DISTRIBUTED COMPUTING ON
MICROCOMPUTER NETWORKS#*
R. Bagrodia, K. M. Chandy, J. Misra

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-87-26 July 1987

Abstract

This paper proposes four constructs which, when added to a sequential programming language, yields a
programming notation suitable for distributed implementation. An implementation of the constructs on a

VAX 11/750 network is discussed.

*Research for this project was supported by a grant from the IBM Corporation.

1. Introduction

Low-cost microcomputer networks have brought distributed programming
within reach of the microcomputer user. Distributed computing offers many advantages
which have been extensively discussed in the literature [17], [19]. However, many
microcomputer users are unwilling to learn new languages to obtain the advantages of
distributed computing. This paper presents 2 simple language fragment and a kernel
that can be used by application programmers in conjunction with familiar sequential
languages (such as PASCAL and FORTRAN) to exploit the benefits of distributed

program execution. An important objective is to stimulate rapid implementation of

distributed programming environments on networks of microcomputers.

When developing distributed programs, a programmer familiar only with
sequential programming languages faces a number of unfamiliar problems. The
problems of deadlock prevention among communicating processes, termination
detection, and the allocation of processes among processors are all problems specific to
distributed programs. Although resource deadlocks may arise in a multiprogrammed
uniprocessor environment, they are normally handled by the operating system. In
distributed languages that are based on message-passing, processes may enter into
communication deadlocks. In the absence of a sophisticated operating system,
programmers writing distributed programs must ensure that the program is free of
deadlocks. The primitives proposed by our language fragment provide a simple
mechanism to prevent deadlocks. The kernel also provides a user-transparent facility to
detect program termination in a distributed manner. Simple heuristics based on the

atilization of each processor are provided to aid the user in allocating processes among

the available processors in an efficient manner.

This paper does not propose a new language; rather, we isolate a few constructs
that can be added to any sequential programming language to yield a distributed
programming language. We thus hope to provide system and application programiners
the advantages of distributed computing within the framework of the sequential

programming language that they are most familiar with. This approach has ‘the

advantage of simplicity : simplicity in learning concepts about distributed programming
and simplicity of implementation. The kernel described in this paper has been
implemented to develop CMAY - a distributed programming language derived {rom
FORTRAN. CMAY has been implemented on UTCSRES - a local area metwork of
VAX 11/750s at the University of Texas at Austin. Efforts to implement CMAY on a

network of IBM personal computers are in progress.

A variety of constructs have been proposed to design, specify and verify
distributed programs. Various combinations of these primitives have resulted in the
design of a large number of concurrent programming languages including CSP [14],
Ada [1], DP [13], GYPSY [2], PLITS [10}, MODULA [20], SR (3], NIL [18],
STARMOD [7], CLU [16], and MESA [12]. The design of these languages have
facilitated elegant solutions to many basic problems of distributed computation,
operating system construction, program verification and the design of reliable, fault-
tolerant systems. In some cases, the number and complexity of the new comstructs
proposed may hinder wide acceptance by the general programming community. In this
paper, we show how incorporation of two basic primitives - entities and messages, in

any general purpose sequential programming language like FORTRAN, PASCAL, C etc.

can be used to obtain a distributed programming language.

The rest of the paper is organized as follows: section 2 presents an informal
discuss‘io.n of the basic notions of entity and message. Section 3 discusses the
constructs provided by the language fragment: process representation, process creation
and termination, process synchronization and process communication. This section
describes how the above facilities may be provided by means of operations performed on
entities and messages and compares our approach with the approach adopted in the
design of CSP, DP and Ada. Section 4 illustrates the use of the language fragment in
developing distributed programs. Section 5 describes the facilities offered by the

operating system kernel to execute programs on computer networks. Section 6 is the

conclusion.

2. Distributed Programming : An Overview

In this section we present an overview of our approach to distributed
programming and informally describe the constructs introduced by our language

fragment. The programming language in which these constructs are to be implemented

is called the host language.

A distributed program is a collection of sequential processes which may execute
concurrently. Each process executes independently of the others except for specific
points in its computation when it sends or receives messages. Different sequential
processes may run on different computers linked by a network. Processes communicate
exclusively via messages. Processes may be executed on heterogeneous computers with
different processor speeds, connected to different peripheral devices and running
different operating systems. The individual operating systems may be single-user,
multiprogrammed or multitasking. We assume that the communication software
provides error-free virtual connection between any two computers on the network and

apart from this feature make no assumptions regarding the operating system.

The distributed programs developed within the framework of our language

fragment possess the following properties:

1. Flat program Structure: A distributed program consists of a collection of
entity definitions and sequential modules (procedures, subroutines, etc.) of
the host language. The fragment does not impose a hierarchical program
structure or require a specific textual ordering of the entity definitions.

9. Program Modularity: The entity construct introduced by the language
fragment adopts an object-oriented approach to program development. The
entity definition completely encapsulates the description of the
corresponding object and hides implementation details from the rest of the
system. The language fragment thus directly facilitates the development of
modular programs, irrespective of the specific host language being used.

3. Separation of program design from its implementation: By providing a
consistent communication mechanism for communication between remote
entities (entities executing on different processors) and local entities, the
language separates the program design and development from its actual
implementation on a specific processor configuration.

