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1. Introduction

Given a set of nodes arbitrarily distributed in the plane, the Delaunay triangulation
provides an efficient means for treating closest node and other computational geometry
problems. An extensive discussion and bibliography may be found in Preparata and
Shamos [5]. In this paper, we present definitions, theorems, and algorithms for a generali-
zation of the Delaunay triangulation: one that can deal with the presence of non-convex
regions, holes in the regions, and predetermined edge constraints. This generalized
Delaunay triangulation can often be used for modeling in situations where the standard
Delaunay triangulation cannot be applied. Two important applications are the fitting of
bivariate surfaces over non-convex regions and the fitting of discontinuous bivariate sur-
faces (e.g. the fitting of geological surfaces in regions with faults, Cline and Renka [2])
Another is the solving of closest node and shortest path problems in the presence of phy-
sical barriers (e.g., the shortest water route from Athens to Liverpool or the optimal path
of a robot making its mail delivery route on the floor of a business establishment).

In the second section, we define the generalized Delaunay triangulation and present
algorithms for obtaining its construction. The algorithms are based upon an alteration of
a standard Delaunay triangulation. The third section is concerned with characterizing
distances and shortest paths in the presence of barriers. The last section shows that the
generalized Delaunay triangulation is the natural structure for solving closest node prob-
lems and that the closest node algorithm can easily be adapted to yield shortest paths.

2. Generalized Delaunay Triangulation

The standard Delaunay triangulation problem can be stated as follows:

Given a finite set § of points in the plane (the nodes?), determine a set T of triangles
so that

! Throughout this discussion, node will refer to an element of §. We will use the term point in
general reference 10 any element of the plane.
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The vertices of the triangles are nodes.

No triangle contains a node other than its vertices.
The interiors of the triangles are pairwise disjoint.
The union of wiangles is the convex hull? of §.

A

The interior of the circumcircle of each triangle contains no node.

Any set T satisfying the first four properties is a triangulation of S. Property 5
sufficiently restricts such triangulations so that the solution to the problem is unique
except in cases where the circumcircle of a triangle contains four or more nodes on its
boundary. (In such cases, two or more closely related Delaunay triangulations exist.)

The intention of this section is to modify the problem by replacing property 4
regarding the convex hull by one that allows arbitrary polygonal boundaries. We will
also allow certain triangle edges to be specified and will modify the circumcircle pro-
perty appropriately. _

To this end, let /21 and B,,...,B; be simple, closed polygonal curves in the plane. We
assume that they are pairwise disjoint and that each line segment in each polygonal curve
connects a pair of nodes but is otherwise disjoint from the set of nodes. The line seg-
ments are termed boundary edges. We will be concerned here only with problems for

which each curve has a positive orientation such that no node is contained in its exterior.
The closure of the mutual interiors of the curves is labeled Q; i.e.,

Q = closure ( interior (B ;) M- - Ninterior (B;)

and we assume Q is bounded®. These assumptions guarantee that Q is connected and

closed and that S c Q. Those nodes that are contained in some B; are termed boundary
nodes.

In addition to the boundary curves, we allow an additional set of line segments E to
be specified as required interior edges in the triangulation. We insist that the line seg-
ments connect pairs of nodes, that no other nodes lie on such segments, and that the line
segments are contained in Q. Pairs of segments may have intersection only at the end-
points. The union of E with the set of boundary edges is termed the set of required edges
and denoted by R. A required edge separates two points if the interior of the line seg-
ment between those points intersects the required edge. '

Reflecting the presence of required edges, the circumcircle test, property 5, is weak-
ened to:

Modified circle test:

If any node is contained in the interior of the circumcircle of a triangle then every
interior point of the triangle is separated from that node by a required edge.

2 The convex hull of § is the smallest convex set containing S.

3 It follows that one boundary curve must have an unbounded exterior and any other boundary
curves have bounded exteriors. The exteriors of these latier boundary curves are termed holes.
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With this modification, a triangle may pass the test even if the interior of its circum-

circle contains nodes. Any such node however must be ‘‘on the other side’ of a required
edge from the interior of the triangle.

=5

v W N

We are now prepared 1o state the generalized Delaunay triangulation problem:

Given a finite set of nodes S, a collection of polygonal boundary curves, B;...B;,

defining Q (a superset of §), and a set of required edges R, determine a set of trian-
gles T so that

- The vertices of the triangles are nodes.

No triangle contains a node other than its vertices.
The interiors of the triangles are pairwise disjoint.
The union of the triangles is Q.

If any node is contained in the interior of the circumcircle of a triangle, then every
interior point of the triangle is separated from the node by an element of R.

Each element of R is an edge of one of the triangles.

Figure 1 displays an example problem in which there are 29 nodes, two boundary

curves, and two required edges not on the boundary. The standard Delaunay triangulation
of § is shown in Figure 2. Figure 3 shows the generalized Delaunay triangulation.

Figure 2. The standard Delaunay triangulation of the example
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Figure 3. The generalized Delaunay triangulation of the example.

The generalized problem is an extension of the standard tmangulation problem: by
letting © be the convex hull of S, B, be its boundary, and R =B, a solution to the gen-
eralized problem is a solution to the standard problem. This is suggestive of our algo-
rithm for solving the generalized problem: we shall first solve the standard problem, and
then, one-by-one, make appropriate modifications to satisfy each edge constraint.

