PAM—A Noniterative Approximate Solution Method
for Closed Multichain Queueing Networks!

Ching-Tarng Hsieh? and Simon S. Lam

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-87-28 July 1987
Revised, March 1988

Abstract

Approximate MVA algorithms for separable queueing networks are based upon an iterative solution of a set
of modified MVA formulas. Although each iteration has a computational time requirement of O(MK?) or less,
many iterations are typically needed for convergence to a solution. (M denotes the number of gueues and X the
number of closed chains or customer classes.) We present some.faster approximate solution algorithms that are
noniterative. They are suitable for the analysis and design of communication networks which may require tens o
hundreds, perhaps thousands, of closed chains to model flow-controlled virtual channels. The basis of our method is
the distribution of a chain’s population proportional to loads to get initial estimates of mean queue lengths. This is
the same basis used in the derivation of proportional upper bounds for single-chain networks; for a multichain
network, such a proportional distribution leads to approximations rather than upper bounds of chain throughputs.
Nevertheless, these approximate solutions provide chain throughputs, mean end-to-end delays, and server utiliza-
tions that are sufficiently accurate for the analysis and design of communication networks and possibly other
distributed systems with a large number of customer classes. Three PAM algorithms of increasing accuracy are
presented. Two of them have time and space requirements of O(MK). The third algorithm has a time requirement of
O(MK?) and a space requirement of O(MK).

This work was performed at the University of Texas at Austin under National Science Foundation grant no. ECS-8304734
and grant no. NCR-8613338. An abbreviated version of this paper appeared in Proceedings ACM SIGMETRICS Coriference,
May 1988, Santa Fe, New Mexico. Portions of this paper are reprinted by permission of the Association for Computing
Machinery.

2Current address: ATT Bell Laboratories, Naperville, Hilinois 60566.

1. Introduction

We are interested in fast solution algorithms for separable queueing networks with a large number
of closed chains (also called customer classes), such as models of communication networks where each
closed chain represents a flow-controlled virtual channel [9, 10, 12]. Tens to hundreds, perhaps
thousands, of such flow-controlled virtual channels between source-destination node pairs may be active
at a time in a practical network. Exact solution algorithms, such as the convolution and MVA algorithms,
are obviously not applicable since their computational time and space requirements grow exponentially
with the number of chains [11, 13]. In fact, they cannot be used for most networks with more than 6 or 7
chains. The tree convolution algorithm [8] as well as the tree MV A algorithms [5, 18] are more compuia-
tionally efficient for the solution of networks with chains whose routes are sparse, by exploiting routing
information. Nevertheless, the largest networks solved by the tree convolution algorithm have 32-350
chains, which are not sufficient for modeling many real networks. Furthermore, most algorithms for
network design problems (e.g., optimal routing, topology optimization, etc.) involve a heuristic search for
solutions that are optimum according to various network performance measures. A very fast algorithm is
needed to evaluate these network performance measures at each of the numerous intermediate steps of
such a heuristic search.

For the same reason, the approximate solution methods which have been shown empirically to have
good accuracy (1, 2, 3, 12, 14, 15, 20] are deemed to be still too slow for communication network design
problems. All of these methods are based upon an iterative solution of a set of modified MVA formulas.
A single iteration of the Schweitzer algorithm has a computation time of O(MK) while a single iteration
of Linearizer or AQL has a computation time of O(MK?) where M denotes the number of queues and K
the number of closed chains in the network [3, 14, 20]. (It was shown recently by de Souza e Silva and
Muntz [16] that a single iteration of Linearizer can be implemented with a computation time of O(MK?)
instead of O(MK?) as indicated by Chandy and Neuse [3].) Typically many iterations are needed for
convergence to a solution, and it has been shown that for some networks convergence occurs extremely
slowly [20]. Lastly, the accuracy of these methods has been examined only for networks with a small
number of chains, i.e., those that can be solved exactly by the MV A algorithm.

Various methods for computing performance bounds are available [4, 6, 19]. However, for net-
works with a large number of chains, these bounds are generally too loose to be useful for communication
network design.

The above considerations led us to investigate a class of faster approximation solution algorithms
for closed multichain queuecing networks. In particular, all of our algorithms are noniterative. We con-
sider separable queueing networks of fixed-rate servers (also called queue-independent servers) and delay
servers (also called infinite-server centers). Like all of the approximate solution methods referenced, our
method is also based upon the MVA recursion formula. In our study of proportional throughput upper
bounds for single-chain queueing networks, we found that they are very accurate for networks with smail
to medium population sizes [6]. These throughput upper bounds are obtained by distributing the popula-
tion of a chain over the servers it visits proportional to server loads. In a multichain network, such a
proportional distribution leads to approximations rather than upper bounds of chain throughputs. We
found that these approximate solutions provide chain throughputs, mean end-to-end delays, and server
utilizations that are sufficiently accurate for the analysis and design of communication networks [7, 9] and
possibly some other distributed systems that have a large number of customer classes (see Sections 3 and
S); an iterative solution to improve accuracy is not necessary.

We shall refer to our method as the Proportional Approximation Method (PAM). We present three
algorithms of increasing accuracy that are based upon the distribution of a chain’s population proportional
to loads to get initial estimates of mean queue lengths: PAM_BASIC, PAM_IMPROVED, and
PAM_TWO. The accuracy improvement of PAM_IMPROVED over PAM_BASIC is obtained by a
simple scaling operation to ensure that the utilization of each server does not exceed one. The additional
accuracy of PAM_TWO is obtained by executing the final two steps of the MV A recursion instead of just
the last step. The computational time requirements are O(MK) for PAM_BASIC and PAM_IMPROVED,
and O(MK?) for PAM_TWO. Since PAM algorithms do not iterate, these are their total time require-
ments. All three PAM algorithms have space requirements of O(MK).