Entities are the basic building-blocks of a distributed program. An entity is a

sequential program module implemented in the host language with the following

additional features: an entity may -

. create other entities;

. terminate itself;

. send messages to other entities;
. receive messages;

e Q0 B b

An entity is an independent self-contained wunit, which is used to model
processes. An entity type, like the SIMULA class, is used to define objects of a given
type. Various instances of an entity type may be created dynamically to represent the
many objects of a given type. An entity instance is created by executing a let
statement. Hereafter, we shall use the term entity to mean an instance of an entity
type. Unlike the local variables of a class-instance, the local variables of an entity
cannot be accessed by other entities. Entities communicate via messages. On being
created, an entity is assigned a unique identifier. The identifier is bound to the entity
for the lifetime of the entity. In order for an entity to send a message to another, it
must have access to the latter entity’s identifier. A message is viewed as a specific
instance of a message type. A message type consists of a name and a list of message
parameters. An entity sends a message t0 another by executing an invoke statement.
Message sending is non-blocking: messages sent by an entity are deposited in the
receiving entity’s message buffer; the sending entity is not delayed. An entity accepts
messages from its buffer by executing 2 wait statement. If a desired message is not
present in the buffer, the entity waits for the message. The wait may be indefinite or
specify a time-out interval. In the first case, the entity ceases to wait only when the
desired message is received by it. In the latter case, if the desired message is not
received by the entity within the specified time period, the entity will eventually time
out and thus cease to wait. On ceasing to wait, an entity proceeds to the mnext
statement in its code. An entity refers to the type of the last message received by the

keyword message-type. For instance, on ceasing to wait, an entity may execute a

statement of the form

1f (message-type = send) then do X

else if (message-type = time-out) then do y
else do z

Initially, every CMAY program consists of a single entity called main executing

on one processor. The purpose of entity main is to initiate the execution of the

program.

We illustrate the concepts described above by means of an example which
implements the sieve of Eratosthenes [14]. This algorithm identifies successive prime
numbers from 8 sequence of consecutive natural numbers. We define an entity type
called sieve to implement the algorithm. Multiple instances of the steve entity are
created - one for each prime number that has already been identified in the sequence.
The various sieve entities form a pipeline. Each sieve entity in the pipeline inputs

pumbers from its predecessor, suppresses those that are multiples of the original prime

and passes the rest to the successor entity.

The CMAY code to implement this algorithm is displayed in pseudo-code in
Figure 1. Entity main (lines 0-10) is used to initiate the program. T he main entity
creates the first sieve entity whose unique identifier is stored in its local variable
first_sieve (line 5). Main sends a stream of integers 2,3,4,5.... to entity first__sieve
via messages of type nezt_ number (lines 7-8). The types of all messages that may be
received by an entity must be defined within the corresponding entity type definition.
For instance, the sieve entities may receive messages of type mext number. This
message type is defined in line 17. The first element of the stream of numbers received
by a sieve entity is a prime. For instance, the first number (i.e. 2) received by the steve
entity first__sieve is a prime number, and is stored in the entity’s local variable
my__prime (line 22). At this point, entity first _sieve creates a mew instance of the
sieve entity-type. In general, the ith steve (i>1), say Sgs is recursively created by the
(i-1)th sieve (line 25). Subsequently, s, removes all Am’ultipies of my__ prime from the
sequence of numbers received by it and passes the rest onto steve s, 41 via messages of

type next number (lines 33-34). A sieve entity receives (or waits to receive) the next

message of type next__

separate proce
section 5.1.
emphasiz

language fragment allows one to write recursive, modular programs even in languages

If desired, each sieve entity in the above algorithm may be assigned to a

e by this example is that a straightforward implementation of our simple

such as FORTRAN.

N = O

= oM I O

i2
i3
i4
i5
i
17
ig
i9
20
21
22

24
25
26
27
28
29
30
a1
32
33
34
38
36

entity main;

{ Local Variable Declaration Section }
first_sieve : entity-identifier:
1. integer;

{ Entity Body }
let first _sieve be sieve;
{ send = stream of numbers 2,3...1000 to first _steve }
for 1 := 2 to 1000 do
invoke first sieve with next_number(i);

end-entity;

entity steve;

{ Local Variable Declaration Section }
nexi-sieve : entity-identifier;

my __prime: integer;

{ Message Receive Declaration Section }
message nert number(number:integer);

{ Entity Body }

{ Wait to receive the next integer in the sequence
wait for (message-type = next_ number);
my __prime:= number;

{ Create the next sieve process }
let next-sieve be steve;

while true do
begin
wait for (message-type = next _number);

{ From the subsequent mesSsages received, sieve out 21l multiples of

prime and pass the rest to entity next-sieve.
if (mod (number,my __prime) <> 0) then

invoke next-sieve with next number(number);

end;
end-entity;

number by executing the wait statement in line 29.

ssor. The issue of entity allocation amongst processors is discussed in

Program termination is discussed in section 5.3. The point we wish to

=3

Figure 1: CMAY Implementation of Sieve of Eratosthenes

3. Primitives for Distributed Computing

The issues involved in the design of a distributed programming language are
facilities for [4]:

1. Definition of units of concurrent computation (called processes) and
specification of concurrent execution of processes;

. Definition of communication primitives;

. Definition of synchronization primitives.

