A STUDY AND ANALYSIS OF PERFORMANCE
OF DISTRIBUTED SIMULATION

M. Seetha Lakshmi
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-32 August 1987

Abstract

This report describes the experimental study done on the performance of a distributed algorithm,
proposed by Chandy and Misra for simulating networks of servers and queues.

ACKNOWLEDGEMENTS

This reaearch was sponsored by the National Science
Foundation through the grant number MCS77-09812 to the
University of Texas at Austin. The author would 1ike ToO
+hank Professors Je. Misra and K.M Chandy Zor suggesting
this area of research and for the many hours spent 1n
providing valuable guidance during the research and writing
process.

April, 1979

CHAPFTER 1

INTRCDUCTION

This report describes the experimental study done ON
the performance of a distributed algorithm, proposed by
Chandy and Misralll, for simulating networks of servers and
gueues. The algorithm has some unique features which

gistinguish it from the conventional event driven simulation

algorithms. The following sections priefly give the
motivation for distibuted programming and distributed
simulation. A detailed description of the distributed

simulation algorithm appears in a cubsequent chapter.

Tools for predicting the performance of systems are
very valuable. analytic modelling and simulation are the
most widely used tools for this purpose. Simple systems cC&n
be effectively modelled using analytic methods; but as the
systems' complexity increases they tend to be mathematically
intractable and defy solutions by analytic methods. Under
cuch circumstances simulation technigues are resorted to.
Systems can be modelled at any ljevel of detail using
simulation technigues. Many real systems can be igentified
as a network of servers and gueues. simulation of tne
physical system results in cimulating the activities of he
real system in the gqueueing network. One major problem with

1
e

cimulation technigues 1is to determine how to terminate the
simulation early -enough and yet obtain some performance
metric with desired confidence. It is necessary to continue
the simulation for a2 long time in order that the effect of
the initial conditions disappears and the system reaches &
steady state. This imposes heavy computation time
reguirement. Another reason for heavy computation
requirement can be attributed to tne sequential nature of
+the conventional simulation algorithms. The conventional
(centralized) event driven simulation algorithm maintains a
clock and a single 1list of events which represent the
ensuing activity at each server/gqueue. The events are
ordered in chronological order according to their time of
occurence. Processing of one event may generate some new
events which have to be inserted into the event list. This
results in a large fraction of the time being spent in
manipulating the event list. Study of complex systems is
often limited by the computational reguirements of the
simulation algorithms. Hence it is important to decrease

the computation time of the simulation algorithms.

1.1 DISTRIBUTED PROGRAMMING

One obvious way to achieve speed improvement is to
develop parallel algorithms.The proliferation of cheap and

powarful microprocessors and the advances made in the £field

of computer networks provide an attractive solution to the
implementation of parallel algorithms. The cost
effectiveness of processors in a network environment can be

fully exploited if we run distributed programs on them.

pDistributed programs constitute a special class of
parallel programs. A distributed program is a collection of
processes which work on a common problem by communicating
with each other only through messages and without sharing
any global variables. There 1s no central Pprocess]

control and synchronize other processes.

1.2 DISTRIBUTED SIMULATION

in many gueueing systems, gifferent servers wOoTrk

simultaneously. This inherent parallelism can pe exploited
by developing distributed algorichms for simulation. The
distributed solution tO giscrete event simulation, in

addition toO increasing the execution speed, also provides &
one to 0OnNe correspondence between the real system and the
simulator. 1+ will be moOre cost effective than the
conventional algorithm designed for uniprocessors, if the
memory requirements and the overhead due tO interprocessor

communication is minimized.

The goal of the gistributed cimulation is tO

partition the system beingd cimulated into relatively

e T

independent subsystems which communicate with each other in
2 simple manner by passing messages, and b) simulate ezch
sybsystem on a different processor. A natural way of doing
this, for simulating & gqueueing system, is to allow each
processor to model a single server and the associated gueue.
The processors are interconnected according to the topology

of the system being simulated.

Jobs enter the system from a source at arbitrary
time intervals, get processed by some servers and then move
to some neighbouring servers. Eventually a job leaves the
system by getting absorbed by the sink. The arrival and
departure of a job to the server are represented by messages
of the form <t,j>, in the simulator, where j is a job name
and t is a time. If the ith processor sends a message <t,J>
to the (i+l)th processor at.any time during the simulztion,
it means that, the job j leaves the server 1 and arrives at
server (i+1) in the real system at time t. All processors
repeat the following cycle: wait for a message on all cthe
input 1lines; simulate the servicing for <that job with
earliest arrival time and output a message tO each processor
that is directly connected to 1it. In each <cycle the
processor also collects enough information to compute the

statistics related to the server it models.

1.3 RELATED WORK

The field of distributed simulation is relatively
new. A few distributed simulation algorithms nave appeared

in the literature. They are yet to be implemented on actual

distributed computer systems.

The simulation algorithm whose performance is

studied in this report 1S part of the research done by

chandy and Misra [1,2,3]1. The algorithm has the following

properties: 1)y it is pased upon 2 collection of identical
asynchronous logical processes which have no shared
variables and which communicate only by rransmitting

messages, 2) there 1s no global controlling process to
synchronize these processes; and 3) the system is deadlock

free. proof of correctness ang absence of deadlock is given

in [3].

peacock et al [91 define gifferent methods for
simulating gueueing systems in 2 network of microprocessors.

There 1S, nowever, no jata on the per formance of theS

Holmes [7] has designed parallel algorithms for LwO
specific applications, namely discrete event simulation of

feeg forward networks and graph problems. He suggests &

<

s

metho for allocating processors to servers, in order that

re

&t

the processors are optimally utilized. These zlgorithms

yet to be implemented.