An important observation for the understanding of the algorithm for the generalized
problem is the effect of adding a single required edge. Theorem 1 shows that the only
necessary modification to the triangulation for the addition of a single required edge is
the retriangulation of that region whose triangles intersect the new edge. Before stating
the theorem, a definition, some notation, and two lemmas will be introduced.

Definition: Given a pair of distinct points @ and b, let g6 denote the directed line
segment from point a to point b. A third distinct point ¢ is swricily left of ab if the
angle <bac (measured counterclockwise from ab to at) is strictly between 0 and =

radians in measure. Notice that any point ¢ is either strictly left of ab, strictly left of
ba, or collinear with a and 5.

Notation:

1. The closed line segment from point @ to point b is denoted by [a ,b]1. (Notice that
labl=[b.al)

2. The open line segment from point e to point b is denoted by (a b). (Notice that
(a.b)=(b.a).)

3. For ¢ strictly left of 4B, the triangle with vertices a, b, and ¢ is denoted Aabc.

The vertices of triangles are always specified in counterclockwise order.
4. The circumcircle of Asbc is denoted by Qhabe.

Lemma 1: Given Aabc, if x is strictly left of ba and is interior 1o Qaabc and d is
strictly left of ba but is not interior to Qaabc then x is interior to Qdadb.

Proof: The segment [a,b] is a chord of both QAabc and Qaadb (Figure 4a). Since x
is interior to the first circle, <bxa is strictly greater than half the arc of Qaabc subtended
by [a.b] and containing c. Since 4 is not interior to the first circle, <bda is less than or
equal to half of this arc. Yet <bda is half the arc of Qasdb subtended by [a,b] (on the

side opposite d), and thus <bxa is strictly greater than half of this same arc of Qaadb. We
conclude that x is interior to Qaadb. O ‘
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Lemma 2: Given Auvw and Awnwx, if x interior 10 Qauane then v is interior 10 Qauwx .

Proof: Since x is interior to Qauwvw and on Chuwx, the arc of QAuwvw subtended by
<wwu is larger than the arc of CAwxu subtended by the same angle (Figure 4b). Since the
first arc has twice the measure of the angle, v must be interior 10 Qauwx. [J

d

Figures 4a-4b.

Theorem 1: Given a generalized Delaunay triangulation T of § with required edges
R and given an second set of required edges R'=R U {e} augmented by a single
edge e, let T¢ be the set of those triangles whose interiors intersect e, Q° be the
union of those triangles, R® be the set of required edges lying within Q°, B* be the
boundary of Q°, and §¢ be the nodes contained in Q°. If T® is a generalized
Delaunay triangulation of §¢ over Q° with required edges R® UB®u {e}, then
T'=(T ~T*)u T isatriangulation of § with required edges R'.

Proof: It is clear that the set of triangles T’ satisfies all properties of a generalized

Delaunay triangulation with the possible exception of property 5°. Thus it must be shown
that each triangle of T* passes the modified circle test.

We proceed by assuming the property is violated for some Aabc. Let x be a node
interior to QAabe and yet not separated from some interior point p of Asbc by any edge of
R’ (Figure 5). By property 2, we may assume x is exterior to Aabc. Without loss of gen-
erality, assume x is strictly left of ba. If edge [a,b] were required (i. €. in R"), then x
would be separated from all interior points of Asbc by [a b], contrary to assumption.
Therefore, edge [a,b] must not be required and thus could not be a boundary edge, since
all boundary edges are required. It follows that a triangle sharing edge [a.b] with Aabc
must exist in 7. Denote such a triangle by Aadb and consider two cases: d #x ord =x.

Figure 5.
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In the first case, by virtue of Lemma 1, x is also interior to Qdadb. Again without
loss of generality, we may assume x is strictly left of bd. We conclude that <bxa is less
than <bxd and that x is unseparated from some interior point of Aadb (since the segment
(x p) intersects the interior of Aadb). The situation of x with respect 1o Aadb is identical
of that of x with respect to Asbc and the subtended angle at x has strictly increased. As
before, edge [h.d] cannot be required or a contradiction would result. Also as before, a
triangle sharing edge [b.d] must exist and this new triangle must have x as a veriex or not
(i. e. the same cases as before).

. The process of finding new triangles including x in their circumcircles (yet having
interior points unseparated from x) can continue as long as x is not a vertex of an adja-
cent triangle. However, eventually it must terminate since only a finite number of trian-
gles exist and the subtended angles monotonically increase. Thus a triangle Auvw of T’
must be found so that x is not separated from some one of its interior points but is inte-
fior 1o its circumcircle, and x is the third vertex of a triangle sharing an edge with Auwww.
We may assume the shared edge is [ ,w] and, by virtue of Lemma 2, conclude that v is
interior to Qauwx. Notice that v is unseparated from all interior points of Auwx (since
[uw] is not required). However, if Auwx € T ~T¢, then it satisfies the modified circle test
with respect to R since T is a generalized Delaunay triangulation. This is a contradiction
because v is interior to QAuwx and unseparated from the triangle’s interior. Furthermore

if Auvw € T ~T¢, then the modified circle test for it would be violated by x, which is also
contrary to hypothesis.

