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ABSTRACT

In the design environment, the concurrency control mechanisms of con-
ventional database systems are frequently clumsy and inadequate. In this paper,
some unconventional concurrency control mechanisms, soft locks and version
resolution, are described and evaluated. Both mechanisms require that certain
classes of conflict be resolved by interaction of designers. This paper explains
these mechanisms, constructs performance analysis models for them, and
derives formulas for performance measures, such as throughput and percentage
of transaction time spent for conflict resolution. The formulas are then numeri-
cally evaluated for a range of parameter values that are sensible within a design
environment. Some graphs of results are presented to show the performance of
the mechanisms. The mechanisms are shown to perform much better than con-
ventional locking mechanisms within design environments.
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1. Introduction

The primary thesis upon which this paper is predicated is that a large software systems
design environment has significantly different database concurrency requirements than the typi-
cal data processing environment. Several schemes are proposed and analyzed in this paper. The
salient characteristic of these schemes is that they all rely upon a synergistic interaction among
designers to enable them to greatly enhance the degree of simultaneous activity.

1.1. The DBMS and the Design Environment

In the typical modern design environment, there is s database tw store artifacts of the
design project, such as specifications, programs, and data [6,7,9,10,13,17,20]. These artifacts, or
the user defined modular pieces of these artifacts, are called objects in this paper. The number
of objects is usually large. The requirements of a large design environment are sufficiently



different from the typical commercial environment that they present interesting challenges to
database technology. These requirements include facilities to handle complex dynamic relations
between objects; relatively seamless interfaces between designers’ personal databases and global
databases; exploration and navigation; and complex long-lived transactions.

The work reported in this paper is motivated by the requirements uncovered within the
Software Technology Program (STP) at the Microelectronics and Computer Technology Cor-
poration (MCC). STP has a commitment to long-term research into the upstream aspects of
software design with a goal of achieving an extraordinary improvement in software productivity.
The upstream aspects of design, many of which refer to the organization and brainstorming that
must occur when the ideas and problems are ill-structured, partially unarticulated, and fuzzy,
also present interesting challenges to database technology. These upstream aspects imply a need
for the database to handle informal as well as formal documents; fuzzy and inconsistent data;
diverse non-canonical data structures such as assumptions, decisions, alternatives and

justifications; and finally, teams and coordination. |

Internal and external studies have been undertaken within STP to understand further the
information handling needs and implications of the software design environment. An emphasis
has been placed upon the databases for software design [4]. Prototypes have been built within
STP (an object oriented database server [7], and a hypertext system [11]) to explore alternative
solutions to some of the information handling challenges. The remainder of this paper will
focus on the concurrency control aspects of the software environment. Further elaboration on
the challenges, and explanation of STP work has been published elsewhere [2], and we simply
note here that the range of parameter values used in this paper has been derived from informa-
tion and experience collected by STP.

1.2. Concurrency Control and the Design Environment

Access to the design database is characterized by teams of designers accessing a variety of
types of information. The requirements of these teams of designers violate some of the
assumptions of typical database concurrency control schemes.

1. In the design environment, it is no longer true that transactions are short. Transactions
are mechanisms to enforce atomicity of a sequence of database operations, and to create a unit
of crash recovery and user specified undo/abortion. Software designers need these transaction
mechanisms when they work on pieces {modules} of the design. These design pieces include
code modules {e.g. programs,) specification modules (e.g. formal models,) and requirements
modules (e.g. textual documents.}] A software designer may work on a module in an update
mode for hours, days, or weeks. In typical DBMSs, the standard practice is for any conflicting
access to simply wait until the transaction completes. Clearly, it can be intolerable for a designer
1o wait for such long periods of time, so alternative strategies are needed.