4. Definition of a kernel to support distributed program execution on multiple
computers.

IV

In this section we mention the various approaches adopted in the literature to
provide the above facilities. We describe the primitives implemented in CMAY and
compare our approach to that adopted in the design of CSP, DP and Ada. Table 1
summarizes the primitives and facilities provided by CSP, DP, Ada, and CMAY to

construct distributed programs.

3.1. Process Definition

A variety of program structures have been proposed in the literature to model
concurrently executing sequential processes: UNIX coroutines, SIMULA classes [8],
Concurrent PASCAL processes and monitors [6], CSP parallel processes [14], CLU

clusters [16], ADA task and packages [11], DP distributed processes [13], and
ARGUS guardians [17] are some examples.

In CSP, processes are independent units which interact with each other by
means of communication statements. A process is defined by a list of commands, which
may include input/output, alternative and repetitive commands. The list may be
preceded by a label which serves to name the process. The local variables of each
process are defined within its command list. Although CSP does not provide process

valued variables, 2 family of processes can be described by using subscripted labels as

the process name.

DP, like CSP, merges the traditional concepts of resources (abstract data types)
and processes (active data types) into 2 single primitive, that of a DP process. A DP
process defines local variables (similar to own variables of ALGOL), a set of service
procedures that operate on the local variables and an initial statement. The variables
and procedures represent the resources used by the process. A process cannol access the
variables of another process, but may call the service procedures defined within another
process. On being created, a process begins to execute its initial statements and
continues until the statement is terminated or the process has to wait for some
condition to become true. At this point it can satisfy the external requests of other
processes. Thus in DP, the process definition itself serves as a computation unit. When
one of its service procedures is called, a new server process is created to execute the

body of the procedure. The various server processes and the host process execute

concurrently on the host processor.

Ada provides two basic primitives, packages and tasks, to model passive
resources and active data types respectively. A task has of a specification part and 2
task-body part. The specification part specifies the resources made available to the user
by the task. These include entry resources which allow this task to communicate with
other tasks. The task body consists of the sequence of statements (including
communication statements) that are to be executed when the task is initiated. The
body may define local variables which are not accessible by the task user. Ada also

provides the mechanism to define a generic task, which may be multiply instantiated.

Many concurrent languages provide two distinct primitives to model abstract
data types and processes respectively (e.g. the package and task primitives of Ada).
In keeping with our goal of simplicity, CMAY provides a single abstract mechanism,

called an entity, to serve both purposes of data abstraction and to model active

processes.

“The entity type declaration has a format that is similar to the declaration of a

procedure or subroutine in the host language. The entity heading declares the name

and formal parameters of the entity type in a manner similar to the declaration of a
procedure heading in the host language. An entity type, however, is only allowed to
have input parameters. The local variable section of an entity is identical to that of a
procedure. The message declaration section of an entity type is used to declare the
various types of messages that may be received by an entity. A message declaration
consists of the string message followed by a name and a parameter list. The structure

of the parameter list is similar to that of a formal parameter list in the host language.

The entity body consists of sequential statements of the host language (e.g.

assignment statement, procedure call etc.) with the following additional statements:

e let statement : used to create new entities.

® end-entity. statement : used by an entity to terminate itself.
e invoke statement : used to send messages to other entities.
e wait statement : used to wait to receive messages.

3.2. Process Creation And Termination

Depending on the nature of intended applications, the process representation
structures { coroutines, entities etc.) may be used to specify a static number of process
instances or permit processes to be created dynamically. In DP, processes are created
statically, with one process being assumed for every processor in the metwork. Further,
since a DP process is assumed to exist forever, no termination mechanisms are provided
in the language. In CSP, processes are created dynamically. However, due to the
declarative nature of the language, there exists a fixed upper bound on the number of
processes that can be created. A CSP process terminates automatically when the
command list has been executed. In Ada, tasks are created dynamically and may be
created recursively. Ada views the instantiation and initiation of a task as two distinct
operations. A generic task is instantiated using the mew statement and may then be
initiated by using the initiate statement. Ada provides a host of facilities for the
termination of tasks. In particular, the abort statement may be used to terminate any
task in the system. In CMAY, entities are created dynamically by executing 2 let
statement and may be created recursively. All entities execute concurrently. An entity

terminates itsell by executing the end-entity statement in the entity definition. An

10

entity cannot be terminated by another entity.

We define a scalar variable type called entity-identifier. Every entity in the
program has a unique identification pumber which is stored in a variable of type
entity-identifier. Variables of this type are used exclusively to store the identifier of

entities and no operations (arithmetic, assignment, input/output ete.) can be performed

opn them.

An entity is created by the execution of a let statement which has the following
form:

let el be entity-type-name(actual parameter list)

The identifier of the new entity is stored in variable el which must be of type

entity-identifier.

The formal parameters of the entity type declaration are bound to the actual
parameters in the let statement, as in the manner of a procedure call, at the point that
the entity is created. The variable el may be used by the creator of el to send messages
to it. Every entity type declaration contains a pre-defined local variable, called myid,

which is of type entity-identifier. When a new entity is created, its identifier is

automatically stored in its myid.

3.3. Process Communication

Concurrent processes communicate with each other to exchange information.
The actions of a process may need to be conditionally delayed (or synchronized) in order
to avoid interference with other processes in the system. Shared variables and message
passing are the two fundamental mechanisms that have been used to provide process
communication and synchronization facilities. In the shared variable approach, two or
more processes access a COMINON Memory location to exchange information. A variety
of protocols and constructs have been proposed to enable processes to synchronize their
access to the shared resources with each other. Semaphores, conditional critical regions,

path expressions, and monitors are some examples. Although the shared variable

11

approach is very useful when large blocks of data need to be shared, it has two major

drawbacks:

1. It is difficult to combine a high degree of parallelism and data sharing
effectively [10].

9. Shared access to data can be efficiently implemented only on network
configurations that provide hardware support for such access.

