilter algorithms

Catalogs of CJOIN operations are presenied when we examine the operation mappings of FILE types (Section
6). Catalogs of CJF operations are no different than those for CJOINS, and are not considered further.

5.4 JOIN and JF Rewrite Rules
Let G(Fo, Fi, J, 0) be a JOIN or JF operation. Three rewrite rules specific to JOIN and JF are:

G(Fo,Fi,J,0) <-> G(JF(Fo,Fi,], 01 ), Fi,J,0) (Ad)
G(Fo, JF(Fi,Fo,1,02),],0) (A5)
G(JF(Fo, Fi, ], 01), JF(Fi,Fo,J,02),],0) (A6)

(A4) means replace parameter Fo in a JOIN or JF operation with JF(Fo, Fi, J, O1). Similarly, (AS) replaces
parameter Fi with JF(Fi, Fo, 3,02). (A6) completes the triad by replacing both Fo and Fi. Note that O1 and O2
are unspecified orders in (A4)-(A6); orders other than random (*) can be assigned for purposes of optimization.

The utility of these rewrites is to eliminate records that do not participate in the join or jfilter of Fo and Fi.
Generally used with JOIN operations [Ker79, DeW86, Val85, Seg86], the rewrites occasionally find use with
JF operations. As an example, the remote semijoin of Segev [Seg86] is an (AS5) rewrite of the SEMIJOIN
implementation of JF:

SEMUOIN(Fo, Fi,J,0) <—> SEMUOIN(Fo, SEMUOIN(F, Fo,J,0),1,0)

That is, instead of performing a semijoin of Fo on the join values of Fi directly, an alternative is to reduce the
number of join values of Fi by semijoining Fi with Fo first. In the context of distributed DBMSs (the subject of
Section 7), Segev has found situations where remote semijoins are more efficient than conventional semijoins.
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6. FILE Retrieval Algorithms

We examine five representative FILE types: heap and B+ trees (HEAP, BPLUS), indexing (INDEX] 1),
augmenting record type identifiers (AUGI 1), and horizontal partitioning (HPART] ). The first three are dis-
cussed in this section; the remaining are in Appendix 3.

We will consider the mappings of two file retrieval operations: RET and ACC. (Recall that ACC is the
operation which accesses a record given its pointer). We will also examine the mappings of the CJOIN opera-
tion, an operation that arises when the implementation of links are forced 10 lower layers (see Section 5.3).

In our discussions, we will use AF 1o denoic an abstract file and F as its dominant concrete file, i.e., the
primary file to which AF is mapped [Bat85].

6.1 The BPLUS and HEAP Types

BPLUS and HEAP are among a large subclass of FILE types that map abstract files to simple file struc-
wres. Each structure/type has its own retrieval and access algorithms:

RET(AF,Q,0) => SORT(BPLUS_RET(,Q),0) ; BPLUS catalogs an
ACC(AF,Q,8) => BPLUS_ACCEF,Q,S) 12y
RET(AF,Q,0) => SORT(HEAP_RET(F,Q),O) ; HEAP catalogs I13)
ACC(AF, Q, S) => I'IEAP._ACC(Fa Qa S) (14)

Equations (11) and (I3) capture the property that records retrieved from file structures are returned in the order
in which they are stored. (B+ trees store records in primary key order; heaps store records in random order). If
a different ordering is needed, a sort is performed. Algorithms for these and other file structures are given in
[Teo82].

CJOIN operations map directly to JOIN operations:

CJOIN(AFo, AFi,J,0) => JOIN(Fo,Fi, J,0) ; JOIN has no CONL implementation {Is)

File structures reside at the lowest level of 2 DBMS. Therefore, JOIN operations at this level must be realized
by sort-merge, hashing, nested-loops, or linkset algorithms, and cannot be pushed w lower layers (i.e., the
CONL link implementation cannot be used).

6.2 The INDEX[ ] Type

INDEX[Af-FILE, xf:FILE, k:LINK } maps an abstract file AF to an inverted file, consisting of a data file
F and n index files I, - - - I,. Let L; be the link that connects I; to F. The implementation of the data file, index
files, and links are the parameters df, xf, and k.

Pointers to abstract records are indistinguishable from pointers to F records. Thus, accessing AF records
maps to accessing F records:

ACC(AF, Q, S) => ACC(Fs Q’ S) (Xl)

There are many inverted file retrieval algorithms; three of which are classical. The first scans the data
file. It always works, but is slow. The second, popularized by System R [Ast76], uses exactly one index file.
The file selected could be a restriction index or an index on the sort column. (The former is used to eliminate
records, while the latter eliminates a sort. Part of the algorithm is determining which of several index files o
use). The third uses many index files and processes queries by taking the union and iniersection of inveried
lists,

To represent the third algorithm, let LISTPROC(Q, € G)) be the function that takes a collection of

#XQ



-19-

inverted lists and forms their union and intersection. Q is the query, XQ is the set of subscripts that identify the
index files to be accessed, and G;j is the function that retrieves the index record(s) from index file I, Let £ G

denote 2 list of G functions, and let 1Q; be the predicate that selects index records from I;. We have: e

RET(AF,Q,0) => RETF.QO) ; scan data file (X2)
JOINGE, L, L, O) - use one index file (X3
- {is selected by query optimizer
JOIN(E, LISTPROC(Q, & RET(L,1Q,*)),L; 0) (X4)
1€XQ

- use several index files
: XQ and j are selected by query optimizer

In (X3) and (X4), indices are used 1o process queries. The selected indices are encoded in the values assigned
1o the t subscripts, which are determined by a query optimizer. We outline how query optimizers work in the
context of our algebra in Section 8. Note that the implementation of the JOIN operations in (X3) and (X4) are
specified by parameter k of INDEX[ 1.