The final option is for both Auvw and Auwx to be in 7°. But the triangles of T must
satisfy the modified circle test with respect to R® UB*® U {e}. The only edge that could
separate x from Auvw would be [u w]. But [u,w] cannot be either in R ® or be the new edge
e since R’ includes both R® and e. Finally, [u,w] cannot be in B¢ either because it is a

diagonal of quadrilateral wwwx which is a subset of Q¢. We conclude that any violation of
the circle test results in a contradiction. U

The following observations lead to an efficient procedure for determining the set of
triangles that satisfy the modified circle test. First, we recognize that given any circle
and a chord of that circle, that the angle subtended by the chord at any point on the circle
(the “‘circumference angle’’) is constant. Furthermore, at points interior to the circle the
subtended angles are larger and from points exterior to the circle the angles are smaller.
(We assume throughout that the points in question are within the same half-plane deter-
mined by the chord.) Thus if a node x maximizes the angle subtended by a line segment
(a.b] over all nodes strictly left of 4b, then no node also strictly left of 4b is in Qaabx.
Alternatively stated, if [2,b] is known to be an edge of a triangle in the triangulation
(perhaps because it is required), and the third vertex of the triangle is sought, then this
vertex can be located by maximizing the angle subtended by [a b]. The resulting triangle
may not satisfy the modified circle test because its interior might be intersected by a
required edge; Theorem 2 shows how this maximization can be restricted to a certain
subset that guarantees satisfaction of the modified circle test.

Theorem 2: Let [a.b] be either a required edge or an edge of a triangle Aach in a
generalized Delaunay triangulation, and let m be the midpoint of this edge. If, over
all nodes strictly left of ab and unseparated from m, the angle subtended by [a.b] is
maximized at node x, then Agbx satisfies the modified circle test.
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Proof: Let ¥ be the set of points interior to Qaabx, stricily left of ab, and
unseparated from m by any required edge (Figure 6). This set clearly is connected as is
its closure. It contains no nodes since at such a node a larger angle would be subtended
than that at x. The boundary of ¥ must consist only of the edge [a b}, arcs of the circum-
circle, and segments of required edges. Since the segments of the required edges on this
boundary can have no nodes interior to QAabx, the region Y is the intersection of the inte-
rior of the circumcircle with the open half-planes supported4 by the the required edges

and containing [a,b] and the set of points strictly left of ab. We conclude that Y is con-
veX.

Figure 6.

By virtue of the convexity of Y and the fact that a, b, and x lie on its boundary, we
may conclude that the interior of Aabx is a subset of Y. This guarantees that no required
edges intersect the interior of Aabx. To show that no interior point of Aabx is unseparated
from any node interior to Caabx and left of [a,b], we suppose such an interior point p and
node : exist. Since z ¢ Y, the segment (p,z] must intersect the boundary of Y. The inter-
section cannot be at z since then m would be unseparated from z. The intersection cannot
be on the boundary of Qaabx since both p and 2 are interior to this, nor can it be on {a.b]
since both are strictly left of [a,b]. From the earlier remarks about the boundary of ¥, it
follows that this intersection point must be on a required edge; but this contradicts the
assumption that p was unseparated from z by any required edge. We conclude that no
nodes unseparated from interior points of QAabx lie strictly left of [a b].

If [a.b] is required then it separates the interior of Aabx from all nodes strictly left of
bz (i. e. smictly right of ab) and interior to Qaabx. If [a b] is not required then it cannot be
a boundary edge, and there must exist a triangle Aach. Lemma 2 guarantees that ¢ is not
in Oaabx (since Aach satisfies the modified circle test and x must not be interior to
Qtack). If a node z strictly left of bz and interior to Qasbx exists, then by virtue of
Lemma 1, z must be interior to Qaach. By the modified circle test for Aach, z must be

separated from the interior of Aach by a required edge and this edge must also separate z
from the interior of Aabx.

Finally, since no nodes are on the interior of [a 5], we conclude that no nodes inte-
rior to Qhabx are unseparated from any interior point of Agbx. [

4 An open half-plane is supported by an edge if that edge is on the boundary of the half-plane.
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Maximization of the subtended angle is equivalent 1o maximizing the negative of its
cotangent since all candidate angles are less then n. The negative of the cotangent can be
calculated with 15 arithmetic operations by using cross products and scalar products.

From Theorem 1, to update a triangulation with the addition of a required edge
e =[a,b] only the region Q° must be retriangulated. According to Theorem 2, one new
triangle on the left side of ab is obtained by maximizing the subtended angle over those
nodes in §¢ that are also left of b and unseparated from the midpoint of the edge.
Labeling x a maximizer, the triangle Aabx is added to the triangulation. Another new tri-
angle can be obtained by maximizing the angle subtended by [a,x] over all nodes in §°
that are left of &# and unseparated from the midpoint of [a x]. Still another new triangle
can be obtained by maximizing the angle subtended by [x,b] over all nodes in §¢ that are
left of 2B and unseparated from the midpoint of {x ,b]. This process can be applied recur-
sively to triangulate that portion of Q¢ in the left half plane defined by ab. Since the right
half plane defined by &b is the left half plane defined by ba, the same approach can be
used with the roles of a and b reversed to obtain the retriangulation of that portion of Q°
on the right of ab. The result is a retriangulation of Q¢ with the edge [a.b] included.