2. In the large systems design environment, it is no longer true that the probability of
concurrent conflicting access is extremely low. In this environment, no one person can totally
create or even comprehend all details of the system. Thus, there must be reliance upon the
team to collectively share knowledge, and there is a critical dependence upon collective
knowledge effectively shared. Information access conflicts occur more frequently because there
is a tendency for design teams to dwell upon a single aspect, theme, or problem at the same
time. We have found that the check-in, check-out model hinders efficient echesive team
interaction. Modern design teams take advantage of facilities for electronic meetings, computer
conferencing, etc, to expedite their work. All of this implies that database access conflicts may
occur much more frequently than in standard data processing environments.
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3. In the design environment, it is no longer true that most database interactions are
well-defined automatic transactions. In many environments, it is well-defined (i.e. known at the
initiation of the transaction} which items may be read and written. This tends not to be true in
our software design environment. Debugging can lead to touching many modules; 8 single
change can necessitate changes to many seemingly unrelated objects. Another example is 2
hypertext network [11]: the following of links within a hypertext network, and creation of new
nodes and links is typically a dynamic process leading to a wide variety of unanticipated update
operations. There are other aspects of design which are not easily automated such as the abort
decision. If a designer has invested many hours in & particular design update, he or she may be
strongly opposed to aborting because of conflicting updates by another designer. The designers
may both be well served in this case if the system does not automatically abort or roll-back.
Thus we need synergistic interactive concurrency control schemes.

These differences between the design environment and the typical environment of a
DBMS suggest a need for alternative concurrency control schemes for the design database. In
the next section, we describe some new concurrency control schemes which we have been
exploring and contrast these with related schemes in the literature.

1.3. Interactive Concurrency Control

In this discussion we separate concurrency control policies from concurrency control
mechanisms. The mechanisms provide the underlying primitives out of which different policies,
such as pessimistic concurrency control and optimistic concurrency control, can be comstructed.
Designers then typically follow the correct policies, but do not need to be concerned with the
mechanisms. As an example, locking and timestamps are mechanisms; the protocol of only
locking objects when they are about to be changed is one particular policy that might work well
for certain groups.

Locks are mechanisms used to constrain and control access to objects. Ordinary (hard)
locks when placed on objects guarantee exclusive access. One mechanism which we analyze is
the solt lock, as implemented in our Gordion [7] object base management system. A soft lock
is  lock on an object that can be broken if another user chooses explicitly to do so. This poten-
tially allows several writers to access the same object simultaneously. The soft lock is useful in 2
cooperative environment, and can be used to attain a high degree of shared access. A record of
all of the access and locking activities of an object is kept, and can be queried to find out about
recent change to the object, or about broken locks. If the soft lock mechanism is coupled with
the notify mechanism, then designers can be immediately alerted when a lock on an object of
interest is broken. Another mechanism is the versioning mechanism which detects attempted
access o an object which is being updated. This mechanism creates another version of the
object. If this mechanism is coupled with the notify mechanism, then designers can be immedi-
ately alerted when 2 conflicting version is created.

In this paper, we investigate policies of immediate potification, and policies of delayed
notification. Our immediate notification policies assume that either soft locks or versioning is
coupled with the notification mechanism so that both parties are immediately alerted when 2
transaction attempts to access an object held by another. Then a phone call is instigated
between the two parties {perhaps with a shared window of information on their screens) and
they perform conflict resolution. They need to assess the situation and discuss whether they can
proceed simultaneously. If not, one or the other may need to wait or to do some repair work.

Our delayed potification policies assume that either soft locks or versioning is used, but
that potification of conflicts is not transmitted to the designers until a transaction terminsation is



attempted by one of the involved designers. At this time, the same phone call protocol is car
ried out. This policy represents less interruptions for designers, but it may require significantly
more repair work to attain consistency. The important point is that all of these policies invoke
the domain expertise of the designers, and attempt to assist them rather than force a solution to
the conflict upon them. In practice, this is a fruitful flexible way to resolve conflicts within a
team of cooperaling designers.

14 Related Work

As previously mentioned, we are interested in moving beyond the check-in check-out
model because there are clear cases where several designers can and should be able to work on
the same objects at the same time. Other models have been proposed by Katz[13], Bancilhon|3
], and others for design databases. We are particularly concerned with large software design
databases. Our notion of soft locks have some similarity to proposals of others such as Zdonik
[23] and Greif [10].