In the message based approach to process communication, the communication

primitives may be provided as two separate commands - send and receive, or be

packaged together as a single high-level primitive - (remote) procedure call. A remote

procedure call has essentially the same semantics as a local procedure call. Executing 2

remote procedure call is equivalent to executing a send to transmit the input

parameters to the invoked procedure, and then executing a receive to obtain the result

parameters. In the message-based approach, a variety of related issues need to be

resolved:

Blocking:

Addressing:

Miscellaneous :

A primitive is considered non-blocking, if its execution does not cause
the invoking process to be delayed. If both send and receive are
implemented by blocking primitives, the communication is said to be
fully synchronous (e.g. CSP); if neither of the primitives block,
communication is fully asynchronous.

The source and destination names in the send and receive primitives
may explicitly name a process (direct naming), name a port (port

naming), or in the case of a receive not name any source (asymmetric
naming).

Some of the other issues that need to be addressed are message size

(fixed versus variable length messages), types of permissible message
parameters, etc.

In message-based distributed languages, three communication protocols have

frequently been used in the literature:

1. Buffered Communication (BC): Execution of the send primitive causes the
sending process to wait until the message has been deposited in a buffer.

2. Synchronous Communication (SC): The sending process waits until the
message has been received by the other process.

12

3. Remote Procedure Call (RPC) : The sending process waits until it receives a
reply to its message.

In each of the above protocols, execution of a receive primitive typically causes
the process to block until it receives a message. We compare the three protocols

described above in the areas of applicability, parallelism and program correctness.

Applicability: Buffered communication is the most flexible of the protocols
described above and can be used to implement the other protocols. Remote procedure
calls are a convenient abstraction for client/server type communications, where a client

process must wait until the service requested from the server process has been

completed.

Parallelism: Buffered communication does not restrict the inherent parallelism
in a program, since the sending process is not blocked. In the case of synchronous
communications, the programmer must explicitly define buffer processes between two
communicating processes, in order to insure that a process is not blocked unnecessarily.

Finally, remote procedure calls completely inhibit parallelism, since the invoking process

is forced to wait until its request has been processed.

Program Correctness: In synchronous communication, a process sending 2
message can locally assert that the message has been received by the other process.
This greatly facilitates the task of constructing correctness proofs for the program. In
buffered communications, some auxiliary information must be included in a message to

facilitate the construction of correctness proofs.

We examine the specific communication primitives provided by some distributed
programming languages. CSP provides a fully synchronous, direct naming
communication primitive. This primitive is easy to use and implement and is very
useful for programming pipelined process configurations. However, in other instances,
this form of static direct naming may be awkward to use - for instance, in multiple

client/single server situations. This problem may be solved by specifying a port as the

13

source process as has been suggested in [15]. Further, fully synchronous communication

can easily cause processes to deadlock.

DP provides remote procedure calls as its basic communication primitive.

Although this primitive is especially convenient in modelling client/server relationships,

it has some drawbacks:

1. If 2 majority of process-interactions do not require 2 reply, then t;he remote
procedure call facility may be very inefficient.

9. Processes may get deadlocked for the following reason: when a process P
calls a procedure R within another process Q, R is considered to be an
indivisible operation within P and P is blocked till R completes. Thus if

procedure R calls the service procedure R defined within P, P and Q would
be deadlocked.

Ada merges the remote procedure call of DP with the rendezvous concept of
CSP. The process naming is asymmetric with only the calling task naming the called
task. The rendezvous is achieved between an accept statement in the called task and
an entry call in the calling task. However, accept statements are part of the task
activity and do not constitute separate service operations packaged as procedures, as
was the case in DP. This approach has the advantage of permitting different service

requests to be processed differently by the servers.

CMAY provides a buffered communication protocol. Execution of the CMAY
send primitive causes the sending entity to be delayed only if the processor has run out
of buffer space. However, if virtual memory is used to implement buffers, a non-
blocking send can be implemented effectively. Execution of the CMAY receive
primitive normally causes a receiving process to block if the desired message is not
present in its message buffer. The primitive may be used to specify a maximum time
(called the time-out time) for which a process waits to receive a message. By specifying
a zero time-out time, a non-blocking receive may be implemented (see discussion below

under process synchronization).

Messages are sent by one entity to another using an invoke statement which

14

has the following form:

invoke el with mI(actual-parameter-list)
el must be of type entity-identifier. Execution of the above statement results in a
message of type ml being sent to the entity el provided entity el exists. If the recipient
entity is not ready to accept a message sent to it, the message is stored in a message-

buffer associated with the recipient entity and may be accepted by it subsequently as

discussed in the next section.

3.4. Process Synchronization

Distributed processes need to be synchronized with one another. From our
discussion in the previous section, we note that the communication primitives may be
used to synchronize processes in message based languages. However, in many cases, 2
more selective form of process synchronization is desirable. To take a simple example,
an empty buffer process cannot satisfy & consumer process’s request for data. In this
case, the consumer process must wait till the buffer is non-empty. But if the buffer is

non-empty, the consumer process’s request for data should not be delayed.

