BUILT-IN TESTING
OF INTEGRATED CIRCUIT WAFERS*

Sampath Rangarajan, Donald Fussell, and
Miroslaw Malek**

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-87-27 July 1987

Abstract

Production testing of a potentially faulty digital circuit consists of two types of tests, parametric tests to determine
whether the production process has produced the proper electrical parameters for the features on the wafer, and
at-speed logic testing which identifies the effects of random defects on the behavior of individual circuits. The latter
type of testing requires the generation of a sequence of test vectors and their application to the circuit being tested.
Traditionally, in the second step the output of the circuit under test is compared with a known correct output for each
test vector by a fest computer. This method has some drawbacks in certain circumstances which promise to become
more critical in the near future. These drawbacks include difficulties in producing test computers that can drive
circuits under test at their rated operating speed, excessive time spent in testing an entire wafer circuit by circuit,
complex probing hardware for circuits with many /O pins, and the difficulty of using test computers to find failures
in wafer-scale systems during their actual operation. In homogeneous systems of identical integrated circuits like
these, testing can be done in another way—by applying a common test vector to several processing-elements at once
and comparing the results produced by them. In such a scheme, neither the test computer nor even a set of a priori
correct results is needed. The amount of special testing logic required is thus minimized, and all of the problems
mentioned above are solved. These features make this scheme attractive as an alternative means for production
testing of silicon wafers consisting of an array of identical circuits. We analyze such schemes and show that perhaps
surprisingly they are inherently as accurate as the traditional method for production testing. We also show that this
approach should allow wafers to be tested for production faults significantly faster than by using a probe tester.

#This research was supported in part by the Office of Naval Research under Contracts N00014-86-K-0597 and NO0014-85-
K-0763.

#+Department of Electrical and Computer Engineering.

1 Introduction

Production testing of a potentially faulty digital circuit consists of two types of tests,
parametric tests to determine whether the production process has produced the proper
electrical parameters for the features on the wafer, and at-speed logic testing which iden-
tifies the effects of random defects on the behavior of individual circuits. The latter type
of testing requires the generation of a sequence of test vectors and their application to the
circuit being tested. Traditionally, in the second step the output of the circuit under test
is compared with a known correct output for each test step by a test computer which is
assumed to be fault-free. Moreover, the computers used for computing the known correct
results are also assumed to be fault-free.

The use of IC test computers for production testing has always been considered to be
obviously the only way to proceed, but in fact it has some drawbacks in certain circum-
stances which promise to become more critical in the near future. Potentially the most
damaging of these drawbacks is tester speed, since at-speedtesting must be done at the
rated operating speed of the circuit under test to be accurate. With the advent of very
high speed circuits such as those made with gallium arsenide, the rated speed of the circuit
may be greater than that achievable by current test computers, which are made of ECL
parts. This will require a new generation of test computers based on the same technology
as the circuits under test. It is likely to be difficult to build such testers cost-effectively,
especially if every advance in performance at the IC level causes the performance of the
parts to outstrip that of the exising generation of test computers.

Another drawback is the time required to test an entire wafer by probe testing a single
circuit at a time. As individual circuits become ever more complex, the size of the set
of test vectors required to provide good fault coverage increases, and so does the testing
time per circuit. Since a wafer typically contains hundreds of copies of circuits, testing
the entire wafer a single circuit at a time, with a physical repositioning of the probes from
one circuit to the next at each step, can take a very long time and add a great deal to
the production cost of the circuits. A related problem is the ever increasing number of
I/0 pins on modern circuits, which requires increasingly complex probing hardware on the
tester.

A final drawback is related to the use of a probe-testing technique in wafer-scale inte-
grated systems, which are a candidate for a new generation of semiconductor technology.
Prototypes of such systems have been built in which a working system is configured out
of working parts after all the individual modules have been tested using traditional probe
testing techniques. A major problem with this approach is that once the wafer is tested

3

and configured, it is difficult or impossible to retest and reconfigure it in the event of a
post-production failure of one or more of the modules that passed the production testing
step.

In this paper we examine a different approach to production testing which provides
solutions to all of these problems. It begins with the presumption that the system to be
tested consists of an array of identical digital sequential or combinational circuits that
can communicate among themselves. These circuits can be tested simultaneously with
the same test vectors and the results compared locally within each module on the wafer
to determine whether a fault has been detected in that module. If an ordinary wafer
containing an array of identical copies of an integrated circuit is augmented with some
simple testing hardware for each module and communication paths between the circuits,
then the requirements of our approach are met. In this regard, we quote the following

from [10].

[et us mention here another possible use of the net of buses and switches on a wafer,
that was suggested to us by someone in the industrial community. Since the width of the
buses and switches turn out to be narrower than the scribe lines themselves , one could
incorporate them on ordinary wafers, at no extra cost, and use them to test the chips on
the wafer before dicing it. In this way, the cost of testing can be reduced, because there is
no need to probe the individual chips.”

Other than the cost savings mentioned above, we would show that our algorithms will
lead to considerable time saving too.

While comparison-based or voting schemes related to this approach have been used for
fault masking during the operation of highly-reliable systems [1], [8], [11], [13], [15], rarely
if ever have they been considered seriously for production testing. Our analysis shows
that perhaps surprisingly this approach is potentially very practical in its application to
production testing. Comparison based algorithms that have been proposed for System
Level Fault Diagnosis [14], [2], [7] seem to be designed with a more pessimistic view of the
situation and do not model the situation realistically. Also, Systolic array fault diagnosis
algorithms based on a Comparison approach have been proposed in [4] and [5]

Because we are concerned with an analysis of the production fault testing process as
distinguished from the test vector generation process, we base our analysis on a view of
an integrated circuit as a “black box” computing 2 function, and therefore the testing
problem is simply to determine whether the function performed is the desired one. This
approach detaches our analysis from any particular method of test vector generation which
may be used to generate the test patterns so that we can perform a generic analysis of

4

the performance of comparison-based testing. It should be noted that this should not
be interpreted as meaning that this approach depends in any way for its operation on
random test vector generation, but rather that we have no hard statistical data on the
characteristics of real test sets and thus must rely on such a generic probabilistic analysis.

We analyze the performance of voting schemes in terms of the degree to which they
can be relied upon to accurately discriminate between faulty and fault-free modules and in
terms of the time they require to do so. Our results show that these schemes are at least
as accurate as the traditional method using a test computer in this regard, especially when
used in wafer-scale systems. We also show that voting schemes are attractive in terms of
the time they require to perform the testing. Since built-in testing eliminates problems of
matching test computer speed to module speed and requires probing of a wafer only to
receive test results and possibly to broadcast test vectors, this approach is therefore shown
to solve the problems detailed above for at-speed testing.

2 A Functional Model of Fault Diagnosis

As indicated above, we are interested in studying the application of test vectors rather
than their generation. Since we are concerned with production fault diagnosis primarily
in a VLSI environment, we will assume that we are not in a position to repair a faulty
circuit and therefore that our tests need only tell us whether or not a circuit functions
correctly and not how or where it may have failed. Thus we will not be concerned with
how one associates the results of a test with a particular fault in a circuit. Circuits to
be tested can be either combinational or sequential in nature. In either case, signature
generators can be used to combine the outputs produced by each module from sequence
of test vectors to reduce the internal communications required for transmission of results
to be compared and in the case of sequential circuits to support an LSSD scheme [9]. This
allows us to equate a test of a sequential circuit with that of a combinational circuit and
thus to define a single, simple functional model which covers both types of circuits. It is
also worth noting at this point that while we frequently refer to the circuits being tested
as processing elements, they can in fact be any type of digital circuit.