The bulk .of this paper is concerned with performance analysis. Many papers have
analyzed the performance of different locking mechanisms for conventional database systems
[1,5,8,12,14,15,16,18,19,21,22] but these are not suitable for the design environment. Our
model is 2 modification of the one presented for analysis by Tay [21,22] where transactions that
have acquired i locks are assumed to be either waiting, restarted, or continuing to acquire the
next lock until a fixed number of locks are acquired by the transaction which in turn designates
the end of transaction. We have extended Tay’s notions to model our immediate notification
policies and our delayed notification policies. In the next three sections, we present our model,
then our formulas and their derivation, followed by our evaluation and graphs. Finally we
present a comparative analysis of the policies mentioned above with respect to 2 more conven-
tional approach based on hard locks.

2. The Systern Model and Assumptions

In our model, we assume that a number of designers are concurrently accessing the data-
base, and that the number of designers and level of activity is constant. A designer’s activity
consists of repeatedly performing a sequence of transactions interspersed with non-transaction
time of random duration. Therefore,the underlying system model is a closed queuing network
as shown in Figure 1. Our model allows a designer to request new locks at any time during his
or her transaction, and we assume that all of the designers locks are released at the end of the
transaction.

At any time during the transaction, the model allows the designer to transition into an
““interaction state” during which transaction data processing is suspended, and conflict resolu-
tion is performed. In the immediate notification case, this transition occurs whenever the
designer {ries to write lock an object which is already locked by another designer, or another
designer tries to write lock an object already locked by this designer. In the delayed notification
case, this transition only occurs when one designer attempts to end {commit) a transaction
while holding a write lock on an object locked by another designer. In either case, when this
transition does occur, there are many possible modes of conflict resolution. We envision that it
typically consists of a telephone conversation with another designer followed by alteration of
some local data values and then waiting for the other designer to make some alterations. After-
wards, the progress of the transaction data processing can continue. Thus in our model,
deadlock and subsequent restart is avoided.



Parameters that must be supplied to the model include the distribution function for the
time between consecutive lock requests, the average conflict resolution time per object per tran-
saction {2 constant), and the probability that a transaction completes after the i-th object is
locked as & function of i. It seems reasonable (o expect a designer to try to place locks more
frequently if he holds fewer locks, and less frequently if he holds more locks. Therefore, the
distribution function for the time between two consecutive lock requests by a transaction is a
function of the number of locks a transaction holds. Given these assumptions the following
section presents our formulas and their derivation.

3. Formulas

3.1. Delayed Natification

Lets first analyze the case in which notification is not given until the end of the transac-
tion. Conflicts may occur when a transaction locks an object. In this case, the system allows the
conflicting accesses to occur and doesn’t notify any designers who are involved in the conflicts
until one of them finishes his wansaction and attempts to commit.

Fig. 2 shows the model where
N; is the stage consisting of all ransactions that are running and hold i locks.
g; is the probability that a transaction holding i locks will request an i+ Ist object.

p; is the probability that a transaction holding i objects is finishing and has conflicts with
other transactions.

W, is the stage consisting of all transactions that are finishing, hold i locks, and are resolv-
ing conflicts.

t is the throughput { number of transactions finished in 2 unit of time ).

The stage N; can be decomposed into two stages: One to resolve conflicts with finishing
transactions, and one to process all other aspects of the transaction (the underlying job). A
transaction starts at stage N, that is, holding zero locks. After processing time T, on average
it requests the first lock with probability go. Otherwise, it finishes. If it requests a new lock, the
system will grant it. It acquires the object and enters the underlying job processing sub-stage of
N,. This procedure repeats as many times as the number of objects the transaction requests.
Before the transaction finishes, at any stage except stage 0O, the system may notify the designer
that somebody is finishing a transaction and has conflict{s) with his transaction. Then the tran-
saction enters the conflict resolving sub-stage and the designer spends some amount of time to
resolve the conflicts. Then the transaction returns to the underlying job processing sub-stage
and continues the transaction. Since all transactions in the conflict resolving sub-stage of N
will come back to the underlying job processing sub-stage, it is not necessary to distinguish
these two sub-stages. The rest of this paper will not distinguish them. When a transaction is
finished at stage i, that is, it holds i objects, the system, with probability p;, may notily the
designer with whom the transaction conflicts. Then, it enters stage W; to resolve all conflicts
between them. After resolving all conflicts, the transaction finally finishes.