1.4 PERFCRMANCE OF DISTRIBUTED SIMULATION

We can obtain accurate performance figures for the
distributed simulation algorithm by implementing it on a
network of processors. However, in the absence of such =a
facility at the University of Texas, Austin, the algorithm
is simulated on a uniprocessor (DEC1l8) and 1its performance
is evaluated. This approach introduces two levels of
simulation. At the lower level there 1is a <collection of
processes Simulating a gqueueing system. At the upper level
there is a simulator which simulates the effect of the lower

level system by simulating a collection of cooperating

concurrent processes. The lower level simulator is
concerned with predicting the performance (thruput,
utilization, gqueue length distribution, etc.) of the

gueueing system while the upper level simulator is concerned
with the performance of the processes. For instance, 1if
each process 1s modelled on a microprocessor, the upper
level simulator monitors the performance of the processors,
such as fraction of time all processors are busy, the toteal

number of messages transmitted by the processors, etc.

1.5 PREVIEW OF CHAPTERS

Chapter 2 provides a detailed description of the
gistributed simulation algorithm. It discusses the three
rypes of processes of which the algorithm is comprised and
explains how these processes together simulate any arbitrary
gueueing network model. Chapter 3 explains how the
distributed simulation algorithm is implemented/simulated on
a uniprocessor. In particular it describes the two level
simulation, mentioned in section 1.4, in greater detail. It
also mentions some properties of implementation. The
results of the experimentsv and their analysis appear in
Chapter 4. A summary and conclusion of this report can also

pe found in this chapter.

CHAPTER 2

DISTRIBUTED SIMULATION

2.1 INTRODUCTION

The distributed simulation algorithm is described in
detail, 1in this chapter. The algorithm can be used to
simulate any arbitrary gqueueing network. It is composed of
a collection of subsystems known as processes. The

processes communicate with each other only by sending and

receiving messages. 211 messages are of the form <t,n>,
where +t denotes a time and n the number of jobs
leaving/arriving at t. The transmission time of messages

between processes is assumed to be negligible compared to
the processing time of the messages. There are three
Gifferent types of processes -delay, fork and merge
processes.The delay process simulates a single server and
the associated queue, while the fork and merge processes
route the Jjobs +to different servers according to the

ropology of the physical system being simulated.

The subseguent sections describe the functicn of
each ©process, the interconnection, and the communication
protocols. The gueueing system being modelled i3z
represented by a directed graph consisting of edges and

8

nodes. The nodes correspond tO servers and the edges

correspond O the flow of Jobs. The processes in the
simulator simulate the nodes. Hence the terms "process” and
"node® are interchangably used in the following discussion.

To avoid confusion between the system to be simulated and
the system (distributed simulation algorithm) which performs
the simulation, the former will be called the physical/real

system and the latter will be called the simulator.

2.2 SOME NOTATICNS FOR DESCRIBING DISTRIBUTED PROGRAMS

We need some special notations for describing
certain operations per formed by distributed programse. The
processes which comprise the distributed program communicate
only by sending and receiving messages. There are, however,
no implicit puffers for message transmission; nor are there
any global variables. Two commands SEND and RECEIVE are
introduced here. These are similar to the input-output
commands proposed by Hoare (3] for communicating sequential
processenghe SEND command takes as arguments the messSage

and an identification of the process tO which the message

te}

must be sent. The RECEIVE command takes as argumencts an
identification of the process from which message is to Dbe
received and a set of variables which get the values of tne

L b3

message -

For example, a process i wishing to send a message
to process j will 1issue the output command SEND (3,
<message>); and process 5 wishing to receive a message from
process i will issue the input command RECEIVE (i,
<variables>). All messages in our simulator are of the form
<t,n> where t 1is a non-negative real number and n is a
non-negative integer. A message <t,n> with n>8 indicates
that n number of real Jjobs leave/arrive at time t. A
message <t,n> with n=0 implies the absence of any real Jjob
until time t. The message <t,0> is said to be concerned
with NULL jobs and hence are called NULL messages. As a
result of the message transmission, variables in the process
executing the input command receive the corresponding values
in the message. Execution of the input command by process J

will be completed only if process 1 issues the corresponding

output command, and vice versa.

another operation | that is often useful in
distributed programming 1is a parallel command. A parallel
command consists of a set of commands which may be execut=d
in any arbitrary order (or even simultaneously, when
possible) . in our distributed simulation programs we
restrict the constituents of a parallel command to be only

input commands or only output commands.

For example, the parallel command issued by proc

h

o
pheiieal

k which wishes to input from two other processes i and J i3

11

jenoted bY
[RECEIVE (i,<variab1es>} P RECEEVE(j,<variab1es>)}
The Pprogrammer should guarantee that the same variables do
not appear in both the input commands. The parallel commana
jssued by process i wishing to output to two other Processes
3 and k is denoted by
[SEND(j,(msg)) Pl SEND (k,<msg>) 1.
The execution of the parallel command will be completed only

when all the constituent commands are completed.

2.3 DELAY PROCESS

A delay Process models 2 single server in the
physical system. 1t has an input 1ine and an output line
through which all communications take place. The schematic

of a delay process is shown in fig 2.3.1.

E DELAY k
N CTIN, N D ‘ NODE S LTouT,Hoy ouTl

fig 2.3.1

The delay process maintains certain local variables,

TIN T time of arrival of the last job to this node.

(¢ value of the last message received) .

v s T R SR T JIUNPT—.

ey

[
[y

TOUT ~ time of departure of the last job from this node
(t-value of the last message output) .

N ~ number of jobs which arrived at time TIN
(n-value of the last message received) .

J ~ total no. of real jobs yet to be processed by this
node.

CLOCK ~ the earliest time at which a real job will be
processed, when there 1is a real job waiting to

be processed.

The delay process waits for a message oOn its input
line. A message of the form <TIN,N> indicates that N jobs
(N>@) arrive at this server at time TIN in the physical
system. On receiving a message the delay node simulates the
servicing of each job and outputs a message to the process
that is connected to 1its output line. Occasionally NULL
jobs (messages of the form <t,0>) arrive at the delay nocde.
These do not correspond to any real job. A message of tne
form <t,8> in the simulator implies the absence of any JobD
until time t at the corresponding server in the real system.
The messages concerning NULL jobs are necessary for the

avoidance of deadlock in the simulator.

The delay node on receiving a tuple <TIN,N> computes
the output tuple <TCUT,No> as follows:

if N>8 then TCUT

max (TIN,TOUT) + SERVICE_TIME ; No = 1

[

if N=g then TOUT TIN + SERVICE TIME ; No = 7

=
i

wWhen N=0, SERVICETIME represents the service time of the

next real Jjob.

