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Abstract

A broad class of physical systems including queueing, communication, and computer networks can be
modelled as a collection of computing nodes, or processes, connected over directed arcs representing
communication paths. As a means of executing the algorithm from such a distributed system, a sequen-
tial program, named SIM, has been constructed which simulates the execution of the distributed program.
This simulation can be used to study the operation of the distributed algorithm, and to obtain its perfor-
mance data. This report explains the structure and operation of this program, and suggests applications.
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1.8 INTRODUCTION

A broad class of physical systems including
gueueing, communication, and computer networks can be model~
1ed as a collection of computing nodes, or processes, connec-
ted over directed arcs representing communication paths. As
a2 means of executing the algorithm from such & distributed
systemy, 1 have constructed & seguential program, named SIM,
which simulates the execution of the distributed program.
The text of this program appears in appendix 1. This simula-
tion can be used to study the operation of the distributed
algorithm, and to obtain its performance data. This report
explains the structure and operation of this program, and

suggests applications.

The execution model of the computing node is based

on Hoare's paper, "communicating Segquentiazl Processes”
[HOA78]. In the language model (referred to as CS5P} suggest-
ed in this paper, processes share no data. Instead, all

interaction between processes 1is via messages passed between

a sender and a receiving process, which name each other

This model of parallel execution and communication is

attractive because of the availability of low-cost processors
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which can each be required to carry out the computation of a
single process. These could be interconnected over communi-
cation lines so that the topology of a particular distributed
algorithm could be embedded in the processor communication
graph. From a program verification point of wview, this
model has merit because a process literally participates in
every transaction that has any opportunity for an outside
process to change its data - namely, communications. This
simplifies proofs of programs because of the reduced chance

of interaction between processes.

In order to study these algorithms, it is generally

necessary to either have such an embeddin

(U]

architecture for
execution, or to map the problem onto a simpler architecture.
such mapping leads to execution of & parallel algorithm on a
single sequential machine. This is the approach taken in

this program. ©SIM was developed and run on the University of

Texas' DEC-1¢ computer, using the programming language, Pas-

2t the current stage of development, no source lan-
guage processing is supported by SIM; its function Is rather
the run-time support for programs written in Csp-like lan-
guages. The notion of a process in SIM is a Pascal procedure
which is a single thread running through local wvariable
initialization, parallel execution with other processes (sim-

ulated), algorithm result reporting, and process termination

=
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In CSP, & process is always in one of three distinct
states: executing, waiting for communication, or terminated.
ordinarily, a process alternates between executing, and com-
municating with other processes. At some point, the process
may enter the terminated state after an execution phase. The
communication consists of an indefinite wait for communi-
cation, followed by an instantaneous passing of a2 message.
Such =& message passing is loosely refered to as a message
firing, or & port firing. This three state behavior is

cummarized in the state graph shown in fig 1.1.
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fig 1.1
The SIM implementation uses a central CONTROLLER
which resumes the processes in the network, after they com-

municate, to execute their own part of the distributed algo-

rithm. In the SIM implementation, the role of the process is

e

layed Dby a pascal procedure which contains the procedural

(o8

escription of the process it emulates. Hence, the action of

resuming & process after communication is accomplished by



calling the procedure which implements the process.

A central network-time is maintained which orders the
execution and communication of the network, and permits col-
lection of global performance statistics, ks long as  the
individual processes never refer to this global network time,
it remains a purely auxiliary variable, serving only to meter
the time lost to processes while communicating, or waliting to
communicate. Since one definition of a distributed system is
one in which communication introduces non-negligible time
delays, [LAM78] it seems beneficial to model such delays in a

network simulation.

Hoare's paper made no mention of time dependent
behavior, except to suggest that, as a fairness issue, pro-

cess pairs awaliting communication with each other should not

O

be del indefinitely often; this is appropriate for a

[}

ye
king a preliminary language definition. However , to

paper ma

obtain any kind of performance statistics for an algo

o
o>
o+
oy
=

written in such a language, it is necessary to place bounds
on wait times incurred by process pairs which are waiting to

communicate with each other. In

wy
ot
4

i, this bound is synony-
mous with the "time unit®™ in which time periods are measured.
This is eguivalent to saying that communication begins in the
first time unit following the event that both partners cf =2
communication pair become ready to communicate. The perfor-

mance statistics derived from such an approach therefore
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represent best-case times, which could only be realized in =&

physical system that similarly bounded mutual-wait times.



2.2 THE PROCESS

The process plays a central role in both CSP and
SIM. The nature of the process in both CSP and SIM, and the
mapping of CSP processes into the "process-procedures” of SIM

ic the subject of this section.
2.1 The Process in CGP

in the source text, & process in CE8P consists of
three items:

. & name, which can elther be a simple identifier, or an
sdentifier followed by index limits, specifying an array of
similar processes.

. s local variable declaration part which defines the
1ocal data structures and specifies initial values.

. a procedural description of the actions of the
process. This program is specified in terms of six control
structures: guarded commands, assignment commands, parallel
commands, repetitive commands, alternative commands, and the

1/0 commands that Hoare maintains are primitive.

The reader is referred to the original CSP paper for
a complete description of the process rextual structure, and

the semantics and a recommended syntax for the command types,

18
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together with jllustrative examples. An important character-
istic of any 1/0 command that appears in the text of &8 pro-
cess, P, is that it specifies the identities of the processes
with which P will be eligible to communicate, when the com-

mand is encountered during P's execution.

The CSP model of a process is a three state finite
state machine, (FSM) which meakes some number of transitions
between executing and waiting for communication, followed
optionzlly by 2 transition from the executing to the termin-

ated state. Communication 1is treated as if it occurred

The entire address space of the process is local to
the process. The process communicates with other processes

by naming them explicitly in an input or output (1/0) com-

=

and, and subseguently having that communication selected for

ot

firing by scheduler whose selection policy is arbitrary. The
process may wait simultaneously for communication with many
other processes, but the scheduler never chooses more than
one message for firing per process. as part of the communi-

cation, the parties involved are informed of the identity of

the processes with whom they communicated.

When a message fires, the effect is the same as  an
assignment statement where the expression yielding the value
assigned is evaluated in the sending process, and selection

of the receiving variable is performed in the receiving
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process. As in an assignment statement in a strongly typed
language, the type of the value sent must match the type of

the receiving variable.

although the process is never involved in communica-
tion with more than one other process at a time, parallelism
is introduced in the I/0 handling because a process may wait

for communication with more than one process at

]
ot
’NJ ®
=
]
@

do

This arises 1in two ways. The first is that a single I/0
statement may name an entire array of processes as eligible
for communication, and the second is that the process tries
to execute some 1/0 commands in parallel. Actually, only one
of the commands will be selected for execution. Three sepa-
rate statement types give rise to this latter type of paral-
jelism: the parallel command, the repetitive command, and the

alternative command.

The repetitive and alternative commands are borrowed

from similar commands suggested by Dijkstra in [DIJ77]. The

te}

[ P12y —-—> %l := x1 + 1 ;

0] P2 2y -=>x2 3= x2+1 ]
causes the process to wailt for input from either P1 or P2,
and depending on which one does send a message, elther x1 or
2 is incremented, and the statement repeats. Here, only one

message fires at a time, but the process always waits

o
3

parallel. The alternative command:
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{ PL 2 Y =2 x1 := x1 4+ 1 ;

or

)

2y --> X2 = X2 +# 1 ]
is similar to the repetitive command except that once either
process cends a value for Y, the respective increment of =1
or x2 is performed, and the statement terminates. The paral-
lel command:

[ p1 ! x |1 P2 1 X 1
forces the containing Process to wait to send the value of x

to both P1 and P2 in any order. Hence, before either message

fires, the process is waiting in parallel.

i3

This then is the kernel of process functionality
that 1is reguired in an implementation: the basic structure
and execution behavior of the process as described above,
including parallel waiting for communication. Hoare has
further reguirements such as termination of a vrepetitive
command when all of the named-for-communication processes
have terminated, but this is not supported in the implementa-
tion. Hoare also disallowed the presence of ocutput state-
ments (i.e. message sending) in the guards of the repetitive
and alternative commands, but the SIM program does not make
this restriction. SIM can do this because the states of all
processes are available in a single memory to which the

scheduler has instantaneous access.
2.2 The Process in SIM

Tn SIM, the process appears as a pPascal procedure
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describing not & named process or an array of such processes,
but rather a generic process type. These procedures are &all
compiled and mapped with the SIM code, In a particular
execution of SIM, a given process type may be instantiated
zero, one, or more times. Most SIM runs will exercise instan-
ces of more than one process kind. All process instan-
tiations are assigned a anique>idént§fier, known locally as
1D, that is an input parameter in the calls to the procedure
containing the process definition. Such calls correspond to
a resumption of the process being modelled, and are typically

handled by means of a call to the RESUME procedure.

A1l of the local data of all the processes is con-
tained in the array OWN. This array is indexed by the values
of the process identifiers. 1In an actual distributed system,
+his would be all of the state information necessary. How-
ever, since SIM uses a central scheduler, information on the

process’ current state is kept in & separate array LPE also

indexed by the process identifiers. The structure of the LPS

entries 1is the same for all of the processes, but the OWH

entry for a process is determined by the kind of process that

owns it.

In SIM, communication lines are known as ports, and
each port has a fixed sender, receiver, and type of message
gince it would be very restrictive to reguire the processes

to know the identity of all the other processes at compile
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time, unigue port names, instead of process names are given
in the I/0 commands which give rise to communication. The
unique port names exist as the values of local variables in a
process. Hence, & process may have an output command which
cpecifies a variable OUTPORT &s the port over which a message
should be sent. The particular port over which this command
specified message passiﬁg would depend on the value of this

variable at a given moment.

puring the initial phase of a SIM execution, &all
such local port names 2are bound to particular ports; &also,
the sending and receiving process identifiers, &and the mes-
sage type allowed are bound to the particular port. This
latter information is kept in the array PORTS, which is
indexed by the port identifiers. If all such binding is made
consistent with some communication graph, G, then the topolo-
gy of G is reflected in the connectivity of the processes and
ports. This scheme effectively isolates the procedural spe-
cification of the process from the particular topology of the

network to be simul

¢

ted. in other words, the process seman-—
tics, but not the network topology is bound at compile time;
the topology is specified at run time, and may vary between

executions of ©SIM. Use of port names instead of ©process

names was also suggested by Hoare in the original paper.