It is assumed that a transaction does not request more than one lock on the same object.
This is reasonable because the system notifies designers of conflicts only at the end of a transac-
tion. The system must maintain a list of locks held by each transaction and the objects on
which they are held. If a transaction requests two write locks or two read locks on the same
object, the system can ignore the second request because it doesn’t affect anything. In this
paper, it is assumed that the designers do not change locking mode in a transaction.



All the transactions are assumed to lock the object prior to access, therefore we use the
terms acquiring locks and accessing objects interchangibly.

Let

7, be the pumber of transactions in N,.

w,; be the number of finishing transactions which hold i locks and are resolving conflicts.

d be the probability that a given lock is a writelock.

T; be the average time until a transaction will request the i+ Ist lock when it holds i locks.
D be the total number of objects in the system.

&; be the average conflict resolving time /transaction /object in N; for all 1.

&, be the average conflict resolving time /transaction/object in W, for all i.

Then, given d, T;, D, &,, and s, the following shows how to analyze the average
throughput of the system, the percentage of transactions which are waiting at any time, and the
percentage of transaction time spent for conflict resolution after the system reaches steady state.

Let u; ;, be the probability that a transaction holding i locks and a transaction holding j
locks have x objects in common. Then u; ;, can be computed directly. It is the probability of
choosing j objects from D objects such that x of them are chosen from the i objects and jx
objects are chosen from D-i objects. So,

v . _C(iz)C(D-ij2)
8, 8,% C(D’J)

where Cla,b) =

al

b1{a-b)!

Since all transactions check in objects at the end of the transactions, there are not any
conflicts between any two transactions in N; and in N; for all i and j. Since all conflicts of a
finishing transaction are assumed to be resolved right after the designers are notified by the sys-
tem, there are not any conflicts between any two transactions in W, and W, for all i and j,
either. Let r; ; be the expected number of conflicting objects between a transaction, X, in N;
and a finishing transaction, Y, in W;. Since conflicts only occur when a transaction write locks
an object which is held by others, each of the r; ; conflicting objects is write locked by either X
or Y. Since d is the probability that a given lock is write lock, among the x objects locked by
both X and Y, d*x objects are write locked by X. Similarly, d*x objects are write locked by Y.
The number of objects write locked by both X and Y is d%*x. Therefore, the number of objects
which are locked by both X and Y and are write locked by either X or Y is 2d- d%*x. That is,

minli, 5]
= ﬁ: zy; ;. (2d- d?)

g==

By the Little’s formula, the throughput at stage N, is «—’;—:- Similarly, the throughput at
§
iy

T,

7 .
stage NV;_, is —7-2——1— Since g, of the
i-1

transactions will flow into N; in 2 unit of time,

7 — Tes_ 1
=gy g e
T; Ty



Similarly,

LW — 2
—t i g
Tiy Ti e

Therefore,

g

[
0 =t]]g; =1Q, (1)
i =0

i
where >0 , @ =]]g; and
=0

5 (e 1- a0 +0-00) =

§=1 j=0

For simplicity we assumed that the conflict solving does not affect the designers’ underly-
ing design work. Let

T, =T+T

Where T,! is the processing time of the underlying design work and T,-” is the conflict resolution
time between requesting the i-th and the i+ Ist locks of a transaction. 7}’ is either given or
estimated. We compute T,-" by first determining the sum over j of the expected number of
conflicts between a transaction in N with 2 transaction in W, and then multiplying it by the
average time it takes to resolve a conflict.

D
7
Ti =617 ;W5 where wy =0
s

R
T =T+ 8,7 ;w5 (2)
§=1

Note that a transaction in stage N, can not get conflicts with any transaction in N; for all j.

When a transaction has just started, it does not hold any locks. For steady state, the
throughput of stage Ny is the system throughput.