A target circuit C, is a function mapping a domain I of input values to a range O of
output values. C; is intended to represent an ideal or correct circuit, in other words, the
function that is computed by a fault-free physical realization of the circuit. Let C, donate
an instance or realization of C. C, is thus also a function from I to O, but not necessarily
equal to C;. When C, is not equal to), we say that C, is faulty. In production testing,
our goal isto check whether or not a given C, is faulty i.e. to check whether or not C, = C;.

5

Of course, the obvious way that this can be done is to exhaustively generate Ci(e) and
C,(e) for every element e in I and then check whether Co(e) = Cy(e), but frequently the
size of I makes this a prieri impractical.

A failure modelfor a target circuit C is a family of functions {C;,Cy,C,...,CL}, where
the subset {C4, Cs,...,Crn} is the set of possible functionally distinct faulty realizations of
C;. For 0 < i < n, the ith feull state C; is a unique function on domain I of C and
is therefore uniquely characterized by the subset I; = {e|C.(e) # Ci(e)} of I, ie. the
set of input values for which faulty outputs are produced. Each member of I; is called a
characteristic input for faulty circuit C;. For any particular input value e € I there is a
fault coverage set s = {ile € L;} of faulty realizations of C; for which e is a characteristic
input. Then | ‘ , the fraction of the total number of fault states that input e characterizes,
is called the cove’mge of e. A fault coverage set s can be partitioned into a set of failure
modes where each failure mode is the set of all faulty circuit realizations in s which produce
the identical faulty output on input e (Figure I).

A test for a circuit C is a sequence t = {vy, Vg, ..., Um } Of test vectors, each of which is
an element of the input set I of C;. Each such element v; has an associated fault coverage
set s;. We can let S = UT,s;, the union of these fault coverage sets, be the fault coverage
set of . A test setfor C is a sequence T = {t;,1s,...,%,} of tests, and the coverage of a test
set 18

n
which is the cardinality of its fault coverage set divided by the number of fault states.

If the test set being used to determine the correctness of a circuit is all of I, then
its coverage is obviously 1, but as noted above the the size of this set generally makes
such exhaustive testing impossible in practice. Research on the generation of test sets is
concentrated on methods that select small test sets with the highest possible coverage, but
how these sets are generated is not our concern here. We will see later that not only does
the coverage of the entire test set being used bear on the quality of the testing, but that
the coverage of the individual test vectors in these test sets can be very important as well.

Having briefly defined the production testing problem, we need to look at the process
of performing the tests. Note that if signature generation is used, the outputs considered
for each test are the outputs of the signature generator rather than the outputs of the
circuit under test but for notational simlicity we will consider the output domain of the
signature generator to be the same as the output domain of the IC itself. Consider an
n-ary evaluation predicate V(o01,0z,...,0,) on {O x O x ... x O}. The ith test of circuit
realization C, is the value of V(Cy(#;), 012, ., 0im). If V(Co(ti), 0i2,...,0in) # 0 for some

set of failure modes

set of inputs I set of fanlty circuit

realizations

Figure 1: Functional Fault Model

0 < i < n then we conclude that C, is faulty with respect to test vector ¢;. A diagnosis of
s circuit realization C, is a sequence R = {ry,7e,...,7- }, where r; = V(Ca(:),0i2, .., 0in))s
that is R is the sequence of r results of the tests performed by applying V to the outputs
of C, for each of the test vectors. A circuit realization C, is deemed fault-free only if
r; = 0,Vi,1 <1 < rie. the diagnosis vector does not contain any ones.

Suppose that we have fabricated n instances of C, C1,C5,...,C, and we are testing
C; by comparing its output on each test with the outputs of all C; for which j # 1.
Then we can define an evaluation predicate V(Ci(t), Ci(2), Ca(t)..., Ca(t)) = 1 iff at least
k of the C;(t),1 £ j < n, are all equal to Cy(t) for some k, called the threshold of V.
More generally, voting algorithms for functional fault testing are characterized by having
evaluation predicates of this form for some values of n and k. Of course, the traditional
testing method is also a voting algorithm, as we will see in detail later. '

3 Accuracy of Testing by Voting

In evaluating a mechanism for testing, it is necessary to determine how closely it will
approximate the ideal testing algorithm. In order to compare a particular testing algorithm
to the ideal algorithm, we will examine the differences in the diagnosis of a particular unit
that would beproduced by the testing algorithm and the ideal algorithm. For each element

7

of the diagnoses produced by testing algorithm and the ideal algorithm for a particular unit
under test, four conditions are possible. Both results could be 0 when the tests indicate
no fault for the unit or both could be 1 when the tests indicate that a fault has been
detected. These are the two conditions under which the evaluation function of a testing
algorithm has made a correct determination. The other two conditions occur when the
testing algorithm indicates that the unit under test is faulty (a 1 in the diagnosis vector)
when the ideal test finds no fault (a 0 diagnosis vector element), a result which we call a
pessimistic diagnosis, and the condition where the testing algorithm finds no fault when
the ideal algorithm does detect a faulty condition, which we call an optimistic diagnosis.
We will now analyze the probabilities that these types of diagnostic errors occur.

Let ppes,; designate the probability of a pessimistic diagnostic error for the ith test in a
diagnosis, and let p,y; denote the corresponding probability of an optimistic error. Also,
let B, ; denote the probability that a pessimistic error does not occur for the ith test. For
a voting algorithm with threshold k, a pessimistic error does not occur when at least &
voters return results identical to the correct result produced by the unit being tested, i.e.
out of the n voters a combination of at least k, fault-free voters or faulty realizations of the
voters for whom the ith test vector t; is not a characteristic input, could be found, and an
optimistic error occurs when the unit being tested is not covered by #; (so that the faulty
unit produces the correct output for the test vector ¢;) and at least k voters return results
identical to the correct result produced by the unit under test, or when the unit being
tested is covered by #; (so that the faulty unit produces an incorrect result) but at least
k voters return results identical to a faulty result produced by the unit being tested, i.e.
out of the n voters, k voters belong to the same failure mode as the unit being tested for
the test pattern ;. Let us assume that there are f; failure modes which are covered by i;
and that these failure modes are all equally likely to occur in any faulty circuit realization
of C. If we further assume that each circuit C; can fail independently of all other circuits
with probability p, then the probability that circuit C; produces an incorrect output for
input ¢; is ¢;p, the probability that the circuit C; produces a correct output for input #; is
1—c;p, and the probability that an incorrect output produced falls into a particular failure

mode is 9}‘%?1, where c; is the coverage of the test 1,.