The two primary mechanisms for process synchronization in message based
languages are guarded commands [9] and conditional receives. CSP, DP and Ada all
implement process synchronization using different forms of the guarded command.

CMAY provides synchronization through the use of conditional receives.

In CMAY, an entity executes a wait statement to receive messages. The

statement has the following form:
wait [t] | for b]

where ¢ is an integer valued expression representing time; and b is a boolean expression
that may reference any local variables of the entity. The predicate b is used by an
entity to specify the message(s) it is ready to accept. The value t, referred to as the
time-out time, represents the length of time the entity is willing to wait for the desired
message(s). If the time value i, is omitted in a wait statement, the entity will wait
indefinitely till the desired message is received. The for clause may be omitted from

the wait statement, if 2 non-selective receive is to be implemented. Execution of a wait

15

statement causes the entity to wait if the desired message is not present in its buffer
and if the wait statement specifies a non-null time-out interval. If the entity is waiting
for a specific message(s), other messages received by the entity are stored (in the order
they were received) in a message buffer associated with the entity. A waiting entity

ceases to wait when it is delivered a message that satisfies the condition b or if it

receives 2 time-out message from the monitor. A time-out message is sent to the

entity if no message satisfying condition b is received within ¢ units of time from the

time the wait statement was executed.

The time-out facility is a simple mechanism to provide facilities for real-time
systems as well as to avoid process deadlocks. Due to the non-blocking nature of our
send primitive, the only manner in which entities may enter a deadlock is on execution
of a wait statement. The time-out facility can be used to insure that after a finite
interval of time, an otherwise blocked entity ceases to wait. Further, the time-out
mechanism may be used to implement a non-blocking receive. Consider, as an example,

execution of the following wait statement by an entity el:
wait 0 for b1

If 2 message satisfying predicate bl is present in the message buffer of entity el, it is
delivered to el. However, if no such message exists, specification of a null time-out

interval insures that the entity is not blocked; instead, a time-out message is sent to

the entity to enable it to continue its execution.

4. CMAY Examples

This section presents some examples to illustrate how abstract data-types and
processes may be represented as entities in our programming language fragment. The

last example in the section illustrates the use of CMAY primitives to develop distributed

applications.

16

4.1. Bounded Buffer

As a simple example, we model a bounded buffer process by an entity type
called buffer. The entity receives ;hessages of type append to add data to the buffer
and of type request to remove data from the buffer. If the buffer receives request
(append) messages when it is empty (full), the messages are stored in a queue associated
with the buffer and accepted by it only when it is non-empty (non-full). We assume
that when requesting (appending) data, a consumer (producer) entity sends its identifier
as a message parameter to the buffer entity. Further, assume that the consumer entity

contains the definition of a message receive, to receive data from the bu ffer and the

producer entity defines a message called ack to acknowledge receipt of its data by the
bu ffer entity.

17

entity buffer(buffer__length:integer);

(= Local Variable Declaration Section %)
in, out : integer;
full, empty:logical;
store:array[1..buffer__length]l of integer;

(% Message Recelve Declaration Section *)
message append(value:integer,producer:entity-identifier);
message request (consumer: entity-identifier) ;

(* Entity Body %)

(* 1initialize the buffers)
in:==0,
out:==0;

while true do

begin
full:= (4n = out+buffer_length);
empty:= (in = out);
wait for (not emply and message-type=request)
or (mnot full and message-type = append)
if (message-type = append) then
begin
store((mod(in,buffer length)) + 1) := wvalue;
in = in+1;
invoke producer with ack;
end
else if (message-type = request) then
begin
value:=store((mod(out,buffer length)) +I);
out :=out-+1;
invoke consumer with receive(value);
end;
end;

end-entity;
Figure 2: CMAY Implementation Of A Bounded Buffer

4.2. Mergesort

This example illustrates how a recursive mergesort algorithm may be coded as
an entity in our language fragment. The algorithm is used to sort an array of integers.
It splits an array into two parts, sorts each part re;urs’ively and then merges the two
sorted parts. For simplicity of exposition, we assume that the array to be sorted

contains n elements, where for some m >= 0, n = am,

18

We use an entity type called merge_sort in our implementation of this
algorithm. An instance of entity merge__sort, say m,, is created dynamically. An
unsorted array called unsort is sent to m, via a sort message. If the array has only one
element, it is sent back to the creator of m; via a reply message. Otherwise entity m,
splits the unsorted array into two equal parts. It recursively creates two instances of
entity merge__sort say m, and m, to recursively sort each half. M, t_,hen waits to
receive the two sorted halves (which may be received in any order), merges them
together and sends the sorted array to its creator by means of a reply message. At this

point, m, terminates itself by executing the end-entity statement.

Entity main initiates the program by reading in the unsorted array. It creates
an instance of entity merge sort and passes the unsorted array to it in a sori{ message.
It then waits to receive the sorted array from this entity via 2 message of type reply. It
prints the sorted array and then terminates itself. The CMAY program to implement
the algorithm is presented in Figure 3 in PASCAL-like pseudo-code. The code for

entity main has been omitted for brevity.