The actual algorithm for the delay Pprocess appears
pelowW. in this algorithm i is the name of the process that
is connected toO the input line and k is the mname of the
process that 1is connected to the output 1line of the delay
process 3.

ALGORITHM 2.3.1
PROCESS]
var
TIN, TOUT, CLOCK : real;
J, N : integer;
(* all var iables are initialized toO g *)
repeat
if TINKTCUT then
(* next event 1s an arrival *)
begin
(* input message *)
Lz RECEEVE(i&TIN, N> s
Je= J+N;
(* advance CLOCK if
possible *)
if (J=N) and (N>8) then
CLOCK:= max (CLOCK, TIN):

end

14

else if (TIN>=TOUT) and (J>0) then
(* next event is a departure
of a real job *)

begin
(* prepare message *)
TOUT:= CLOCK+SERVICE TIME;
CLOCK:=TOUT;
(* output message *)

LLl: SEND(k,<TOUT,1>); Tz T~

SERVICE _TimE := NEXT CSERVICE_TIMED]

if (J=N) and (N>@) then
CLOCK:= max (CLOCK,TIN);
~end
else if (TIN>=TOUT) and (J=0) then

(* no real job *)

begin
(* prepare NULL message *)
TOUT :=TIN+SERVICE TIME;
(* output NULL message *)

LL2: SEND (kK ,<TOUT,8>);

ena

forever.

rs long as TINCKTOUT, the delay process keers
receiving messages and maintains a count of number of jobs.
Whenever TIN>=TCUT and there are real jobs to be processed

(ie,, J>3), then a message corresponding to a real job is

15

output; i1f J=0 then & message of the form (t,8),

corresponding to & NULL job is output.

The delay process cshould also compute the statistics
such as thruput,mean gueue length, mean wait time etc. of
the server it models. This is not chown in algorithm 2.3.1,
since we are only interested in the performance of the
distributed gsimulation algorithm. However the method
proposed by Chandy([2] can bDbe adopted for computing gqueue

statistics.

5.4 FORK PROCESS

A fork process has a single input line and two
output lines through which incoming messages are routed.
Schematically a fork node is represented as in fig 2.4.1.

There 1s no processing

Feeem T, R

> OUT !
] §
;j/ ‘
- FORK!
N1 LTLND ’be?q
H

Iy ouT2
fig 2.4.1
done at this node. That is, the arrival time and the

departure time of a job arriving at the fork node are the
same . The output path taken by a job arriving at the forx
node depends on the branching probabilities of the physical

system being simulated.

16

The function of the fork process is captured in the
following algorithm where i is the identity of the process
from which the fork process can receive messages; k and m
are the processes to which the fork process can send
messages.

ALGORITHM 2.4.1

PROCESS j ::

repeat

(* input message *)
L: RECEIVE (i ,<TIN,N>);

(* determine the number of jobs going to

each output line *).

compute R a random number, @<=R<=N;

(* output messages to processes k and m *)
LL: [SEND(k,<TIN,R>) || SEND(m,<TIN,N-R>)];

forever.

n

The fork process first waits for a message on 1its
input line. When a message arrives, it determines the
number of jobs going to each output line and then outputs on
both its output lines simultaneously by issuing a parallel
command. Note that, in the event that all the jobs that
arrive at an instant take the same output path, the fork

process sends out a NULL job along the other output line.

This is to inform the process connected to the latter line

PR

17

rhat no real job can be expected on that 1line until the
specified time. When a NULL job arrives at a fork node, it

sends out a NULL job on poth the output lines.

2.5 MERGE PROCESS

A merge Pprocess receives input on two 1lines and
sends output on & single line as shown in fig 2.5.1. No
processing iz done on the jobs that arrive at this node.
However, the merge process orders +the messages in
chronological order of their t-values pefore sending them
out . This ensures that the sequence of messages leaving a
merge node matches the chronological order of Jjobs leaving

the corresponding merge node 1in the physical system.

Ind CTING, N1

¢
| :
|

1Nz LTINZ,N2Y === ~-~]
fig 2.5.1

{n the algorithm 2.5.1, for merge process, i and K
are the identities of the processes from which the merge
node can receive messages. /m’is the identity of the process

to which the merge node can send messages.

The local variables used by the merge process are:

TIN1 ~ t-value of the last message on input line 1.

TIN2 ~ t-value of the last message on input line 2.
N1l ~ number of jobs arriving at TINl from line 1.
N2 ~ number of jobs arriving at TIN2Z from line 2.

ALGORITHM 2.5.1
PROCESS 3 ::
Ll: (RECEIVE(i,<TIN1,N1>) || RECEIVE(k,<TINZ,N2>)];
repeat |
if TIN1<TINZ2 then LLl: SEND(1,<TIN1,N1>)};
L2: RECEIVE(i,<TIN1,N1>);
else if TIN1>TINZ2 then LL2: SEND(1,<TINZ2,N2>);
L3: RECEIVE (k,<TIN2,N2>);
else
if TIN1=TIN2 then LL3: SEND(1,<TINI,N1+N2>);
L4: [RECEIVE(i,<TIN1,N1>)
|| RECEIVE(k,<TIN2,N2>) I;

forever.

The merge process first waits for messages oOn botn
its input lines. On receiving the twO messages it compares
their t-values and outputs the messajge witn the smallest
t=value. A message appearing on an input line will be
output only when its t-value is 1less than that of «the
message arriving on the other input line. This is important

for the correct operation of tne simulator, because 1t 1is

|

13

possible for many consecutive messages appearing on oOne line

to have t-values less than that of the message appearing on

the other 1ine. When the
input lines are same then a
jg output and the process

1ines by issuing a parallel

2.6 INTERCONNECTIONS

The interconnection

by the topology of the

t-values of the messages on both
message of the form <TIN1,N1+N2>
waits for messages On both input

command .

of the processes is determined

network being simulated. For

example, the gueueing network shown in fig 2.6.la is

represented by a collection of delay, fork and merges

processes which are interconnected as in fig 2.6.1b.