The actions of the process may be viewed as respond-

ing to a set of significant events by deciding what the next
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event should be, and updating its local wvariables. The
events here are the initial invocation of the process, the
sending of a particular output, and the receiving of a parti-
cular input. In SIM, each event is associated with a label
preceeding the code which responds to the event. During any
particular execution, the process specifies the set of next

events, and then returns to the central CONTROLLEK. To the

process, this is eqguivalent to invoking an "oracle"™ which

celects one of the events and resumes the process at the
label azssociated with that event.

The labels then are the points at which the process
may potentially be resumed. As such, they may be viewed as
the addresses of a program of the form:

BDDRESS ACTION
labvell respond to event corresponding to labell
labell respond to event corresponding to label?

2 variable that ranges over these labels is known as
a meta-program counter, abbreviated MPC. Each resumption of
a process gives as one of the parameters the particular MPC

value at which execution should continue.

A special procedure, named PARWAIT ( for parallel

f R N i

wait ) is provided for the purpose of telling the CONTROLLER
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about the events for which the process will next walt. To
wait for communication over a set of ports, one PARWAIT call
ic made for each port. 1f a process returns to the control-
jer without invoking PARWAIT, it is marked "terminated™, and

dropped from further simulation.

PARWAIT has three parameters: the port name owver
which communication may take place, the identity of the
reguesting process, and the MPC value at which control should
resume 1if the communication described in the current PARWAIT

invocation turns out to be the next communication that the

calling process is involved in.

gseveral of the MPC values are reserved for events
which are common to 211 of the process kinds. MPC = @ Se -
lects code activated at process creation. Here local vari-

ables are initialized which do not change throughout the
entire 1ife of the process. These include things like  the
local wvariables that name ports, and parameterizing vari-
ables, such as the puffer size of a bounded queue, oOr the
delay parameters for 2 process which simulates a time delay
process. MPC = 1 corresponds to initial process activation.
Here local variables are given values which may change during
execution. Activation and creation have been kept separate

to allow several activations of a process that only needs to

be created once. During the activation, the process decid

[
]
i

and informs the CONTROLLER which events will be the

th
ot
g
n
&3
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ones allowed by the process. MPC = 1¢p¢ is reserved for code
which allows reporting of results after the simulation has
terminated, and do things 1ike close output files if this is
necessary. This reporting is strictly of things known local~-

ly; the overall performance reporting for the entire network

Bt

s handled by the central CONTROLLER. Two other MPC values,

g1¢, and 102¢ have dedicated functions relating to & dead-

ot

lock recovery technigue discussed in section 4.3.

211 other MPC values are provided to specify the
code to respond to events. The only other restriction on
these MPC values is that they be unique within a particular

process.

Each process instance has a mesSsSage buffer that 1is
used for communication. This buffer is part of the process’

activation record in the LPS arraye. When process 1 wants to

send a message over port X, where MPC = Z corresponds to the
code segment that responds to this communication, it first
writes the message into its message buffer, and then invokes
PARWAIT with the appropriate parameters: port = X, reguester

= 1, and MPC = Z.

1f process I were to be the receiver, instead cf the

- 2

sender of this message., the message is not written into the

puffer (since I does not yet know its contents), but the

f.

PARWAIT call is the same. When I is resumed after the mes-

H

sage 1is passed, it will f£ind the message in its buffer.
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Thus, processes are supported with all of the neces-
sary functionality. as long as a user of this program were
content to c¢ode the process descriptions in the necessary
form for execution, SIM would be usable as described. Typi-
cally, however, the user will wish to write the process code
in a language that allows concentration on the semantics of
the process, and not worry about MPC values and PARWAIT para-

meters. The next section gives the outline of a tra

o
in
fond
st}
r
[
]
o}

procedure to convert the CSP commands into «code compatible

with SIM.
2.3 Mapping CSP Programs into SIM Programs

The process of converting a program written in CSP
into the eguivalent program suitable for execution on SIM
consists of translation of the main program, and all of the

individual processes.
2.3.1 Mapping a CSP Parallel Program Segment

The typical form of a parallel program segment 1in

CSp is:

[ p1 1l p2 Il oo 11 P}
where the Pl...Pn are the processes defined in the pregram.
This Just says that they all should run in parallel. This
structure is the implicit execution model for a S8SIM main
program. Main program structures that depart from this form

require the definition of a special process that performs the

i
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function desired in the main program.

Such a "main program process™ would run just 1like
the other processes, but would be the only one that performed
any meaningful computing before becoming blocked. The normal
call-return structure familiar in seguential programs is

easily implemented by having the processes pass speciea

psd

b

o)

"czl1l", and "return® messages, where the content of the

message is made up of calling and return parameters, respec-

Y

tively.

2.3.2 Mapping CSP Processes to S5IM Process—~Procedures

In order to convert a CSP process into the eguiva-
lent SIM process-procedure, it is necessary to map the three

parts of the CSP process. These are the name, the loc

M]
}w..‘

9]

variable declaration, and the programming language statements

that state the execution behavior of the process.

The name conversion consists of placing the process
name into the scalar list defining the type PROCKIND, and
into the PRPROCKIND procedure that prints out the name of a
process in SIM. The name must also appear in the RESUME

procedure that invokes a process after it communicates.

Mapping the local variable declaration section means
placing the structural definition into the definition of the
data type, OWNDATA. The structure of a variable of this type

is determined by the kind of process that owns it; this
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information is kept in the field OPROCKIND. In general, many
data templates will appear in the definition of OWNDATA, but
the inclusion of a particular local data type is straight-
forward, as can be verified from the example in the appendix.
This inclusion makes the definition needed by the process.
To implement the initialization of this data, the code must
appear in the process initialization part of the definition

of the process. By convention, this function occurs at MpPC =

Lle

An implicit data type exists in the form of the

messa

4

es passed by the process. In CSP, this is handled by
insisting that the type of all messages match the type of the

variables which receive their content. This is not supported

[

in SIM. The messages passed by & process must have a defined

structure. The structure for

ol

11 message types 1is made in
the definition of the SIM data type, MESSAGE, The actuszl

structure of a message 1ls user defined, and a particular

network Simulation may contazin messages of more than one

type, e.g. DATA and ACKNOWLEDGE. n this case, this type has

bt

&

a variable structure determined by the value of its MSGKIND
field. Hence all message kinds in a simulation must have
their name listed in the definition of the scalar type,
MSGKIND, and the corresponding message structure must appear

in the MESSAGE definition.

The information about the graph topology that is
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explicit in a CSP process is handled in two stages in SIM.

At compile time, the ports are assigned local variable names

in the processes. Then, at network specification time during

oot

the actual running of the program, the values of these vari-

ables are bound to specific ports in the network.

The +translation of the parts of the process de-
cscribed above is fairly m chanical. This leaves the proce-

dural desc

g
ot

e
[
B
O
o}

of the actions of the CHP process as the
major challenge in converting a CSP process into its SIM

eguivalent.

The only parallelism or nondeterminism supported by
SIM is the parallel waiting for communication. This is
"mparallel®™ because the process waits for more than one Ppro-
cess at a time, even though the waiting will be terminated

whenever any one of the named ports does actually fire. T

h

®

H

=

nondeterministic element is introduced because the proc

[

M

i

s
does not know in advance which of its potential communica-

tions will be the one to fire,

CSp allows other forms of local parallelism in com-
mands like:
[ x :=x + 1 1l y:=y+1 1 ceeaNles e

=3
Q
o
9}
b
£
[
i
i
A4
b
i
S
S
[

where both guards are true. an implementation for this
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requires a local scheduler to evaluate guards and select
eligible actions. This low-level nondeterminism is not sup-
ported by SIM, so a translator would have to generate code to
arbitrarily select one of the assignments in the first exam-
ple to perform, and to select one of the guards in the second
to evaluate first, and if found to be true, perform the

indicated action.

Hence, the main difficulty in translating CSP pro-
cesses into eguivalent SIM Pascal procedures is to translate
the parazllel, repetitive and alternative commands in such a
way that the parallel waiting for communication is preserved.

These will be discussed in turn.

The general form of the repetitive command is:
% [ <boolean expression 1> ; <I/0 command 1> -->
<action 1> :
0l <boolean expression 2> ; <I/0 command 2> -->

<action 2>

O <boolean expression n> ; <I/0 command n> -->

<action n> j

o

Here, the ©process will wait for any of the 1I/0
commands which have the correspending boolean expression
true. once one of them fires, perform the corresponding

action. Since the set of awalted lines must be specified
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when the process returns to the controller, it is necessary
for the process to evaluate all of the boolean expressions,
and reguest parallel waiting for the corresponding 1/0 com-
mand for each one that is true. This also reguires that a
condition, once evaluated to be true, must not be subseguent-
1y falsified, e.g. through a side effect of evaluating e
subseguent expression. Consider DECIDENEXT to be a shorthand
notation for the Pascal statements:
if ggEA{<boo}ean expression 1> or

<boolean expression 2> or

<boolean expression n>)

then go to Ll

else for i := 1 ton do

if <boolean condition i>

then PARWAIT(porti,id,mpci);

Here L1 is the label of the next statement after the

statements associated with this repetitive command, and porti

i
is the port named in the i-th 1/0 command, and mpci is the

MpC 1label associated with the code which should follow I/0

command i. The eguivalent S5IM coding for this command is:



DECIDENEXT;
mpcl: begin <actioen 1> ; DECIDENEXT ; end;
mpcZ: begin <action 2> ; DECIDENEXT ; end;
mpcn s begin <action n> ; DECIDENEXT ; end;
Ll = <rest of program> ;

Wwith this interpretation, the command would

rr
ity
"y
#
|

inate when all of the boolean conditions were false.