From the above definitions it is clear that for the ith test vector t;, the probability that
pessimistic error does not occur will be

n

n —i i
ﬁpes,é = Z ()(Cip)n (1 " Cip)

gk t

8

and the optimistic error probability will be

_ o [n\ cp. CiD e
Popti = (1= €)puns - &5 5 (.)<—-—>3<1 _ Py
o\ fi

Generally, a test will be made up of a set T = {t3,%s,...,t,} tests . Let r be the
cardinality of the test set T so that r = |T|. Also, let p,e,(t) and pyy(t) denote the
probabilities of pessimistic error and optimistic error after the application of t tests . The
test will proceed in such a way that the r tests are applied in sequence to the system
of units under test, the result of the test being evaluated after all the tests have been
applied. Initially, all the units are assumed to be fault-free so that the pessimistic error
probability is at its minimum value, which is zero and the optimistic error probability is
at its maximum value. Every application of a test vector weeds out some units as faulty.
This would mean that the pessimistic error probability increases with the application of
more and more tests and simultaneously, the optimistic error probability decreases with
the application of more and more tests. That is, both ppes(t) and pepi(t) are functions of
the number of tests that have been applied so far, during the course of the test. Units
once deemed faulty by a test vector do not make decisions on their fault status any more,
but still function as voters by deciding on the results of other units for the remaining tests
. This observation leads to a new set of equations for p,.;(¢) and p,,:(t) different from the
ones derived before for a single test vector.

Assume that the coverages of all the tests are equal, so that ¢; = ¢, V1,1 <4 <r and also
the number of failure modes covered by all the tests are equal, so that f; = f V2,1 < : <r
Dpes(t) is bounded from below by the probability of finding at least k fault-free voters. If at
least k fault-free voters cannot be found, then, the probability of finding a combination of
k fault-free and faulty voters giving the correct output is a function of the tests. Consider
a particular instant during the test when ¢ out of the r tests have been applied so far. At
this instant of the test, B, (t) will be

T in . Rt A . i n— . A
ﬁpes(f)-‘—'Z(i)Pn"(l—P}’wLZ(JP”"‘(E-?)’(Z (j)C”“”’(l—c?“”)

i=k i=0

j=h—i
Note that the first component of the above equation, which is independent of the number
of tests, bounds B,,,(t) from below. The above equation could also be written as

3=} Gkt

B) =3 @)pn-é{l _ py'(*{: (n;— z) S ci)j)z

9

The pessimistic error probability will be given as a function of the number of tests as

ppes(t) =1- Fpes(t>
An optimistic error would have been made on a faulty unit under test after the application

of tests if

1. This faulty unit was not covered by any of the ¢ tests and a combination of k fault-
free and faulty voters giving a correct result identical to the unit under test could be
found for each of the ¢ tests . The probability of this occurence will be

h0 = (1 - C)iﬁpes(t)

9. This faulty unit was covered by a set of m tests 1 < m < T but it could find k voters
which had the same failure mode so that it gave identical faulty outputs for those
test tests and for the remaining ¢ — m tests which did not cover this particular unit,
it could find at least k voters that gave the correct result. The probability of this
occurence will be

hl = RZ () (1= €)' Ppealt — 4)

where R is the probability that there are at least k voters out of the n voters which
are (1) faulty and (2) have the same failure mode as the faulty unit in question. This

will be given by .
n j n~j
=2 ()5 (%)

where ?-— gives the probability that a particular voter is faulty, is covered by a par-
ticular vector and has the same failure mode as the faulty unit in question.

So the optimimistic error proabability will be given as
Popti = RO -+ h1
In all of the above analysis, we have assumed a uniform distribution of coverage for all
the tests over the set of all failure modes.

In order to study the implications of the above analysis, we define two more parameters
as follows: '

Locatability (L): This is the probability that a fault-free unit has been identified
as fault-free at the end of the test after the required number of tests have been applied.
Locatability is considered undefined during a test after the application of only a limited
number of the total tests to be applied.

Identifiability (I) : This is the probability that a unit is identified correctly as either
faulty or fault-free at the end of the test.

These two parameters are given in terms of pp.s(t) and Popt(t) as

L =1~ ppes(r)

and
I=(1~-p)L+p(l—popr))

From the above analysis, we observe that there is a definite trade-off between ppes(t) and
Dopt(t). When we apply more and more tests, although p,,:(f) decreases, pye(t) increases
<o that I decreases. The critical number here is po,(t) because an incorrect decisionn on
o fault-free IC leads to the removal of that fault-free IC from the set of working 1Cs,
whereas an incorrect decisison on a faulty IC will lead to the inclusion of that IC into the
set of working ICs. In practice we should choose the parameters of the particular voting
algorithm such that p.y:(t) is made very small.

Average Test Length :

Average Test Length could be defined as the expected number of tests that has to be
applied to the circuit before a fault could be diagnosed. From the above analysis, it could
be seen that for our voting algorithm, the average test length will be given as

o0
Zt(l - C)t—icﬁpes(t - 1)
t=0
and for the instance of our algorithm with a threshold of one this is equal to

(1-p5) cpt
Lav = -
T c + (1—cF)?(1—c)?

It is interesting to note that the above analysis tell us that we require a shorter average
test length to diagnose a unit compared to the diagnosis using a test computer and this is
because of the inherent unreliability present in our algorithm due to the pessimistic error
probability.

Note that TL,,(k— > o0) = '3:'

We do not worry about the generation of tests and in this sense we can assume that
a test generator will give us an ”average number of tests 7 to work with. That means we
can find out the number of voting units required on an average to diagnose the ICs. We
would assume that we are given,

TLiew =D _t(1—c) e
=0

tests which is equal to % Then, for a specific accuracy in diagnosis of fault-free units
(Locatability), we can calculate the number of voting units required. Assuming that (1 —
cF~1) is very small, we note that

L=(1-p)+pt(1-c)

so that
_log(1 — L) + log(c)

k
log(pe)

The above analysis gives us a clear idea as to the number of voters that need to be used
given that a test generator generates an average number of tests for a particular accuracy
of the voting algorrithm.

Pseudo-Random Model:

The above analysis, assumed that tests are applied in a random fashion and the same
test can be repeated due to the randomness in the selection of the test involved. To make
the analysis more precise we consider the scenario where the test is conducted without
test vector duplication [16]. Assume that a circuit could be affected by any of the faults
in the fault set F = {fi, f2, ., fm, A} where A denotes the null fault. Let us also assume
that the test set consists of r tests T' = {#1,%,,...,¢,} as before. We could not, obviously,
test any circuit exhaustively. Let us also assume that the r tests are generated randomly
out of N possible tests. Let M; be the number of tests, out of the possible NV iests
which will cover fault f;. Noting that no test is repeated during the test process, we see
that the probability that fault f; is detected by exactly z of the r tests is given by the
hypergeometric distribution function

The hypergeometric distribution is valid is valid only if the tests are picked up as sets (say
a set of k tests out of N possible tests without repetition) of tests. But in reality, tests will
be picked up sequentially with an earlier picked test being not picked again. (We would
refer to the model which reflects this situation as the Sequential Selection Model). So,
we note that modelling the practical situation using hypergeometric distribution is only
an approximation. But, using an interesting property of hypergeometric distribution, we
would show that the model derived gives an upper bound on the real situation.

From the equation given above, we note that the probability that none of the tests
covered this fault f; is given by
(")
Py(0) = ~—

()

It is intuitively clear that in the worst case, the coverage is limited by the fault which
is most difficult to detect. Let min;M; = M so that M gives the number of tests which
covers the fault which is most difficult to detect. Then, an upper bound on the probability
that a faulty unit is not detected to be faulty is given by

N-M
Y = maz;P(0) = (——1——)—

)

We will use the above pseudo-random coverage model and develop equations for pes-
simistic error probability and optimistic error probability. The equations will be seen to
involve a combinatorial enumeration to calculate the coverage of each individual test. It is
intuitively obvious that the ezpected coverage of each individual test in the pseudo-random
case will be smaller than that in the random case which will be equal to %’. We will show
that this indeed is true so that the coverage of each test on an average is upper bounded
and the Locatability is lower bounded by the random model case.