"

20

Each server/queue in the physical system 1s modelled
py a delay process. When jobs from one server go directly
to only one other server then the <corresponding delay
processes are interconnected. But when a server feeds to
more than one other server (eg.,server 1 in fig 2.6.1la) fork
processes are introduced. Merge processes are introduced
when more than one server feed to a single server. The
interconnection among processes indicate the direction of

message flow.

2.7 COMMUNICATION PROTOCOLS

A distributed program is a collection of processes
which work on a common problem by communicating with each
other only through messages. Since there is no global
variables nor &a control program, in order to maintain
synchronization among the processes we have to establish a

set of communication protocols.

In our simulator communication occurs whenever

1) one process names another in a RECEIVE command,
as a source of input 2) that other process names the first
as destination for output in a SEND command and 3) the
target variables of the input command RECEIVE match the

value of the message in the output command SEND.

21

The effect of the SEND and RECEIVE command pair is

€0 assign the value of the message in the output command to

the variables in the input command.

1f the above three requirements are not satisfied
then oOne 0f the two commands will wait for the other. We
call a2 process to be ‘'‘starved’' if it is waiting for the
completion of an input Qperation; 1f it is waiting for rhe
completion of an output operation it is said to be

tplocked'.

When a process issues a parallel command it will Dbe
allowed to proceed only when all the outstanding constituent
commands are completed. The order in which the constituent
commands are completed is of no concern; but the completion
of individual commands is subject tO the three conditions

mentioned in the last paragraph.

For example, the ihplementation of the parallel
command
{ RECEIVE(i,<variables>) . RECEIVE(R,(variables>) 1
appear ing in the merge process will allow the merge Pprocess
to continue only after both processes i and &k have issued

the output command SEND (j ,<message>) -

The interpretation of these protocols will slightly
vary when W€ introduce buffers on the edges connecting the

processes. Thie is explained in t+he next section.

2.3 BUFFERS

1t is readily seen that the work done by the fork
and merge Processes is much less compared to the work done
by a delay process. Hence when processes are interconnected
to simulate a network,the fraction of time spent by fork and
merge processes in waiting for the completion of
input/output commands will be more than that of delay
processes. also depending on the branching probabilities
more number of Jjobs may flow into one path than another.
This may cause pProcesses in one path to be blocked wnile
those in another path will be starved -- though only

temporarily. This may result in poor performance.

In order to keep as many Pprocesses simultaneously
busy as possible, we may introduce buffers on edges. The
number of buffers to be provided in each edge will have 1O
be tuned to an optimal value. Increasing the buffer size
beyond a certain value may not produce any appreciable

improvement in performance.

The communication protocols will now have to Dbe
slightly modified. When puffers are introduced the
processes no longer communicate directly, but through the
buffers. Each proceés has to know the identity of the
buffer pool from/to which it can receive/send messages.

Thus a process j wishing to input from process i will now

JPT———

23
P
Bk
P PROCESS
B . BuFfFEFR
fig 2.8.1
have to address the buffer pool Bij on the edge 1iJ. The

interconnection of processes through the puffers 1is
schematically shown in fig 5.8.1., The process i will starve
only if all the buffers in the pool Bij are empty . Likewise
process j wishing to output messages to process K will send
the messages to the buffer pool BjK. process 3 will be
blocked only if all the buffers in Bik are already full.
puffer management and synchronization in this case are
similar tO those of the classical pzoducer/consumer
environment. proven solutions are readily available. Note
that buffers can also be introduced as processes; in that

case the same protocols apply-

2.9 THE SIMULATOR

1n the light of the above discussion, if a network
of gueues has to be simulated, we first have tO identify the
gueueing network as a collection of delay, fork and merge
nodes and establish the interconnections. Then we have tO

introduce a source which will simulate tne arrival of jobs

24

at a rate representative of the physical system. A sink
will have to be introduced as a final node in the network to
absorb the jobs which leave the system. The next step is to
assign these processes to different processors. More than
one process may be simulated by a single processor depending
on how busy we want the processor to be and also on the
available memory. Once the simulation starts it continues
until many jobs leave the system Or statistics witn the
desired degree of confidence are collected. It is also
possible toO obtain statistics at any intermediate time. In
2 conventional simulation this is done by halting the
simulation temporarily when the clock reaches a certain
value and reporting all the gueue statistics. But in tne
case of distributed simulation there is no global clock and
the local <clocks of the processes are not synchronized.
Hence it is not possible to nalt the simulation at a random
time and obtain any meaningful statistics. The only way tO
get gueue statistics at any arbitrary time is to stop each
delay process individually when its local clock crosses tne
specified time and output the desired information regarding

that server.

CHAPTER 3

IMPLEMENTATION DETAILS
3.1 INTRODUCTION

The goal of this report is to study the performance
of the distributed simulation algorithm described in chapter
9, One way to evaluate the performance of this algorithm is
to actually implement 1t on & network of processors and
observe its performance characteristics. An alternate
method is to simulate the distributed algorithm on &
yuniprocessor. The latter approach is taken here. That is,
the distributed simulation algorithm itself has in turn been
simulated on DEC16 in Pascal. This simulator of a simulator
works as follows. 1t simulates the three processes
(delay,fork, and merge) and with the help of a monitor
program it creates a network of communicating processes and
maintains synchronization among them. i1t has to be
emphasized that this monitor program to control and
synchronize the processes is needed only pecause of the
presence of two levels of simulation; had che algorithm been
implemented in a real network of processors there would be
no need for such a control program. This chapter gives a
detailed description of the monitor and the data structurs
maintained by ity the simulation of rhe three processes, and

the performance statistics collected.
25

26

3.2 THE MONITOR AND ITS DATA STRUCTURE

The monitor program receives as input, the
description of the real queueing system to be simulated. It
then configures a network of processors and assigns a
process (delay, fork, or merge) to each processor. After
establishing the interconnection among the processors, it
initiates and supervises the simulation. It also gathers
relevant statistics and outputs them at the end of ¢tne
simulation. In effect the monitor creates a set of virtual
processors such that each one of them can model a single
node in the gqueueing network. When processors 1ssue
interprocessor communication commands, the monitor takes
control znd performs the actual exchange of messageé between

the processors.