The rest of this report is organized as follows. Algorithms PAM_BASIC and PAM_IMPROVED
are presented in Section 2. In Section 3, we study their accuracy by comparing their predictions with
exact solutions given by the tree convolution algorithm (TCA) for a network example and also for 100
randomly generated networks. These networks have fixed-rate servers only and possess characteristics of
models of communication networks. We also show a correlation between the approximation errors for a
chain and the utilization of any bottleneck server visited by the chain. (It is important to understand such a
correlation because most network optimization algorithms are concerned with, in one way or another,
eliminating bottlenecks). Algorithm PAM_TWO is presented in Section 4. In Section 5, we study the
accuracy of PAM_TWO and PAM_IMPROVED by comparing their predictions with exact solutions
given by.the MVA algorithm for 500 networks generated randomly as specified by Zahorjan et al. [20].
These networks have both fixed-rate and delay servers and possess characteristics of models of computer
systems.

2. Two PAM Algorithms with O(MK) Computation Time

Consider a closed queueing network with K routing chains (also called customer classes by other
authors). Let N, be the customer population of the K* chain. We refer to the vector N=(N,N,, . .. Ny) as
the population vector of the queueing network. If N, in N is greater than or equal to 1, then N, refers to
the population vector N with a chain & customer removed. Let 1,, denote the load, or traffic intensity, of
chain k customers at server m. (In models of communication networks, we also refer to T, as the mean
service time of chain k customers at server m with the assumption that visit ratios are the same for all
servers visited by chain k customers.) We use D, (n) to denote the approximate mean delay of chain k
customers at server m, ¢, (n) to denote the approximate mean queue length of chain k customers at
server m, and T(n) 1o denote the approximate throughput of chain k customers, in a network whose
population vector is 7.

PAM algorithms are based upon MVA formulas [13]. However, the iterations from population
vector § to population vector N—1, in the MVA algorithm are skipped. Instead, mean queue length
approximations ¢’,,,(N—1,) at population vector N~ I, are obtained by distributing the population N, of
chain k over the servers it visits, proportional to 1, This approach was the basis of proportional
throughput upper bounds for single-chain networks in [6]. In multichain networks, this approach leads to
approximations rather than upper bounds, as we shall see.

We present below two algorithms with time and space requirements of O(MK). The first algorithm,
PAM_BASIC, calculates throughputs of individual chains. The second algorithm, PAM_IMPROVED,
calculates throughputs of chains and the utilizations of servers. The algorithm then checks server utiliza-
tions to see if any utilization exceeds 1. (This is possible because the chain throughputs are

approximations.) The throughputs of those chains that visit a server whose utilization exceeds 1 are then
scaled down.

Algorithm PAM_BASIC

Step 1: Calculate proportional approximations of mean queue lengths from
M
Vo = T 2o T

form=12,... M,andt=12,....K
q,mh@./:) = Yo Ny,
g i) if h=k
qim@“ik) =
o)=Yy, if h=k
form=12,.. Mh=12,... K, andk=1,2,...,K.

Step 2: Calculate approximate mean delay of chain &k at server m and approximate throughput of
chain % from the following MV A formulas:

K
T (1 + 2 g wN-1) if m is a fixed-rate server
B=1
D, (M=
T if m is a delay server
form=12,... Mandk=12,....K, and
N,
Tk(l_\/}=7—-~— fork=1,2,...,K

S Dt

Total throughput of the network, if needed, is equal to the summation of the chain throughputs.

PAM_BASIC requires (3M+1)K multiplications and divisions. The number of additions and sub-
tractions is also O(MK) if the sums X?il T, in Step 1 and the sums Zle q s N—1,) in Step 2 are
computed prior to loopingoverm=1,2,... Mand k= 1,2, ... K. The space requirement is O(MK).

Algorithm PAM_IMPROVED
The first two steps of this algorithm are the same as those of Algorithmm PAM_BASIC.

Step 3: Calculate server utilizations from the following formula:

K
U, = E T TV
b=l

form = 1,2,... M, where U, () is the utilization of server m at population vector N,

Step 4: Find the largest utilization S, among the fixed-rate servers visited by chain k,
S, = max U,)
min
chain k and

m is a fixed-rate server

fork=1.2,....K

Step 5: (Scale down throughputs of individual chains if necessary.)
IfS, > 1then T,(N) := T,(N) /S,

Step 6: Calculate total throughput, and recalculate server utilizations if the mroﬁghput of any chain
has been scaled down,

K
T = T
k=1
and
K
U, = z T TN, form=12,....,M.
Je=1

PAM_IMPROVED requires 2 maximum of (2M+7)K multiplications and divisions in Steps 3, 5,
and 6 to calculate server utilizations and scale down chain throughputs, in addition to the time require-
ment of PAM_BASIC. Thus, PAM_IMPROVED requires a total of (5M+2)K multiplications and divi-
sions. The number of additions and subtractions is O(MK). The space requirement is O(MK}.

3. Experimental Results

We study in this section the accuracy of PAM_BASIC and PAM_IMPROVED using queueing
networks that have characteristics of models of communication networks. Errors in the approximate chain
throughputs, end-to-end delays, and server utilizations predicted by the PAM algorithms are obtained by
comparing them with exact results calculated by TCA.

A communication network is specified by a set of nodes interconnected by full-duplex communica-
tion links. In our queueing network model, each link is modeled by two fixed-rate servers, one for each
direction of the link; nodes are not modeled. Each flow-controlled virtual channel is modeled by a closed
chain; the chain population corresponds to the flow-control window size [7, 9, 10, 12]. The route of a
virtual channel is specified by the sequence of nodes it visits, which uniquely determines the sequence of
fixed-rate servers visited by the corresponding chain. An additional fixed-rate server is inserted between
the destination node and the source node of the route to form 2 closed chain. This is referred 10 as the
source server and its service rate represents the packet generation rate of the user process that provides

input to the virtual channel.