§ s e D cmemn 3
TG Tg ( }
Substitute equations (2) and (3) into (1), the number of transactions in stage N; is
Ts', 8

D
f; =n0Q;_,{-——,-=+ 7",'“"} where >0 (4)
T, '57;2 L A

The probability that an object is read locked by two transaction is (1- d)? That is, 1-
94+ d2. The probability that two transactions don’t conflict with each other when there are X



objects are locked by both transactions is { 1-2d+ d® }*. Let y;; be the probability that two
transactions hold i and j locks respectively and do not conflict with each other. Then y; ; can be
computed directly as follows:

wminld, g 2
¥i; = R {1-2d+d )’u,»“,-’, {5)
Then, p, is as follows:
D 2
2 =1~}1y.~,,~ ! (6)

Substitute (4) into (6},

7 e, D
%808, _J.+ i
0 )[T'ﬁ ; ’},:"1]

Y

D
pe =1-T1 v ; (7)
=i

Then, consider the throughput in stage W,;. That is, the throughput of resolving conflicts.

Let R; be the average conflict resolution time in stage W,. Then, by Little’s formula, the
w;
throughput in stage W, is -R—‘—
i

From Fig.2, it is easy to see that

w; . i 1
7;‘;"‘"5:7( - g:)p; (8)
Substitute (1} and (3) into (8],

wy

& =1Q;_1(1- ¢;) p;

g
=}?Qf~1(1“ 9:) e

So,
%g
w; —““FQ;-:(I’ ;) pi R (9)
0
Similar with T}, R; is
o)
R; =83 75n; (10)



Substitute (4} into (10},
R —522"; !nOQj 1 Erglwé (11)

Note that & transaction in W; will not have conflicts with any transactions in W; for all j.
Substitute (11} into (9],

wy == an~}pu(1 g 522"; 1Q; I[T' “\‘812 !w!]

g=1

Change summastion base, then

D D
w, == T Q; lps 1 93)52 [Z 'Qj’1T5+261LE'£,"Q5~1'1,5)“}’}
0 = U=

=f; (a,--%‘gcjw,'] (12)

where

2

7o
Ji ==z Qi1pi(1- g}, (13)
0
D
a; =3r;Qi T (14)
=

D
¢ =61L2ﬁ,s'Q:-x’?,:‘] (15)
=]

To solve w; in terms of f;, a;, and c;, we have

D w; w:
écj-w;- =7 a; =—-—-~f‘t a; (18)
i i 3
w.
w; z[-}“— aﬁ—n,}f (17)
Substitute {17) into (16}, we have
D (w
g":‘{?’ “”Laé) i= 7 Ec.vf:‘!"?—%f:f:{ﬁ: 8;) =——-¢;
: H B
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So,

w; :f,' B (18}

Equations (5), (7}, (13), (14), (15), and (18}, form 2D equations with 2D+ 1 variables,
p;, w;, and ng. From (5} and (7), p; are strictly increasing functions of ng and w; for all j
When w; are 0 for all j,
7
wof)

When w,; sre infinite for all j, p; are 1 for all i. From (13}, (14}, (15), and (18}, w; are
strictly increasing functions of ny and p; for all j. When p; are 0 for all j, w; are 0 for all i
When p; are 1 for all j,

D
o =1-J1yi;
g

D #
Zc f:'(“:’ a;)+a;

w ""ft D
1-3¢f;
e

(19)

where

2
i

g
Ji == Qial1-gi)e;
0

w; are not infinite for all i. So, given an ng, there is a unique solution. We can compute w; and
p; for all i iteratively. First let all p; be 1 and substitute them into (13). From (13}, (14}, (15),
and (18), w; can be computed for all i. The computed w; are substituted into (7). From (5) and
(7), new p; are computed for all . The new p; are substituted into (13). This procedure repeats
until the solution is obtained. Substitute ny and all w; into (4}, The summation of w; for
0<i<=D, W, is the average number of transactions in the waiting stages. The summation of
n; for 0<-1<-——D and W is the number of transa/cmons in the system, N. The percentage of
waiting transactions is W/N. Substitute w; into (2), T for 0<i<=D can be obtained. Substi-
tute n; into {10), R; can be obtained. Let R be the summation of T times 7 and R; times w;
for all i. Then, the quotient that R is divided by the summation of R and T times n; for all i is
the average percentage of time that a designer spends for conflict resolving in & transaction.
Given another np, another set of solution can be obtained. So, graphs of the performance
(throughput) can be drawn as a function of number of transactions in the system, N, or other
parameters.
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3.2, Immediate Notification

This model is the same as the previous model except that the system will notily the
designers of conflicts as soon as the conflicts occur instead of postponing notification until a
transaction finishes. Since it is assumed that 2 transaction requests locks one by one, when a
transaction requests a new lock, only the new lock may conflict with others. Also, there can be
at most one conflicting object between any two transactions at a given time.