-

The general form of the alternative command is:
[ <boclean expression 1> ; <1/0 command 1> —-->
<action 1>
Q <boolean expression 2> ; <1/0 command 2> -->

<action 2> :

% ®

[}<booiean expression n> ; <1/0 ceommand n> —-->

<action n>

B

This CSP command is supposed to begin walting in
parallel for all 1/0 statements with a true guard. if none
are true, the statement should fail. Unlike the repetitive
command, the action is only performed once. SIM has no

feature corresponding to having & statement fail. Hence, if

it is desirable to have the process be terminated in response
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to execution of this statement with all guards false, then
the DECIDENEXT procedure defined above should simply return

to the central CONTROLLER instead of the statement fragment:

go to L

Since the process will have returned without speci-

fying any I1/0, th

[$¥]

CONTROLLER will mark the process as teyrm-

inated. Otherwise, the DECIDENEXT can be used as is, and the
cemantics of the repetitive command become: 1f there is no
true boolean condition, then just go on to the next state-

ment, otherwise, begin waiting in parallel for an I/0 sta

rt

[

ment with a corresponding true guard; after one of them ha

in

fired, execute the associated action.

With this possible modification to the DECIDENEXT
procedure, the code for a SIM interpretation of the repeti-

rive statement becomes:

DECIDENEXT;
mpcl: begin <action 1> ; go to L1 ; end;
mpc2: begin <action 2> ; go to L1 ; end;
mpcn: begin <action n> ; go to L1 ; end;

L < rest of program >

Pk
§a
s

The general form of a parall command tha

&3]
~t

may

result in parallel waiting for I/0 is:



[ <1/0 command 1> || <1/0 command 2> || ...

ese 11 €1/0 command n> ]

2 possible means of handling this is to establish an
n-element boolean array, DONE, and convert this parallel

command to the eguivalent CSP statements:

{ set all DONE[i] to false }

[N

* [ DONE[i] -=-> DONE[i] := false ]

* [ not DONE[1] <1/0 command 1> =--> DONEI[1l]

H
+J
o
-
£l

Rl

]
.

not DONE[2] ; <I/0 command 2> =--> DONE[Z] : TRUE ¢

& ® @ -

not DONE[n] <I1/0 command n> --> DONE[n]

o

Th

W

resulting repetitive command would then be
translated according to the rules described above into the

eguivalent SIM statements.



3.8 THE IMPLEMENTATION OF BIM

This chapter will describe in considerable detail

the data structures, flow-of-control, termination conditions,

in
(s

atistics collected, and debugging aids of the SIM program.

SIM Data Structures

(o)
@
fooed

i

n

®
i

SIM allows execution of networks consisting o

Q

veral varieties, or types, of processes. To gualify the kin

[N

of particular processes, & scalar type, PROCKIND, is define

i
o8

o

which ranges over all pcssible process kinds. The current
execution state of a process is contained in entries of two

-

arrays which have already been mentioned. These are the OWN

and LPS arrays, which contain the local variables and activa-
tion records, respectively, of the processes. Both of these

arrays are indexed by the unique process identifiers.

The element of the LPS array is of a structured

record type ACTREC which contains the following information:
. the type and instance of the process. Together, these

two fields uniguely identify the process in a way that has
mnemonic value to the user. As an example, they could speci-

fy a [server,6] or [gueue,Z] in 2 network where process types

server, and gqueue are supported.

28
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. the current state and the next state of the process.
The current state is one of executing (XQT), blocked (BLK),
communicating (CMN), or terminated {(TRM). The next state can
only be BLK or TRM, and is used for a process to inform the

central CONTROLLER of the state it will enter following 1its

current phase of execution.

. the time-left field is used as & count down timer.
Wwhen this reaches zero, it signals the end of the current
state, either CMN or XQT. Initial values for this timer come
from the process itself for execution time, and from the port
records for communication delays ( see description of PORTS,
below) .

. three accumulators record the total process time spent
in +the states XQT, CHKN, and BLK. In case a process has

-

terminated, a separate field contains the network time at
which this occurred.

. one buffer each is provided to hold an MPC, a port
identifier, and & message. These are used in communicating
the actual message passed, the MPC value at which & process

should resume, and the identity of the port over which a

message has just been passed, Wwhen rhe central CONTROLLER

resumes the process after a message firin

(18]

®

in short, the LPS entries contain everything the

CONTROLLER needs to know to change the state of the process,

handle the details of message passing, and collect process-

specific statistics on its performance.
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The OWN array also has elements of a structured

type, called OWNDATA. This record type contains a field of
the PROCKIND type which tells the type of the process with
process identifier equal to this element's index in the
array. The rest of the OWNDATA structure is wvariable, and
depends only on the kind of process that owns it. Typically,
this contains the local variables that 5ame ports incident on
the process which are referenced in I/0 statements. Thi
also contain a local variable for local time, 1f this is
Gesired, and and any data for holding 1locally-maintained
statistics, such as Jueue length information that might be

kept by & process implementing & gueue. Basically, this

[}

rray must hold all of the process' data which must survive
between calls to the procedure that implements the process.

Strictly temporary variables can be handled by the regular

-

Pascal local variables.
Since all of the field names of Pascal record types
with variable fields must be unigue, some care is reguired to

prevent collisions in the name space of the wvariants for

#

different process kinds. A practical solution which has been
exploited in the example SIM program in the appendix, is to
prefix all field names with a two- or three-letter combina-
tion which is suggestive of, and unigue to the owning process

kind.

port identifiers in the simulated network are also
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unigue, and serve to index the PORTS array. PORTS[3i] con-
tains all of the information held about the port with unigue
identifier, J- The element type of this array, called
PORTREC, contains the following information:

. the unigue process igentifier of the sending and
receiving process, which remains constant throughout an exe-
cution of SIM.

. four boolean’ fields tell whether the sender angd
receiver are ready and/or eligible for communication. Eligi-
hle means the process named this port for communication
during 1its last execution phase by means of PARWAIT calls,
and ready means that the process is currently blocked. Ac-

+ual message passing on this port will never take place

unless the sender and recelver are both ready and eligibl

it

®

. the MPC values of both the csender and receiver which

should be returned to when and if this port fires. Since the

processes may wait on many messages, each with a separate MPC

return point, & separate MPC must be kept for every possible
communication.

. the amount of time that communication over this port
delays both the sender and recelver. The interesting cases
seem to be when the send-time is less than or egual to the
receive time. The send time is related to the size of the

message, and the communication rate. The difference between

)

&

send and receive time corresponds to communication delay.

15
O

Hence message propagation delays can be explicitly simulated,
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e.g. in a simulation of communication over satellite links.

. a count of the total number of messages that have been
sent over this port since the beginning of the run.

. a buffer that holds the message, if any, that was
specified most recently by the sender process, Just prior to
the PARWAIT call which marked the sender as eligible for
communication over this porﬁ. The MESSAGE record type, con-
tains in addition to the actual message, & message type. The
type in the message associated with this port binds the port
to a single message type. Attempts by & process to send &
message with a type different from that recorded in the

=

port's message buffer results in an error message.

The global variables maintained by the central con-
troller include the global time, accumulators for time spent
by processes in each of the states %0T, BLK, TRM, and CHMN,
and a count of the total number of messages sent. Several
trace wvariables are used to turn the run-time trace off and
OT. This trace 1is useful for debugging both the process
procedures and the SIM program itself, and will be discussed

below. Other variables keep termination thresholds for time

and message counts, and deadlock occurrences.
3.2 Flow of Control in SIM

The sequence of events in a run of SIM consists of
the following steps:

. an interactive session which scolicits inputs from the
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operator about the connectivity of the network to be simu-
lated. This information «could optionally be read from &
file. This session obtains information in two categories:

. bind each unigue process identifier to a particu-
lar process kind and instance by instantiating the defined
process kinds zero, one, or more times.

. for each of the ports in the network, bind the
csender and receiver processes; this implicitly specifies the
topology of the network.

. simulate the execution of the network, collecting
ctatistics as preogress is made.

%

. print the statistics gathered in the last step

The execution model of SIM during the simulation of
the target network is the familiar operating systems concept
of multiprogramming, where a number of tasks (processes) that
are not blocked (whose state is XQT) are each allocated one

time guantum of compute time in round-robin fashion. At the

1imit where the guantum size becomes zero, this becomes an

[N

nstance of processor sharing, and an external observer sees

211 executing processes making steady proegress. During each

e

;4

time unit in & true distributed system, the volume of proces-

-

sing psrformed is the product of one time unit and the number

[£e}

of processes that are executing at that time. This of course
assumes that all processes that are executing accomplish the
came amount of processing in a time unit. Hence, 1t seems

reasonable to asert that one time unit of simulated time has
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passed every time that the central CONTROLLER has made one

pass through the ljist of executable processes; eguivalently,
this grants one time gquantum to each ready process each time

the network time is incremented.

An important point here is that the process is not
actually resumed during every time unit in which it is in the
0T state. Processes are only resumed when they make
transition intc the XQT state. The actual amount of time

required for the process to complete its actual computation

t

is immaterial. 211 that matters is that the process inform
the CONTROLLER of the simulated time reguired to complete the
execution being performed. This is used for performance
purposes only. In cases where only the execution of an
algorithm, as opposed to its simulation, 1is important, this

time value can be ignored altogether.

Bence, & process simulating a time delay of 2% time

units need only tell the CONTROLLER that it will require 25

time units. The time required to return this result does not

matter. e effect of resumption, from the CONTROLLER'S

X

point of view, 1s that an oracle is invoked which provides
this time estimate, and the set of ports over which this
process will be waiting to communicate during the block state
which will follow the current executlion state. in the case
that no ports will be awaited, the action simulated is that

the process is getting ready to terminate. Furthermore the
? £ F
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oracle can provide the contents of any message that the
process will wait to send. Lastly, the oracle can assert
that the process has updated its local variables as if the
execution had already taken place, SO for the rest of the

cimulated time period, nothing at all needs to be computed.