We examine the accuracy of the PAM algorithms by first studying a network example. We then
present statistical results from a 100-network experiment. (The networks considered in this section have
fixed-rate servers only.) We also examine carefully a correlation between the approximation errors for a
chain and the maximum server utilization among those servers visited by the chain. Understanding such a
correlation is important in applying PAM algorithms to communication network design problems because
most network optimization algorithms are concemned with rerouting or reconfiguring a network to al-
leviate congestion at bottlenecks.

Network example

The network has 12 nodes, 15 links, and 20 chains. The set of links specified by node pairs and their
capacities are shown in Table 1. The average packet length is 240 bits. The mean service time at the
source server of each chain is 0.3 second. The populations and routes for all chains are shown in Table 2.

Link Capacity (bits/second)
1,4) 1200
(8, 10) 9600
(1,10 9600
(8,5) 4800
(1,5 2400
(2,6) 2400
(3, 10) 1200
(7,8) 4800
3,1 2400
(12,2) 4800
1,8 1200
(3, 6) 9600
4,11 9600
(7,10) 1200
9, 12) 1200

Table 1. Links and their capacities in the network example.

Chain

Population

Route
{in node sequence)

B bt st e el fd omd et feneh e
COND 00 =3 O\ Wb W DN e O AD 00] ON W B 0 D e

WMNNVNNDWWNNWWINNNNDWRWNWIN

587

62

6310
62129114
9122
85111
631081
91118
783
1081114
122

1226
1119122
631087
85111
9111581036
810
2631087
8 10
62129114

Table 2. Populations and routes of chains in the network example.

The throughputs calculated by TCA, PAM_BASIC, and PAM_IMPROVED, and percentage errors
of the two approximation algorithms, relative to TCA’s exact results, are listed in Table 3. Note that the
throughputs calculated by PAM_IMPROVED and PAM_BASIC are the same for those chains that do not
visit a "bottleneck"” queue, i.e., those that do not require execution of Step 5 in PAM_IMPROVED. For
those chains that do visit bottleneck queues, PAM_IMPROVED has smaller approximation errors than
PAM_BASIC. The throughputs of individual chains calculated by PAM_BASIC and PAM_IMPROVED
are also plotied together with exact values in Figures 1 and 2 respectively. The server loads are highly
unbalanced. The maximum server utilization, calculated by TCA, is 0.990. The average utilization over

servers with nonzero utilizations is 0.398.

TCA PAM_BASIC PAM_IMPROVED
Chaln
Value Value Error{%) | Value Error(%)
1 3.0946 3.021 2 3.021 2
2 3.0995 3.069 i 3.069 1
3 1.3954 1.764 26 1.437 3
4 1.8674 1.923 3 1.923 3
5 2.7153 2.784 3 2.784 3
6 3.0215 2.974 2 2.974 2
7 1.0678 1.307 22 1.065 0
8 2.0149 207 3 2.070 3
9 3.0655 2.989 2 2.989 2
10 2.2768 2.148 6 2.148 6
11 3.2901 3258 1 3.258 1
i2 3.1181 3.058 2 3.058 2
13 1.6333 1.607 2 1.607 2
14 1.3055 1.63 25 1.327 2
15 3.0215 2.974 2 2974 2
16 2.197 2.254 3 2.254 3
17 33054 3.279 1 3279 1
18 1.1794 1.431 21 1.166 1
i9 3.3054 3279 1 3279 1
20 1.8674 1.923 3 1.923 3
Total
throughput{47.8417 | 48.744 2 47.606 0

Table 3. Exact throughputs, approximate throughputs, and approximation
errors for the network example.

e~ TCA - PAM_BASIC

3,5!

3 6=0 5 /

2.5 \ \
Throughput 2

1sf % g 1

1

0.5

1 3 5 7 9 11 13 15 17 19
Index of chain

Figure 1. Throughputs of chains calculated by TCA and PAM_BASIC.

-+~ TCA -0~ PAM_IMPROVED
35 - 0 o
3 §=0 ° / 8 0 /
2 o
Throughput 15 \
i
0.5
0 L v ki % L 1 4 L] T

T3 5 7 9 1 13 15 17 19
Index of chain

Figure 2. Throughputs of chains calculated by TCA and PAM_IMPROVED.

Both PAM and methods for calculating throughput bounds {4, 6] are based upon estimating mean
queue lengths. To get throughput bounds, however, it is necessary to assume the best and the worst
distributions of mean queue lengths in order to get upper bounds and lower bounds. Figure 3 shows that
chain throughputs calculated by PAM_IMPROVED are much closer to exact values than the upper and
lower bounds presented in [6]. Notice that the exact throughputs, calculated by TCA, of chains 3, 7, 14,
and 18 are closer to their lower bounds than their upper bounds because bottlenecks are present in their
routes (as was previously observed in [6]).

- Upper -0- TCA
bound

‘B- PAM IMPR - Lower
OVED bound

: /2\/<2 AV/ NN
AR
% :l b i

1 3 5 7 9 11 13 15 17 19
Index of chain

Figure 3. Approximate values, exact values, and upper and lower
bounds of chain throughputs.