Fig. 3 shows the model. All parameters in Fig. 3 have similar meaning to those in Fig. 2.
W, are stages in which transactions are resolving conflicts when they request the i-th lock and
conflict with other transactions. p; sre the probabilities that a transaction will conflict with other
transactions when it requests the i-th lock. The internal composition of N; is the same as in the
previous model.

Since the system grants all requests, if a transaction in N; requests a new lock and
conflicts with others, the system will grant the request and the transaction will enter W, to
resolve the conflicts. A transaction starts at stage N, that is, holding zero locks. After pro-
cessing time T,, on average, it requests the first lock with probability g5 Otherwise, it finishes.
If it requests a2 new lock, which it does with probability p;, the system will notify the designer
of the transaction with which his transaction conflicts. Then his transaclion enters wailing stage
W, and spends some amount of time to resolve the conflicts. Then it enters stage V. If the
transaction does not conflict with others, the system will grant the lock immediately and the
transaction enters stage N,. This procedure repeats as many times as the number of objects the
transaction requests. Then, the transaction finishes.

Similar to the previous model, the database needs to record the locks held by each tran-
saction and the objects on which they are held. We again require that each object can be locked
at most once by a transaction. The maximum pnumber of locks 2 transaction can request is the
number of objects in the system.

Let n;, w;, d, T;, D, &,, 85, u; ;, be the same variables as the previous model. Recall that
the probability that x objects are locked by two transactions holding i and j locks respectively is
as follows: '

. _Cli,z)C(D-i,5-2
i C(D,5)

U

Since the conflicts are assumed to be resolved right after the designers are notified, there
is at most one conflicting lock between any two transactions at any time. But, a transaction may
conflict with several transactions when it requests a new lock. Recall that the probability that
two transactions conflict on one object is 2d- d%. The probability that a transaction holding j
objects requests 2 lock on an object which is locked by a transaction holding i objects is the pro-
bability of choosing one object from the D-j objects it has not locked such that the choice is one
of the objects held by the other transaction. Since there are only i-x objects that can be chosen

if x denotes the number of objects held by both transactions, the probabilty is fD- 21"
be the probability that a transaction holding i objects gets conflict due to that a transaction hold-
ing j objects requests a new lock. Then,

Let m; ;

minli- 1,4 o
m; ;= 123 % j.s %{2d~ dg}

g==l)
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§

(2d- d?)

\vl

I
3

So, when & transaction requests a new lock, the probability that it conflicts with other
transactions is dependent on how many locks are held by other transactions. It is independent
on how many locks are held by the requesting transaction.

Define R, as before. Since a transaction in W; may have conflicts with transactions in IV;
and in W, for some j and k and it will not have conflicts with itself, the average conflict resolu-
tion time of a transaction in W, is

D
R; ==622m,»( n;+w; )~ som; {20)
fo=1

By the Little’s formula, similar with the previous model, the throughput at stage N is
n. ‘." 1
—7-:— =t J]e; =tQi,
b §=0
na‘th:'-l:{;' (21)

where Qs H937 EITIIQ})(I” 95)+(1” QD) =1; and gp==

§w=d (§==0

Again, assume that the conflict resolving does not affect the designers’ underlying design
work. Then

T, =T+T 0<i<D

Since any two transactions in any stages N; and N; will not conflict with each other for all
i and j, a transaction in N; can conflict only with transactxons in W; for some j. “’hen a transac-
tion in W, is resolving conflicts, it is holding i locks. So, the expected value of T- is

D
T =sym S w; 1<i<D,Tp =
Je=1
, D
T; =Ti+em; 3, w; 1<¢<D {22}
j=1

When a transaction has just started, it does not hold any objects. For steady state, the
throughput of stage N is the system throughput.
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By

7o
§ = e 2
Ty Ty (23)