Ccrucial to the operation of the monitor {and nence
to our simulation) is the data structure that is used to
store information about the virtual processor network. Tne
data structure maintained is a table; an entry in the table
has 13 fields which contain all the information regarding a
single virtual processor. The diferent fields in tne table

are described below:

field no ' description
1 an identification for the virtual
processor.,
Z tnhe type of process (delay,fork, Or

s —————— 1

27

merge) that cuns on this processor .

3 the status of the processor
{BUSY/READY/WAITING}.

4,5 id of the processors from which it
can receive messages.

6,7 id of the processors to which 1t can
send messadges.

8,9,18,11 boolean fields indicating if (and
why) the processor is waiting.

12 pseudo—program counter (explained in
gection 3.3).

13 local data for the process running

on this processorl.

an example of an entry in the table is shown in £ig
3,2.1- Fields 5,7,9,11 are not applicable to ~certalin

processes, since some Processes nave only one input line O

one output line.

4 2 3 4 s & 7 = 4 /€ 01 12 3
m;z.e 7y PE 1::':' 5:/3‘:? ou:'l o:;;rz i) I TIrG FoR \ fRITING Tp PSFUDO lbochL
b o |§TATUS T‘m —<7rp e (Conuic MESSAGE on | SEAD oa | FROGEAM DATA Fo8
1p | PRocEss © 7o | i R e T D
|70 | 7 ERk a2 007'3\0072 Coum TER | PROCESS
-
i Timi Wi,
5 |mescE |wiAng 3 14 | 6| = |yes|VE ~Ne) — L1 Tim2.Ns

The table has to be rather elzborate. It is

possible to deduce the information in some fields from those

; in other fields; but since the monitor will have to check
each entry in the table many times, it is more eficient to

store all the information explicitely.

The entries in the table are made by the monitor.

The function of the monitor is abstracted as shown below:

MONITOR: :
begin

form table from input data.

REPEAT

1. go through the table and give control to the
processors which are ready.

2. exchange messages between pairs of processors
which are waiting for the completion of SEND/
RECEIVE commands and then pass control to the
two processors in turn.

3. collect statistics.

UNTIL end-of-simulation.

end.

§ The input to the program is a description of the
gueueing network that is to be simulated by the distributed
simulation algorithm. It contains such information as the
number of nodes,type of each node and their interconnection.

For example, if the gueueing network shown in fig 2.5.1 were

)

29

co be cimulated then the input to the cimulator would appear
as follows:
9 {no of nodes}
1 delay {type of nodes}
2 fork
3 merge
4 delay
5 delay
6 delay
7 fork
8 merge
9 delay
source 1 inl {interconnections}
1 outl 2 inl {inl,in2 are input
5 outl 3 in2 {lines of a node;
c out2 4 inl {outl,out2 are output
3 outl 5 inl {lines of =a node:
4 outl 8 in2
5 outl 6 inl
6 outl 7 inl
7 outl 3 inl
g outl 9 inl

g outl sink

The monitor, &as it reads the input, £il1ls the table.

-t
rt

also validates the input for any possible inconsistency

Lt
L]

in the description.

After initializing the table, the monitor starts the
simulation of the gQueueing system. It repeatedly goes
through the table sequentially and when it finds the status
of a virtual processor to be READY (initially all are READY)
it passes control to it. 'Passing the control to a wvirtual
processor' means that the process which is assigned to that
processor is excuted. The "virtual processor is said to
relinquish control back to the monitor when the process
iessues a SEND or RECEIVE command. The monitor then marks
the status of this processor as WAITING and checks the next

entry in the table.

The status of the processors can be READY, BUSY or

WAITING. The state diagram for process i is given in fig

3.2.2,

GSBITING

PROCESS 18SC&ES
SEnG R s v

SEAMD /RECEIVE /5
CoOmPLeETED, Be7
rapsiToR IS Cafcmrn§
ALt TOR PSS S OTHER PROCFSS

CON7ROL 7o PEoCFSS 7

AR RECEIVE
‘S COMPLETED

AP OAITOR FPRISET
Con 7o 7o PReCESE 1

2(/5}, REALDy

fig 3.2.2

21

When the monitor finds a processor to be waiting for
the completion of a SEND/RECEIVE command 1t checks to see 1if
there is another processor waiting to RECEIVE from / SEND to
the former; if there is such a processor it exchanges the
pmessages between them, marks the second processor READY and
passes control to the first processor. The status READY is
required only in our two level simulation. In an actual
network environment the processors will either be BUSY Or
WAITING. Each processor will remain in the BUSY state for &
time period dependent oOn the type of process that is running

on it. This is discussed in section 3.3.

When the monitor checks all the entries in the table
once, it is saild to have completed one cycle. At the end of
each cycle it gathers statistics about the virtual
processors. The monitor also‘keeps count of the number of
jobs that leave the underlying queueing system simulator.
It stops the simulation and outputs the statistics regarding
the distributed simulation, when enough jobs have 1eft the

system.

3.3 TMPLEMENTATION OF DELAY,FORK, AND MERGE PROCESSES

1f we work in an actual network environment then the
processes will be programs running on real pProcessors;, and

i+ will be easy to plock and restart them according to the

€l
N

communication protocols. The program counter will always
give the point from which a process has to be resumed after
the communication is completed. To simulate this effect in
our approach, we introduce a pseudo program counter with
each entry in the table. Whenever a process issues a
SEND/RECEIVE command the associated pseudo program counter
takes on a specific value and control is passed back to the
monitor .After the commands are completed (by the monitor)
the process continues from the point determined by its
pseudo program counter. The value that the pseudo program
counter can take corresponds to one of the labels L's or
LL's in the algorithms in <chapter2. The processes are
implemented as procedures and the wvalue of the pseudo

program counter acts as an entry point.