The approximation errors of PAM_BASIC for chains 3, 7, 14, and 18 are significantly larger than
errors for other chains. Table 2 shows that those four chains are the ones that visit the server
(communication channel) from node 3 to node 10. This server has the maximum utilization, calculated by
TCA 1o be 0.990, in the network. An explanation of these large errors is the following: Proportional
approximation, as the basis for throughput upper bounds in [6] and PAM algorithms herein, under-
estimates the mean queue lengths of a chain at servers that are highly utilized relative 1o other servers
visited by the chain. While PAM_BASIC has large errors for such chains, Table 3 and Figure 2 show that
PAM_IMPROVED do not have large errors in its throughputs for chains 3, 7, 14, and 18, suggesting that
its throughput scaling operation in Step 5 is quite effective.

Despite the relatively large errors of PAM_BASIC in predicting the throughputs of chains visiting a
bottleneck sever, it is still quite useful in network design algorithms. For example, it is used in the

10

optimal routing algorithm presented in [9] because it is the fastest of the PAM algorithms. Also, in
choosing the best route for a chain among various candidates, a route that visits a highly utilized server
will not likely be chosen; thus the accuracy of PAM_BASIC’s throughput prediction for such a route is
irrelevant.

Most network optimization algorithms are concemed, in one way or another, with the alleviation of
traffic at highly utilized servers. In such applications, the accuracy of PAM_BASIC at an intermediate
step of the optimization algorithm is not very important. For example, in designing the link capacities of
a network, identifying the communication channel from node 3 to node 10 to be a botteneck will prob-
ably lead to an increase in its capacity. Suppose the communication channel capacity is increased from
1200 bits/second to 4800 bits/second and PAM_BASIC is again applied to calculate chain throughputs.
Figure 4 shows the approximation errors of PAM_BASIC for the two cases of the network example,
where "No bottleneck” denotes the network with a 4800 bits/second communication channel from node 3
to node 10. Note that after such a capacity increase, approximation errors of PAM_BASIC for all chains
fall below 5%. The largest server utilization in the so-called "No bottleneck™ network is 0.870, which is
still quite high. The correlation between errors of PAM_BASIC and maximum server utilizations is il-
lustrated again in Figure 11 for the 100 randomly generated networks to be presented below.

©- Bottleneck present in network ©O- No botlleneck

305
254
20+
Error (%) 15+
10-
g
+——
i 1 3} 1 5 i 1 9

Index of chain
Figure 4. Approximation errors of PAM_BASIC with and without a
bottleneck in the network example.

Figure 5 shows the approximation errors of PAM_IMPROVED for the same two cases of the net-
work example. There appear to be no significant differences between the two cases.

i1

- Bottleneck present in network ©O= No bottleneck

10

g
Error (%) /‘ /
S =
20\0/ 0 / \ 4‘40\0'“.> xo_—.\o/
0 gt ; ‘
1 3 5 9 1 1 13 1 5
Index of chain

Figure 5. Approximation errors of PAM_IMPROVED with and without a
bottleneck in the network example.

Source servers in the network are visited by only one chain. Figure 6 illustrates that if the mean
service time at each source server in the network is increased from 0.3 1o 0.5 second, the errors of
PAM_BASIC become smaller. This behavior suggests that the accuracy of PAM_BASIC is less affected
by a high utilization at source servers where there is no interaction between chains. In the context of a
communication network, there is 2 more intuitive explanation. Ie., source servers model the generation

of packets for input to a virtual channel. Increasing the mean service time from 0.3 t0 0.5 second models
a decrease in the packet generation rate.

@~ Mean service time = 0.3 second *O- Mean service time = 0.5 second

30 5
25 4
20 1
Error (%) 154 /
10 4 /0\ . A
Zé:}e ”°"" = .é.l_—,—- L %=5
1 1 i 13

Index of chain

Figure 6. Approximation errors of PAM_BASIC with different mean
service times at source servers in the network example.

Figure 7 shows the approximation errors of PAM_IMPROVED for the same two cases. The ac-
curacy of PAM_IMPROVED appears to be insensitive to the change in the mean service time of source
SETVETS.

iz

‘@ Mean service time = 0.3 second *©° Mean service time = 0.5 second

Error (%)

PN B PURE S VR S
,—40-t-4--4-m4-«-4
@

N/
N \°’: (X_ / \/ “"\\Zf §./ \./

l
Index of cham

Figure 7. Approximation errors of PAM_IMPROVED with different mean
service times at source servers in the network example.

Statistical results from 100 networks

We next present some statistical results from applying PAM_IMPROVED and TCA to 100 models
of communication networks generated randomly as described in Appendix A. Statistics of parameters of
the 100 networks generated are summarized in Table 4, where #packets is the summation of all chain
populations in a network, and the average queue utilization is computed over those servers with nonzero
utilizations.

Max. | Min. | Ave.
1. #nodes 25 7 15
2. #links 37 9 20
3. #queues 74 18 40
4, #chains 43 8 123
5. #packets 107 19 57
6. Ave.queve util. | 0.546] 0.291] 0419

Table 4. Statistics of 100 test networks.

Percentage errors of total throughputs, chain throughputs, and server utilizations of
PAM_IMPROVED, relative to TCA exact results, are shown in Figures 8, 9, and 10. The maximum
percentage error in the total throughput calculated by PAM_IMPROVED is 3.55% (see Figure 8).
Figures 9 and 10 show that the chain throughputs and server utilizations calculated by PAM_IMPROVED
are also very accurate with only a small number of exceptions. The maxima, means, and variances of the
percentage errors of PAM_IMPROVED for the three performance measures are shown in Table 5.

i3

Number of networks = 100

Frequency

1 2 3 4
Approximation error (%)

Figure 8. Distribution of approximation errors of total throughputs calculated by
PAM_IMPROVED for the 100 networks.