There are many algorithms for joining two inverted files (i.e., CJOIN mappings), most of which can be
mechanically generated from two simple rewrites. Both rewrites involve the use of join indices, i.e., index files
on the join column. One rule states that a join of two files Fo and Fi can be replaced by two joins: the first joins
Fo with the join index file of Fi, and the second joins the latter result with Fi. The second rewrite rule does the
same with the roles of Fo and Fi reversed.

Let Io;, Ioy, - - - be the index files of Fo and let Ii;, Iip, -+« be the index files of Fi. Let 8 and 1 be the
subscripts of the join index files of Fo and Fi (if they exist). The rewrite rules described above are:

JOIN(Fo, Fi,J,0) <> JOIN( JOIN(Fo, Ii;, J, Oi), Fi, Li;, 0) R3)
JOIN( JOIN(Io,, Fi, J, O0), Fo, Lo, O) ’ (R4)

Note that the applicability of either rule depends on the existence of the specified join index.

Different algorithms arise for CJOIN depending on the stored or stream nature of AFo and AFi. There is
one algorithm for each of the four possibilities:

CIOIN(AFo, AFi, AJ,O) => JOIN(AFo, AFi, J,0) - AFo and AFi are stream X5
JOIN(AFo, Fi, J, 0) : AFo is stream, AFi is stored X6)
JOIN(Fo, AFi, 1, 0) : AFo is stored, AFi is stream X7
JOIN(Fo,Fi, 1,0) . AFo and AFi are stored (X8)

Recall the join indices algorithm of Blasgen and Eswaren [Bla77]. This algorithm realizes the join of two
inveried files by joining the join indices of both files, following pointers to both data files, and applying restric-
tion predicates. The join indices algorithm (X8’) is a variant of (X8), and can be generated by applying (R3)
and (R4) to (X8). (The order in which rules are applied is one of the variations of the algorithm; the one given
below uses the order (R3) followed by (R4)).

CJOIN(AFo, AFi, AJ,0) => JOIN(JOIN(JOIN(Io,, i J, 00), Fo, Loy, Oi), Fi, Ly, ) (X8)

Other CJOIN algorithms for the INDEX type are given by Rosenthal and Reiner [Ros82].



% Distributed and Parallel Computation

A program need not be executed on a single processor. Its computations can be distributed over several
processors whose locations may be at remote sites. Functional expressions are ideal for expressing distributed
computations. Each function F of an expression E can be executed at a different processor. Its input is from
the processor that executed the function which immediately preceeds F in E, and its output is directed to the
processor that executes the function immediately following F in E.

We use superscripts F' to designate that function F is executed by processor f. Thus, the expression
A(BY(C®)) states that functions B and C are executed by processor b and function A is executed by processor a.
As the physical locations and interconnections between processors are not specified, expressions can denote
distributed computations in a wide area network, & local area network, a loosely coupled system, or a tightly
coupled system.

Most of the expressions we have encountered so far can be realized by a linear pipeline of processors.
Distributing computations in this manner does not necessarily increase parallelism or efficiency. There appears
10 be a small number of rewrite rules whose sole purpose is to increase the parallelism of a computation, and 10
increase computation efficiency as a by-product. In the following sections, we identify three rules which have
been used in the design of database machines. We begin with a prief discussion of stream multiplexors and
demultiplexors.

7.1 Stream Multiplexors and Demultiplexors

SPLIT is the class of algorithms that partition a stream A into n substreams X - - - X ASSEMBLE is
the class of algorithms that do the inverse; they take n substreams and produce a single, ordered stream.

The mechanisms for splitting streams are fundamentally no different than those used for horizontal parti-
tioning. Load balancing (or round robin), hashing, and range key splitting are the common methods [DeW86,
n

Ger86, Kit83, Fus86]. Let .51 X; denote the list of streams X, - - - X; and let the bar | delimit parameters that are
=

fists. SPLIT has at least the following implementations:

o 3
SPLIT(A | § X;) => LSPLIT(A! £ X;) : load balancing M1
= =
&
HSPLIT(A | § X)) : hashing M2)
j:
B
RSPLIT(A | § X)) : range split M3)
F

There are two general ways to ASSEMBLE streams. One merges streams X, - -+ X, which are already in
O order into a single stream that is in O order. The second combines streams X, - - - X, in any order, followed
by a sort.

ASSEMBLE( g} X;10) => MERGE( _él X;10) ; merge M4)
F F
SORT( COMBINE( '§l X;),0) ; combine M5
J=

%2 Distribution Rewrite Rule

Figure 7.1a shows a very common situation: & stream A is consumed by function F to produce stream
F(A). Figure 7.1b shows how this computation can be distributed: A is split into n substreams X; - -+ X, func-
tion DF ("Distributed F") maps each substream, and the resulis are assembled by function DF_ASSEMBLE 0
produce F(A). We call this the distributed rewrite (DR) of F(A):



(@) A ———3 F 3 F(A)
DF
X, DF(X))
®) A —= SPLIT : : DF_ASSEMBLE (—> F(A)
Xa DF(X
DF X))
{c)
F DF DF_ASSEMBLE

SORT SORT  MERGE
COUNT COUNT SUM
AVE sC SC_ASSEMBLE

Figure 7.1 The Distributed Rewrite Rule

F(A) <> SPLIT(A _§1 X
F

DF_ASSEMBLE( _E} DFX;)10) ; O = ORDER(F(A)) (DRL)
F

DF and DF_ASSEMBLE are functions that satisfy the DR for F. A table of DR-related functions given in Fig-
ure 7.1c. As an example, if F is AVE (average), the DF function is SC which reduces a stream of numbers ©
an ordered pair (sum of numbers in stream, count of numbers in stream). SC_ASSEMBLE combines ordered
pairs 0 produce the average of the original stream. A more general definition of DRI is given by Ceri and
Pelagatti [Cer84].