The following two lemmas guarantee that the retriangulation process does not result
in overlapping triangle interiors.

Lemma 3: Suppose we are given a set of required edges R and any two triangles
Aabc and Adef whose interiors are not intersected by any element of R. Assume
both triangles satisfy the modified circle test with respect to the required edges R
and the set of nodes {a.b,c,d,e,f) and all endpoints of elements of R. If the
nodes are not all cocircular then the interiors of Aabc and Adef must be disjoint.

Proof: Consider the interiors of Qaabc and Oadef . Either the interiors are disjoint,
one is a subset of the other, or the boundaries of Casbc and Oadef intersect in exactly
two points. In the first case, the triangle interiors themselves must be disjoint since they
are respective subsets of the circumcircle interiors. For the second case, we may assume
without loss of generality that Qdabc cOAdef . Suppose there exists a point x common to
both triangle interiors. Since the circumcircles are not identical, at least one vertex of
Aabe is interior to OAdef . Assume it to be a. By virtue of the modified circle test, (x.a)
must intersect a required edge, but this segment is interior to Aabc contrary to the
hypothesis on the required edges. Thus no such point can exist in the second case.
Finally, consider the third case and assume the circumcircle boundaries intersect at
exactly two points g and 4. In this case, the line through g and # separates the plane into
two open half-planes. In one half-plane a portion of the interior of Qaabe is a subset of
the interior of Qadef . In the other half-plane, the reverse is true. If a, b, and ¢ lie in the
closure of the first half-plane, and d, e, and f lie in the closure of the other half-plane,
then the triangle interiors must be disjoint. Otherwise, either one of a, b, or ¢ lies in the
second open half-plane or one of 4, e, or f lies in the first open half-plane. Any such ver-
tex must be interior to the other triangle’s circumcircle. Without loss of generality,
assume a is such a vertex and x is interior to both triangles. Since (x,a) must intersect a
required edge and be interior to Asbc, a contradiction results just as in the second case. [

Using the notation of Theorem 2, if x along with a another node y unseparated from
m attain the maximum subtended angle, then y lies on the boundary of Chabx. Alterna-
tively stated, a, b, x, and y are cocircular. In fact, all such maximizers are cocircular
with a, b, and x. Any choice among the maximizers for the third veriex of a triangle
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would preserve the modified circle test (that was the conclusion of Theorem 2). How-
ever, some choices could produce overlapping triangles. In these cocircular cases, the

following rule removes the ambiguity of choice in such a manner that overlapping trian-
gles are avoided. Lemma 4 is a statement of this.

Cocircular Selection Rule: Order the maximizers in counterclockwise fashion
from b on their common circle. If no maximizers share a triangle edge with b, let x
be the first maximizer counterclockwise from . Otherwise, let x be the most coun-
terclockwise maximizer from b that shares a triangle edge with b.

- Lemma 4: Let [a,b] be either a required edge or an edge of a triangle in a general-
ized Delaunay triangulation, and let m be the midpoint of this edge. If, over nodes
strictly left of ab and unseparated from m, the angle subtended by [a.b] is maxim-
ized at more than one node, then the node x chosen by the cocircular selection rule

guarantees that Aabx has interior disjoint from the interior of any other triangle in
the triangulation.

Proof: Applying Lemma 3, we recognize that the only triangles that might intersect
the interior of Aabx are ones that have identical circumcircles. First we notice that if a
Aab: already exists in the triangulation then the node z is exactly x as chosen by the rule.
Henceforth, we shall assume no such triangle exists in the triangulation. Suppose Adef is
a triangle whose interior intersects that of Aabx and thus a, b, x,d, e, and f are cocircu-
lar. If all of 4, e, and f are on the closed arc counterclockwise from a to b then no inter-
section is possible. In fact, if any of the three are on this arc without all three being such,
then the edge [a,b] must intersect the interior of Adef . Whether [a.,b] is 2 required edge or
the edge of Aach, a contradiction results. Thus we conclude that all of 4, ¢, and f are on
the closed arc from b counterclockwise to a. Without loss of generality, we assume that
in counterclockwise order from b they occur: d, e, f. To have any intersection with the
interior of Aabc, d must precede x in the counterclockwise order and f must follow x. If
4 is identical with b, then by the rule, all three vertices of Adef lie on the sub-arc from b
to x and hence no intersection with Aabx is possible. If 4 is not b but precedes x in coun-
terclockwise order x cannot be the first maximizer counterclockwise from b. The selec-

tion rule then guarantees a triangle edge [x,b] exists and the associated triangle must have
an intersection with Adef . [J

Having guaranteed that the maximization procedure allows only triangles that
satisfy the modified circle test and that do not intersect the interiors of existing triangles,
we may formalize the recursion suggested by the results of Theorems 1 and 2. We

assume that nodeser is some set of nodes, ¢ and b are nodes not in nodeser, T is a set of
triangles, and R is a set of required edges.