700
800 Number of chains = 2255
500
400
Frequency
300
200
100
0 X E% ;i 1-1’3'!!3!:::, 3
1 2 3 4 5 6 7 8 9 10 1112 13 14 1516 i7 18 19 20 21
Approximation errar (%)

Figure 9. Distribution of approximation errors of throughputs of individual chains
calculated by PAM_IMPROVED for the 100 networks.

14

1300 T
1200
1100
1000
900
800
700
600
500
400
300
200

100
0 ;!123;:::3::::3:.....: Lo
§ K3 K} H i 4 H] £ & i} 8 1]]

Number of queues = 3105

Frequency

12 3 45 6 7 8 9 10111213 14 15
Approximation error (%)

Figure 10. Distribution of approximation errors of server utilizations calculated by
PAM_IMPROVED for the 100 networks.

Statistics of percentage errors

#samples | Minimum | Maximum | Mean | Variance

Total 100 0.009 3.554 | 0.824 0.002
throughput

Throughput 2255 0.000 20.503 2.667 7.167
of chain

Utilization 3104 0.000 14769 | 2.064 4263
of queue

Table §. Statistics of approximation errors of total throughput, chain throughputs,
and server utilizations calculated by PAM_IMPROVED for the 100 networks.

Figure 11 shows a strong correlation between the approximation error of PAM_BASIC in predicting
a chain’s throughput and the maximum utilization among servers visited by the chain. The points plotted
in Figure 11 were obtained by selecting one chain from each of the 100 randomly generated networks and
applying PAM_BASIC and TCA to calculate its approximate and exact throughputs. Note that

15

PAM_BASIC is quite accurate if the maximum utilization is less than about 0.9.

[[o

60.0 o

o

o

o

40.0 -

o
I3
¥
S

& , ®

20.0p G-

5 ¢

o
S
0.0 > O@%@
.OF @8@ o o
o % %, @iy o
©)
| i i i
0.2 0.4 0.8 0.8 1.0

MAXIMUM UTILIZATION
Figure 11. Correlation between percentage error of chain throughput calculated by
PAM_BASIC and the maximum utilization of the servers visited by the chain.

4. PAM Algorithm with O(MK?) Computation Time

A simple approach to improve the accuracy of the PAM algorithms presented in the previous sec-
tion, without resorting to an iterative solution, is to execute the last two steps of the MVA recursion
instead of just the last step, again using the proportional approximation to get initial mean queue length
estimates. Our algorithm, presented below, will be referred to as PAM_TWO. Such an approach to trade
computation time for accuracy is not unlike the approach of Linearizer which improves the accuracy of
Schweitzer’s algorithm [3, 14] and the approach of bound hierarchies [4, 6].

Algorithm PAM_TWO

Step 1 Calculate proportional approximations of mean queue lengths from

Yor = T/ Sy Tt form=12,... M,andk=12,....K

16

G D) =Yy N,

gD if I#k and [#h
g N=1,—1)= < ¢, N~%,, if =k or I=h) and h#k
g D=2y, ifl=k=h
form=12,... M I =12,... K, h = 12,... K, and k = 1,2,...,K. Note that
q (N—1,—1,) may have a negative value if N;<2. In this case, ¢’ (N—1,—1,) is assigned
the value of zero.

Step 2: Fork = 1,2,... K, repeat Step 2.1 and Step 2.2.

Step 2.1: Forh=12,... K, repeat the following calculations:

K -
Tl + Y ¢ N-1,~1)) if m is a fixed-rate server
=

D,yN-1)=

T if m is a delay server

form=1,2,....M,

] Nh .
i ifh=k
S DN - 1)
m=1
T,W-1)= 4
Nh e 1 .
i ifh=%,
. Z} D, -1
m=

G = 1) =D, (N~ 1) XT,(N-1)

form=12,....M.

Step2.2: Calculate the following,

17

(7,1+ }; q,(N—-1p) if m is a fixed-rate server

D, (M=

{ Tk if m is a delay server
form=12,...,M,and

Ny

T = e
2

Step 3: Execute Steps 3-6 of PAM_IMPROVED.

Step 1 of PAM_TWO requires 2MK multiplications and divisions. Step 2 of PAM_TWO requires
2MK? + (M+3)K muliplications and divisions. Step 3 of PAM_TWO requires (2M+1)K multiplications
and divisions. Thus, PAM_TWO requires a total of 2MK? + (5SM+4)K multlphcanons and divisions. Note
that the number of additions and subtractions is O(MK?) if the sums Zz 1 @@ —1,~1,) needed in Step
2.1 are computed from

K K
2 q,”u@‘lk"‘lh)=?_; G =Y =Y
=1 =

where the sums Zﬁl ¢ () are computed prior to looping overk=1,2,... Kand h=12,... K in Step
2.

The space requirement of PAM_TWO is O(MK). Note that arrays of size MK are adequate for the
execution of Step 2; they are used to hold values of {t,,} and to hold values of mean queue lengths in
Steps 2.1 and 2.2.

5. More Experimental Results

The 100 networks used in Section 3 have characteristics of communication networks: large number
of chains with sparse routes and small chain populations. In this section, we examine the accuracy of
PAM_TWO and PAM_IMPROVED using 500 networks generated randomly according to the specifica-
tion used in the study of iterative AMVA algorithms by Zahorjan et al. [20, Table 2]. (There is one
difference: We set the minimum number of servers at 5 instead of 2.) The network generation parameters
are shown in Table 6, where U indicates the uniform distribution. Networks generated by these
parameters possess characteristics of computer systems rather than communication networks. Note that
every network generated has four chains and each chain visits every server in the network. Compared to
the 100 networks in Section 3, these 500 networks have larger chain populations and much larger service
time variations; there are also delay servers in addition to fixed-rate servers.