(DR1) is applicable to functions that operate on a single input stream. (DR2) is a generalization which
handles functions, such as JOIN and MERGE, that operate on multiple streams. Figure 7.2a shows a function
G that processes streams A and B. Figure 7.2b shows how G can be distributed. A is split into n substreams
X, <<+ X, and B is splitintom substreams Y, - - Y. Each pair of substreams (one from A and one from B)
is processed by DG ("Distributed G"). DG_ASSEMBLE combines n*m substreams 10 yield G(AB). We have:
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A B
SPLIT SPLIT
X, X, Y, Y,
DG DG ... DG
1 lB
G DG_ASSEMBLE
G(A,B) G(A.B)
@ ®
()
G DG DG_ASSEMBLE

JOIN JOIN MERGE
MERGE MERGE MERGE

Figure 7.2 Generalized Distributed Rewrite Raule

il
G(AB) <-> SPLIT(AIEX;);
A =
SPLIT(B | ?;1 Y )

DG_ASSEMBLE( _E} n&; DG(X,Y;}10) :O=0RDER(G(AB)) (DR2)
Fli=
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DG and DG_ASSEMBLE are functions that satisfy the DR for G. Figure 7.2¢ is 2 table of DR-related functions
that consume two Of fnoTe siréams.

It is possible to simplify (DR2) significantly by choosing the appropriate SPLIT functions. Consider the
JOIN operation. In the GAMMA and GRACE database machines, both streams A and B are hash split on the
join field using the same hashing function. Taking the join of X; with Y; is guarenteed to produce the null
stream if i#j. Instead of evaluating n? joins, only n joins are needed. This simplification can be verified using
file characteristics.

7.3 Assembly Rewrite Rule

Figure 7.3a shows a common situation involving assemble functions: a function F processes 2 single
stream A which is an assembly of substreams A; -+ A,. Figure 7.3b shows how this computation can be dis-
tributed: function DF is applied to each substream, and the results are assembled by DF_ASSEMBLE 1o pro-
duce F(A). We call this the assembly rewrite (AR).

Ay
@) ' F_ASSEMBLE A F |—s F&)
Aq
A DF
DF(Ay)
(®) : DF_ASSEMBLE | F(A)
DF(A,)
A, —>= DF
©
F F ASSEMBLE DF _ DF_ASSEMBLE
SORT MERGE SORT MERGE

SPLIT ASSEMBLE SPLIT ASSEMBLE

Figure 7.3 Assembly Rewrite Rule
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F(F_ASSEMBLE( V&’,:1 A1O)) <> (ART)
=
DF_ASSEMBLE( _E',l DF(A) 1 01) ; O1 = ORDER(F(A))
F

DF and DF_ASSEMBLE are functions that satisfy the AR for the function pair (F, F_ASSEMBLE). A wable of
AR-related functions is given in Figure 7.3c.

An interesting example of (AR1), which is used in the GRACE and GAMMA database machines,
involves the (SPLIT, ASSEMBLE) pair. Figure 7.4a shows how substreams A; --- A, are assembled into a
single stream only to be split immediately into m substreams X, -+ X,. The (AR1) rewrite transforms Figure
7.4a into 6.4b, where each of the A; substreams is split immediately into m substreams Y, - - Y;n, and the
assembly of all substreams Yy, -+ Y, for a fixed k yields X,. This rewrite is:

Al\

(@ - ASSEMBLE SPLIT

/-
. N

A, T SPLIT ASSEMBLE [~ X,

()

A, T SPLIT ASSEMBLE

v Y

a5 B

Figure 7.4 The SPLIT-ASSEMBLE Pair
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o m
SPLIT( ASSEMBLE( & A; 1O)Y1 E X)) <>

£ K1
8 m
E SPLIT(A; ! & Yj);
Fl k=1
o n
é} NAME( ASSEMBLE( 'él Yix 10). % ) {ARLY)
= =

Note that the use of NAME(A, N) in (AR1.1) is merely a syntactic convenience. It simply gives stream A the
label N and performs no actual computation.

Figure 7.5 shows a generalization of (AR1) that applies 1o functions that operate on two or more input
streams:

A, A, B, B, A; B A, B A, B,
G_ASSEMBLE G_ASSEMBLE DG DG DG
x ’A \ /
G DG_ASSEMBLE
G(AB) G(AB)
(a) ®

Figure 7.5 Generalized Assembly Rewrite

G( ASSEMBLE( _§1 A 10), ASSEMBLE( kéz B, 10)) <>
p &

DG_ASSEMBLE( AE} :él DG(A;,B,)101) 3 01 = ORDER(G(A B)) (AR2)
F =

DG and DG_ASSEMBLE are functions that satisfy AR for the pair (G, G_ASSEMBLE). As an example, ifthe
(G, G_ASSEMBLE) pair is (JOIN, MERGE), the (DG, DG_ASSEMBLE) functions are (JOIN, MERGE).
That is, merging the fragments of relations and then joining is the same as joining all pairs of fragments and
merging their results.



7.4 Split Rewrite Rule

SPLIT splits a stream A into substreams X, - - - X, where all records of A are assigned 10 exactly one
substream. Suppose record r is assigned to X, if r satisfies predicate P, where P, is the split predicate for X;. 7
Consider Figure 7.6a. Let F(Q) be a function which produces A, where all records in A satisfy predicate Q.
Figure 7.6b shows how query modification can be used to distribute this computation. Instead of evaluating
F(Q) once, n different computation instances are spawned, where the ith computation evaluates F(Q and P)),
which produces X

SPLIT(F(Q) | é %) <> é NAME(F(QandP; )}, X;) (SR)

We call this the split rewrite (SR). The (SR) is used in the SABRE database machine [Che86].

/ )
(a) F(Q) SPLIT .
\ )
F(Qand P,) = X,
®)
F(QandP,) X,

Figure 7.6 Split Rewrite Rule

7 In the case that LSPLIT (load-balancing) is used, Py=true for all i.
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8. Examples: a Centralized DBMS, e Distributed DBMS, and a Database Machine

The catalogs and rewrite rules that we have presented can be used to eXpress the design and algorithms of
prototype as well as operational DBMSs. In this section, we show how the query processing algorithms of
three rather different DBMSs can be built from a common pool of components: the MODEL types SQLI[ ] and
NETWORK] 1, the FILE types AUG[ 1, HPART( ], HEAP, and BPLUS, and the link types ALG, PARRAY,
and CONL[ ]. We will use the notation 9 10 denote the implementation of operation O in system X.