Let X (i) denote the probability that the ith test detects the fault when the tests are
applied in sequence. As mentioned previously, using hypergeometric distribution to model
the pseudo random case for the calcualtion of the coverages of individual tests will be
an approximation. We would show that this distribution givbs an upper bound on the
coverage without calculations using enumeration.

The expected coverage for the ith test will be given as

M — AV

Corp(i) = NoGoD

13

where AV;_, is the average number of tests that covered this fault out of the previous i —1
tests. AV; will be given as

AV = X (1) + X(2) + oo+ X(G — 1) + 2X()X(2) +) + -t
(G —-D(XQ1)..XG-1

The Locatability value, in this case, will be

L=(1~- Pk) +pk((1 - Cezp(l)k)-"(l - Cexp(t)k))

and the optimistic error probability will be

N~
(—(z%j—)-ﬁpes(r)

Let P(i) give the probability that the last ¢ tests, when the tests are selected in sequence,
cover the fault. Then
()
P(i)= AL i)

ol

which means that the hypergeometric distribution model fits the sequential selection model
when the last set of 7 tests in the sequential selection model cover the fault. Calculation
of AV; would involve calculating the probability of different permutations of 1,2,...,7 —1
tests covered the fault. But it can be shown that each of these probabilities for each
of the permutations of m tests will be lower bounded by P(m) (see Appendiz) so that
AV,_, is lower bounded and consequently C.,,(2) is upper bounded by the hypergeometric
distribution case.

Thus for upper bound calculations of coverages of individual tests, we can use the
hypergeometric distribution. Also, the mean of hypergeometric distribution is such that
AV, =(-1 %, so that
M—(j— 1)%— M

N-(i—-1) N
which is the same as for the random model. Thus, we can show that the ezpecied coverage

of individual tests is bounded from above by the value for the random model which is -‘%.

Coap(t) =

The fact that the coverage of individual test is upper bounded by the random model
tells us that the Locatability value is lower bounded by the random model case. This means
that pseudo-random model will give a locatability value which is no less than the one given
by the random model.

14

Average Test Length (Pseudo Random Model):

The average test length could be calculated as

o (M)
TLavps = }__:%T'T""(]{r——j”—ﬁpes(r - 1)

P

A closed form solution for the above does not seem to exist, but we note that an upper

bound on the above will be
o M (N—-M)

r \ r—1
7".._.___._————-—
LA

. 4 N1
which converges to 77

4 Communication of Test Results

The voting algorithms we have discussed so far enable the units to decide whether they are
faulty or fault-free. Once this decision has been made, this information has to be conveyed
to the outside world. Perhaps the simplest way to accomodate this requirement together
with the interprocessor communication requirement for performing voting is to link the
units together into a linear array, one end of which can be probed by an external tester.
The interprocessor communications during voting can take place along this link, and the
final diagnostic results can ‘be transmitted to the external environment at the end of the
diagnostic procedure through the probe link. While this method is not particularly fast for
interprocessor communication, it is simple and should allow far more rapid testing than
individual probing of ICs. If a more sophisticated communications structure is desirable,
a method related to the adaptive testing strategy of [6] using a tree-structured network
connecting the processors could be used. Such a technique would allow sublinear times
for reporting the locations of faulty or good units in many cases and would thus be much
faster than a single serial link. On the other hand, in the worst case the reporting of results
can be slower than it is using the simple serial technique.

For the above adaptive strategy, we can show, that if p is the probability that a IC is
faulty, then when p < 0.5, a certain decision strategy should be followed and when p > 0.5
a complement decision strategy should be followed.

The technique given in [6] borrows its idea from the adaptive tree walk probing fol-
lowed in data communication protocols to give access to a sender to transmit messages

15

| !

Figure 2: Group Probing of ICs

on to the network. In the subsequent discussion, we assume that each of the ICs have
identified themselves to be faulty or fault-free using an instance of the voting scheme we
have proposed. So, an outside tester needs to poll these ICs and find out their status. It
has already been shown elsewhere that ICs have to be divided into groups of 27 units each
where (1 — p)¥ > 1 for optimality. We derive an expression for the average number of
inquiries required to unambiguously identify faulty and fault-free ICs. Each of the groups
of 27 ICs is polled in the fashion shown in Figure 2.

There is always one enquiry at the root node. If at least one of the ICs is faulty, the
tree is divided into two sub trees and more inquiries are conducted and so on. The number
of inquiries can be expressed in terms of a recurrence relation as follows. Let T(n) be the
average number of inquiries for a tree polling strategy on a set of n ICs. Let P be the
probability that a IC is fault-free. That is, P =1 —p. Also, T(1) = 1. Then,

T(2) =1 + 2T(2"1)(1 — P?)

because, once the root node is probed, the sub-trees are probed only if at least one of the
ICs contained in the leaf nodes of the tree is faulty. Solution of this recurrence relation
gives
. =1 e(z) 4 i
T(2) =1+ 2 [[(1-P?)+ 2 T[(1 - PP
g1 z=1 1=0

The strategy to be followed will be as follows. Let us assume that the ICs store a 1 in their
status register if they find themselves to be faulty and store a 0 if they find themselves to

16

1800

no. of inquiries

0 b2 04 D6 08 1
Probability

Figure 3: Number of Inquiries Required

be fault-free. If p < 0.5 we know that on an average, there will be more fault-free ICs than
faulty ICs. So, the polling algorithm should function in such a way that ICs send the OR
of their status registers up the tree so that the root of the tree receives a 1 if any of the ICs
in the tree are faulty so that a search is made for the faulty ICs. If p > 0.5, we know that
there will be more faulty ICs on the average. That means, the polling algorithm should
search for fault-free ICs which will be fewer in number. For this case, the equation for
the average number of inquiries is the same with P being replaced by p. In this case, the
ICs should send the OR of the complement of their status register up the tree so that the
root of the tree receives a 1 if any of the ICs in the tree are fault-free. When p = 0.5, it
does not matter which strategy is followed, because both strategies will involve the same
number of test inquiries on the average. The number of inquiries required with respect to
failure probability is shown in Figure 8.

The above technique requires further investigation, we feel at present that simplic-
ity of interconnect and the concomitant low hardware overhead for testing is of primary
importance.

In the next section, we will consider the trade-offs involved in the application of the
voting algorithm to both heterogeneous and homogeneous systems and also look at the

17

efficiency of the algorithm with respect to traditional algorithms.

5 Voting Versus Traditional Testing

In this section, we will examine the equations derived in the last two sections and try
to understand them in greater detail. We will show that the efficiency of the algorithm
depends on the way the parameters are chosen and that there are trade-offs involved among
them. To reiterate the results obtained in the previous sections we note the following

1. A voting scheme for testing can be can be applied to the production testing of circuits.
2. A priori correct results are not needed for testing.

3. A test set is assumed to be made up of multiple tests , each with a coverage equal to
c. Tt is shown that the diagnostic resolution of individual tests affect the efficiency
of the algorithm.

The analysis of the results from Section 3 requires thought as the diagnostic resolution
of tests have a large effect on the efficiency of the algorithm. From the analysis in the
previous section, we observe that there is a definite trade-off between the probabilities
Pres(t) and popi(t). When we apply more and more tests, although po:(t) decreases, ppes(?)
increases so that L decreases. The critical number here is p,p:(t) because an incorrect
decision on a fault-free circuit leads to the removal of that fault-free circuit from the set of
working circuits, whereas an incorrect decisison on a faulty circuit will lead to the inclusion
of that circuit into the set of working circuits. In practice we should choose the parameters
of the particular voting algorithm such that p,,:(t) is made very small.