Some details about the simulation of actual
execution time of the three processes: It can be observed
from the algorithms in chapter2 that the amount of work done
by a process between consecutive interprocess command varies
for different processes. For example the delay process
performs more work after it has completed a SEND command
than other processes. To account for this fact we adopt the
following conventions: the wvirtual processor with delay
process, remains in BUSY state for two cycles after

completing a SEND command and for one cycle after compleating

= RECEIVE command, while the virtual processor with fork or

R

33
nerde process remains BUSY for one cycle after completing E
any jnterprocessor command.
H
3.4 COLLECTION OF STATISTICS
In order to evaluate the performance of the

distributed simulation algorithm, diferent parameters are
measured during our simulation. These include
1) number of virtual processors needed. (this
depends on the number of nodes in the gueueing
system tO pe simulated.)
2} number of cycles completed by the monitor at the
end of the simulation. (turnaround time.)
3) total number of messages rransmitted in the
system.
4) number of messages wnich correspond to NULL
jobs.
5) fraction of time each delay node was
BUSY/WAITING.
¢) fraction of time n delay nodes were
simultaneously BUSY/WAITING.

7) number of real jobs processed by each delay

process.

How these parameters &€ related to the performance

of tne algorithm is the topic of the next chapter.

34

3.5 MODULARITY IN IMPLEMENTATION

The implementation of this two level simulation has
peen done in a modular fashion. The module decomposition is
gone in such a manner that the set of requirements which are
1ikely to change are captured within a module while the
module interface is built around the set of regquirements
which are unlikely to change. For example, the requirements
of a delay process may change to accommodate different
service discipline at the server. But the interface between

the delay process and other modules remains the same.

The hiearchy of modules is shown in figure 3.5.1.
There are 4 distinct layers. Procedures in each layer can

czll only other procedures in the adjacent inner layer.

SIMULATOR

s T

fig 3.5.1

INITIALIZE PASS ConTROL 7o EXCHBNEE COLLECT
THE VIRTURL PROCESSOR
MIESSAG. TATIST/
TaA8LE PAR K J;S S7ATUS £s S7 s
| | |
MERG & FORK DELAY i ; BUESEL
SourcE | SinK
PROCFSS PROCESS PROCFSS i i BN AGCEREN |
|
GENERATE GENERATE
SERVICE - ARRIVAL
TiME TIAAE

35

The program can easily be modified to accommodate larger
networks and to study the effect of number of buffers,
cervice rates, branching probabilities, etC., on the
performance of the algorithm, by suitably changing certain

parameters of the program.

CHAPTER 4

EXPERIMENTAL RESULTS AND ANALYSIS

4.1 INTRODUCTION

several different queuing networks were simulated
using the distributed simulation algorithm. Especially
effects of varying 1) the topology of the network, 2) number
of buffers on each edge, 3) service rate of the servers, and
4) branching probabilities, on the performance ©of tne
algorithm are observed. The results are presented in tnis

chapter.

4.2 PERFORMANCE METRICS

The parameters measured by the upper level simulzator,

described in section 4 of chapter 3 are directly related to

the performance metrics of our algorithm, such as turn
around time,speed up factor, efficiency,interprocessor
communication overhead,processor utilization etc. These are

defined in the following sections.

37
4.2.1 TURNAROUND TIME

Turn around time of a simulation algorithm is
gefined as the time taken to simulate a given number of
events., In our studies the turn around time is measured
ander the assumption that delay node takes 3 units of time
while fork and merge nodes take oOne gynit time éach, to
simulate a job (which consists of two events, an arrival and
a departure) . The number of cycles completed by the monitor
at the end of simulation gives the turn around time of the
distributed simulation algorithm. {simulation ends when

1908 jobs arrive at the sink).

in order tO compare the performance of °~ the
distributed algorithm with that of the sequential simulation
algorithm, we€ have to evaluate the turn around time of the

sequential algorithm. This is described below.

P
SERvVER-} \
SFAVER-2 1‘
SouRLE i-P Sk
fig 4.2.1
consider the network shown in fig 4.2.1. The Jjobs

arriving from the source go to one o©Of the two servers
depending on the branching probabilities. Let 'b' be tne
+ime taken DY thne seguential algorithm to determine the path

H

raken by an arrival. Also let ' pe the time taken tO

in

38

cimulate the activities corresponding to a single job at a
cerver and 'm' be the time involved in doing the merge
operation. Then the turn around time of the sequential
simulation algorithm is given by
T = n*b + nl*s + n2%*s +n*m = pn* (b+s+m)
where n is the total number of jobs simulated
nl is the number of jobs that went to
serverl
n2 is the number of jobs that went to
server2
To be compatible with our distributed algorithm, we assume
b=1, s=3, and m=l. One of the parameters measured in our
experiments is the number of real jobs that went to each
delay node. From this and the topology of the gueuing
network we can analytically evaluate the turn around time of

the seguential algorithm.

4.2.2 SPEED UP FACTOR

We use this parameter as the major criterion in
evluating the performance of the distributed algorithm. The
speed up factor 1is defined as the ratio of turn around time
of sequential algorithm to that of the distributed

algorithm,

39

time taken tO simulate n events
using a single processor
je., speed up factor = =—-=----==SmosSSSToTTTTITTTIITTITON
+ime taken to simulate n events
using N such processors
1deally the speed up factor should be equal to N, the number
of processors used by the distributed algorithm., Note that,
while simulating queuing networks the speed up factor

depends on the topology of the network.

4.2.3 EFFICIENCY

We define efficiency as the ratio of actual speed up
factor achieved to the ideal speed up factor,
speed up factor measured £from
experiments

te. efficiency = ---=-omSTTTTTTTTITTTITTTTITTTTTOOE

4.2.4 INTERPROCESSOR COMMUNICATION OVERHEAD

The COSt effectiveness of the distributed gimulation
will depend oOn the amount of interprocessor communication
jpvolved. In our algorithm each departure of 2 jop from &
server corresponds to an interprocessor :ommunication. When

a job arrives at a fork node it generates two interprocessorl

42

communication requests, since we always output on doth
output lines of the fork node simultaneously. If there are
many branches in the network that is being simulated, there
will be many NULL messages generated and hence the overhead

gue to interprocessor communication may be excessive.

The total number of transmitted messages 1is counted
in all the experiments. This gives a direct measure of the

overhead due to interprocessor communication.