8.1 System R: a Centralized DBMS

System R (now SQL/DS) is a relational DBMS that was developed at IBM San Jose in the late 1970s
[Ast76]. It is a centralized and software-based system that runs on a single processor. Its query processing
algorithm, by Selinger et al. [Sel79-80], is universally recognized as a seminal research contribution.

System R consists of two subsystems: the Relational Data System (RDS) and the Relational Storage
System (RSS). The RDS presents the SQL front-end of System R; it maps relations to RSS, a sophisticated file
management system. The boundaries of the RDS and RSS do not match precisely with the functional interfaces
that our algebra requires. However, an approximate match has RDS providing the query processing functions
at the conceptual level with RSS providing the functions of all lower levels. RDS has the type expression
SQLIRSS_TYPE, ALG], where RSS_TYPE will be defined shortly.

RDS is responsible for transforming SQL queries into executable expressions. Query optimization is
done exclusively in the joining phase by the SYS_R algorithm; no optimization occurs in the reducing phase
(ie., REDUCING_PHASE(G)=G). Thus, in RDS:

Q_R(gfr( R) => SYS_R(SQL_GRAPH(R)) (ED)

A characteristic of the SYS_R algorithm is that it generaies joins where the outer file is always a stream and the
inner file is always stored. Joins are realized in RDS by either sort-merge or basic nested 1oop algorithms,
which are instances of (J1) and (J3):

JROD%\I( F1,F2,J,0) => SORT( MERGE__SCAN( SORT(F1, JELD(3)), RET(F2, Q2, JFLD()), 1), 0) (E1)

SORT( BASIC_NL(F1, RET(F2, Q2 and P(_.), *). )), O) (E2)

When a J%)D%\I is processed, the cheaper of (E1) and (E2) is executed. This decision is made either at run-time

for ad-hoc queries, or compile time for repetitive queries [Cha81]. Note that the only operation in (E1) and
(E2) that requires the support of RSS isRET.

RSS maps relations to inverted files. Data file records are augmented with their relation identifiers, and
are then stored in heaps. Index files are stored in B+ trees, and index-to-data file links are realized by pointer
arrays. This implementation is defined by the type expression RSS_TYPE = INDEX[AUG[HEAP], BPLUS,
PARRAY].

To understand file retrievals in RSS, first consider the INDEX][ ] algorithms. Index files in RSS are
assigned different labels: restriction, ordering, and clustering. The restriction and ordering labels are query
dependent, while clustering is not. A clustering index provides a fast access path to all data records and is an
alternative to data file scans. Typically, a clustering index is also an index on a primary key.

Four different retrieval algorithms are supported in the indexing layer: dbscan, which scans the data file,
clustered index scan, which uses the cluster index (o scan the data file, sorted scan, which uses a restriction
index to process a query followed by a sort, and unclustered index scan, which is used when an ordered result
is needed and an index on the ordering column is present, dbscan is identical to (X2), while the others are
instances of (X3). Pointer array algorithms are used to perform index file - data file joins. In the algorithms
below, F denotes the data file, I; an index file, T denotes the subscript of a restriction index, 6 the ordering index,
and £ the clustering index:



RET(AF, Q. 0} =>
RSS

RET(F, Q. 0) ; dbscan (E3)
SORT(PA_FOLLOW(RET(,, QI *),L,, ACCF,Q, ) ).0) ; clustered index scan (E4")
SORT(PA_FOLLOW(RET(,, QL, *),L,, ACCF,Q, ). 0) ; sorted scan (ES’)
PA_FOLLOW(RET(,, Ql,,*),L,, ACCF.Q, )) ; ordering index scan (E6")

It is important to note that the output of dbscan and clustered index scan algorithms in RSS is not soried,
unlike sorted scan and ordering index scan. In contrast, our algebra requires sorts to be present in (E3’) and
(E4") to conform with the higher-level specifications of RR%;I‘ In this sense, our descriptions of }}(ISS;I‘ are approx-

imate. ®

Immediately below the indexing layer is the augment RTI layer, which augments RTIs (relation
identifier) to data records. (G1) and (G2) from Appendix 3 define the mapping of RET and ACC operations.

At the internal level, data files are stored in heap file structures called segments. Segments can contain
the records of a single data file or multiple data files. (Assigning data files to segments is the responsibility of
the DBA). Index files are implemented as B+ trees. (I11)-(14) are the mappings of the retrieval and access algo-
rithms for B+ trees and heaps. Let H be the heap file (segment) in which the records of data file F are stored,
and let IH; be the internal file to which index file I; is mapped. Substituting augment RTI and internal algo-
rithms into (E3’)-(E6") and simplifying yields the RSS retrieval algorithms:

RET(AF,Q,0) =>
RSS

SORT( HEAP_RET(H, Q and RTIQ(AF)), O) ; dbscan (E3)
SORT(PA_FOLLOW( BPLUS_RET(HI,, Q1,), L,, HEAP_ACC(H, Q, 1)), 0) ;clustered index scan (E4)
SORT(PA_FOLLOW( BPLUS_RET(HI, QL), L, HEAP_ACC(H,Q, ) ), 0) ; sorted scan (ES)
PA_FOLLOW( BPLUS_RET(HI,, Q1,), L,, HEAP_ACC(H,Q, ) : ordering index scan (E6)

As in the case of JRODIgJ the cheapest algorithm among (E3)-(E6) is executed when a }%E;l‘ is processed. Com-

posing (E1) and (E2) with (E3)-(E6) yields all (eight) algorithms that are used to accomplish the join of concep-
tnal files/relations.