18

Scheduling Discipline | Prob{Infinite Server] = 0.05
ProblLoad Independent] = 0.95

Population Size | Class 1: U(1, 10)
Class 2:U(1, 5)
Class 3:U(, 5)
Class 4 : U(1, 5)

Loadings | U(0.1, 50.0)

Number of Centers U(5, 50)

Table 6. Network generation parameters.

We used PAM_TWO and PAM_IMPROVED to calculate approximate chain throughputs and the
MVA algorithm to calculate exact chain throughputs for the 500 networks generated. The average and
maximum percentage errors in the approximate chain throughputs, relative to exact MVA solutions, are
shown in Table 7 for PAM_IMPROVED and PAM_TWOQO. Both PAM algorithms have small average
errors but fairly large maximum errors. Table 7 also shows that PAM_TWO is more accurate than
PAM_IMPROVED.

Technique Measure | Error(%)| #Networks

Average 23
PAM_IMPROVED 500
Maximum | 403

Average 0.8
PAM_TWO 500
Maximum | 308

Table 7. Relative errors in chain throughputs calculated by
PAM_IMPROVED and PAM_TWO for 500 networks.

Although the maximum percentage errors are large, Figure 12 shows that only a very small fraction
of the chains have percentage errors larger than 10% while more than three-fourths of the chains have less
than 1% error for PAM_TWO and less than 3% error for PAM_IMPROVED.

19

B rov mvPROVED PAM_TWO

1300
1200 +
1100 +
1000 +
900 + #. Number of chains = 2000
800+ B
Frequency Zgg 1
500 +
400 +
300 +
200 +
100 +

*\:a ﬁz Yo wall T . 5, y -
<05 0.5-11-1.51.5-2 2-3 3-4 4-5 5-6 6-7 7-8 B-9 8-10 >10
Approximation error (%)

Figure 12. Distribution of approximation errors of throughputs of individual chains
calculated by PAM_IMPROVED and PAM_TWO for 500 networks.

In Section 3, we found a strong correlation between the approximation error of a chain’s throughput
calculated by PAM_BASIC and the maximum utilization among servers visited by the chain. Table 8
shows that such a correlation also exists for PAM_IMPROVED and PAM_TWO. For those chains which
do not visit servers with utilizations between 0.95 and 1, both the average and maximum approximation
errors become substantially smaller for both PAM algorithms (see row 2 of Table 8).

Max. Approximation errors of chain throughputs
util. < PAM_IMPROVED PAM_TWO
Max. Ave. #Chains | Max. Ave. #Chains

1.0 40.3 23 2000 30.8 0.8 2000
095 114 1.6 1784 9.6 0.5 1860
09 9.4 1.5 1732 54 0.5 1784
0.8 8.4 1.2 1556 3.1 0.3 1612
0.7 4.8 1.0 1392 1.7 0.2 1416
0.6 3.8 0.8 1136 1.4 6.2 1164
0.5 2.1 0.6 T44 14 0.1 788

Table 8. Correlation between percentage errors in approximate chain throughputs
and maximum server utilizations for PAM_IMPROVED and PAM_TWO.

Although we generated the 500 networks similar to what Zahorjan et al. did in their study of three
iterative AMVA algorithms, a direct comparison of the accuracy of PAM and the iterative AMVA al-
gorithms cannot be made. There are two reasons. First, we evaluated approximation errors in chain

20

throughputs and server utilizations (we are also interested in mean end-to-end delays of virtual chanmels
as a performance measure but these can be obtained from chain throughputs and Little’s formula). The
iterative AMVA algorithms were evaluated by the maximum approximation error in mean queue lengths
q,+(N) in [20] and also mean delays D, (N) and server utilizations U, ,(N) in [3] for all m and k. The
performance measures of AMVA have finer granularity than ours. On the other hand, the AMVA studies
used a specially defined measure of error called "tolerance error” instead of the usual relative error which
we use. The tolerance error used by Zahorjan et al. [20] is the following:

max [g,(N) — @ * (W1/ N,

mk

where g,,(N) is the approximate value and g,,*(N) is the exact value. Note that N, is used in the
denominator instead of g, *(N). It was argued that tolerance error was used in place of relative error
because the latter measure is very sensitive to small (absolute) errors in small values. (That is exactly
how we got most of the large percentage errors for PAM algorithms since we use relative error as our
measure.)

The tolerance errors in mean queue lengths of the three iterative AMVA algorithms from the last
column of Table 4 in [20] are reproduced in Table 9. However, it is not possible to make a direct
comparison between the relative errors in Table 7 for PAM and the tolerance errors in Table 9 for
AMVA. On the one hand, for the same numerical values of approximate and exact solutions, tolerance
errors are much smaller than relative errors. On the other hand, g,,(N) is a measure having finer
granularity than chain throughput (which is obtained from a summation of mean delays) and is expected
to have larger approximation errors.

Technique Measure Tolerance |#Networks
Error (%)

Schweitzer's Average 2.5 2000
method Maximum 30.5

Linearizer Average 05 2000
Maximum 24

AQL Average 03 2000
Maximum 33

Table 9. Tolerance errors in mean queue lengths calculated by 3 iterative
AMVA algorithms from Zahorjan et al. [20].

To carry out a direct comparison of AMVA and PAM, we will have to implement the AMIVA
algorithms (which we have not done). Moreover, the comparison can only be made for networks with a
small number of closed chains, which is the current domain of applications of iterative AMVA al-
gorithms. For such networks, we conjecture that Linearizer and AQL are more accurate than PAM al-
gorithms (at the expense of more computation time for both Linearizer and AQL and more space for
Linearizer).

21

For networks with a large number of closed chains, however, the accuracy and convergence be-
havior of iterative AMVA algorithms are still unknown. For this class of networks, PAM is the only
approximate solution method whose accuracy has been studied.