¢

These are exactly the effects of resuming a process, anc as a

¢

result, the CONTROLLER can merely simulate the passage of
time rather than actually giving a time gquantum to the pro-

cess every time the network time is incremented.

The estimate of the total compute time iIs returned

by the processes in the XOTTIME field of their LPS entry.

The central CONTROLLER copies this value into the TIMZLEFT

field; at every subseguent time unit, this value is cdecre-
mented until it reaches zero. at this point, the process
enters the next state, always one of terminated, or wziting

for communication.

Ssimilarly, any process in the CMN state has its time

F 18R

left field decremented, and th

4]

process reenters the X

()
=

state as soon as the count reaches zero., Here the total

e
Pt
=
[}
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e
oy
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vided not by the process, but rather by the user during
system specification early in a run of the ©program, who
presumably knows the intrinsic characteristics of the com-
munication port, and the size of the messages that pass over

the port.

Processes in the BLK state have no such bound on the
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amount of time they will remain in this state. They simply
wait ntil one or more of the processes that they are wating
to communicate with become ready for message passing. 1f a

process ;s found to be waiting only for processes that have

terminated, it is marked terminated.

The above mentioned processing takes place in the

rocedure TICK, which charges each Pprocess according to it
g S

state, and initiates those state changes which occur at
predictable times. This routine is called once each time
unit.

The procedure PASSMESSAGES is also called once every
time unit, and its action is to fire some of the ports which
have both sender and receiver both ready and eligible for
communication over the same port. The current implementation
uses a fair scheduler which guarantees that no such ready-—to-
fire port will Dbe passed over more times than there are
ports. This is accomplished by keeping a variable, called

netfair which ranges over all the port identifiers, favoring

-
jg
[£h)
',:.f}
=

tor a message pass if their sender and recelver are

prepared to communicate, and incrementing to the next port at

each time unit.

The scheduler is also deterministic in the sSense

Yot
Py

that two processes are both ready and eligible for a

mess

W

i)

pass, over Say port J, then at least one of them will

~
-

be involved in some message passing, either over port J, ofF
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over one of the other ports that is incident on the process.
The only reason port J would not be selected for firing is
that the scheduler already selected a different port incident
on the port J sender or receiver. In this case, port J could
not be fired because that would mean some pProcess Wwas in-

volved in more than one message firing.

The scheduler has been coded as & separate procedure
so that a user may provide a different algorithm for select-
ing among the ready ports to decide which, if any, o¢f them

should actually fire.

When a message does fire, the contents which Thave
veen buffered in the port's records are copied to the receiv-
er process' message buffer. Both the sender and receiver are
placed into the CMN state to wait out the simulated communi-

cation time. This takes place in the procedure, FIREPORT.

The simulation view of the processes is now com-

plete. Compare the state graph for the SIM process-proce-
Gures in fig 3.2 with the state graph that describes only the

h

logical view of a process' states, fig 1.1. The nodes corre-

spond to the states, and the arcs are the transitions. The

procedures named for the arcs are those invoked to make the

transition for the processes. Not éhswn in the state graph

is a self loop from each of the states to itself, taken

implicitly in the TICK procedure. The lengths of time spent
t

in each state are determined as follows:



rime in the CHN
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state is determined by the properties

of the port handling the message, and the length of the
message. This information is held in the PORTS array.

. +ime spent in the BLK state iz & function of the
readiness-to-communicate of the processes named for potential
communication by a process.

. time spent in the XQT state is determined by the
process itself.

time spent in

is entered until the

3.2 Statistics
As part of
keeps & running s
process is in each
which the process te

the TRM state is from the time the state

end of the simulation.
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fig 3.2
collected by SIM
+he activation record of a process; SIM
um of the total amount of time that the
of its states, and the network time at

rminated, if this has occurred. For each
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port, SIM records the total number of messages passed along

the port. SIM also keeps the total elapsed network time.

The procedure PRINTSTATISTICS is used at the end of
2 run to print out the statistics collected during the run.
This routine can be extended to also print out any other
statistics which may be deemed necessary for implementation

of a target network.

Tt is appropriate for the processes themselves to
keep track of some types of performance statistics, and to
print ocut this information at the end of the simulation. For
this latter purpose, the MPC label 1¢0¢ is provided. Proces-
ses are resumed at this label one last time when the simula-
tion is complete for the purpose of printing this data. As

an example, gueue length distribution histograms could be

printed out by Pprocesses implementing & waiting gqueue.
3.4 Debugging Considerations and Simulation Termination

In order to facilitate implementation of SIM and the
various target networks that may be developed wusing this
program, provisions have been made to force SIM to produce
various amounts of auxiliary, or trace, information while it
is simulating the network. This output is contrclled by the
values of seven "trace” variables which the user is able to

change &t critical points during the run. Each of these

variables controls the output within a particular area. The
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output produced is none if the variables are set to zero, and
generally more output is produced the larger the wvariables
are assigned. The trace variable name and area of execution
trace controlled by the variable 1is summarized in the follow-

ing table:

variable Trace Area Controlled
SIMTRACE General execution of SIM
NETXQTTRACE Processes whose state is XQT
NETBLKTRACE Processes whose state is BLK
NETCMNTRACE Processes whose state is CHK
NETTRMTRACE Processes whose state is TRM
NETDEADTRACE Network deadlocks
TARGETTRACE Operation of target network

Discussion of network deadlocks is delayed until

section four.

During SIM execution, the user provides execution
parameters in response to specific gquestions presented by the
program. Two of these are the time and message limit. Wh
either of these user-supplied limits is exceeded, rather than
sutomatically terminating, S5IM gives the operator a chance to
set new limits in order to continue the simulation. The
program will terminate immediately if the operator does not

increase the limit which was exceeded.

The time and message limits, and the trace variables
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mentioned above are all solicited together by a procedure
named SETTRACE. Accordingly, by judicious choice of the

1imits and the trace variables, the operator can select

-

particular trace options between particular times or message

counts. For example, if a target network has been observed
to blow up near network time = 1@¢, then the operator may
leave the trace values low between times zero through 95, and
then, when the time limit of 95 ic exceeded, increase the
time 1limit to say 185, and increase the trace variables =¥e)

that & large volume of trace information about the target

network will be printed out between the current time and the

new time 1limit.
This is the exact use intended for the trace vari=-
able TARGETTRACE. Of course, since much of the implemen-

tation of the output from the target networks is necessarily
handled by the processes themselves, it is necessary for the
code to be included in the processes SO that a higher wvalue

of TARGCETTRACE does in fact produce more output from the net-

WOTK. This is evident in the example processes in the SIM

listing in the appendix.

Ch

2s an aid in including such code in the individual
processes, P, of a new type, the following routines are

provided:



Routine

PRSIGNATURE (P)
SHOWOWN (P)
SHOWPROCESS (P)
SHOWMEG (M)
SHOWNETWORK
TRACELP (P}

DUMPTTY

42

prints Out

p's identity, kind and instance
P's local variables

P's activation records from LPS

Message M's contents
Port - Process connectivity graph
Useful process information

all global deta, PORTS, LPS. etcC.




4.0 AN APPLICATION -- DISTRIBUTED SIMULATION

Distributed Simulation [CHA81] has been proposed a8
s fruitful applications area for computer architectures ex-
hibiting parallel processing capabilities. Here, the paral~-
leEESQ in a computation mirrors the parallelism inherent in a
set of physical entities to be modelled. Interactions be-
tween the entities are simulated by messages passed between

the processes that simulate the entities.

This is an instance of a message-based distributed
program that is amenable to simulation on the §SIM program.
Here, the communication lines are modelled as ports, and the
roles of the processing nodes are filled by SIM process-

procedures.

In the paper presenting this concept, Chandy and
Misra define the notions of process—times and 1line times.
These are the times in the entity-level through which &
process or port has been simulated. A key correctness re-
guirement 1s that the events in a process or a port must be
totally ordered in time, even where the time is in a "logi-
cal" sense, 1i.e. measured by a counter, &s opposed to time
measured by a clock. A port exhibiting this property is sail

to be "chronological®. Lamport [LAM78] also treats the sub-

43
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ject of local and global clocks, and describes the need for
an extension of the partial ordering imposed by the col-
jection of individual local clocks, to a total ordering of
the events within the network if they are to be executed in a

consistent manner. This is exactly the function of SIM.

In the physical system being simulated, the analog
0f 1line and process times are 21l trivially egual because
time is always constant across the entire network. This 1is
not so at the logical level of the simulation, and in general
processes and ports may have radically different local times.
This corresponds to the situation where some parts of t
cimulation are running far ahead of others, and the possibi-
lity of this asynchrony is the motivation for Distributed
Simulation in the first place. The asynchrony represents
parallelism in the simulation that is not possible in  the

entity level network.

in order to be able to simulate an interesting set
of networks, it is necessary to define the individual process

types which will comprise these networks. The next section

]

8

will define six different types and explain the semantics and

waiting rules for each of the types.
4.1 Some Process Types for Distributed Simulation

A very rich class of networks can be simulated by

using & small set of process types. The processes construct-
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ed for this application are as follows:

. the SOURCE type which generates *jobs"

. the SINK type which consumes jobs

. & DELAY type which makes a job wait for some time

. a FORK2 type which accepts jobs on an input line,
makes a decision, and sends the job out over whichever of
its two output lines is selected by the decision.

. a MERGE2 accepts jobs over two input lines anc se

sends
them out over & single woutput port while guaran-
teeing the chronological condition on the cutput
line times

. a QUEUE28 models & waiting queue with a maximum size

of 28 jobs.