Further discussion on query optimization is given in [Loh87b, Bat87b]. Another model of System R, dif-
ferent from ours, has been presented by Freytag [Fre87].

8.2 R*: A Distributed DBMS

R* is an experimental distributed DBMS that is an enhancement of System R. The RDS of System R
underwent modification to enable relations o be located at different sites. (We will call this modified subsys-
tem RDS*). The RSS of System R remained unchanged. Thus, the type expressions defining R* and System R
are identical. Further, algorithms (E3)-(E6) are the same for both DBMSs.

1 is this type of mismaich that is common in existing DBMSs; different slgorithms with incompatible or ad-hoc

ifications 1) query optimization to be more difficuli (as the conditions to use ceriain algorithms are more compli-
cated), 2) make exensibility more difficult, and 3) obscures the recognition that 2 bailding -blocks approach can be taken 10
construct DBMSs.
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Query processing in R* is very similar to that in System R. The RSTAR algorithm is used instead of
SYS_R:

QEI%I"T( R) => RSTAR( SQL_GRAPH(R)) (EG)

The main distinction between SYS_R and RSTAR is the selection at which sites (i.e., processors) different
functions of an access path are 10 be executed. We rewrite (E1) and (EZ) below using processor Superscripts,
and give a variant of (E2) which stores the stream of inner file records in a temporary file and joins the outer file
with the temporary file. {(Readers can recognize this as an (A2*A1) rewrite of (E2). The rationale for this vari-
ant and its use is given in [Loh85, Mac86a-b]). We use x to denote the join site, and o and i are the outer file
and inner file sites:

JOIN*(Fo®,Fi,J,0) =>

RDSe
SORT*( MERGE_SCAN*( SORT*(Fo, JFLD()), RET\(Fi, Qi, JFLD()), 1), O) (E7)
SORT*( BASIC_NL*(Fo, RET'(Fi, Qi and P(_J). *). J). 0) (E8)

STORE_TMP*(T, RET'(Fi, Qi, JFLD(), *);
SORT*( MERGE_SCAN*( SORT*(Fo, JFLDQ)), RET*(T, null, JFLD(3)), 1), O) (E9)

Four cases are considered in RDS*. Case 1 deals with Fo and Fi at the same site. Setting i=o0=x, algorithms
(E7) and (E8) reduce to the System R algorithms, (E1) and (E2). Algorithm (E9) is not considered in Case 1.

Cases 2-4 assume Fo and Fi are at different sites. Case 2 ships the outer relation Fo to the inner. Setting
x=i in (E8) and (E9) yields another two algorithms.. (E9) is not considered in Case 2.

Case 3 converts the inner file to a stream and ships it to the site of the outer file. Two different shipping
strategies are distinguished: fetch-inper-as-needed and ship-inner-in-whole-and-store. The algorithms that
use the former strategy are (E7) and (E8) with x=0. The algorithm that uses the latter strategy is (E9) with x=0.

Case 4 processes joins at a designated site that may be distinct from o or i. Called the wild card site, it
remains unspecified until run-time. The algorithms for Case 4 are E7-(E9) with x="wild_card’.

There is a total of ten algorithms which RDS* considers in optimizing the join of two files, eight more
than that considered in System R. Again, these extra algorithms are simple variants - mostly choosing the
processor/site superscripts - of the System R algorithms.

83 GRACE: A Database Machine

GRACE is a parallel relational database machine being developed at the University of Tokyo. Descrip-
tions of the join algorithm for conceptual files/relations have been featured in [Kit83, Fus86]. We show below
how this algorithm is composed from atomic algorithms.

GRACE stores a relation by augmenting the relation id (RTT) to each of its tuples and by horizontally
partitioning the augmented relation (presumably using a load-balancing method) over several disks. Each disk
has a filtering and projection unit, so all operations on internal files are done in hardware.

A join of two conceptual files/relations is accomplished in two phases. The first is the staging phase.
Filtered tples from both relations are read in parallel from each disk. They are then hash-split on the join key
and stored in temporary files, where each temporary file contains the records from all disks that have the same
hash address. What is unusual about this algorithm is that each temporary file contains tuples from both rela-
tions; no attempt is made to store tuples of outer and inner relations in separate files. Once the temporary files.
have been loaded, the staging phase is complete.

Next is the processing phase, where a GRACE_JN is performed on each temporary file. (GRACE_JN
works by separating outer records from inner records and forming their join. Further details are given in
Appendix 3). GRACE_JN is executed on a single processor. However, there can be several processors
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executing this algorithm on different temporary files simultaneously. As there are more temporary files than
available processors, files are processed in increasing order of their size. When a processor is finished with one
file, it begins processing the next available temporary file. Each invocation of GRACE_JN produces a stream
of joined records. This stream is either hash-split (as in the staging phase) for subsequent joins, or it is merged
with other join-streams to form the final result.

The architecture of GRACE consists of three FILE types composed in the following order: augment RTI,
horizontal partitioning, and heap. There is no data model layer, and conceptual JOIN operations are mapped
through the augment layer. This corresponds to the type expression NETWORK[AUG[HPART[HEAP]],
CONL[ALG]). Furthermore, conversion rewrites are used to create and read temporary files. The distributed
rewrite and assembly rewrite rules spawn copies of GRACE_JN to introduce parallelism. If Fo and Fi are
stream files that are to be joined on predicate J, where the resulting joined records are output in random order,
the GRACE join implementation is:

i,J,%) = HSPLITY(Fo, | ¢ ;

JOIN (Fo, Fi, J ) => LHSPLIT(Fo, S5 Xu) (GR1)
EHSPLIT'(F, | § Yy); (GR2)
& =
a
51 STORE_TMP*( Ty, COMBINE*(& X1, £ Y5 ), *): (GR3)
= ¥ &
COMBINE( § GRACE_JN°®(HEAP_RET!(Ty, null), 7)) (GR4)

A derivation and detailed explanation of the above expressions are given in Appendix 4. Very briefly, (GR1)-
(GR3) comrespond to the staging phase where relation fragments Fo, on disk r and Fi, on disk s (for all r and 5)
are hash split into temporary files T; - - - T,,, one temporary file for each hash value. (GR4) corresponds to the
processing phase, where processor o(k) is assigned to process temporary file T,. The method of processing
involves reading the temporary file and processing its contents by the GRACE_JN algorithm. © is the function
that schedules the processing of temporary files in order of their size. '

8.4 More Observations

Observation 3. Software engineering, unlike any other engineering discipline, provides little in the way
of tools to minimize the reinvention of technology. Research in software engineering currently stresses the
development of programming environments, where editors, languages, debuggers, etc. make programming
easier. Little emphasis is placed on software reusability. It is our belief that no matter how good programming
environments become, significant increases in software productivity will be achieved only when well-
understood technology doesn’t have to be reinvented.