A summary of the computational time and space requirements of PAM algorithms and the three
iterative AMVA algorithms is shown in Table 10. For Linearizer, we have indicated the time requirement
of the new implementation described by de Souza e Silva and Muntz [16] instead of that of Chandy and
Neuse [3]. The other time and space requirements of the iterative AMVA algorithms are according to
Zahorjan et al. [20]. Note that the AMVA algorithms’ time requirements are usually stated for a single
iteration, which must be multiplied by the number of iterations that are needed for convergence to a
solution. :

Time Space
Algorithm Requirement Requirement
Schweitzer O(MK) [# iterations] | O(MK)
Linearizer O(MK?) [# iterations]| O(MK?)
AQL O(MK?Z) [# iterations]| O(MK)
PAM_BASIC O(MK) O(MK)
PAM_IMPROVED | O(MK) O(MK)
PAM_TWO O(MK?) O(MK)

Table 10. Summary of time and space requirements of iterative
AMVA algorithms and PAM algorithms.

6. Conclusions

PAM algorithms have been designed for the approximate solution of queueing networks with a large
number of closed chains and relatively small chain population sizes. Because they are noniterative, they
are suitable for many communication network design and optimization problems that are typically based
upon a heuristic search for an optimum; a very fast evaluation of network performance is needed at each
of step of such a heuristic search. (When a network is slightly modified, the array of approximate mean
queue lengths in a PAM implementation does not have to be completely recalculated; only those elements
of the array corresponding to the network change have to be recomputed.) PAM algorithms provide chain
throughputs, mean end-to-end delays, and server utilizations that have adequate accuracy for such pur-
poses. For example, PAM_BASIC, the fastest of the PAM algorithms was used in [9] for optimal routing.
In choosing a route for a new virtual channel, routes that visit a congested communication channel are
rarely chosen. Thus, the relatively large approximation errors of PAM_BASIC for such routes do not
affect its effectiveness in the optimal routing algorithm. We also found in one example that ranking
candidate routes by approximate chain throughputs, calculated by PAM_BASIC, and by exact chain
throughputs, calculated by TCA, had the same result for the top several candidates.

PAM algorithms can be applied to the analysis and design of other distributed systems with a large
number of closed chains if the network performance measures needed to evaluate these systems are the
ones that have been tested for the PAM algorithms. The iterative AMVA algorithms provide performance
measures of finer granularity, i.e., mean queue lengths, mean delays and utilizations for server m and
class k, which are not calculated by the three PAM algorithms in this paper.

22

Although we have tested the accuracy of PAM algorithms extensively, it is not possible o conclude
that they have been tested for all possible combinations of network parameters and all interesting regions
of the parameter space. We did test them for networks with a large number of chains, i.e., models of
communication networks that can be solved exactly by TCA. Iterative AMVA algorithms were tested on
networks with just a few chains, i.e., ones that can be solved exactly by MVA. It is also an impossibility
to conclude that the accuracy of PAM algorithms demonsirated in this report will scale up to networks
with hundreds or thousands of closed chains (which are required to model communication networks of the
present and future). Both exact solutions and discrete-event simulations of such large networks are not
currently feasible. We conjecture that the accuracy, in terms of average errors, will scale up. In fact,
average errors will likely be smaller due to averaging of estimates that are t0o high with ones that are too
low.

We also studied a few networks which have many delay servers where mean service times are much
larger than the mean service times of fixed-rate servers. For such networks, PAM algorithms are ex-
tremely accurate. (Note that the distribution of a chain’s population proportional to loads is an exact
operation in a network consisting of delay servers only.) We also showed in Section 3 that PAM al-
gorithms are accurate for networks with fixed-rate servers only. We found, from a few examples, that the
accuracy of PAM algorithms is slightly worse (than what is shown in this report) for networks in which
the delay servers and the fixed-rate servers visited by each chain have about the same aggregate load. We
added such a delay server to each chain in the network example of Table 3. The maximum error of
PAM_IMPROVED went up to 8.5% from 6% in Table 3.

Appendix A. Network Generator [7]

Of the 100 networks generated, 70 are SMALL networks and the rest are LARGE networks. End-to-
end acknowledgment delays are not modeled. The average packet length is 240 bits.

Nodes

The network generator creates two types of networks (SMALL and LARGE), distinguished by the
number of nodes and the number of chains. The number of nodes in a SMALL network ranges from 6 to
25. The probability distribution has the shape of a triangle with a mean of 16. The number of nodes in a
LARGE network ranges from 11 to 30 with a mean of 21. Each node is characterized by two parameters:

(i) Location, in x and y coordinates, to be used for calculating the distance between two nodes.

(ii) Minimum number of links connected to the node, designated as L[{] for node i. This number
is randomly selected from 2, 3, and 4 with a mean of 2.5.

Links

The number of links in the network is not directly sampled from a random variable and is not known
until the network is created. Factors that determine the number of links in 2 network are the number of
nodes and L[{], for all i. The topology of each network is deiermined in a manner similar to the method
given by Steiglitz et al. [17]. The procedure is briefly described in the following:

IS

23

Step 1: Select a node i such that L[{] = “;ax L[jl.
If L[i] £ O then stop.
Step 2: Put a link between node i and node n where node »n is the nearest neighbor of node i that
satisfies the following conditions:
(i) node »n is not connected to node i.

(ii) L[n] > 0.

Condition (ii) is ignored if none of the nodes satisfy this condition. In this case, the node
nearest to node | satisfying (i) is selected. Let L[i] =i — 1 and L{n] == Lin] — 1. Goto
Step 1.

The capacity of a link is selected from 1200, 2400, 4800, and 9600 bits per second with equal
probabilities.