In the following sections, each of these process
types will be explained. The QUEUE29 process type is describ-
ed in greater detail so that the relationship betwesn its
name, message Lypes, local variable structure, procedural

definition, and the facilities of SIM can be better under-

4.1.1 The SOURCE Process Type

A process of type SOURCE is connected to the rest of
the network via a single port, known to the process as the
value of the local variable, SOOUTPORT. When the process is
created, i.e. resumed at MPC = 0, this variable is bound to

one of the ports in the network being simulated.
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A SOURCE type process sends messages oul over its
output port with an interdeparture time determined by the
code implementing the process. One application could read
the departure times from a file. This might be used to
perform trace-driven simulations, where the input to & simu-
lation was a set of actual values measured in a real physical
system. The SOQOURCE process listed in the appéndix uses as

the interdeparture time the sum of a constant, contained in

bl

the

oot

P

ocal variable SOCON, and a "discretized” exponential
random variable, with parameter SOMU generated using the

RANDOM function available on the DEC-10.

When the process is created during a run, the opera-
tor supplies values for the variables SOMJ and SOCON, and
binds the output port to a specific port in the target net-
work by specifying its unigue port identifier as the value of
the variable SOOUTPORT. Such & SOURCE "node” also keeps 2
local time, in the local variable, SOTIME, which is always
the time that the last message was sent out. The mechanism

for sending a message after the passage of some delay, say 1@

=

time units, 1is to create a new message with a timestamp of

SOTIME + 16, and place the message into the process' message

buffer. This wvalue also replaces the current value of
SOTIME. Then the interdeparture time, 16, 1s also used as
the XQTTIME returned to the central CONTROLLER. This tells

+he controller that the process will be executing for 1¢ time

units before it tries to send out any message over its port.
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Finally, PARWAIT is invoked to indicate that the process will
eventually wait to send a message over the port whose identi-

fier is the value of SOCUTPORT.

anfter this port does fire, this simple program is
merely repeated; each time a positive delay is computed, and
used as the time lapse until the next message will depart

gince the successive message times

o

re increasing, the chro-

nological condition is met.

4.1.2 The SINK Process Type

The SINK process type ha

in

a single input port, known
locally as SIINPORT. The GSINK process always waits for
input, and when a2 message is received, it is disposed of. In
the current implementation, nothing is done with this mes-
sage. Other uses of the SINK process might have the SINK
process record some data from the message, oOF possibly print
out a message as it is received. A SINK has no output ports,

and so trivially guarantees monotonicity on its output ports.
4.1.3 The DELAY Process Type

A DELAY process waits initially for input over an
input port, known as DINPORT, and after a message is re-
ceived, computes a time delay in the same way as the process
type SOURCE. After this time delay is waited out, the pro-
cess waits to send out the same message over a port named

DOUTPORT. Waiting out the delay is accomplished by leaving
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the process in the XQT state for the computed delay period.
After the message is sent out, the process again waits for
input, and the cycle repeats. There is no internal buffering
in & DELAY node for processes awalting service. Once a
message enters the node, it begins its wait period. However,

it is buffered in the process while the process waits to send

it out.

The particular semantics of this DELAY process mod-
els a single server in the sense that the delay time is only

¥char

[£o

ed" to a single message at a time. This is illustrated

in the following example:

Suppose that some source of messages will try to
send three messages to a DELAY node, which is initially ready
to receive, with successive timestamps of 18, 28 and 8¢.
Since the processes do not know how long they have been
waiting to pass the message, &ll that can be asserted is that
the arrivals to the DELAY node were at times at least as

=

large as the three timestamps. Suppose that the delay values

used fo

g

these three messages are 58, 5, and 3¢ respectively.

=3

he first message will leave the DELAY node at some time
after time 6@, because it arrived at time 18 or later, and

ha

h

to wait out a delay of 5¢ time units. The second message
will leave at time 65, or later. The reason for this is that
in this type of DELAY node, a message does not enter and

begin its waiting period until previous messages have left
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the node. The last message leaves the node at some time at
least as great as 118, since the node was "free™ to begin its

delay (i.e. begin its processing) when it arrived at time 89,

or later, and the delay used was 3§ time units, This behav-
ior is summarized in the following table:
Message Arrivel Time . Delay Time Departure Time
msg 1 >=10 56 >= &€
msg 2 >=28 5 >= 65
msg 3 >=80 3¢ >= 11¢

This behavior 1is guaranteed by beginning the time

delay for a message, M, at local time, DTIME, which is m

main-
tained as the maximum of the timestamp M had when it arrived,
and that of the last message sent out. TIME corresponds to

local wall-clock time inside of a DELAY node, with the un-
usual property that the time displayed is always a lower
bound of the real time, According to this clock, the arri-

vals take place at times 18,68, and 80¢.

2 separate time accumulator, DSUMPTIME, keeps the
sum of all the computed delays. Hence, DEUMPTIME 1is the

total “busy" time of the node. The value DTIME - DSUMPTIME

is &a measure of the time lost because of starvation to the
node. The ratio of DSUMPTIME to DTIME is roughly the utili-

zation of the node.

If messages had fields representing their sizes,
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then the DELAY node could be constructed to return some
function of the message size as its estimate of compute time.
This provides & very easy way of simulating an algorithm
whose time complexity is a function of problem =size, e.g.

O{size**2) .
4.1.4 The QUEUE2¢ Process Type

The ©process that simulates a FIFO waiting qgueue in
this implementation 1is named QUEUEZY because the procedure
that implements the process is compiled with & hard limit of
2¢ as the maximum gqueue size that can be accomodated. The
actual run time queue size maximum, called Q2¢MAX, 1is con-
strained to fall between one and 28, inclusive, and is soli-

cited from the operator at process-creation.

The following guasi-CSP program 1s presented to

demonstrate the translation of a program from the origineal

CSP into the procedural description regquired by SIM.
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QUEUE20 ::

{ LOCAL VARIABLE DECLARATION AND INITIALIZATION }

Q2@INPORT,Q280UTPORT: PORTNAME;
Q2@INPTR,Q200UTPTR: INTEGER;
Q2@BUFFER:ARRAY[8..19]0F INTEGER;

{ initialization of local variables --@ MPC = 1 }
Q2BINPTR:=1; QZBOUTPTR:=1;

{ PROCEDURAL DESCRIPTION }

*
{ IF WE HAVE ROOM IN THE BUFFER }
Q2BINPTR<Q2G0OUTPTR+20;
{ THEN TRY TO RECEIVE A MESSAGE }
Q2@ INPORT?Q2@BUFFER[Q2BINPTR MOD 28] -->
{ WHEN RECEIVED, INCR INPUT PTR --@ MPC = 2 }
Q2@INPTR:=Q28INPTR+1; T
{ AT THE SAME TIME, }

{ IF WE HAVE A MESSAGE TO SEND, }

Q2@INPTR>Q2EZ0OUTPTR;

{ TRY TO SEND IT OUT }

Q2@0OUTPORT!Q2¢BUFFER[Q200UTPTR MOD 28] -->

{ WHEN SENT, INCR QUTPUT PTR --€ MPC = 3 }
Q2B0UTPTR:=0280UTPTR+1 ]

Here it is assumed that the run-time queue size is
always 28, and that naming a port for communication is egui-
valent to naming the process tied to the other end of the
port. O2@INPORT is the name of the 1input port, and

Q2@¢0UTPORT is the name of the output port for this ©process.

These are assumed to be bound to actual port numbers else-

where.

The behavior of a QUEUE2f process is to initialize
the local variables, and then any time it has a message to

send out, it waits to send the message. At the same time,
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whenever there is room in the gqueue, the process waits to

receive another message.

In the SIM implementation, the name of the process
kind, QUEUE28, 1is bound at SIM compile time and is distri-
buted throughout the program. The name appears in the list
of 31}ewable»values for the scalar type PROCKIND, along wit
211 other process names in the simulation. This same name,
preceeded by "LP" (for logical process) is by convention the
name of the Pascal procedure that emulates this process.
" LPQUEUEZ28" also appears in the procedure RESUME, by means of
which all ©processes are activated when in the simulation,

they make a transition into the XQT state. See fig 3.2.

The process name also appears in the definition of
the OWNDATA record type. This is where the definition of the
local, or "own" variables, is bound to the type of the owning

process kind, in this case, the QUEUEZ26.

As each instance of the process kind QUEUE2Z is
created, & fresh local address space, and activation record
for the new QUEUE20 process are allocated in the form of
previously unused elements in the OWN, and LPS arrays. The
OWNDATA records, which comprise the base type of the OWN

array, bhave their structure determined by the type of their

owner.

An argument is provided in the calls to the CREATE
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pointers. Also at this label, if the queue is not full, the

process waits for another input message.

wWhenever a message is successfully sent out frorm
this process, it is resumed at MPC = 3. Here it is certain
that there 1is room for at least one more message, so the
process waits for this input. Depending on the relative
values of the pointers, there may be another message to send

out, sSo the process may actually wait in parallel for both

input and output.
4.1.5 The FORK2 Process Type

A process of kind FORK2 has & single 1input port,

known as F2INPORT, and two output ports, known as F20UTIPORT,

and F20UTZ2PORT. Initially, & FORK2 process waits for input.

When this is received, the process decides which of its two
cutput ports to send the message over, and begins waiting to
do so. Once the message is sent out, the process again waits
for input and the cycle repeats. Currently, the decision
about which output port to try to send over is determined by
performing a single Bernoulli trial, where the probability of

a success, defined as deciding to send over F20UTIPORT, is

sl

parameter that is entered by the operator at process-create

time.

A different decision policy would result in a pro-

cess with the same connectivity topology, but different com-
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munication semantics. For example, the decision could be
based on message traffic intensity, or perhaps an attribute

of the particular message itself.

The chronological condition is satisfied because the
inputs to the process are assumed to be chronological, and
the process never holds more than one message, hence it has
no opportunity to exchange two messages before they are sent

out.
4.1.6 The MERGEZ Process Type

The MERGE2 process has two input ports, named
M2IN1PORT, and M2IN2PORT, and a single output port named
MZ2O0UTPORT. The waiting rules of this type of process are
pretty much fixed because of the reguirement that the output
messages be chronological, and the fact that there is minimal

queueing inside of the process.