In this and in our earlier papers, we have shown that there is a considerable overlap of algorithms and
structures among different DBMSs. As we have stated in the past, by developing libraries of these atoms, and
providing the means by which to specify atomic compositions, customized database systems can be developed
very quickly and cheaply. The success of a building-blocks technology for DBMSs rests on its simplicity and
its exploitation of software reusability. In this way, we see the role of rule-based algebras complimenting exist-
ing research in software engineering.

Observation 4. Designing a DBMS is a very difficult art. As a research community, we understand how
individual atomic algorithms work, and we are good at designing such algorithms. The algebra in this paper
shows that compositions of atoms define DBMSs. Yet our understanding is incomplete. It is not obvious why
certain layers were used in a DBMS, or why they are used in a particular order, when other layers and orderings
could have been used. Nor is it obvious why certain algorithms were used within a layer as opposed to others.
Furthermore, it is not clear when rewrite rules can be applied to yield faster algorithms (e.g., (E9) in Section
7.2), and what are good ways 10 schedule the parallel execution of functions. Although the algebra provides a
100l o specify DBMS designs and to understand the building blocks of DBMSs, how to use this tool effectively
(and hence how to best design customized DBMSs) still remains a major open problem.
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9, Related Research

As a precursor to extensible database research, Yao unified a number of query processing algorithms
in a constructive way using primitives, but did not relate these primitives to implementations of DBMSs
[Yao79]. Rule-based algebras retain the spirit of Yao's work, and provides a formalism to go beyond it in
many ways.

More recently, a number of independently conceived and developed proposals relating rule-based
algebras to extensible DBMSs have appeared. The work of Graefe and DeWitt [Gra87] consider the prob-
lems of building efficient rule-based optimizers. The works of Freylag [Fre87] and, more recenty, Loh-
man [Loh87b] are much closer to the framework that we have presented in this paper. Both of these works
show how query optimization can be divided into phases, where each phase has its own rule set. Lohman
goes further by explaining how query optimizers work in a rule-based setting that is quite similar to ours.
Also, he makes the important connection of atomic algorithms as DBMS building blocks. The phases of
optimization in both of these papers correspond 1o the mappings of retrieval operations through our layers
(parameterized types). Our formalism shows how these works and their exposition of query optimization
algorithms can be understood in the broader context of DBMS storage structures.

10. Conclusions

Parameterized types provide a simple way (0 describe DBMSs in a layered manner. Rule-based
algebras express the abstraci-to-concrete mappings of operations . (algorithms) of these types. We have
used this framework and have developed a notation o catalog and relate a large spectrum of query process-
ing algorithms and storage structures. We have shown that important design concepts of centralized, distri-
buted, and machine database architectures have algebraic representations, and that different DBMSs could
be composed {rom a common pool of components.

Expressing DBMS implementations algebraically is an important step forward in specifying, under-
standing, and communicating their design. However, there are many aspects of DBMS implementation
that we have not addressed in this paper. Modification operations (e.g., record insertion), recovery, con-
currency control, new data types and operators, and performance models still need to be integrated into this
framework. Preliminary results are already available [Bat82,86a-b,87b,88]. Further, the elementary basis
of our formalism, namely data types and algorithms, holds promise in codifying knowledge in other areas
of computer science. A prime candidate are data structures and their algorithms, the main memory coun-
terparts to DBMSs.

We believe that codifying knowledge of DBMS implementations is an important step toward a tech-
nology that assembles DBMSs rapidly and cheaply from libraries of prewritten components. It is this
framework that we are implementing in the GENESIS extensible DBMS project.

Acknowledgements. 1 gratefully acknowledge the help of Guy Lohman (IBM Almaden) and Mike Stone-
braker (UC Berkeley) for information about R* and INGRES. I also thank Peter Dadam (IBM Heidelberg)
for his thoughts on the presentation of this material.
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Appendix 1. Some Basic Operations

Basic operations on stored files (retrieval only)

RETF.Q.O) Generate a stream of records in O order from stored file F that
satisfy restriction predicate Q.

ACCFQ.S) S is a stream of pointers. Follow each pointer of S (o access a
record from stored file F. Output the stream of records that satisfy
predicate Q.

Basic operations on links (retrieval only)

JOIN(F1,F2J.0) Generate the stream of records in O order that represent the
join of files F1 and F2 via join predicate or link J. F1and F2
can be stream or stored.

JF(F1,F2J.0) Eliminate records from F1 that cannot participate in a join
with F2 via join predicate or link J. A stream of F1 records are
output in O order. F1 and F2 can be siream or stored.

CJOIN(F1,F2,J.0) Same as JOIN except that CJOIN is mapped between layers.

CIF(F1,F2.,0) Same as JF except that CJF is mapped between layers.

Basic operations on stream files

SORT(S,.O) Produce the stream that is stream S sorted into O order.

STORE_TMP(T,S,0) Store stream S in O order in temporary file T.
STORE_TMP produces no output.