The equations we developed in Section § are for a generalised class of voting algorithms
with a threshold V. The only reason that we may need to use a threshold greater than
one is that there might be very few failure modes so that for a particular test, there is a
good chance that a faulty tester and one or more faulty testee have the same failure mode
so that they give the same faulty result. In practice, for circuits of reasonable complexity,
this will not be true. This fact is shown later in this section with numerical figures. In our
analysis, we use simpler equations where it is assumed that no two faulty circuits give out
the same faulty result for any test and also, we use a threshold value of one.

For an algorithm with threshold k = 1, Figure 4 shows the variation of Identifiability
with respect to the number of voting units for a fixed value of p which is set to 0.9 and

18

(.98 -

)
= 096 -
S
5
g 094
L
o
o
0.92
021 3 5 7 9

No.of Units

Figure 4: Variation of Identifiabilty with Voting Units when p=0.9

with the number of tests applied being 500 for different values of the coverage parameter
¢. For a small value of ¢, it is seen that I increases rapidly with n. All the curves tend to
1, but will saturate at some value < 1 for a fixed value of T'.

The curve for ¢ = 0.01 is seen to saturate at a value smaller than 1. For this value of
¢, it is clear that the Optimistic Error probability has saturated and does not decrease any
more with increase in n. Only if the number of tests is increased will the I value increase
in this case. This proves our point that all the parameters should be chosen correctly
according to the circumstances.

Figure 5 shows the variation of I with n for various values of p with a fixed value
of ¢ which is set to 0.01 and for the application of the same number of tests. A higher
probability of failure p leads to a higher value of I initially. As before, all the curves
saturate at a value less than 1 and only an increase in the number of tests will lead to an
increase in 1.

Also, Figure 6 shows the variation of I with respect to p for various values of ¢ for a
fixed value of n which is set to 2. A smaller value of ¢ leads to a larger value of I for all
values of p. But the saturation effect is seen in this graph also.

19

0.95 1

0.9 1

0.85 |

4
o0

Identifiability

0.75 -

0.7

1 3 5 7 9
No.of Units

Figure 5: Variation of Identifiability with Voting Units when ¢=0.01

0.975 -
095 4
0.925 -

09 -

Tdentifiability

0.875 4

0.85 -

0.825

08 01 3 0.5 0.7 09

Prob.of failure

“ Figure 6: Variation of Identifiability with the Prob.of Failure when n=2

20

As far as the production testing problem is concerned, traditional testing methods
involve a test computer which compares the output of the system under test with a known
correct output for each of the tests. We observed previously, that two assumptions—one,
that the test computer was fault-free and the other, that the computers that were used
to compute the known correct results were fault-free, were made. We also mentioned that
the above testing method using a test computer, in a way, belonged to the class of Voting
Algorithms we have proposed. We will now compare this traditional algorithm with the
general class of voting algorithms.

An instance of a Voting Algorithm is characterized by an evaluation predicate V/(Ca(?m),
Ci(tm), ..., Cn(t)) which is 1 iff atleast k of the Cj(tn), j # ¢ are equal to Ci(t,), and by
the parameters k,n and 7. The traditional test algorithm is an instance with the evaluation
predicate V(C,(tm), C(t,)) which is the equality predicate, which is true if the two values
are equal and false otherwise, and parameters k = 1,n = 1 and some 7.

Let the non-zero probability of the traditional test algorithm making an incorrect de-
cision, either due to a fault in the test computer or due to a fault in the computers that
evaluated the known correct output be €, where 0 < € < 1. It is obvious that the same
equations derived above for ppes(t),pop:(t),L and I could be used to evaluate the efficiency
of the traditional algorithm. In this case, the parameter p will take a value of . The value
of € will be much smaller than the probability of failure of an individual circuit C; that
should be used in our evaluation of the general class of voting algorithms that we have
proposed, but it should be noted that the parameter n is a fixed value in the traditional
algorithm, whereas in the general class of algorithms that we have proposed, the parameter
n could be varied as availability and time permits. Also, our algorithm is distributed so
that the diagnostic unit in each functional unit is simple compared to the complexity of the
computer which would calculate the correct output and the test computer, which are used
in a traditional algorithm. Let us assume that the probability that the diagnostic unit in
the functional unit is faulty to be §. Then § << e. From the above discussion, we note that
in our algorithm, I which is the probability that that a circuit is correctly identified to be
fault-free or faulty would asymptotically reach a value higher than that attainable with a
test computer when the various parameters are chosen correctly. In a test algorithm using
a test computer, it is obvious that the computer which evaluates the correct result and the
test computer itself are the components which are prone to failure and they control the
proper functioning of the test algorithm. We have taken note of this fact in our algorithm
and have split up our diagnostic logic so that the algorithm is no more dependent on the
proper functioning of some complex circuitry. Even though the diagnostic unit in each
circuit is not perfectly reliable, due to its reduced complexity, it is much more reliable
than a central test computer. In fact, if we assume that the diagnostic logic is perfectly

21

reliable due to its reduced complexity and also that the circuit is complex enough so that
no two faulty circuits within the set of n circuits have the same failure mode so that no
two faulty circuits give out the same faulty result for any test, with sufficient number of
voters in the comparison process and with sufficient number of tests, our algorithm would
asymptotically give an I of 1. It should be noted that even if the diagnostic unit belonging
to a particular circuit is faulty, it will affect the decisions made only on that particular
circuit and not the decisions made on the other circuits under test. Contrary to this, a
fault in the test computer or in the assumed correct result will affect the decisions made
on all the circuits that are under test so that the fault is propagated globally.

Let us look at the equation for identifiability and assume that a test set consists of r
tests. Then identifiability I = (1 — p)L + p(1 — pope(r)). I = 1 when L = 1—737-(%;—__%%—(3—)1.
Obviously, the only solution to the above equation for L < 1 occurs when p,,; = 0 and the

solution is L = 1. That means, I — 1 only when L — 1 and p,,; — 0 simultaneously.

From the equation for pyp:(t), pop:(t) = R0 + h1

= (1= Bl + R ()1 = B =)

1=l

When r — oo we see that p., is bounded from above by K. When the circuit is of
reasonable complexity so that f is high, then we can say that no two faulty realizations
of C will have the same failure mode so that no two faulty circuits will give the same
faulty output for any test. Then R — 0 so that Popt asymptotically reaches 0. Also,
for a threshold of k¥ = 1, R = 1—(5)" and for a small value of n(E), this could be
approximated to B = 1 — n(%). For example, for f = 1000, n =6, ¢ = 0.1, and p = 0.9,
we get R~ 0.00054 and this value decreases with the decrease in p. ‘

From the equation for locatability L, we observe that if the test contains a set of r tests,
then from the equation for p,., when r — 00, ppes — (1 — 21y (?)p”"é(l — p)t) so that
Locatability L — > i.; (?)pn""(l — p)t. From this we observe that when n — oo, L — 1,
so that we can simultaneously satisfy the conditions L — 1 and p,,; — 0 and this would
make I — 1 asymptotically. In practice, obviously we cannot increase r and n without
bound. But we will show that we can get very good results with n > 6 and with ¢ = 0.1.
In fact, we need to us even a smaller value of n for a smaller ¢. That means, we should

choose all our parameters properly so that we can get a result close to 1.