Initially, the process waits for input from either
ports. As soon as any message is received over either port,
it is buffered, and the process continues to wait for a
message to come in over the other port. When this second
message is received, the timestamps of the two messages are
compared, and the process waits to send the message with the
smaller timestamp over its output port. When the message is
sent out, the process waits for input over the port which

provided the message that was last sent. Once this message
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is received, the timestamps are again compared, and the cycle
repeats. If two timestamps are found to be equal upon com-
parison, one message is arbitrarily selected to be sent
first, and when it is sent, the process begins waiting for

the port that provided this message.

This section has described six process varieties
which have been modelled using SIM. Many others are pos-
sible, and some of these have been suggested. Each of these
fills & 7role as a building block for constructing fairly
general networks of processes, The processes as presented
are wuseful for simulation of networks that create, delay,
enqueue, and kill messages or jobs. The exact ©processing
performed within a network depends on characteristic parts of

the process' code.
4,2 Deadlocks in Distributed Simulation

A problem with distributed algorithms following the
waiting rules inherent in the processes described above is
the occurrence of deadlocks. Of course, deadlocks that arise
in the modelled system will show up in the simulation: this
is desirable. In fact, the purpose of a simulation might be
to gain insights 1into the deadlock characteristics of a
network. However, other deadlocks, not arising in the simu-—

lated system can and do show up strictly as a result of the

waiting rules proposed in [CHA79].
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4.3 Deadlock Resclution in Distributed Simulation

A solution proposed in this same paper was to intro-
duce special "null" messages, whose scle purpose was to
advance the line times of the ports, so that some process in
a deadlocked system might be able to change the ports upon
which it was waiting, while still guaranteeing the chrono-—
logical condition for 2ll of the ports, and hence break the
deadlock. This algorithm was implemented in [SEE79] and
found to work well in systems without feedback paths. In
systems with feedback paths, the number of null messages grew
so large as to flood the communication capacity of the net-

work.

A separate solution was proposed in [CHA81] that
computes a least upper bound on the line times. The algo-
rithm consists of N phases, where a phase is comprised of an
execution part followed by & communication part. N repre-
sents the total number of processes in the network. The
reader is referred to the original article for a «complete
discussion of the problem of deadlocks in distributed simula~-
tion, with examples, and a description of the deadlock re-

covery algorithm together with a proof of its correctness.

As a testbed for general purpose distributed simula-
tion, this algorithm has been implemented in the processes
described above, During a simulation run, the ©processes

compute and communicate until deadlock occurs, at which
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point, the entire system typically backs up and ceases to
make progress. In the current implementation, the deadlock

ice detected by the central CONTROLLER, which initiates the

recovery algorithm, and synchronizes the N phases. Initial-
1y, the 1line time used for each port is infinitely large.
Then at each phase, every process either revises downward, or
leaves constant its estimate of the earliest time { = smal-
1est 1line time ) at which it may try to send out a message
over each of its output ports. At the k-th computation step,
the process is able to do this based on the presense of the
(k=1)st such estimate from all processes that send messages

to it.

In a pure form, this would have been passed as a
message to it along all of its input ports during the (k-1)st
communication phase. This would be complicated in SIM, how-
ever, because the ports can only pass messages of a single
type. Hence a pure implementation in SIM would require a
network of communication lines for these time estimates that
was parallel to the regular message ports. In the SIM imple-
mentation, this pure structure has been compromised to the
extent of providing a dedicated word of the port®s records to
carry this information. This corresponds in the physical
system to giving a little of the bandwidth of the port over
to the deadlock recovery messages, as was needed. Of course,
the ports would not be trying to carry regular messages at

the same time, because if they were, the system would not be
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deadlocked.

A process executing its k-th step of this algorithnm
is resumed at MPC = 161¢0. There it reads the (k-l)st esti-
mate on all of its input ports, and writes its own k-—th
estimate to its output ports. When the network consists of N
processes, the algorithm computes its terminal values within
N steps. Typically, the actual number of steps reguired is

much lower, and seems tied to the length of the longest

closed chain of processes,

After the N steps, the central CONTROLLER resumes

the processes one last time in order to let them try to
change the ports they are waiting for. According to [CHAB 1],
there 1is always at least one process that can change its
waiting pattern. At this point, if a process can change the
lines that it is waiting for, it does so by means of PARWAIT

calls.

After this k-step algorithm runs, the CONTROLLER

attempts to make some of the ports fire, as if there had been
no deadlock. If any firing is possible, at least one message
is fired, and the simulation can continue. Otherwise, the
deadlock cannot be eliminated, due to the fact that it is one
which arose in the physical system, not one which appeared as

a result of the waiting rules.

The results of SIM runs with this algorithm are
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encouraging. The algorithm works as expected to recover from
deadlocks in both feedback, and feedforward networks. The
interpretation of performance statistics for the algorithm
requires only that the amounts of time for communication and
processing be stated for 2 particular network. The relative
cost would be greater in communication-limited, as opposed to
ccmpate-bound systems. As long as the time required for a
process to communicate with all other N-1 processes 1is no
worse than O(N), the overall performance is O(N**2), because
it repeats this O(N) communication for each of the N steps of
the algorithm. This result would be somewhat harder to
establish for a totally distributed implementation, e.g.
because of the time required to detect the deadlock initial-

ly, but should prove to be true.

As a last point on this subject, it is very easy to
examine the effect of queue size on the freguency of dead-
locks in such a distributed simulation. In an environment
where execution of the recovery algorithm were very undesir-
able, one could see the advantage to be gained in avoided
execution that could be obtained at the expense of extra
memory buffering for the processes. The results from such a

simulation for two particular networks appear in appendix 2.



5.8 SUGGESTIONS FOR FURTHER WORK

An obvious extension of the SIM program would be to
provide the front-end language processing that would be re-
guired to implement & very useful subset of C(SP. Such &
translator would output entire SIM programs with the process-
procedures embedded in them. This report has suggested some

of the strategy that could be used in such a program.

In the current implementation, the topology of a
network is constant throughout the execution of the simula-
tion after it is entered during the network specification
part of a run. This is not a general constraint imposed by
SIM however. The connectivity of the network is contained in
the global data of the system, and by changing this data
during & run, the effective topology could be changed. In
addition to changing the records about who talks to whom, new
instances of the processes can be created, initialized, and
executed, all on the fly. In this way, 2a network cculd
change its topology to adapt to a particular processing
problem.This would allow very general forking and joining in
the processes of the network, as is required by many of the
languages supporting concurrency. By spawning a number of

subprocesses, a process could implement nondeterministic
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algorithms.

A very simple mapping would a2llow an instance of the
SIM program and its processes to become the program that
operated a true distributed system with a central controlling
process, communicating e.g. over wires. The "MPC 1label"”
concept would map directly onto any of the typical machines
with & vectored interrupt structure. With some modifica-

tions, the Toracle” functions provided by the CONTROLLER

could be distributed and placed in the processes they served,

possibly in the form of hardware bus arbitration.



6.0 SUMMARY

This report has described the SIM program, which has
been written to assist one in the development of programs
with distributed control in the form of & number of processes
executing in parallel, and strong interactions in the form of
messages passed between the processes. The program was motbti-
vated by the requirements of a language proposed by Hoare,
that has proven useful in the expression of programs based on

message passing.

Tha data, control structures, and special debug
facilities of the program were detailed as an aid for anyone

wishing to use it for future work.

A particular application, distributed simulation,
was used as an example of the process structure and general
nature of networks supported by SIM. Handling of the problem
of geadlocks in this type of system was accomodated at modest
expenditure of effort by introducing a dependence of the

algorithm upon the central CONTROLLER.
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APPENDIX 1
TEXT OF SIM PROGRAM

FPROGRAY DEIM{INPUTe,DUTPUTYS

fe IN THIS LIBTING, fTARDEP’ MEANE TARGET DEFENDENT, AND IMFLIES
THAT TWE REFERENCEL CODE OR D&Te BYRUCTURES ARE IWMPACTYED
By CHANGES In THWE TARGEY WETWORK TO BE BIMULATED, 2}

CONET

(¢ TARDEP =2 TOTa&L WETHORK BORT COUNT )
BORIMAY B8 1387 .

€2 TARDEP o YOTAL WETHORK PROLESE COUNT &)
PROCHMAY 8 1881

T¥PE

e TARDEP ¢ 8C4LAR PADLESS TYPE LI87e]
PROLKIND ® ([SDURCE,8IWK,FURKE MERGEZ, DELAY,BUEyYEZE) )

{e EACH LDGICAL PROCESE 18 ALWAYE N ONE OF FOUR 8TATES,
ACTUALLY EXECUTING {¥0T), WAITING FOR COMMUNICATION (BLK],
ACTUALLY COMMUNICATING [CMN), OR TERMINATED (1RMI, %3

STATETYPE & [XBT,BLK,TRM,CHNYY

{s $MaLL INTEGERS PORTID AND PROCID VAWE ON VALUES THAET UNIGUELY
IDENTIFY & PARVICULAR PDRT DR PRUCESS, RESPECTIVELY, &)

PURTIV 8 §,,PORTHEX]

PROLID & 3, PROCHAX]

{e PORTOIRECTIONTYPES ARE UBED A8 PARAMETENS 7O DEFINEPORT )
PORTDIRECTIONTYPE & ([IWN,DUT}}

fe« TARDEP » BCALAR TARGEY MESSAGE TYPE LI87e}
#SGHIND ® [UNDEFINED,JOB)}

{a TARDEP ¢ TARGEY MESSS8aBE-RECORD TYPE, & FMESRAGES CONBISTE OF
AN MTIWME FIELD FOUR THE TIME COMPONENT OF THE HMESSAGE, AND &K WKIND
FIELD TU DENDTE THE TARGET DEPERDENT MBGKIND OF THE MESSAGE,
E,G, "SIGN&L® B "ACK®, THE MKIND VARIABLE ALSO DETERMINES THE
REMAINING STRUCTURE OF THE RESBAGE, EAQH NEW ELEMENY IW THE
SCAL AR MSBCRIND LIST MUBY MAVE &k ASSOCIATED CASE MKIND
DEFINITION IN THE FOLLDWINKG LINES,
#EggsLE 2 RECORD
MTIMELINTEGER}
CA8E MKIND § HSGHIND DF
UNDEFINED § (UDATAIINTEGER)Y
JUEB 3 CJOBWNUMBERUIWTEGER) S
ENDI