Chains |

The number of chains is selected to be 1 or 2 times the number of nodes in the network with equal
probabilities. The source node of each chain is selected from all nodes with equal probabilities. The
length (number of servers) of the chain is selected with the following probabilities: p,=0.1, p,=0.2,
p5=0.3, p=0.2, ps=0.1, ps=0.05, p;=0.03, pg=0.01, and py=0.01, where p; is the probability of having i
servers in the chain. The length ranges from 1 to 9 with a mean of 3.38. To establish a route, the chain
extends iteratively from the last node (in the partial route) to one of its adjacent nodes until the designated
length is reached or the chain cannot be further extended without forming a loop. In each iteration, all
adjacent nodes that are not already in the route are selected with equal probabilities. The mean service
time at the source server is selected from 0.1, 0.2, and 0.3 second with equal probabilities. The popula-
tion of the chain is selected from 2, 3, and 4 with probabilities 0.6, 0.3, and 0.1 respectively.

Connectivity

Each network generated is manually checked for connectivity. Networks with disconnected com-
ponents are discarded. Others are accepted as they are, or accepted after a minor modification (e.g., add a
link).

Lastly, those networks that cannot be (effectively) handled by the tree convolution algorithm are
also discarded.

REFERENCES

[1] Y. Bard, "Some Extensions to Muliiclass Queueing Network Analysis,” Performance of
Computer Systems, M. Arato et al. (ed.}, North-Holland, Amsterdam, 1979.

[2] W.-M. Chow, "Approximations for Large Scale Closed Queueing Networks,” Performance
Evaluation, Vol. 3, No. 1, Feb. 1983, pp. 1-12.

[3] K. M. Chandy and D. Neuse, "Linearizer: A Heuristic Algorithm for Queueing Network
Models of Computer Systems,” Comm. ACM, Vol. 25, No. 2, Feb. 1982, pp. 126-134.

24

[41 D. L. Eager and K. C. Sevcik, "Bound Hierarchies for Multiple-Class Queueing Networks,”
Journal of ACM, Vol. 33, No. 1, Jan. 1986, pp. 179-206.

[5] K. P. Hoyme, S. C. Bruell, P. V. Afshari, and R. Y. Kain, "A Tree-Structured Mean Value
Analysis Algorithm,” ACM Trans. on Computer Systems, Vol. 4, No. 2, May 1986, pp.
178-185.

{6] C.-T. Hsieh and S. S. Lam, "Two Classes of Performance Bounds for Closed Queueing
Networks," Performance Evaluation, Vol. 7, No. 1, 1987, pp. 3-30.

[7] C.-T. Hsieh, "Models and Algorithms for the Design of Store-and-Forward Communication
Networks,” Ph.D. Thesis, Department of Computer Sciences, University of Texas at Austin,
1987.

[8] S. 8. Lam and Y. L. Lien, "A Tree Convolution Algorithm for the Solution of Queueing
Networks,” Comm. ACM, Vol. 26, No. 3, March 1983, pp. 203-215.

[9] S. S. Lam and Ching-Tamg Hsieh, "Modeling, Analysis, and Optimal Routing of Flow-
Controlled Communication Networks," Technical Report TR-87-24, Dept. of Computer
Sciences, Univ. of Texas at Austin, June 1987.

[10] S. S. Lam and Y. L. Lien, "Modeling and Analysis of Flow-Controlled Packet Swiiching
Networks,” Proc. 7th Data Communications Symposium, Mexico City, October 1981.

[11] M. Reiser and H. Kobayashi, "Queueing Networks with Multiple Closed Chains: Theory
and Computational Algorithms," IBM J. Res. Develop., Vol. 21, 1975, pp. 283-294.

[12] M. Reiser, "A Queueing Network Analysis of Computer Communication Networks with
Window Flow Control,” IEEE Trans. on Communication, Vol. COM-27, 1979, pp.
1199-1209.

[13] M. Reiser and S. Lavenberg, "Mean Value Analysis of Closed Multichain Queueing
Networks," Journal of ACM, Vol. 27, No. 2, April 1980, pp. 313-322.

{141 P. Schweitzer, "Approximate Analysis of Multiclass Closed Networks of Queues,” Proc.
Int. Conf. Stochastic Control and Optimization, Amsterdam, 1979,

[15] E. de Souza ¢ Silva, S. S. Lavenberg, and R. R. Muntz, "A Clustering Approximation Tech-
nique for Queueing Network Models with a Large Number of Chains," JEEE Trans. on
Computers, Vol. C-35, No. 5, May 1986, pp. 419-430.

[16] E. de Souza e Silva and R. R. Muniz, "A Note on the Computational Cost of the Linearizer
Algorithm for Queueing Networks,” Technical Report CSD 870025, Dept. of Computer
Science, UCLA, June 1987.

[17] K. Steiglitz, P. Weiner, and D. J. Kleitman, "The Design of Minimum Cost Survivable
Networks,"” IEEE Transactions on Circuit Theory, Vol. CT-16, 1969, pp. 455-460.

[181 8. Tucci and C. H. Sauer, "The Tree MVA Algorithm," Performance Evaluation, Vol. 5,
Neo. 3, August 1985, pp. 187-196.

{19] J. Zahorjan, K. C. Sevcik, D. L. Eager, and B. Galler, "Balanced Job Bound Analysis of
Queueing Networks,” Comm. ACM, Vol. 25, No. 2, 1982, pp. 132-141.

[20] J. Zahorjan, D. L. Eager, and H. Sweillam, "Accuracy, Speed, and Convergence of Ap-
proximate Mean Value Analysis,” Technical Report, Dept. of Computer Science, Univ. of
Washington, August 1986; 10 appear in Performance Evaluation.

»t

¥