Let us make a numerical comparison between the traditional algorithm and our gener-
alised class of voting algorithms. As mentioned previously, the traditional algorithm is an

22

& -on

D | 1000 10000
0.5 3.84 4.61
0.6 409 4.91
0.7 433 5.20
0.8 4.56 546
0.9 4.78 5.73

Table 1: Number of Voters required for performance equal to that of the traditional algo-
rithm

instance of the generalised class of voting algorithms with the number of voters n being 1
and the threshold value k being 1. The general equations for L and I for £ = 1 reduce to
the following.

L=(1-p")+p"(1-c")
I=(1-p)((1=-p")+p"(1=C"))+p

We have assumed that p,,;(r) is very near zero, which will be true with a sufficiently high
r and f (so that R is very small). Let I,, and L;,, be the Identifiability and Locatability
figures respectively, for the traditional algorithm. Then

Ly,=(1—¢)+el—c)
Iwa=(1-p)((1—€)+e(l—c))+p
We equate I and I, to find out the point at which the performance of our class of
voting algorithms equals the traditional algorithm with respect to the number of voters n
required when the values of p,e,c and r are kept constant. Also, we neglect the value of

e(1—c¢)" in I,, because it is very small due to the small value of € and also because (1 —c)”
will be very small with the application of a reasonable number of tests.

(1=-p")+p"(1=c") =(1-¢)

23

For rc sufficiently small, (1 —¢")” & (1 —rc*) and 1 — r(pc)” = 1 — ¢, so that

o log(e) — log(r)
log(pe)

Table 1 gives the value of n as a function of p with e = 0.01, ¢ = 0.1 and r = 10000. Note
that with the application of 10000 tests each with a coverage of 0.1, we need n = 6 to
achieve accuracy equal to that of the traditional algorithm when € = 0.01. In general we
can use this approximation to easily determine the number of voting units for each test
required to give better accuracy than a test computer with any given probability of failure.

The discussions in this section clearly show that a voting scheme is very efficient for
the production testing of digital circuits. In the next section, we will apply our algorithm
to the diagnosis problem of the functional units of a modular architecture at a wafer level.

6 An example Voting Diagnostic Algorithm for a Wafer Scale
System

As an example of the implementation of our generalized voting algorithm to a specific
architecture, we will now apply the algorithm to a modular architecture made up of func-
tional units on a wafer. The explanation of the appplication of the algorithm assumes that
the system is made up of homogeneous units, but it will apply to heterogeneous systems
as well. The layout of the functional units on the wafer is as shown in Figure 7.

In this section we provide an example to clarify the intended application of the voting
technique to wafer testing in terms of the overhead involved in implementing it and the
speedups that it can provide over the traditional method. Of course, in a wafer-scale sys-
tem, as is considered here, the communications overhead indicated would not be overhead
at all since communications would be required in any case. Also, for ordinary wafers it
should be noted that the communications wiring between processors can be expected to
take less space than scribe lines.

In order to motivate the consideration of a heterogeneous modular architecture on a
wafer, we look at how the functional units of such a modular architecture could be placed
on a wafer and how the communication structure connecting these modules would lock like.
Katevenis [10] has provided a description of a Soft-Configurable Wafer Scale Integrated
system where he uses the concept of a pipelined bus, where each partition(link) of the bus
retains some information during a specific cycle and passes it on to the next partition, if

24

/_\ Vertical Bus

i
,./"_—""“\

& D Switch

Horizontal //
_

Bus & 23

£y, [

Functional Unit

Figure 7: Two-Dimensional Bus-Connected Wafer

it is free, during the next cycle. Each partition of the bus is analogous to a pipeline stage.
There are no buffers required, but the bus partitions themselves store the information.
Such pipelining and the subsequent complexity of the hardware may not be justified if the
communication is very localized. Further, some stages of the pipeline may fall vacant so
that there may not be very efficient utilisation of the pipeline anyway.

In the case of a heterogenous system of units, we show that with clustering of functional
units on the wafer, the communications on average take place between neighboring units
which requires the information to pass through only a very small number of bus partitions.
If this is the case, then a simple circuit switched scheme, where a circuit is formed through
the partitions before the information is sent, might be easily implementable with very little
overhead. The fact that self-timed communication protocols could be used would make
the circuit switching idea practicable with very little time and logic overhead.

We look at a simple scheme where functional units of different types are clustered
together on the wafer so that every functional unit has exactly one unit of all other types
at a distance one from it. This would mean that there could be, on the whole, units of
nine different types. Partitionable busses run horizontally and vertically through these
units. There are switches between the partitions, but horizontal and vertical busses do not
logically intersect so that a vertical partition cannot be connected to a horizontal partition

25

Figure 8: Clustering Scheme

and vice versa. This would mean that the switches need to be made up of simple pass
transistors only. Figure 8§ shows the clustering scheme and Figure 9 shows the range for any
particular functional unit where the range is defined as the area on the wafer(functional
units on this area) with which this particular unit can communicate. A unit in row i and
column j can address the union of all the units on rows i-1,i and i+1 and columns j-1, and

j+1.

Regarding fault tolerance, we see that fault tolerance of the links is solely provided
by the two circuit switched connections that could be formed between any two functional
units. This would be adequate as link failures are very small as shown by Choi et.al[3].
There is no explicit functional unit redundancy as such in the system, but we see that
if a unit is not functional, a communication meant for a unit of this type would be sent
to another unit of the same type at a little distance away, so that the load on fault-free
functional units increase with more and more faulty units. Figure 10 specifies the range
and the distance (the number of bus partitions required) between unit marked X and the
other units in the range.

The-load distribution algorithm would work in such a way that if the unit X (type
5) wants to make use of a functional unit of some type (say 2), thenit would try to use

26

N
SV
)
NNV N XA -
X ANAL AN
AN Y XA
XA
N/
XN

Figure 9: Range of a Unit

4 14 14
31313
2 12 12
3 11111123
3 1 |X] 11213
3 1]1 411213
2 12 12
313 13
4 14 14

Figure 10: Distance Between Units

27

a functional unit in its same cluster (distance 1) and if all these units are faulty, then it
would go for units at neighboring clusters (distance 3) and if all these units are also faulty,
then the next neighboring clusters (distance 6) and so on.

Below, we realize a bound on the average distance and subsequently the average number
of bus partitions that a unit would use per communication. Let p be the probability that a
particular unit is faulty. Then the average distance (if the above load distribution algorithm

is followed) would be
(1-p)+p(1=p")3+pp*(1 —p")6 +pp°(1 —p*)9+ -
=(1-p)+3p(1—p")(1+2p* +3p°+)

= (1—-p)+3p(1 - p*) P ip*7V
i=1
assuming that the wafer stretches infinitely on all the directions.

If we assume that the maximum number of clusters on all the directions from unit X
is N, then the average distance would be

N
= (1-p)+3p(1 —p*) 3 ip*tY
1=l
the second component of the equation for an infinite wafer converges to
1
(1—-p?
and the second component of the equation for a finite wafer converges to
(1-p*) = Np*" (1 — pf)
(1-p%)?