#}

fe BACK LOGICAL PROUOCESE Hed AW ESSOCIAYED ACTIVITY RECORD OF TYPE
ACTREL, THAT RETAINE THAT PRRT OF THE PROLCESS® STATE VECTOR THAT
15 MAINTAIWED BY THE IWTERPRETER, READ 747 FOR ACTIVITY IW
INTERPRETING THE FIELDS, THE TARGET PRUCESSES IWFORM THE
INTERPRETER DF THEIR INTENDED NEXT STAYE VYIs THE VARIABLE
ANEETRTATE, wwlCH DALY HaB MEANINGFUL VALUES OF BLK OR 1RH,
B8TATE AND AWNEXTSTATE THEN ARE THE CURRENT AND NEXT BTaTES OF
THY BOUND PROUESS RESPECTIVELY, THE BTIMELEFY FIELD HAS
MEAWING IN BOTH THE ¥Q7 &ND CMi STATES, AND DEWNDTES THE AMOUNT
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OF TIWME REGUIRED 70 CONCLUDE THE CURRENT EXECUTION AND £0Me
MUMICATION RESPECTYIVELY, THE BUMS VARIABLES RETAIN THE EHMOUNT
OF TIME BPENT BU FAF IN BACH OF THE SBTATES x0T, BLE, AND CHN,

IF THE CURRENT STATE OF & PROCESS I8 TRM, THEN ATRMTINWE HES

THAE NETHORK CLOCK VIWME THAY THME PROCESS BECANE TERMINATED,
AMESSAGE 38 &4 OnNE-MESSAGE BUFFER USED FUR MESSAGES TRANSFERED

YO &nND FROW THE PORTS FOR COMMUNICATION,

ATYPE AND AINSTANCE CONTAIN THE TARGET NETHORK PROCKIND XD
INBTANCE OF THE BOUND PROCESS, E,6, PSERVERY 977, OR FMERGE® f2f,
AMPLC (FOR META PROGRAM COUNTER) 18 THE MEANS DF TELLING THE
INTERPRETER WHAT THE PROCESS POINT-0F=RETURN SHDULD BE FOLLOWING
COMMUNICATION OVER & PRRTICULAR PORT, THIS IS5 PASSED 4% &
PARAMETER IN THE FPARWAIT CALL THAY DECLARES YHAT PORY 1D BE

ONE DF THE AWAITED PORTS FOR YHE CALLING PRDCESS DURING THE WEXT
BLK BTATE FOR THE PROCESS,

ACUORDINGLY, WHER THE INTERPHETER HAS CHOSEN & PARTICULAR PORY
FOR FIRING, THE COMMUNICATING PROCESSES ARE INFORMED OF THEIR
RETUHN POINT THAT CORREBPONDS YO ALTION TO FOLLOW THIS PORY
FIRING, &}

ACTREL = RECORD

{»

ATYPEIPROCKINDY

AINSTANCES1, ;PROCHMAXS

ESTATE (ANEXTETATEISTATETYPES

ATIMELEFT ASUMXUTTIME  ABUMCMNTINE  ASUMBLKTIMETINTEGERY
ATRMTIME , AMPC &XGTTINESINTEGER

APURTIPURYID)

AHEBSAGE s MESSAGETS

END g

EACH PORY #4&S AN ASSOCIATED PORY RECDRD OF YYPE PDRYREL,
READ fP® FOR PORY IN INVTERFRETING THE FIELD WRMES,
& PORT HAS A& FIXED SENDER AND RECEIVER WKILCH ARE WAMED 48
FEENDER AND PRECEIVER RESPECTIVELY, FOR E&CH 0OF BENDER awnd
BECEIVER, THE PORT MAINTAINEG BOOLEAN VARIABLES INDICATING
RE&DY AND ELIGIBLE, W®WHERE ¥ 18 ONE DF 8§ FOR BENDER OR
R FDR RECEIVER, PXWAITINDG «sss» [ X 15 KREADY 70 COMMUNIDATE 3
AU PYXELIGIBLE <s==2> { X MARKED THIS PORT A8 ELIGIBLE DURING
IT8 LAST EXECUTION PHASE BY MEANS OF & PARWAIT CALL 3
PORTS ARE NEVER FIRED UNLESS BOTH NAMED PROCESSES 4RE
BOTH ELIGIBLE AND WAIVING,
WHEN THE MESSAGE DOES FIRE, THE SENUER &ND RECEIVER
ARE INFORMED OF THEIR RESUME PDINTS A8 PBMPL AND PRMPC RESP,
PSTIME AND PRYIME ARE THE WUMBER OF TIME UNITE BEQUIRED TO
SEND AND RECEIVE A MESSAGE ON THIS PORT, COWMMUNICATION TIME
18 EYPLICITLY MODELLED WHEN THMESE VALUES &RE SET NON=2ERD,
& YIRTURL FIELD, PLAPACITY, IS & MEASURE OF THE COMMUNICATION
CaPACITY REGUIRED FOR THE FLINE DF COMMUNICATIONT MODELLED
By THIS PORT:

PCaPATITY = (SIZE OF MESSAGE}/(TIME REQUIRED FDR TRANS)
SIMILARLY, PUELAY, FOR PORT TRANSMISEION DELAY COULD BE

BDELAY 2 PRYIIME = PSTIME
THAY 18, THE ADDITIONAL AWOUNY OF TIME THAT COMMUNICATION
DETAINS THE RECEIVER COMPAIRED WITH THE BENDER,
HENCE FAIRLY GENERAL COMMUNICATION CaN BE HMDDELLED EXPLICITLY,
PWlJ I8 USED IN THE DEADLOCK RECOVERY COUMPUTATION OF ¥ 8UB I4d
THIS 18 BEING HWANDLED FOR THESE EXPERIMENTS
45 PART OF TwE PORY RECORD INSTEAD OF THE LOCAL DATA OF THE LPS,
AN IMPLEMENTATION MIGHT MULTIPLEY THE CHANNEL INTO & DATAE PART,
END & FART USED 7O COMMUNICATE THE INFORMATION NECESSARY 710

¢
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BREAX DEADLOCHK,

&}
FORTREL ® RECURD
PEENDER,PRECEIVERIPROCIDY
PSELIGIBLE ,PEWALITING ,PR¥AITING, PRELIGIBLEIBODLEAN]
FSMPL ,PRHPL , PSTIME ,PRTIME ,PHBGCOUNTEINTEGER
PHESSAGE tMESSABES
PHIJIINTEGER]
ENDJ
fe TARDEF ¢ PRDCESS’ OwN DAYA RECDRD TYPES
E4CH PROCESS HAS & DATA STRUCTURE FOR 178 OWN DATA, WHDSE
STRUCTURE 18 DETERMINED BY THE TARGEYT WETWDRK PROCESS KIND
E,G, & PRDCESS OF KIND POQUFUE’ WOULD REGUIRE DWN DATA THAT
RETAINED INFORMATION ABOUT JOBS IN THE UUEUE, AND HEAD AND
TaI, POINTERS, WHERE & B4AB]C PROCESS RIND #Hal BEEN INe=
STANTIATED SEVERAL TIKES, SEPARATE OWN UATA I5 MAINTAINED
FOR EaCH ONE,
Eack SUCH RECORD HAS AN DPROCKIND FIELD TO RECORD THE OHNER
PROCESS KIND, AND & VARIRBLE PART WHUSBE STRUCTURE I8
DETERMINED BY OPROCKIND,
SEE THE DISCUSSION ABDUY THE VARIABLE, OHN, FOR EXAMPLES OF
REFERENCING OWN DaTA, 2}

{e QUEUVETYPE IS & TYPE DEFINED FOR USBE BY THE GUEUEZE LP KIND e)
QUEUETYPE » A4RRAYI®,,1%] OF IKTEGER}

CuHATA B RECORD
CASE DPROCKIND § PROCKIND OF
SOURCES (SODUTPORTIPDRTIDISOMUIREAL JSOTIME  SOMBGLOURTEINTEGERY
SOCONIREALISUBEGIINTEGER) )
SINKE(SIINPORTIPORTIDJSITIME ST JOBCOUNTIINTEGER]
MERGEZI(M2INIPORT, MZINZPORT MP0UTFORTEPORTIDS
MEZINITIME MZINZTIME  M2JOBICUUNT,
MEIOB2COUNTEINTEGERJM2HAYE ] , ME2RAVEZIBODLEAN]
MEINIMEL , MPINENSEIMESEAGE )}
FORKZSIFRINPURY FROUTIPORT  F20UT2PORTIFPORTID
FETI”&,FZGUT&COSN?,FZGU??EOU%?tIN?EGiR;FERHGzRiéL}:
GUEUEZZILC2RINPORT  B220UTFORTIBPORTID?
CEPBUFFER,GReBUFFERZIGQUEUETYPE JRZUTIMETINTEGERS
CEZINPTR,CREOUTPTR, C22JOBCOUNT ; GERORANIINTEGER)
DELAYE{DINPORT ,DOUTPORT§BORTIODERU, DCONIREALY
DYIME , DSUMPTIME ,DJOBCOUNTLINTEGER)
EMus

fe & TALLEYBYSTATVE VARIABLE HAS & INTEGER FIELDS 7O RETAIN & COUUNT
DF THE KUMBER DF PROCESSES IN EACH 8TaTE, SULH & YARIABLE
18 USED A% A RESBULT PARAWMETER OF THE LOUNTBYSTATE ROUTINE WHICH
COUNTS THE NUMBER OF PROCESSES IN EACH SBTATE AND PUTS THE TOTALS
INTO THE 4PPROPRIATE FIELDS, FODLLOWING THIS PROCEDURE CaLL, THE
COUNTS REMAIN VaALID &% LDNG A% ND PROCESS CHANBES 8TATE, &ND
WO RDUTINES CHANGE THE VALUES, COUNTBYSTATE I8 TwE OnLY PLACE
THESE VARIABLES ARE WRITTEN INTO,