Substitute equations (22) and (23) into {21), the number of transactions in stage N; is

g y D
g ="'T'Q,‘_;i7;'+81m;2w}'] (24)
Ty =

When s transaction in N; requests a new lock, the lock may be held by some transactions
in N; and in W, for some j and k. So, & transaction in W; may have conflicts with some tran-
sactions in NV or in W, . But, it will not have conflicts with itself. This is different from the
previous model So, p; is as follows:

o =1- 11 (1- m5) " /(1= m) 1<i<D (25)

=1
Substitute {24) into (25}, we get

2
o ¢
u;+—-,—Qz_ 1T +eym, ey

p=1-T1(1-m) [ = ]/<1—m,~} (26)

g=i

Then, consider the throughput in stage W,. That is, the throughput of resolving conflicts.
. w.
By Little’s formula, the throughput in stage W, is —_

R;
From Fig.3, it’s easy to see that
Wy i1 g o 1<i<D
T T - 1P 5 1% >t
R, T, Gi- 155 “Y'Tﬂr 195
fig .
w; = — Qi 1p: R; 1<¢<D (27)
T,
Substitute {24) into (20}, we have
D ng , D
R; =—"822mjlwl'+“‘er_1[:’}4—8;’71,'2!0;]}’ 8o 1<:<DP (28)
o TG fa=l

Substitute (28) into (27}, we have

7y 2 fip ? 2
w; = 750{’ 1;3'-52[1‘2!71:' iw;“‘}"?é"g)‘ 1{}’}+91mjzwi)}” ??'6,}

Sl
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Separate the single and the nested summation loops and change the summation bases of
the nesied summation loop, we have

g D g 7 D fip D 2
w; = —7 Qi 10:82 [ij"’r'Q;‘—i'f}* mi)+2{81—r{‘2ﬂ11 Q:-z)+m,']u’;'
7o T, To i

F=1 D 5=1
D
=‘:f" [a;*%Zc,-w:‘) IgisD (29)
§e=d
where
o
fi =7TQ;-1P;82 (30)
o
g D ¢
6 =Y mQp T m (31)
0 §=1
g D 2 .
¢ zsl——rzml Q[.. ,+m,- (32)
Toim

As in the previous section, w; can be solved in terms of f;, g;, and ¢;.

w; =f; 5 (33)

Equation {33) bas the same format as equation (18). But, f;, @;, and ¢; are different for
the two models.

As in the previous section, equations (26), (30), (31), (32), and (33}, form 2D equa.tiohs
with 2D+ 1 variables, p;, w;, and n,. From (28), p; are strictly increasing functions of ny and
w; for all j. When w; are 0 for all j,

*0 s

D - %17

44 =1"H(1* m;) °
=i

0<p;<1 for all i>0 if ny>0. When w; are infinite for all j, p; are 1 for all 1.

From (30), (31), (32), and (33), w; are strictly increasing functions of ng and p; for all j.
When p; are 0 for all j, w; are 0 for all i. When p; are 1 for all j,

D
chf;( e a;)+a;

5 g==i

W, = J¢ D
¢
1- 3565

Fu

where
H na
fs "*‘*“’“?"Qeéz
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w; are not infinite for all i. So, given an ng, there is a unique solution. Similar with the previous
section, all the performance functions can be solved in terms of the number of transactions in
the system iteratively.

4. The Analytical Results

There are many parameters in the performance equations. Given our STP experience and
intuition about the design environment, we have selected a range of typical parameter values,
and numerically evaluated our formulas for throughput and conflict resolution time. We have
also compared our results with those published in the paper of Tay [21].

The number of objects in the system is assumed to be 2000. Assume that the number of
objects a transaction will request is the same for all transactions. The underlying job processing
time at each stage is assumed to be constant, 1 unit of time. The conflict resolution time is
measured as percentage of the underlying job processing time at each stage.

Fig. 4 to Fig. 9 are the analytical result of the first model, in which the system notifies the
designers of conflicts at the end of the transactions. Fig. 10 to Fig. 15 are those of the second
model, in which the system notifies the designers as soon as a conflict occurs.