4.2.5 UTILIZATION

Since processors are becoming increasingly
inexpensive Pprocessor utilization 1is not considered as a
major performance characteristic. Besides, with our
distributed algorithm, a processor utilization of 108% will
not always mean that the processor is doing useful work all
the time. 1+ is likely (in networks with many branches)
that for an appreciable part of the time the Pprocessor is
busy processing NULL Jobs. However, the information
obtained on processor utilization may be used in optimally
assigning more than one process to a processor and in buffer

assignment.

The rest of this chapter describes the different

experiments and the analysis of the results.

41

4.3 EXPERIMENTS

4.3.1 TANDEM NETWORKS

A tandem network 1is a set of servers connected in

series as shown in fig 4.3.la. The logical equivalent

(which is a collection of delay nodes) is shown 1in fig

4.3.1b.
' |
S OB OSSN Cot
|
fig 4.3.1la
5 — 5.} e ln g I
fig4.3.1b
Experiments were conducted for upto 5 servers in
series. Table 4.1 shows the results obtained. It has been

observed that the turn around time is independent of tne
number of servers in the network. Also ideal speed up
factor of N seems toO be achievable for this type of

networks.

Table 4.1

processing of 1206 jobs in a tandem network

.,...—;—e———a—-——.—.—-———--—--a—..-——.c_....-.‘._...-—....-e--.-a—.-.—-.—.—————o——_.o——-,._......-..

| no of | no of | turn aro%nd time | speed up | efficiency |
o

| servers Iprocessors[distr?buted | centralizedl factor | l

i ! | simulation |simulation | | |

| 1 i 1 | 3003 | 3008 | "1 l "100% {
| 2 1 2 | 3006 | se@go | T~ 2 % "100% |
1 3 | 3 | 3089 | 9pgg | ~ 3 i "180% |
! 4 | 4 | 3009 | 12000 | " 4 | T100% |
i 5 | 5 [3812 | 15808 | ~ 5 i ~100% |

__a..,—-...,.._..‘--..—-.-a-—-—.—-—o_.—_..-»—....p....—.e.—..—---—-—..—.————a.o.-—.—.—.....s—_.—......-

Further experiments with tandem networks reveal that
the number of buffers on the edges does not affect the

performance.

4.3.2 ARBITRARY FEEDFORWARD NETWORKS

Here we study networks in which servers are
interconnacted in any arbitrary manner, except that there 1is
no fsedback path. Four different cases are studied under
this category.

Case a:

All the servers have the same service rate, the

branching probabilities (of fork nodes) are equal and there

1]

(L
°

are 19 puffers on 23la 39

Nyines ditterent networks snown in figures 4.3.2.1

rhrough 4

up faccor and the efficiency obrained 1in 2ach case.
a: ophysical system

p: logical system

e

e S: SSeILV2rS
D: delay nods
i F: fork node
M: mergs noo
SamcE "i’ S
la
2
D
| i 4 z
F 3 l .
el
ib

2 5
D__‘gr 5 il
| remm—— :

fig. 4.3.2.1

.3.2.4 were simulated. Table 4.2 lists ta2 spa22d

k?

47

Table 4.2 z
performance of feedforward networks

..--.._—..__.-.-———-——.—.—————-_-.—-._—_-—-—_..—..-.—.--—_-.-—.-.-—_--—--—_-—.—_.—

| network no | no of processorst speedup factor |lefficiencyl

,._....—-.—..—-.——»..-———-———-——-.—.u—_.—_.—_.——....———-_..._—-—-—_.—...—--.—.—.——.——--—-.—_

1 \ 4	2.48	62 %	
2	5	3.23	65%
3	4 \ 2.19 i 55%		
4	5	2.71	54% l
5	S ! 4,32	48%	
6	10	5.23	52%
7 ! 9	4.98	55% !	
I 8	11 l 3.96	36%	
9	15 i 5.33	36%	

other parameters, such as number of messages

transmitted, processor utilization, etc. can be found in

pages 55 -63.

rrom table 4.2 it seems that efficiency is
(inversely) proportional to the number of branches in the
network. A possible explanation for this could bDbe the
following: since we introduce a Processor (fork node) for
avery two way branch, the number of processors required DY

the 3distributed cimulation increases. Also the processors

3

which simulate the servers in tne branches spend a

p

i

43

appreciable amount of time processing NULL Jjobs, thus
increasing the turn around time. Hence efficiency which 1is
the ratio of turn around time of sequential algorithmr to
(turn around time of distributed algorithm * number of

processors used by the distributed algorithm), decreases.

Case Db:
Here the effect of varying the number of buffers 1is
studied.
S s
3
. 2 - L
il‘] a 3 4 —-}‘v
™~
F E E 3
-
physical system logical system

fig 4.3.3

The network shown in figure 4.3.3 is simulated and
the number of buffers on each edge is varied from 1 to 23.
The turn around time for each case 1is tabulated in table

4.3,

Table 4.3

gffect of number of buffers

,,.,.‘...—cp.-—a.—-—‘--—a“—--ac-_—-—...u.,s—_c-_-—u.o-.o—..-,a.._.._,_g_a—..—--—.-.-.——-a—

| no of puffers | turn around | % decrease in turn |
| i time | around time |
| 1 | 3547 l 2% i
| 2 ! 3175 | 10.49% |
f 3 | 3061 | 13.7 % |
| 4 ! 3030 | 14.58% !
| 5 | 3031 | 14.58% |
| 6 | 3g23 i 14.77% &
| 7 % 3023 | 14.77% 1
! 8 | 3020 | 14.86% |
% 9 | 3020 | 14.86% |
| 10 | 39827 ! 14.606% !
| 15 | 3814 | 15.03% !
i 22 | 3010 | 15.14% |

a.a-..-....—..—-_-._—.—-—.—-_—_aa...._.._——-—-a.—._-—a.’.—..—...u-—..—a-_.-—_.-—-’_.—.a...—.-a.-..

The results show that the percentage decrease 1n

rurn around time is not appreciable as the number of buffers
is increased beyond 3.