Algorithm 1: retriangulate (nodeset,a,b,T,R)

1. Define X as the set of elements of nodeser strictly left of ab and unseparated from the
midpoint of @ and b by any element of R.

If X is not empty:
2.  Determine x € X that maximizes <axb.
3. Addasbx 10T,
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4. Delete x from nodrset.
5. Iiax1€ R, retriangulate { nodesct ,a,x, T, R).
6. 1f(x.b1€ R, retriangulate ( nodeset ,x,b,T R).

Figures 7a-7f show the application of Algorithm 1 to a simple seven point example.

2

No
o

2 e

a b c d e £
Figures 7a-7f. An example of the application of Algorithm 1

The algorithm to implement the construction described by Theorem 1 can now be

presented. We assume e =[ab] and T is a generalized Delaunay triangulation with
required edges R.

Algorithm 2: addedge (e, T,R)

1. Find those triangles in T whose interiors intersect e. If no such triangles exist, then
stop; otherwise remove each of them from 7.

2. Set ©° to the union of the triangles found in step 1, B* to the boundary of O, R* t0
the set of required edges in Q°, and nodeser 1o the set of nodes in Q° other than a and
b. Copy nodeset into nodesetp .

3. Triangulate left portion: retriangulate ( nodeset,a,b,T,R*UB*®).

4, Triangulate right portion: rerriangulate { nodeseip ,b,a,T,R*UB®).

S. Replace R withR uve.

An application of Algorithm 2 is shown in Figures 8a-8d. Figure 8a displays the
existing triangulation. In Figure 8b, we see the results of steps 1 and 2 of the algorithm:
triangle removal and boundary building. Figure 8¢ shows the retriangulation of the left

portion (step 3), and Figure 8d shows the result after the right portion has been retriangu-
lated (step 4).

We prove that this algorithm properly adapts the triangulation to include the single
new edge.

Theorem 3: Given a generalized Delaunay triangulation T of § with required edges

R and given an augmented set of required edges R u e, Algorithm 2 produces a gen-
eralized Delaunay triangulation of § with required edges R ue in variable T.

Proof: First we notice that neither of the invocations of Algorithm 1 in Algorithm 2
involves e = [a,b] being an element of R®* UB*®. Furthermore, the recursive invocations
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Figures 82-8d. An example of the application of Algorithm 2

of Algorithm 1 from itself insure that the precondition of e ¢ R® U B* is always satisfied.
Since e € R, it is not a boundary edge of the original triangulation. Some node (possibly
on the boundary) must be strictly left of ab and unseparated from m, the midpoint of a
and b. We conclude that when Algorithm 1 is invoked by Algorithm 2 then the set X in
Algorithm 1 is never empty. Since each recursive invocation of Algorithm 1 reduces the
size of nodeser by one, Algorithm 1 (and hence Algorithm 2) must terminate.

To prove the theorem, we must show that the invocations of Algorithm 1 in steps 3
and 4 of Algorithm 2 produce a modified Delaunay triangulation of the region Q° deter-
mined in step 1. First we recognize that Algorithm 1 can produce triangles only employ-
ing the nodes of the original nodeser and thus, of the original wiangulation. Furthermore
all triangles produced by the algorithm lie within the region ©f, and it follows from
Theorem 2 that all satisfy the modified circle test. To complete the proof we must show
that after the inclusion of the new triangles produced by the algorithm:

2. No triangle contains a node other than its vertices.
3.  The interiors of the triangles are pairwise disjoint.
4’.  The union of the triangles is Q.

6. Each element of R is an edge in some triangle.

Property 2 follows from the modified circle test since no non-vertex node could lie
in a triangle without being interior to a circumcircle. Property 3 follows from Lemmas 3
and 4. For Property 4”, consider the portion of the region that would remain untriangu-
lated if this property did not hold at the conclusion of Algorithm 2. Since Algorithm 1
fails to recur only when a required edge is encountered, we conclude that any untriangu-
lated region must be bounded by edges in R*UB*®. Yet no edges are added to this set dur-
ing Algorithm 2, so such an untriangulated region could only be all of Q°. Since at least
two triangles are formed (one on either side of the original edge e), we cannot have any
such untriangulated portion. Finally, Property 6 holds since the entire region is triangu-
lated. Those elements of B® remain as boundary edges. The other required edges, R®, are

never intersected by the interiors of triangles and thus must be triangle edges. Lastly, the
edge e clearly is present in the triangulation. [J

Finally, Algorithm 2 is employed in an iterative fashion to solve the generalized
Delaunay triangulation problem. Recall that § is the set of nodes, ! is the number of

boundary curves, By, ..., B, are the boundary curves themselves, and E is the set of
required edges that are not on the boundary.
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Algorithm 3. gencralizedDelaunayiriangulation (§,1,B,, -+ , B, E)

1. Determine a standard Delaunay triangulation of S. (This is a triangulation over the
convex hull). Let ® be the set of riangle edges on the convex hull.