19

entity merge_ sort(maz _size:integer);

(# Local Variable Declaration Section %)
merged,templ,tempZ:array (1. .maz_size] of integer;
i,temp _size:integer;

ml1,m2 entity _identifier;

(* Message Receive Declaration Section ®)
message reply(size: integer; sorted:array[i..size] of integer);
message sori(sender__id:entity _identifier; size: integer;

unsorted:array [1..s1ze] of integer);

(+ entity body %)
wait for (message-type=sort)

if size = 1 then
invoke sender id with reply(size,unsorted);

‘else
begin

(* Split umsorted array into two halves. Create two merge__sorl entitles
and send each half to a merge_ sorl entity *)

temp _size:=size/2;
templ:= first-half of array unsoried;
{emp2:= second-half of array unsorted;

let m1 be merge__sort(temp__size);
invoke ml1 with sort(myid,temp__size ,lempl);

let m2 be merge__sort(temp __size) ;
invoke m2 with sort(myid,temp__size,iemp2);

{* wWait o Teceive the two sorted paris.
Store the two sorted parts in arrays templ and temp2 respectively *)
wait for (message-type=reply);
templ:= sorted;
wait for (message-type=reply);
tempZ:= sorted;

(= Call Toutine merge to merge the two sorted arrays templ and
temp?2 into array merged #)

merge(temp _size,templ, lemp?, merged) ;

(= Send the sorted array merged to the creator process #*)
invoke sender _id with reply(temp __sizex2, merged);
end;
end-entity;

Figure 3: CMAY Implementation Of A Recursive Mergesort Algorithm

20

4.3. Inventory Management System

We illustrate the use of the language fragment described in this paper in
developing distributed applications by considering the design of a simple inventory
management system (IMS). The IMS 's used to maintain satisfactory inventory levels of

various items consumed by an establishment. The IMS uses the following three files:

1. transaction file: contains the daily summary of transactions processed for
each item.

9. inventory file: contains the current inventory levels and the reorder points
for each item; the reorder point refers to the minimum level of inventory
that needs to be maintained for this item.

3. supplier file: contains the name and addresses of the supplier for each item.

The IMS is used to process the following commands:

e inquiry(item,): determine the current inventory level for the ith item.
® consume(itemi, qty): qty units of the ith item have been consumed; if the

inventory falls below the reorder point, fresh stocks have to be ordered from
the supplier.

e receive(item;, qty): qty units of the ith item have been received from a2
supplier.

A schematic diagram of the system is presented in Figure 4. The IMS receives
commands from terminal-processes. Depending on the command, the IMS
reads/updates the appropriate file(s) and sends an acknowledgement to the requesting
process. We consider 2 distributed implementation of the above system. We define
three file servers tnventory, transaction, and supplier for each of the three files
respectively. In order to minimize the response time for a command, each file server is
assigned to a separate machine on the network. On receiving a command from a
terminal-process, the IMS process forwards the command and the identity of the
requesting process to the appropriate file server(s) for processing. Due to the non-
bocking send, the IMS is immediately ready to receive the next command. When a
command has been processed by a file server, it sends the acknowledgement directly to
the requesting terminal-process. In this manner, multiple files can be accessed
simultaneously in the system, and the IMS process is not blocked while 2 given

command is being processed by a file server. Figure 5 presents a model of the

21

implementation and illustrates the various messages exchanged by the processes in the
system. In figures 6 and 7, we give the code for entity IMS and entity snventory which

are used to represent the IMS process and the inventory file server respectively.

inquiry ————-3 update —>| inventory
e——— stock r——-——' read - —>—
consume
s < ack %
i read ——3 supplier
receive —————»—»‘i +
3 e——— ack ———— ‘
\ »_ we———update -- - transaction
I I
TERMINALS MS

FILES

Figure 4: A Schematic Of The IMS

22

stock,ack
3 inquiry. o ‘ .
o inQUirYy ———— consume ——3 inventory \
receive
consume ———3» reorder
supplier
receive ——s
e ——receive >
___ consume ——itransaction

IMS FILE SERVER
ENTITY

TERMINAL
ENTITIES ENTITY

Figure 5: A LOGICAL MODEL OF THE IMS

23

entity ims(inventory, transcalion: entity-identifier) ;

message inguiry(lerm-id: entity-identifier, itemno: integer);
message consume(ierm-id: entity-identifier,itemno, gly:integer) ;
message receive(term-id: entity-identifier,itemno, gty integer) ;

while true do

begin
wait till the next message 18 received;

if (message-type = inquiry) then
invoke inventory with tnquiry(term-id,itemno);

else if (message-type = consume) then
begin
invoke tnventory with consume(term-id,itemno, gty);

invoke transaction with consume(term-id,itemno, qiy:
end

else if (message-type = receive) then
begin :
invoke inventory with receive(term-id,ttemno, qy);
invoke transaction with receive(term-id,ilemno, gty);
end;
end;
end-entity:

Figure 8: CMAY code for entity IMS

24

entity inventory(supplier: entity-identifier);

message inquiry(term-id: entity-identiﬁer,z’temno:integer);
message consume(term-id: entity-identifier,itemno, gty:integer) ;
message recetve(lerm-id: entity-identifier,itemno, gty:integer);

while true do

begin
wait ©i1l the next Bmessage is received;

if (message-type = inquiry) then
begin
read inventory file record ilem _rec for item itemno;

invoke term-id with stock(item _rec.quaniily);
end

else if (message-type = consume) then
begin
update inventory file record item _rec for item itemno;
if (item _rec.quantity < item _rec.reorder-point)
end (not item _rec.order-placed) then
begin
invoke supplier with reorder (tlemno) ;
stem __rec.order-placed:= true;

update tnventory file record item _rec for item itemno;
end;

invoke term-id with ack;
end

else if (message-type = recesve) then
begin
update inventory file record item__rec for item itemno;
snvoke term-id with ack;
end
end;
end-entity;

Figure 7: CMAY Code For Entity Inventory.