FILTER(S,Q) Eliminate records of S that do not satisfy predicate Q.

n
SPLIT(S | AE} X Split § into n substreams X; - X,..
=
n
ASSEMBLE(_«‘,l X;10) Assemble n substreams X; - - X,
3=
into a single stream with records arranged in O order.
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Appendix 2. Some File Characteristic Rewrites and Identities
Let @ be the null siream. Some rewrites using file characteristics are:

@ <> RETF QO ; if MEMBER(F) and Q) = false (ChH
JOIN(F1,F2,1,0) i (MEMBER®F1) and Q(F1,R) and (C2)
: MEMBER(F2) and Q(F2.R)) = false

§ <> SORT(E,®) (€3
SORT(S, ORDER(S)) (C4)
FILTER(S, MEMBER(S)) (C5
FILTER(S, null) : (Ce)

Some MEMBER and ORDER identities:

0 ORDER(Q2) MEMBER())

RET(F.Q.*) ORDER(F) Q

SORT(S,0) O MEMBER(S)

ACC(F,Q,S) ORDER(S) MEMBER(S) and Q

FILTER(S,Q) ORDER(S) MEMBER(S) and Q

JOIN(F1.F2,J,0) 0 MEMBER(F1) and MEMBER(F2) and J
JFF1F2].0) O MEMBER(F1)
MERGE_SCAN(FoFi.J) J MEMBER(Fo) and MEMBER(Fi) and J
HASH_JN(FoFi.J) ® MEMBER(Fo) and MEMBER(Fi} and J

NESTED_LOOPS(FoFi( ),J) ORDER(Fo) MEMBER(Fo)and MEMBER(Fi)andJ

SEMDOIN(Fo Fi,J,0) 0O MEMBER(Fo)andJ
BLOOM(Fo Fi,J.O) 8] MEMBER(Fo)

Note that the MEMBER predicate for the BLOOM semijoin operation is approximate and not as
restrictive as the MEMBER predicate for the SEMIJOIN operation.
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Appendix 3. Augment RTI and Horizontal Partitioning FILE Types

A3.1 The Augment RTI Type

Let AUG[cEFILE] be the FILE type that augments the record type identifier (RTI) of
abstract file AF onto each record in AF. Let RT be the augmented field and let g, the RTI of AF,
be its contents. Parameter cf is the implementation of the concrete file F that is produced. F has
the following characteristics:

MEMBER(F)
QFR)

i

MEMBER(AF) and (RT=0)
Q(AF.R) and (RT=0)

1

With the exception of a special join algorithm, the RET, ACC, and CJOIN operations map directly
to their concrete counierparts:

RET(AF,Q,0) => RET(F, QandRT=0, 18) (GD
ACC(AF,Q,S) => ACC(F,QandRT=0, $) (G2)
CIOIN(AFo, AFi,J,0) => JOIN(Fo,Fi,J,0) (G
SORT( GRACE_JN( STREAM(Fo, Fi), J), 0) ; J is a predicate (G4)

where:

STREAM(A,B) => COMBINE(STR(A®), STR(B,*})

and STR(F,s) was defined in Section 4.

GRACE_JN is a special join algorithm that was invented for the GRACE database machine
[Kit83, Fus86]. It works in the following way. Assume the records of stream files Fo and Fi have
been augmented with RTIs, and Fo and Fi are t0 be joined over predicate J. Fo and Fi are merged
into a single stream and sorted on (join value, RTI) pairs. (This achieves the effect of sorting Fo
and Fi simultaneously). The sorted stream is then partitioned into substreams that have the same
join value. Each substream for 2 join value can be partitioned further into 2 pair of substreams: one
that contains only Fo records and another only Fi records. Taking the cross product of each sub-
stream pair yields the join of Fo and Fi.

The GRACE_JN algorithm is not atomic but is a variant of the sort-merge join algorithm. To
be consistent with our use of nonredundant catalogs and wransformational rewrites, (G4) should be
eliminated. However, we have retained them for exposition reasons as they are used in Section 8.3
and Appendix 4.

A3.2 The Horizontal Partitioning Type

Let HPARTIfp:FILE] be the FILE type that horizontally partitions abstract file AF into n
subfiles F, * - - F,. Parameter fp is the implementation of each of these subfiles. .

Horizontal partitioning can occur in one of three ways: 1) load balancing - record insertions
are directed to the subfile which has the fewest number of records. Load balancing attempts t©
equalize the number of records in each subfile. 2) key ranges - each subfile is identified with a dis-
joint range of keys. All records whose keys belong to a given range are stored in the same subfile.
3) hashed - each subfile is identified with a hash key or range of hash keys. All records that share
the same hash key are stored in the same subfile.

Let P; be the partitioning predicate for subfile F,. (For load balanced files, P=true. That is,
partitioning is not based on file contents). Horizontal partitioning assigns F; the following member-
ship characteristic:
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MEMBER(F,) = MEMBER(AF)andP,

It turns out that the abstraci-to-concrete mappings of the RET, ACC, and CJOIN algorithms
are independent of the partitioning method used. The basic idea is 1o distribute an operation over

all subfiles, and to assemble the results from each subfile. Using the notation 'éxGi to denote the list
=

of functions G; * - * G,, and | to separate arguments that are lists of functions, we have:

RET(AF,Q,0) => ASSEMBLE( é} RETF,.Q. O 1 0) (HD
ACC(AF,Q,S8) => ASSEMBLE( EIACC(FY, Q. S) | ORDER(S)) H2)

Suppose AFo has n subfiles and AFi has m. Different algorithms arise for the CJOIN opera-
tion depending on the stored or stream nature of AFo and AFi. There is one specialization for each

of the four possibilities:
CJOIN(AFo, AFi, AJ,0) =>
JOIN(AFo, AFi, AJ, O) : AFo and AFi are stream {(H3)
m
ASSEMBLE( E_,l JOIN(AFo, Fi,, J,0) 1 O) ; AFo is stream, AFi is stored (H4)
=
a
ASSEMBLE( §1 JOIN(Fo,, AFi,J,0) | O) ; AFo is stored, AFi is stream (HS5)
==
n m
ASSEMBLE( &1 &_,1 JOIN(Fo,, Fi,, 1,O) | O) : AFo and AFi are stored {(H6)
=l g=

Ceri and Pelagatti [Cer84] used MEMBER predicates to show how equations (H1) and (H6) could
be simplified by eliminating operations on subfiles that are guarenteed to produce a null stream as a
result. Suppose two stored abstract files AFo and AFi are hash-partitioned using the same hashing
function. Let Fo, « - - Fo, and Fi, - - - Fi, be their subfiles. A join of AFo and AFi over their parti-
tioning keys reduces (H6) from n? joins to n joins (i.e., the join of Fo, and Fi for r=1..n).
Simplifications are possible for hashed and range key partitioning; no simplification is possible for
load balanced partitionings.