Fig. 4 and Fig. 10 show the throughput, number of transactions finished per unit of time,
in terms of the number of transactions in the system. Three curves represent the throughput
when the conflict resolution time of each conflict are 0.19% 1%, and 10% of the underlying job
processing time in each stage respectively while the number of objects all transactions will
request is assumed to be 8 and the probability that 2 requested object is updated is 10% Obvi-
ously the system will be saturated if the number of transactions in the system is large enough.
When the conflict resolution time is small compared with the underlying job processing time,
the saturation point will occur when the number of transactions in the system is huge. When
the conflict resolution time is large compared with the underlying job processing time, say 1095,
the saturation point will occur when the number of transactions in the system is small. As
shown in Fig. 7 and Fig. 13, the percentage of time spent on conflict resolution reveals a loga-
rithmic behavior as a function of number of transactions in the system. Fig. 7 and Fig. also
show that, when the number of transactions in the system is small, the percentage of time
spent on conflict resolution is exponential as a function of conflict resolution time (s, and s).

Fig. 5 and Fig. 11 show the throughput for different values for the probability that an
object access is an update while the conflict resolution time is 1% of the underlying job process-
ing time. They show that the higher d is, the smaller the number of transactions needed to
saturate the system There is a limitation throughput for each d. The corresponding percentages
of time spent on conflict resolution are shown in Fig. 8 and Fig. 14.

Fig. 6 and Fig. 12 show the throughput for different number of objects requested. Since
the underlying job processing time at each stage is one unit of time, the transactions requesting
more objects will spend more time on the underlying job. However, if the number of transac-
tions in the system of lower j is doubled, the performance is still much better than the perfor-
mance when j is doubled because the system with higher j will get saturated much easier than
the system with lower j. The corresponding percentages of time spent on conflict resolution are
shown in Fig. 9 and Fig. 15.

The results are compared with the conventional approach modeled by Tay [21]. Since
Tay’s paper has a slightly different model, the comparison needs to be explained. Fig. 16 shows
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the comparison. Locks in the Tay model are analogous to objects {which are shared rather than
locked) in our model. The parameters are chosen to be the same. The solid lines are drawn by
Tay [21]. The dashed lines are added and represent the performance of the models we are
analyzing.

In Tay’s model, the saturation occurs when the number of transactions in the system is
around 60. In both models of this paper, it is far below the saturation point. The waiting time,
R, in Tay’s model is the time to wait for conflict resolution. Transactions that are holding locks
are not affected by any other transactions. But, for the models in this paper, the transactions
holding objects may be interrupted by other transactions at any time. So, the conflict resolution
time should be doubled to be compared with Tay’s waiting time. However, even if it is dou-
bled, the conflict resolution time is still negligible.

5. Summary and Concdlusions

The emphasis in conventional approach to concurrecy control is on consistency which is
accomplished by locking out (or serializing) the transactions for shared objects. The models
presented in this paper differs from the conventional approach in the sense that they do not
enforce serialization of transactions, and the basis of consistency is notification and conflict
resolution. The choice between the two approaches depends on the application environment.
However, serializability will induce nested waiting. In a design environment, where the transac-
tions are of long duration, nested waiting will have 2 significant negative effect upon the perfor-
mance of the database sysiem. The performance of the models presented in this paper is better
than the conventional approach modeled by Tay [21]. Primarily, the reason is the avoidance of
nested waiting for the gueries of the waiting transactions. Recall that the figures showing the
percentage of time spent on conflict resolution indicate that when the number of transactions in
the system increases, the system more rapidly reaches the point where each transaction will
spend substantial amount of time for conflict resolution.

Incorporating the human element in the conflict resolution loop is a2 key factor to
enhanced concurrency. But this factor can also degrade the consistency level of the database
since people may make errors. This implies that these mechanisms should be used in conjunc-
tion with consistency checking software which is interactive, intelligent, and user friendly. The
system can ask questions of the designers, and may lead them through a resolution protocol
which the designers can ignore or alter if necessary. Thus the combination of human resolution
capability coupled with automated assistance for efficiency and enhanced consistency yields
promise of an enhanced software environment. This environment will conceivably be a shared
data environment with sufficient flexibility to allow software designers to have efficient access to
large volumes of data and also have their needed high degree of simultaneous access.
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