From this, we get the average distance to be

3p

AR e

for case 1 and

(1= 2+ (1= p*™) = Np (1 = pY)

)

28

T Case 1 Case 2
0.5 2.1 2.1
0.6 2.468 2468
0.7 3.063 3.063
038 4.26 4.26
0.9 7.951 7.2268

Table 2: Average Communication Distance in the Presence of Faults

for case 2

Table 2 gives the average distance and hence the average wire length for various values
of p for case 1 and also for case 2 with N = 10. We see that there is no difference between
these values for p < 0.8 and the difference is seen only for p = 0.9. ie. the summation
converges quickly for p < 0.8.

From these results, we see that even with a probability of failure of around 0.7, the
average wire length (number of bus partitions) will be only around 3. It is interesting to
note that the average wire length jumps up for a failure probability of 0.9 which shows a
knee in the curve at that point. But a yield of more than 20% should be attainable most
of the time.

A simple scheme could be thought of to realise the unit selection algorithm. After the
initial testing for faults, all fault-free units should be updated with information regarding
the nearest fault-free functional unit of each type which is available for use and each unit
will address only these particular units to get some work performed by a functional unit
of a particular type. Similarly, a simple scheme for fault-free route selection would be to
try one of the two circuit switched connections possible and if this could not be formed,
the other connection should be tried. Note that separate access tokens have to be passed

29

around each row and column busses, so that a unit could attempt to form a switched
circuit on a bus only if it has the access token for that particular bus. If none ofthe two
switched circuits could be formed, then the unit should be able to direct its load to the
next nearest fault-free functional unit of the required type with a fault-free path.

With the above scenario, a set of working functional units could be dynamically config-
ured to form a working system. In this sense, a complete system need not be confined to a
particular part of the wafer, but could spread out over the wafer. The mapping algorithm
should work in such a way that a working system is mapped within the least area possible
to avoid long communication delays. Our test algorithm identifies the working units that
could be configured using such a configuration algorithm as a post test step.

Consider a wafer containing a square array of v/N x+/N homogeneous Integrated Circuit
Blocks where each integrated circuit block contains the IC itself and also additional circuitry
for testing. Fig 6 shows the configuration of these blocks on the wafer with additional
communication links that have to be configured on the wafer for testing purposes. All
circuits must perform their IO at the rates expected during their normal operation. This
may appear to require some complexity in the communications hardware on the walfer,
although the communications could be done serially if the bus lines could be made to
work fast enough and if the amount of data to be transmitted between circuits could be
minimized. For this purpose, it may be useful to take the actual circuit outputs and
route them through a communications module which does signature analysis and only
transmits a compressed version of the data over serial communication links to effect the
comparisons. This sort of scheme would present a full-speed environment to the circuit
under test without undue silicon penalties for complex communication links.

A second serial link is required for clocking the units. It is assumed that the ICs are
externally clocked by the same clock which will clock the running of the test algorithm.
This would mean that the clock that would be used would run at the operational clock
speed of the ICs themselves thereby testing the ICs at that speed.

An IC block consists of three sub-blocks other than the IC itself as shown in Figure 11.
The Signature Generator block generates the signatures of the outputs of the ICs during
the testing process. The voting unit consists of a comparator and a Vote Counter for
keeping track of the vote count by which we mean the number of signatures from the other
ICs which matched the signature produced by the corresponding IC for a particular test.
There is also a single status bit in each voting unit and all the status bits in the wafer
are connected to form a serial shift register. At the end of each test the status bits are
set if the vote count crosses the threshold value which will be prestored in the Threshold
Register. The communication monitor essentially serves as an interface between the bus

30

Integrated
Circuit
Signature Generator Serial
Shift
G oo m—— . - @—-—Rggim.
Voting Unit
Communication Monitog,
i \’ V 4 l\ BUS
N
Clock line

Figure 11: IC Block

partition and the other sub blocks in the IC block.

It is clear that the signature generators will require very little hardware. Figure 12
shows the hardware involved with the design of the voting unit and obviously, the overhead
is quite small. Also, the communication monitor hardware is expected to be quite trivial.
It should be noted that the extra hardware used for production testing could also be used
to test for post production failures in case of parallel systems which are made up of a
multitude of these ICs. In that situation the hardware overhead is essentiallyzero.

Each test input is broadcast to all the IC blocks. ICs in each of the clusters compute
results for the tests. Once a signature has been computed, each IC in a cluster, in turn,
broadcasts its signature to the other IC blocks in the cluster, and these are observed and
compared with their own signatures by the other IC blocks. (Figure 13). Such partitioned
voting scheme is also shown in Figure 14. ICs for which the threshold is crossed are deemed
fault-free for that particular test. This is done by setting the status bit to zero. ICs for
which the threshold is not crossed even after all the signatures have been matched are
deemed faulty by setting their status bits to one. Once the status bit is set to one, that
particular IC does not vote on its own status any more, but it still generates signatures
for broadcast to the other ICs in the partition. Once all the tests have been applied, the

31

From Signature

Generator

Comparator
|
T
l]Thresholi
Counter| Register
Serial
Shift Status bit
Register
From Communication
Monitor
Figure 12: Voting Unit Hardware
Integrated
A
Circuit
i i]] I
e
T T T 1 Serial
Bus Shift
B Register
Partinon 11 N ——

Figure 13: Clustered Testing of 1Cs

32

status bits are serially shifted out, thereby conveying the fault status of all the ICs to the
outside world.

For a single test, the time taken for the test to be completed will be ¢(1+n). assuming
the broadcast time for the tests (the set up time) to be Lt for L tests, the total time is
T, = Lt(1 + n). If we assume that N Lt is the time taken for a sequential algorithm like
the traditional test algorithm using a test computer, then then the speedup is

NLt
L(1+mn)

N

C(1+n)
Thus our algorithm’s performance is linear in L, the number of tests, as is the traditional
method, but it does not depend on the number of ICs being tested as is the case for probe
testing. It should be noted, however, that reporting the test results for the whole wafer
to an external monitor may well take time linear in the number of ICs tested, but this

time will be orders of magnitude smaller than that required by the mechanical motionsof
a probe tester.

Sp =

To summarise, our voting algorithms have the following characteristics:

1. IC voting units observe results computed by other ICs and based on a threshold
make decisions as to the fault status of their ICs.

2. All those ICs for whom the threshold could not be reached for a particular test are
deemed faulty.

3. ICs, once deemed faulty, do not vote on their own fault status any more.

4. Each IC voting unit computes its vote count separately and there could not be a tie
as the count is with respect to its own result.

5. Will identify both fault-free and faulty ICs with high efficiency when sufficient num-
ber of tests are applied.

The implementation of the partitioned voting algorithm on the wafer could be repre-
sented in the form of a pseudo-code as below.

/* status and present status are boolean variables */

33

Broadcast Test Vector

) 0)
] ~F] T Ly
o o o
. P | ~ ! ~
T L
Row
Controller
n+1 units n+1 units
— T >,
! | I N
——T—@'—r—— T
1
Row units in partitions
Controller

vote among themselves

Figure 14: Partitioned Voting

34

/* Test token denotes the test input. Decision token denotes the token which is passed
around the ICs to give them access to broadcast their results on to the bus partition™/

/*after the ICs have received a single test token and calculated their results */
for each unit do {
if not decision token {
for each value on bus do {
if status=0
compare/set presentstatus;
}
}
else {
broadcast result on the bus;
wait for all IC Blocks to finish making a decision;
pass the decision token to the IC block.
}

if at the end of the test for a particular test token
if presentstatus=1 status=1;
}

/* for all IC Blocks */

/* at the end of the iest, if status=1 then the IC is faulty */

7 Conclusion

We have proposed the solution of a number of problems inherent in the use of probe testing
for at-speed testing of integrated circuits by the use of a simple, comparison-based scheme
using circuitry built into the IC wafer itself. Analysis of a reasonable probabilistic model
of the behavior of this method indicates that it performs at least as well as the traditional
method using a test computer in terms of the accuracy of the distinctions made between
faulty and fault-free circuits and of the speed with which they are produced. The analysis
shows that essentially all of the fault-free units can be distinquished from faulty units with
very high probability.