5. Distributed Program Execution

A distributed operating system kernel is incorporated in the user program to
support distributed program execution on computer networks. The kernel facilities are
provided as separate functional entities which are :ncluded in the program at the option

of the user. This approach allows a user the flexibility of developing CMAY programs

25

in a uniprocessor environment. The kernel provides three major facilities:

1. It supports the dynamic creation of and communication between processes
on different processors.

2. It provides built-in facilities for distributed termination detection.

3. It collects appropriate statistical information on the relative utilization of the
various processors on the network (the utilization statistics ignores all

computing load other than the CMAY programs that may be running on the
machines).

5.1. Remote Process Creation

An important issue in process creation is that of the allocation of processes
amongst available processors. In one approach, the distributed program configuration is
controlled entirely by the system (language or operating system) which allocates
processes and may also cause processes to migrate amongst processors in order to
optimize system utilization parameters. This approach has been adopted in the design
of a number of programming languages. In the other approach, the programmer creates
the processes on specific processors and maintains complete control over the distribution
of the program. The first approach has the advantage of making the mapping of the
program onto the network completely transparent to the user. However, an efficient
allocation would require the presence of a sophisticated distributed operating system, a
requirement that contradicts our goals. In CMAY, the programmer has the option of
controlling the allocation of the different parts of the distributed program among the
available computers or of giving up control to the system. If all entities are created on
one processor, we have a centralized implementation of CMAY. Regularly updated
statistical information on the utilization of each computer (e.g. processor utilization
and number of currently active entities) is provided to aid the user or the system in
dynamically allocating new entities in an efficient manner amongst the various
processors. For instance, an entity may be created on the processor with the lowest

atilization or on the processor with the smallest number of executing entities.

We introduce a scalar variable type called processor-identifier . Variables of

type processor-identifier are used exclusively to store the identifiers of the processors

26

on the network. In order to create an instance of an entity on a remote processor, the

let statement introduced earlier may be modified as follows:

let el be entity-type-name(actual parameter list) at pI;
where pl is a variable of type processor-identifier . The entity will execute on the

processor identified by variable p1. If the at clause is omitted, the entity executes on

the local processor.

5.2. Program Initiation

Typically, a CMAY program runs on a collection of autonomous computers
linked by a communication network. Each computer in the network is statically
assigned an unique identifier which is stored in a variable of type processor-identifier
declared in the kernmel. A processor’s unique identifier is available to the entities
executing on that processor in a compiler defined variable called my _processorid.
Every CMAY program must declare the processors from the network, on which the
program may (potentially) execute. In addition the program must also specify one of
these processors as the initiator processor. The CMAY program is initiated by
executing entity main on the initiator processor. Subsequently, other entities may be
created dynamically on the various processors as explained previously. A statement
type called the mayprogram statement is provided to specify the initiator processor

as well as the other processors on which the program may execute. This statement has

the following form:

mayprogram <program-name > (processors <p, >, <Py <p,>;
initiator <p>)

where <p;>, i:l..n, are constants of type processor-identifier which specify
the processors on which the program may execute; and <pj>, is the initiator

processor. If this statement is omitted in a program, the program Iis executed on 2

single processor.

27

5.3. Program Termination

A distributed program is said to have terminated if the following two conditions

are satisfied [chandyterm]

1. All messages that were sent have been received (messages stored in the
message buffer of an entity are presumed to have been received’).

9. No entity will send another message in the future (all entities are wailing
indefinitely).

If all entities (including main) in a CMAY program have been terminated then
the above conditions are trivially satisfied. This would automatically cause the CMAY
program to terminate. In addition, CMAY provides a terminate statement t0
unconditionally terminate the execution of the program on all the processors. This
statement is analogous to a stop statement in a sequential program. However, there
exist a variety of distributed applications, in which program termination can be
detected only in a distributed manner based on the two conditions specified above being
satisfied. For this purpose the language provides a built-in, user-transparent facility to
detect program termination in a distributed manner. This facility is provided as a
library entity, and is activated by the simple mechanism of including this entity in 2

user program. Program termination is detected by using the distributed termination

detection algorithm suggested in [chandyterm].

6. Conclusion

In this paper, we suggest that general purpose distributed programming
languages may be designed by incorporating two basic notions - entities and messages
in any sequential programming language. A key feature is that a programmer familiar
with a sequential programming language - say FORTRAN - can use all the facilities of
the language including procedure libraries and needs to learn only three new primitives
(create,send, and receive) to use distributed systems effectively. With message types
defined suitably, it should be possible to execute distributed programs which consist of
communicating entities written in different host-languages and running on different
processors. Our distributed programming fragment was compared with the approaches

adopted in the design of CSP, DP, and Ada. A comparison of the four languages is

28

presented in tabular form in table I. The process representation and message passing

features introduced in this paper have also been implemented to develop a message

based simulation language [5].