2. Foreachee B,u --- UB,wE,addedge (e, T,R).

3. Fori=1.,.l,delete those triangles whose interiors are in the exterior of B,.

An application of this algorithm to the original example, figure 1, is shown in Fig-
ures 9a-9d. Figure 9a displays the problem constraints. The standard Delaunay triangula-
tion (step 1) is shown in Figure 9b. Figure 9¢ displays the result of imposing the edge
constraints (step 2). Finally, following the removal of the exterior triangles (step 3, those

removed are marked with circles in Figure 9¢), we obtain the generalized Delaunay tri-
angulation shown in Figure 9d.

Figure 9a-9d. An example of the application of Algorithm 3

3. Shortest Paths and Distances

In this section, we present some theoretical results regarding paths and distances
along paths within regions with polygonal boundaries. The set Q is as before. We define
the concept of visibility as follows: for any points a beQ, a is visible from b if the line
segment from a to b is contained in Q. The visibility region of a point a in Q is defined to
be the subset of points in Q visible from a. This will be denoted by V(a). For any points
abeQ, a path from a to b is a sequence of points <py, p...p> so that a =py, b = p;, and
p; is visible from p;_; fori =1,--- k. We denote the Euclidean distance from a to0 b by

4
la - bt. The length of a pathp =<pg,...pi> 18 1(p)= S Ip;—p, ;1. Let P(ab) be the set of

i=1
all paths from a to b. The distance from a to b is d(a b)=infimum, p,,, 1 (p). If for
peP(ab) we have d(a b)=1(p), then p is termed a shortest path from a to b.

By virtue of O being a connected subset of the plane, it is arc-wise connected as

well (Simmons [10]), and thus paths between any pair of points exist. The distance func-
tion is, therefore, defined for any pair.

From the definitions, it immediately follows that:



1. dab)=z0.

2. d{aay=0.

3. d@b)=d(b.a).
The following lemmas establish 4 as a metric on Q.
Lemma 5: Forany a,b,andceQ, d{a,c)<d(@.b)+d(b.c).
Lemma 6: Forany a and beQ,if a b thend(a b)> 0.

Theorem 4 guarantees the existence of shortest paths. Theorem 5 characterizes all
shortest paths as consisting essentially of boundary nodes with non-consecutive elements
that are mutually invisible. (A result similar to Theorem 5 is asserted without proof in
Lee and Preparata [3], Lozano-Perez and Wesley [4], and Sharir and Schorr [9] among
others.)

Theorem 4: For any a and beQ, a shortest path < py...., p;> exists with the properties
that

i.  p, is a boundary node for i = 1,...k~1.
ii. p, is not visible from p; for li—jl z2.

Proof: We may identify a path <py..., p;> in Q between ¢ and b with a point in Q**!,
the k+1-fold Cartesian product of Q with itself. Since Q is a compact subset of two
dimensional Euclidean space, Q" is a compact subset of 2k+2 dimensional Euclidean
space. The set { (po, ..., po):pi€ V(i) fori =1,k } of images of all paths froma to b is
compact in ©**'. The distance measure is continuous on this compact set and thus

assumes its minimum on it. We conclude that 2 minimum length path of k+1 points exists
between any points of Q.

It remains to be shown that a minimum length path of an arbitrary number of points
exists. We shall show that beyond a certain value of k, the lengths of shortest paths of
k+1 points does not decrease as  increases. Thus minimizing path length over all values
of k is in fact equivalent to minimizing path length over a finite set of k’s. To show this
we shall employ the generalized Delaunay triangulation. By forming a generalized
Delaunay triangulation of Q into some number m of triangles, we notice that any path of
2m+1 or more points must have at least three points in a common triangle. Thus the path
must be of the form < pg,.... P Pjrwers Pi s Px>s WHETE py, P and p, are common to a sin-
gle triangle. Since the segment [p;,p] is also in that triangle (by convexity), the path
< Powr Pir D1 P>, 18 @ path from pg to p, with strictly fewer points and no greater length.
We conclude that when searching for shortest paths, we need not consider paths with
more than 2m points: a shortest path of k+1 points for k+1<2m, is a shortest path
independent of the number of points. 5

To prove the first of the two properties, notice that if p; is collinear with p,.; and
P..1» then deleting p; from the path has no effect on the path length. Now assume p;_, pi,
and p,,, are not collinear and that p; is not a boundary node. Since p, is interior, a small
circular neighborhood of it is also interior. We may replace p; in the path by the two

5 The essential elements of the proof of the existence of a shortest path are that Q is a closed,
path-wise connected set which can be represented as the union of a finite number of convex sets.
The generalized Delaunay triangulation yields such a representation.
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e

points p’, and p”, located on the respective intersections of {p,_,,p,]1 and Ip, p,,;] with the
circle boundary (Figure 10). The new path <pg.op, 1. PP i Pisro- - . P>, 18 strictly

shorter than the original path with p,. Thus there exists a shortest path in which p; is a
boundary node fori =1, k-1.

The second property follows immediately from the triangle inequality. [J

Figure 10.