Case C:

P

game as case &, but the branching grobabilities and

the service rate may be arbitrary.

Si

fig 4.3.4

The network shown in figure 4.3.4 is simulated, with
the Dbranching probability p varying from 8.2 to 9.8. The
results show that the turn around time is not affected Dy
the Dbranching probability. This is to be expected since
irrespective of the branching probability the total number

of messages (real + NULL) sent to delay node 2 is the same.

It has also Dbeen observed that changes 1in the
service rate of different servers do not have any effect on

the turn around time.

4.3.3 NETWORKS WITH FEEDBACK -

A few networks with feedback paths have been
simulated. The performance of the algorithm for feedback

natworks is rather poor.

51

fig 435
Sz
"
=3
D/-L ——————{h
>4
Ss
tig 436

ror the network shown in fig 4.3.5 the efficiency
achieved was 39% . But, for the network of figure 4.3.6 the
cfficiency is less than 1% . Also the number ©f mes3ages
with NULL Jobs increases tremendously. While simulating
feedback networks the DroCessors tend to starve for atleast
53 of the time, in some Ccases upto 30% of the time.
suggestions for improving the efficiency of the algorithm

appear in the next section.

52

4.4 SUMMARY

The performance of the distributed algorithm for
discrete event simulation has been evaluated in this report.
we defined the performance of the distributed simulation in

terms of efficiency which combines the turnaround time of

distributed simulation, turnaround time of sequential
simulation, and the number of processors required by
distributed simulation. Cost effectiveness was not

explicitely considered, though some measure of processor
utilization and communication overhead was revealed. No
attempt was taken to compute the queue statistics, however,

ther-are some readily available methods.

While simulating tandem networks by the distributed
algorithm, turnaround time egual to the theoritical upper
bound (which means 100% efficiency) was achieved.
Processors were also found to be fully utilized, when each
processor in the distributed system was allowed to simulate

one server in the gueueing network.

When arbitrary feedforward networks were simulated,
eventhough 128% efficiency was not obtained, significant
improvement in turnaround time was feasible. The
performance of distributed simulation of these kind of
queueing networks seemed to Dbe inversely related to the

number of Dbranches in the network. This can be attributed

53

ro the increased number of processors and NULL jobs
generated in these systems. The processors, however , were
not observed tO be highly utilized. Hence & possible
improvement in performance can be achieved by judiciously
assigning more than one process to a processor. This, apart
from increasing the processor ugtilization, effectively
reduces the number of PpProcessors required by distributed

simulation, thus increasing efficiency.

1t was also discovered that the number of buffers
required to improve the per formance was very small. This
plus the fact that our algorithms for delay, fork, and merge
processes were in general guite small emphasize that the

memory reguirement for each processor is not high.

The above results clearly seem tO point in favor of
distributed simulation of a class of gueulng networks

(without feedback path) .

The performance of distributed simulation has been
observed to be pooOr while simulating networks with feedback.
This is due toO the fact that the number of NULL messages in
the system formed an appreciable fraction of the total
number of nessages transmitted. Also the Dprocessors in @&
loop were found to Dbe starved most of the time. These
factors clearly call for a significant improvement 1in the

algorithm if it were to be yeed for simulating any general

complex network.

A possible approach to increase the efficiency of
distributed simulation algorithm for simulating feedback
networks is to reduce the amount of time the loop 1is
saturated with NULL messages. I1f we could devie a method
to detect the situation in which only NULL messages are
circulating within the 1loop, then the real jobs which are
waiting to get into the loop can be forced in. The method

discussed by Dijkstra and Scholten[4] could be applied.

To conclude: distributed computer systems are
economically attractive due to the availability of
i ie

processors at low cost. In such systemsAturnaround time and
not pProcessor utilization which 1is considered a major
performance criterion. The performance advantage of
distributed simulation, of any queueing network without
feedback, over conventional seguential simulation is highly
appreciable that we can adapt the distributed ap?roach for
descrete event simulation. The percentage imp:ovement in
turnaround time, obtained while simulating gueueing systems
with fesedback path is very small. This suggests the need
for furcther refinement in our algorithm or an alternate

solution.

" BIBLIOGR APHY

1., Chandy, K.M. and Misra, J., "pA Nontrivial Example of
Concurrent Processing: Distributed Simulation,” Technical
Report 82, Department Of computer Sciences, tniversity of
Texas at Austin, Texas 78712,alsc in DROCEEDINGS of COMPSAC,
Chicago, Nov.16-~18, 1978.

2, Chandy, K.M., Holmes, V., and Misra, Je, "Distributed
simulation of Networks," Technical Report 81, department of
Computer Sciences, University of Texas at Austin, Texas
78712, also submitted to Computer Networks

3. Chandy ,K.M. and Misra, J. "Specification, Synthesis,
veri fication and per formance Analysis of Distributed

pPrograms, A case study: Distributed Simulation,” Technical
Report 86, Department of Computer Sciences, University of
Texas at Austin, Texas 78712.

4, Dijkstra, E.W and Scholten, C.S., "Termination Detection
for Di ffusing Computatiocns,” unpublished manuscript.

5., Hoare, C.A.R., Communicating Sequential Processes, "CACI,
Vol.21, No. 8, Aug. 1978.

6. Hoare, C.A.R. and Kaubisch, W.H., "NDiscrete Event
Simulation Based on Communicating Sequential Processes, "
unpublished manuscript.

7. Holmes, V., Ph.D Thesis, University of Texas &t Austin,
1878,

8, Iglehart, D.L., "The Regenerative Method for Simulation
Analysis,” Current Trends in Programming vMethodology, Vol.
II1I. Software Modeling and Its Lmpact on Performance,
(Chandy, K.M. and Yeh, R.T., editors) Prentice Hall,
Englewood Ciiffs, N.d., 1978~ 32-71.

g9, Peacock, J.D., Wong, J.W. and Manning, E., "Distributed
Simulation Using Network of Vicrocomputers,’ Computer

Networks, Vol.3, No.l, Feb. 1879.

10. Jensen, K., and Wirth, N., PASCAL |[Lser vManual and

Report, pringeroVerlag, New York, 1974.