The ideas discussed in this paper were implemented to develop CMAY - a
FORTRAN based distributed programming language. CMAY supports a library facility
whereby user programs may include routines and entities from the CMAY library. A
versatile trace facility is also provided. This facility may be used to trace messages
exchanged between entities. The tracing may be performed at different levels
depending on the detail to which the state information of an entity is desired. Tracing

may be initiated dynamically, for instance, on encountering a condition corresponding

to a possible error in the program.

CMAY has been implemented on a network of VAX 11 /750s each running the
4.9 BSD Unix operating system. The IPC (Inter-Process Communication) facilities
provided by the operating system were used to set up the communication channels
between the various processors on the network. Although this makes the current
implementation of the language unportable to systems not running 4.2 BSD Unix, the
communication facilities are provided as subroutine calls and can conveniently be

replaced by whatever network communication facilities are provided by other operating

systems.

Acknowledgements

We are grateful to Professor Mike Molloy and to Ted Briggs for their guidance
in implementing the language on the UTCSRES network.

29

| | I ! |

| HEADING | CeP | DP | ADA | CMAY

| I I | l

| I l ! |

! ! | | |

| System |distributed or| distributed |distributed or|distributed
jconfiguration | centralized I | centralized |centralized
| | | I I

| | | ! I

| Process I parallel | distributed | tasks | entities
|IRepresentation| processes | processes | |

! : l ! ! |

| I l | |

| Process | dynamic ! static I dynamic ! dynamic
| Creation | I l i

! I | | |

| I ! | l

| Process | automatic | ———— | explicit, | explicit,
| Termination | | | uncontrolled | autonomous
! I | ! !

| | i I !

| Process | restricted | No ! Yes | Yes

| Variables | I ! !

| I i | !

| | l | |
|Communication | rendezvous | remote | remote proc. | pbuffered
{ Primitive | |procedure calll call via | message

! l ! | rendezvous | passing

! I I | !

| | ! | |
|Synchronization| rendezvous |guarded reglon| Trendezvous | conditional
| Primitive | and | conditional | and | recelives
I | input guards | delay | input guards |

I | I ! |

| l | | |

| Non- ! guarded | guarded | guarded | programmer
| determinism | command | region ! command lresponsiblill
! | | | |

| i i | !

| Recursion | No I No | Yes ! Yes

| | ! ! !

| % ! : ! !

| Termination | programmer | programmer | programmer | built-in

| Detection iresponsibilityiresponsibilitylresponsibility§ facility

| I !

| I
Table 1: Comparison of CSP, DP, Ada and CMAY

30

References

Reference Manual for the Ada Programming Language
United States Department Of Defense, 1882.

Ambler, A., Good, D.I., and Burger, W.F.
Report on the Language Gypsy.

Technical Report ICSCA-CMP-1, Dept. of Computer Science, University of Texas
at Austin, August, 1976. :

Andrews, G.R.
Synchronizing Resources.
ACM Trans. Program. Lang. Syst. 3(4):405-430, October, 1981.

Andrews, G.R. and Schneider F.B.
Concepts And Notations For Concurrent Programming.
Computing Surveys 15(1):3-43, March, 1983.

Bagrodia, R., Chandy, K.M., and Misra, J.
A Message Based Approach to Discrete Event Simulation.

Report TR LCS - 8403, Dept. of Computer Science, University of Texas at
Austin, May, 1984.

Brinch Hansen, P.
The Programming Language Concurrent Pascal.
IEEE Trans. on Software Engg. 1(2):199-207, June, 1975.

Cook, R.P.
*MOD - A Language For Distributed Programming.
IEEE Trans. on Software Engg. SE-6(6):563-571, November, 1980.

Dahl O.J., Myhrhaug B. and Nygaard K.
Simula 67 Common Base Language.
Norwegian Computing Centre, Oslo, 1970.

Dijkstra, E.W.
Guarded commands, nondeterminacy, and formal derivation of programs.
Communications of the ACM 18(8):453-457, August, 1975.

Feldman, J.A.
High Level Programming For Distributed Computing.
Communications of the ACM 22(6):353-367, June, 1979.

Gehani N.
Ada: An Advanced Introduction.
Prentice-Hall, 1983.

18]

[19]

31

Geschke, C.M., Morris Jr., J.H., Satterthwaite, E.H.
Early Experience With Mesa.
Communications of the ACM 20(8):540-553, August, 1877.

Hansen P.B.
Distributed Processes:A Concurrent Programming Concept.
CACM 21(11):934-941, November, 1978. :

Hoare C.A.R.
Communicating Sequential Processes.
CACM 21(8):666-677, August, 1978.

Kieburtz, R.B., and Silberschatz, A.
Comments on 'communicating sequential processes.
ACM Trans. Program. Lang. Syst. 1(2):218-225, October, 1979.

Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C.
Abstraction Mechanisms in CLU.
Communications of the ACM 20(8):564-576, August, 1977.

Liskov, B.
Primitives For Distributed Computing.

In Proceedings of the seventh Symposium on Operating Systems Principles.
ACM, December, 1879.

Parr, F.N. and Strom, R.E.

NIL: A High-level Language For Distributed Systems Programming.
IBM Sytems Journal 22(2):111-127, 1983.

Scherr,A.L. -
Distributed Data Processing.
IBM Sytems Journal 17(4):324-364, 1978.

Wirth, N.
Modula:A Language for Modular Multi-programming.
Software - Practice and Ezperience (7):3-35, 1977.