There are many potential advantages to using voting schemes for production testing
in place of traditional probe testers. Accuracy of the test results equal to or better than
that achieved with test computers is attained even with relatively unreliable voting units
as a result of allowing many such units to participate in each decision as to whether a

35

test has been passed or not.The effects of faults in the diagnostic hardware are localized
since each unit has its own diagnosis logic which determines results only for that unit.
Also the diagnostic units are simple compared to the complexity of a test computer and
thus inherently less failure-prone. The fact that voting rather than test computers is
used also means that we no longer need to assume that any computer produces a prior:
correct results for each test vector. The fact that only comparisons are used to determine
correctness means that a test vector set could actually be stored once on a wafer and
used to test all the circuits on the wafer without concern about whether a particular test
vector is modified by a production flaw in the area of the test vector storage itself. Since
a modified test vector in a properly designed system should stillbe a valid test vector and
need not match any already computed result, a test sequence modified by some production
flaws should still produce an accurate diagnosis. If randomly generated tests are to be used,
then random number generators could be fabricated into the wafer which generate a test
vector sequence automatically, resulting in a simple built-in system which performs the
test generation as well as test application automatically.

The disadvantage of the voting approach is that communication paths among the cir-
cuits are required, along with some diagnostic and communication logic which represents
hardware overhead on the wafer which may adversely affect yield. However, if a simple
communication scheme is used, this overhead should be small, and in fact it is likely cause
a smaller increase in the silicon area devoted to an individual circuit to be tested than does
the introduction of LSSD circuitry into such a circuit. It is to be hoped that the inclusion
of voting circuitry can have as much value in supporting effective production testing as
LSSD techniques do in debugging physical designs.

Of course, the entire approach outlined here fundamentally relies on the assumption
that production defects are independent random events. Given that we envision separately
performing parametric testing, this assumption may be valid for at-speed testing. Certainly
such sources of error as flaws in the silicon substrate and the effects of dust particles
can be modeled as random independent errors, but such systematic problems as mask
misalignments or failures of the weakest parts of a design when processing parameters are
marginal cannot be. Nevertheless, it appears that this approach has much to recommend
it in terms of testing efficiency, and the savings that may be realized in the testing stage of
IC production may well motivate some changes in earlier stages of the production process
to eliminate sources of systematic error so that voting methods can be used.

36

References

[1] M.A. Breuer and A.D. Friedman, Diagnosis and Reliable Design of Digital Sysiems,
Rockville, MD. Computer Science Press, 1976.

[2] J.T. Butler, “Speed-Efficiency-Complexity Tradeoffs in Universal Diagnosis Algo-
rithms,” IEEE Trans. Computers, August 1981, pp. 590-596.

[3] Y-H. Choi, D.S. Fussell and M. Malek, “Fault Diagnosis of Switches in Wafer-Scale
Arrays,” ICCAD ’86 pp. 292-295.

[4] Y-H. Choi, S. Han and M. Malek, “Fault Diagnosis of Reconfigurable Systolic Arrays,”
ICCD ’84 pp. 451455.

[5] Y-H. Choi, D. Fussell and M. Malek, “Token Triggered Systolic Diagnosis of Wafer
Scale Arrays,” Proceedings of the International Workshop on WSI, Southampton,
England, July 1985 pp. 246-258.

[6] V. Cherkassky and L. Kinney, “A Group Probing Strategy For TestingLarge Number
of Chips,” Int’l Test Conference 1986, pp. 853-856.

[7] A.T. Dahbura, K.K. Sabani and L.L. King, “The Comparison Approach to Multipro-
cessor Fault Diagnosis,” IEEE Trans. Computers, March 1987, pp. 373-378.

[8] P.T. Desousa and F.P. Mathur, “Sift-out modular Redundancy,” IEEE Trans. Com-
puters, July 1978, pp. 624-627.

[9] E.B. Eichelberger and T.W. Williams, “A Logic Design Structure forLSI Testability,”
Proc. 14th Design Automation Conf. 1977, pp. 462-468.

[10] M.G.H. Katevenis and M.G. Blatt, “Switch design for Soft-Configurable WSI Sys-
tems,” 1985 Chapel Hill Conferenece on VLSI, pp. 199-219.

[11] Losq. J, “A Highly Efficient Redundancy Scheme: Self-Purging Redundancy,” IEEFE
Trans. Computers, June 1976, pp. 569-577.

[12] S. Rangarajan, “Distributed Voting Algorithms for Fault Testing,” M.S Thesis, Dept.
of Electrical and Computer Engg., UT-Austin, May 1987.

[13] D.P. Siewiorek and R.S. Swarz, The Theory and Practice of Reliable System Design,
Bedford, MA, Digital Press 1982.

37

[14] J.E. Smith, “Universal System Diagnosis Algorithms,” IEEE Trans. Computers, May
1979, pp. 374-378.

[15] von Neumann. J, “Probabilistic logics and synthesis of reliable organisms from unre-
liable components,” Automate Studies, in Annals of Mathematical Studies, No. 34, C.
E. Shannon and J. McCarthy, eds., Princeton University Press (1956), pp. 43-98.

[16] K.D. Wagner, C.K. Chin and E.J. McCluskey, “Pseudorandom Testing,” IEEE Trans.
Computers, March 1987, pp. 332-343.

38

Appendix

To show that P(i) lower bounds the probability of coverage of a fault by any permutation
of 1 tests in the sequential selection model.

We have noted that the hypergeometric distribution model fits the sequential selection
model when the last 7 tests in the sequential selection model cover the fault. That means,
the probability that that particular permutation where the last 7 tests out of m tests
applied cover the fault in the sequential selection model is the same as P(z).

The intuitive idea behind our claim as follows. If the tests that cover the fault occur
earlier in the sequence, then the probability that a subsequent test does not cover that
fault is higher because that the total number of tests remaining are the same where as the
tests that cover the fault in the test set are less in number than before.

e (0
N OTE

Let us look at a case (say) when ¢ = 3. Then

pea - L3) (5)

=)

-(F) () - e (R ee)

Let us look at the probability that some other permutation of 3 tests out of m tests
cover this fault. Let the tests that cover the fault be (say) the first, second and fourth.
This will be

(= () (==

() (R)

The above equation could be rearranged to give

39

_ (N——(m~?\)f—~(M—~—3))(N—(m;vv5z—i(M-3))(N—~A§ﬁ:f2—2))

(Aeln A0, () (o) (7o)

The denominator is the same in both the equations. Also, the terms M, M — 1 and
M — 2 occur in the numerator of both the equations. But it is easy to verify that the
product of the other terms in the numerator of P(3) is smaller than that of the other
equation. It is also easy to verify that the above is true of any permutation of any : faults
when compared to P(%).

Thus P(z) is seen to lower bound the probability of coverage of a fault by any permu-
tation of ¢ faults in the sequential selection model.

40