It is obvious that extraneous points may occur in paths. These points have no effect
on length or ‘‘footprint’’ (i.e., the union of line segments [p;p,_;] for i =1,..k). For
example, for any path p =<pg,...p>, the path p'=<po,..pi. P Pis1s. ... P>, Where
p'i ="(p;+p;+1), has exactly the same length and footprint as p. We shall term a path
essential (i.e., capturing the essence) if no such extraneous points occur. Precisely, a path
P =<po...pe> is essential if for i =1,...k-1,p,_;,p;, and p;,, are not collinear. It is clear that
an essential path can be extracted from any path by deleting the middle point of such col-
linear triples (in general, by deleting the middle n-2-tuple from collinear n-tuples). In
particular, this operation can be applied to shortest paths. The following theorem charac-

terizes all shortest essential paths.
Theorem 5: If p = <py,..., p,> is a shortest essential path then
1. p, is a boundary node fori = 1,..k-1.
il.  p; is not visible from p, for 1i—j1 22.
ili. <p;,pis1s Pjo1s p;> 18 @ shortest path fromp, to p; for0<i <j <k.

Proof: The proof of Theorem 4 shows that if for i = 1,..k~1 p; is not a boundary
node then either p;_,, p;, and p,,; are collinear (in which case the path is not essential) or
the path can be shortened. Property i thus holds. Similarly for property ii, if p; is visible
from p; with 1li-jl 22 then either p;,..,p; are collinear or a shorter path could be con-

structed. Finally, for property iii, <p;,...,p,> is clearly a path from p; to p;. If a shorter
path between them existed then a shorier path would exist between a and b. [J

4, Closest Nodes

In this section, we show that the generalized Delaunay triangulation is the natural
structure for solving closest node problems. This is a result of the fact that the the closest
node to any given node must share a triangle with it. The second closest node either

shares a triangle with it or shares a triangle with the first closest node. The generalization
of this is presented as the corollary to Theorem 6. ’

The generalized Delaunay triangulation to be employed in this theory is exactly as
presented in section 2 except that the interior required edges have no role (and thus E is
assumed to be empty). To emphasize the fact that the paths are contained in Q, we refer
1o the boundary curves as barriers. The set of nodes on the boundary is denoted by B.
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For a,b,and ce ), we say ¢ is closer to a than is bif d(ac)<d(ab). Wetermb a
L-th closest node to a if there are k-1 nodes c,,...c;_; (distinct from a and b) so that

d(ac) <d(a.b) and no other node (except a) closer to a than b is. For completeness, we
refer to a itself as the 0-1h closest node 10 a.

There are obvious ambiguities associated with this definition since there may not be
a unique k-th closest node. Furthermore, a given node may be both a k-th closest node
and a j-th closest node for k #j. Both of these situations correspond to points that are
equidistant from a. If S={a.w,x,y,2} and d@w)=3, dlax)=1, da,y)=2, and
d(a'z)=2, then x is the unique closest node to a. However, y is both a second and third
closest node, and so is z. The unique fourth closest node to a is w. A more traditional
usage of ‘‘closest’’ would term both y and z second closest nodes and nothing would be
third closest. The definition here simplifies the following presentation significantly.

Theorem 6 and its corollary will be employed to develop algorithms for solving
various closest node problems. Prior to presenting them two lemmas are proved.

Lemma 7: Let Aabc be a triangle of a generalized Delaunay triangulation, x be a

point in its interior, and U be the set of points interior to QAabc unseparated from x.
The closure of U is convex. ‘

Proof: Recall that since all edges on the boundary of Q are required and U consists
of points unseparated from x, U is a buset of Q. Since Aabc satisfies the modified circle
test, no node is within U. Thus U is the intersection of the interior of CAabc and some set

of half-planes supported by those required edges that intersect the circumcircle. This
intersection is convex as is its closure. [J

Lemma 8:If (b,¢,q,d) is an ordered quadruple of points on a common circle, then

either tb —gl>1b —di and Ib—gl>1d~gi or ib~gl>1b~-cl and

b —gl>lc—gl (or both).

Proof: The shorter of the circular arcs subtended by [b.g] is strictly greater than the
circular arcs subtended by [b,c] and [c,¢] or those subtended by [b.4] and [d.,¢]. The dis-

tances between the vertices are monotonically related to the lengths of the subtended
arcs. [J

With respect to a fixed generalized Delaunay triangulation we define node a to be a
neighbor of node b if there is a triangle of which both 4 and b are vertices. The set of all
neighbors of a node a is denoted by N(a).

Theorem 6: For any a andbe§, if a # b then some neighbor of b (possibly a itself)

is closer to @ than b is and the same neighbor (if not equal to a) is closer to b than g
is.

Proof: The proof is by contradiction: what is assumed to be a shortest essential path
from a to b is reduced in length if no neighbor of b is closer to a than b. Let
<popie-,pi> be a shortest essential path from a to b. Consider the segment
WPeorpe) = [pi-1.b1. If pe_y is @ neighbor of b the proof is complete. Otherwise, the segment
intersects the interior of some edge [c 4] of a triangle Abcd (Figure 11). The edge [pi-1.b1]
also intersects the interior of the arc from ¢ to d of QaAbcd subtended by <cbd. Let this
point of intersection be ¢ and let w be a point on (¢ ,b) and interior to Abcd .Obviously ¢,
d, and ¢ are in the closure of the region interior to QAbcd and unseparated from w. But
from Lemma 7, this closure is convex and thus no point on [g.c] or [g 4] is exterior 10 Q.
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We conclude that both ¢ and 4 are visible from ¢. However, by virtue of Lemma 8§,
either ¢ or 4 must be closer to b and g than ib - gl. Without loss of generality, suppos-
ing this closer point is ¢, then the path <pgpy,...¢.c> is strictly shorter than
<pgPinq,b> which has the same length as <pg,py...., psy. b>. Thus ¢ is closer 10 a
than b is. Also, since d(a b)2d(g.b)>d(c.b), c iscloserto b than a is. O

Figure 11

Corollary: Let ¢, be a j-th closest node to a for j=0,..k and ¢; #¢; fori #j. Then
for some i and j withi €j k-1, c,eN(c;) nV(c).