We note that the use of file characteristics to simplify equations has practical importance.
The GAMMA database machine query optimizer uses rudimentary file characteristics to eliminate
unnecessary retrievals from subfiles [Dew86, Ger86].
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Appendix 4. The RET and JOIN Algorithms of GRACE

The conceptual file retrieval operation in GRACE generates a stream of records from file F
in a random order that satisfies predicate Q (ie., RET(F,Q,*)). Its implementation follows from
mappings through the composite type NETWORK[ AUG[HPART[HEAP]], CONL[ALG] ] that
defines the GRACE architecture.

Step 1) Map RET through the AUG[ ] type. By (G1) we get:

RET(F,Q.*) => RET(F,QandRT=0,%)
GRACE

Step 2) Map RET through the HPART] ] type. Assume F maps to m partitions Fy - - - Fp, where
each partition is stored on a separaie disk. By (H1) and (M5) we get:

=> COMBINE( .E.,l RET(F;, Qand RT=a, *))
F

Step 3) Map RET through the HEAP type. Assume processor j can access the disk containing par-
tition F;. By (I1) and adding processor subscripts to the retrieval algorithms, we have:

=> COMBINE( .§1 HEAP_RET/(F;, Q and RT=0)) {(GRO)
F

(GRO) is the algorithm that implements retrievals on conceptual files in GRACE.[J

Now consider the conceptual join operation of GRACE. It joins stream files Fo {outer) and
Fi (inner) on join predicate J, where joined records are not output in any order (ie.,
JOIN(Fo,FiJ,*)). Its implementation comes from the following mappings.

Step 1) Map JOIN to CJOIN via the CONLI ] type:
(J}%)AIISIE(FO, Fi,],*) => CJOIN(Fo,Fi,J.*)

Step 2). The CJOIN is mapped through the AUG] ] type to be rewritten by (G4).
=> GRACE_JN(COMBINE(Fo, Fi), J)

Step 3). The distributed rewrite (DR2) is applied to hash split streams Fo and Fi into n substreams
each . Substream X, of Fo and substream Y of Fi are joined by a GRACE_JN algorithm; a total of
n joins are performed. The resulting streams are then combined. (Note that file characteristics
were used to reduce the number of joins from n®ton):

=> HSPLIT(Fo ! é} Xk
HSPLIT(Fil & Y. )
k=l
B
COMBINE( kféx GRACE_JN( COMBINE( Xy, Yy ), 3} )

Step 4). The stream generated by the innermost COMBINE in Step 3 is spooled 1o & temporary
file, and then reread. This is accomplished by the stream-to-sream (A2*A1) rewrite. Note thatn
temporary files T, - - - T, are created:

n
=> HSPLIT(Fol & X, )
=1
8
HSPLIT(Fil & Y, )
=1

%
& STORE_TMP(T,, COMBINE( X, Y, ). *):
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[+
COMBINE( iéi GRACE_JN(RET(T,, null, #), 1}

Step 5) Without loss of generality, assume that streams Fo and Fi are actually combinations of sub-
streams; the number of substreams can be different for Fo and Fi. Furthermore, we will assume
that substream Fo, (Fi,) is produced by processor 1 (s):

Fo <> COMBINE(EFo,) (PS)
k4
Fi <-> COMBINE(EFi,)
8
Note the implementation of the conceptual RET operation has this form. Substream j is generated

by HEAP_RETY( F;, Qand RT=0)). We’ll explain the reason for this step later. We will refer ©
(PS) as the partitioned stream representation of Fo and Fi.

Step 6). Replace Fo and Fi with their (PS) representations. Then apply the assembly rewrite
(AR1) to each HSPLIT function. We get:

=> £ HSPLIT(Fo, | ké X );
§ HSPLIT(F, | él Yo )
x§1 STORE_TMP( Ty, COMBINE(§ X, & Yo ), ¥);
COMBINE( kg} GRACE_JN( RET(T,, null, *), 1))

Step 7). Temporary files are implemented as heaps. Implementing heap retrieval as (I4), simplify-
ing, and adding processor superscripts to all but the outermost COMBINE function, we get:

=> ¢ HSPLIT(Fo, | él X )t (GR1)
§ HSPLIT(Fi | él Yo i (GR2)
é} STORE_TMP(T,, COMBINEX(& X, § Y,). *): (GR3)
COMBINE( él GRACE_JN°®( HEAP_RET*(T,, null), 1) ) (GR4)

o is a scheduler function which assigns processor o(k) to process temporary file T,. (GR1)-(GR3)

corresponds o the staging phase of the GRACE join algorithm and (GR4) is the processing
phase.[]

Note that the conceptual JOIN operation is in partitioned stream form, i.e., its result is a com-
bination of substreams. Thus, conceptual JOINs can consume the input of conceptual RET and
other conceptual JOIN operations. (This was the reason for introducing (PS)). Thus, three concep-
tual files A, B, and C could be joined in GRACE by RETrieving each file and nesting JOINs within

" JOINs:

% % % Ed &
ég}gi( (J}}cl)An?é( é;{ARE'CI‘E(A, QAv )s (?&EE(B& %s )* JAB) )9 %&(C’ QC’ )= IBC’ )