Proof: Suppose a shortest path from c¢ 10 ¢; iS <cg, Py, Pr1, >, The node p,, is
clearly closer to ¢ than ¢, is. Thus p,_, must be ¢; for some i £k~1. The theorem guaran-
tees that some neighbor of ¢, is closer to ¢; than ¢, is (and therefore closer to ¢q than ¢,
is), and this same neighbor (if it is not ¢;) is closer to ¢, than ¢; is. Thus, this neighbor
must be some c¢;. The corollary will be proved if we can show i <j. But this is clear,
since if j <i, then d(co.c;) £d(coe;). Butd(c;.c)<d{ci.co), and combining these inequali-
ties contradicts the assumption that a shortest path from ¢ to ¢, passed through ¢;. [J

Both the theorem and corollary were presented for the barrier-free situation in
Renka [6]. An algorithm for finding k closest nodes that exploited these results was
stated in Cline and Renka [1]. This algorithm was used for estimating partial derivatives
of bivariate functions for smooth surface fitting in Renka and Cline [§] and Renka [7]. In
light of this, we find quite perplexing the statement in Preparata and Shamos [35,page 235]

The Voronoi diagramG, while very powerful, has no means of dealing with
farthest points, k closest points, and other distance relationships.

Theorem 7 summarizes the theory we have developed for finding closest nodes. Its
proof follows immediately from the corollary to Theorem 6.

Theorem 7: For j =0,..k-1, let ¢; be a j-th closest node to ¢ and assume ¢; # ¢ for
j#i. A k-th closest node ¢, is a minimizer of Ix-¢l+d(a.c) over
x€(N(c,)~{Comti-} )N V() for j=0,.k-1,i<j, and c;eB. If i denotes the value

of i associated with a minimum and p° is a shortest path from a to ¢;-, then p” con-
catenated with <¢,> is a shortest path from a to ¢,.

Figure 12 shows an implementation of this method for finding a k-th closest node.
With a slight modification, pointers could be added to maintain the shortest paths as well.
The algorithm could be applied to find the closest nodes among some subset of § (e.g. the

6 The Voronoi diagram is dual 1o the Delaunay triangulation: obtaining either from the other is
& triviality.
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non-boundary nodes). An application of this is a ‘‘greedy algorithm™ for solving the
“‘constrained traveling salesman problem’’:

Given a finite set of nodes S, a collection of polygonal boundary curves, B,,..B;,
defining © (a superset of §), and a subset $* of §, determine a shortest path (within
Q) from any given point to itself that includes every element of §*.

begin . .- s -
dy =1 { initialize } '
forj:=0tok-1do { loop over k closest points }
forxeN(c;)~{co..... -} do { loop over other neighbors of ¢; }
be in - I3 - I3
gir |x —cql <d, ord,=-1then { |x = ¢l is minimum possible for d(x,c g} }
be in . 3 3 @ & ‘
gifer(co) then {|x —col isd(x,cq)if x is visible from cp }
begin
ng =X {update ¢, and d, }
= |x ~ ¢l
end @ o &
else { x isnot visible fromcg} -
begin .
gdx =d;+ |x—¢;|; { this is the maximum possible for d(x,c o) }
fori := 1 to j~1 do { loop over boundary nodes which are closer }
ifdx >d, + |x—c;| and c;eB andxeN{(c;) { thanc;tocgand visible from }
andxeV(c)thendx =d;+ |x —¢l; { =x. Fmd sortest path using these }
if dx < d, or d;, == ~1 then
begin
gc,‘ =X { update if shorter path found }
di = dx
end
end
end
end
end.

Figure 12. The k-th closest node algorithm

Another interesting application of the closest node algorithm is that of finding
optimal two-dimensional robot movement. Figure 13a shows the floor plan of a maze
with initial position and exit position indicated. The problem is to determine a shortest
path from one to the other. There is the additional complication that the robot covers
some positive amount of area and as a result the center of the robot’s projection onto the
plane must maintain some minimal distance (its diameter) from the walls. For a given
diameter, we can create a set of boundaries within which the robot could move without
violating this proximity constraint. Such a set is shown in Figure 13b’. Application of
the algorithm to find the closest nodes from the initial position, modified to yield the path
as well as the distance, and applied until the exit position has been labeled a k-th closest

7 By adjusting the polygonal boundaries at the comers, the region of allowed movement could
be slightly increased but this will not be pursued here,
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node, results in the path shown in Figure 13c.

1

[ :Wtﬁ
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£3 ]

S

a b c

Figure 13a-13c. A robot motion problem
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