TALLEYBYSTATE = RECOKD
XGTING ,CMNING,BLKED, TRMEDIINTEGER)
EMDI

#3

(¢ & PORTPDINTER 15 AN BRRAY W1TH ONE ENTRY PER PORT, WHDSE
ELEMENTS ARE POINTERSE 70 & PORT, ( BMALL INTEGER INDICIES INTO
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THE PUORTS® DATA RECORD), THIS 18 & CONVENIENT MECHANISK 70

DEFINE &N ORDERING ON THE PORTS BUCH 48 THE USE BY THE BCHEDULE

PRUCEDURE TCO DEFINE THE DRDER 'IN WHICH THE PORTS SHOULD FIRE, e}
FORTPUINTER = ARRAY[1,.PORTHAX} OF &, ,PORTHAXS

& GLOBAL VARIABLES e}

{# PORTS I8 4 TABLE OF PORTRECORDS, DNE FOR EACH PORT IN THE
TARGET NETWORK, A PORT®S PORYID INDEXES THE TA&BLE, -~
PORTS § ARRAY (), .PORTMAX] OF PFORTRECS ’

fe LP® I8 A T4BLE OUF ACTIVATION RECORDS, ONE FDR EalW LOGICAL
PROCESS IN THE TARGET WETwDRKR, A& FROCESS' PROCID INDEXES
INTO THE T4BLE,

P8 § ARRAY[1,,PROCMAX) OF ALTRELY

fs OWR 18 & TABLE CUNTAINING THE PROCESS® DWNED DATA RELORDS,
OME FOR EALM LDGICAL PROCESS, PROCESS 1 ACUESSES 178 DaTa
4% OWNIT)  MEAD ; OWNII)  TAIL AND OEN{II 0[] FOR THE
DEFINITIONS DF OWN DATA FOR THE PROCESS KIND FQUEUES
DISCUSRED WITH THE OWNDATA TYPE DEFINITION, &3

O®N T ARRAY[1,.PHDOMAY] OF DWNDATAS

fe NEITIME 318 THE GLOBA, NETWORX CLOCK, & DISCREVE=VALUED
cLonK, 17 ADVANCES ONE TIME UNIY EVERY TIME THE BLOBAL
CLOCK ®TICu8®, BEE THE PROCEDURE DEFINITION FOR TICK,

#3

NETBUSYDTTIME  NETSUMCMNTIHME, AND RETBUNMBLETIRE ACTUMULATE
THE AMDUNT OF TIME THAY PROCESSES SPEND IN BTATES
FXECUTING, COMMUNICATING, AND BLOCKED RESPECTIVELY.

NETHMSGLIMIT AND METTIMELIMIT ARE THE TIWME 4&ND ME3SSAGE BOUNDS
¥Ha&T THE PROGRAK DPERATOR HWAS BPECIFIED, IF EITHER LiIWM]Y

18 EXCEEDED, THE SIMULATION 18 STUPPEDAND 4 MESSAGE PRINTED,
HEFORE THIS HAPPENS HOWEVER, THE DPERATOR GETS THE OPTION OF
ENTERING NEW, HIGHER VALUES 80 THAT THE SIMULATION MAY
PROCEED, NETMS8GCOUNY CONTAINS THE TOTAL NUMBER DF MESDAGES
THAT HAVE BEEN BENT BINCE THE BEGINNING OF THE SIMULATION,

PURTS 18 &N INDEY VARI2BLE THAT RANGES OVER THE DEFINED PORTS
BROCI AND PROCK &RE INDEX VARIABLES THAT HAWGE COVER THE BROCS

WETDEADLOCK &ND NETTERM ARE BUOLEAN VARIABLES W]TW DEFINITIONSG
L NONTERMINATED PROCESSES ARE DEADLOCKED, &ND ALL PROCESSES
ARE TERMINATED RESPECTIVELY,

SEVEN DIFFERENT TRACE VARIABLES TURN ON SIMULATION RUN-TIME
QUTPUT FOR IHE PURPODSE OF DEBUGGING THE INTERPRETER OR THE
TARGET LDGICAL PHOUESSES, UOR UBSERVING THE PRDGRESS OF &
SINMULATION, IN GENERAL YHESE YARIABLES PRODUCE MORE LISTING
WHEN THEY HAYE LARBER vALUES, ALL ARE INTEGER, AND & JERD
MEANS ND=TRACE, THESBE ARES

NAME GUVERNS LIBTING WITHIN THE BUBJECT AREX
RETHOTTIRACE THE PRDCESBS BTATE s EXECUTING
METCHMNTRACE THE PROCESS BTATE = COMMUNICATING
WETBLKTRACE THE PROCESS ST&TE s BLOCKED
NETTRMTRALE THE PRUCESS STATE = TERMINATED
INTERTRALE ACTION DF THE INTERPRETER, PROCEDURE CALLS, ETC,



118582
11808
§1958
j2epe
122582
igipe
{21%¢€
i€epe
18258
12308
123%¢
124p€
(2une
1258
128%¢
1260€
1E65%
127pe
18752
{287¢
12858
iesee
1€%5%2
i3gre
13982
i3ipe
13158
13268
13e5¢2
133p8
§335¢
13402
13452
135¢¢
135%¢
13002
13852
13708
13752
13822
138582
13922
13959
LEEPE
j6g%e
ja1p@
14158
{828 T
18252
14ipe
j8i%¢
16ape
18652
1a4%88
18558
1865¢
14652
167¢8
18758

TARGETTRACE ACTIVITIES DOF YHE TARGEY NETWORK
NETDEADTRACE OEADLOACK DEVECTION AWD RECUVERY

COUNY 18 IwWITIALIZED BY COUNTBYSTATE AND PROVIDES & CONVENIENY
¥AY OF DETERMINING THE NUNBER OF PROCESSES THAT ARE In EACH STATE

£7 ANY GIVEN TIME, 8EE THWE TESTS FOR TERMINTION AND DEADLOCK
DETECTION IN THE MAIN PROGRAM,

TTY IS THE PROGRAM NAME 0OF THE (QPERATOR®S 1/0 DEVICE, ASSUMED
70 BE & TELETYPE-LIKE DEVICE,

NETFAIR I8 AN OWNED VYARIABLE DF THE BCHEDULE PRDCEDURE THATY
18 USED YO ENSURE FAIRNESS AMONG THE WAITIND PORTE, 80 THAT
NG MESSAGE WiTK ELIGIBLE AND WAITING SENDER &ND RECEIVER I8 PASSED
OVER INFINITELY OFTEN FOR FIRING, 8EE FRULEDURE BCHEDULE,

DEADLOCKCOUNT I8 & COUNT GF THE NUMBER DF DEADLOCKS DETELTVED
IN THE BEQUENTIZL SIMULATION, NOTE THAYT THIS INCLUDES ANY
THAY ARISE IN THE TARGEY BIMULATION, AND TYPICALLY MANY MORE
THAT ARTIFICIALLY ARISE BECAUSE DF THE SEGQUENTIAL SIMULATION
OF THE WAITING RULES FOR MERGE PROCESSES, AND PFOSSIBLY OTHERS,

HIGHPROL AND HIGHPDRY ARE THE WIGHEST NUMBERED PRDC AND PORY
RESPECTIVELY, TRAT ARE UBED IN THE CURRENT SIMULATION, THIS
UERPENDS DN WWAT NETWORK THE UPERATOR HaeS SPECIFIED,

%)
NETTIME  NETSUMXDTTIME , NETSUMCHNTIME  NETSUMBLRTIHETINTEGERY

NETMEGLIMIT,NETTIMELIMIT, NETHSGLOUNTIINTEGER]

PORTST 1, .PORTHAX]

PROCI,PRDCKS §,,PRUCHAY]

NETDEADLOCK , NETTERMEBODLEAN]

NETCMNTRACE ,NETXRTTRACE (HETBLETRACE , INTERTRACE ,NETTAMTRACE  INTEGER]
TRRGETTRACESINTEGERS COUNTITALLEYBYSBTATES

NETOEADTRACE§INTEGER)

TYY § ATEXT

NETF&IRIPURTIO] {(® PORT FAIRNESS se> PROCESS FAIRNESE 2}
DEADLOCKCOUNTEINTEGER

DEADLOCKLIMITEINTEGER]

HIGHEHOCIPROCIDIHIGHPORTIBDRYID:

BUFFERSIZETINTEGER)  (w» FOR BUFFERSIZE VS DEADLOCK EXPERIHENT @)

PROCEDURE CoNTINUES
fe PRINTS 5 WMESSAGE AND BODLICITS DUMMY INPUY 48 2 DEBUG TOOL e}
VAR DUMMYECHAR)
BEGIN
KRITELN{TTY,? CONTINUE CaLLED, ENTER ANY CHER *}7}
BRE&KE
RESET(TIVY
READLTTY  DUMMY)S
ENUE
FUNCTION MIN{ARGI ARG2IINTEGER) FINTEGERY
BEGIMN
IF &ARG1e=ARGy THEN MINiesRGY ELBE MINI®ARGEJ
END}

FUNCTION MAX (ARG, ARCEIINTEGER) FINTERER)
BEGIN

I¥ ARGi»=ARG2 THEN MAXI2ARGI ELSE MAXISAERGZS
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16685%€
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{5¥582
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1525¢
15308
15358
1%4pe
18452
15522
15558
15008
15658
15768
15782
158¢¢
158%2
15908
i59%8¢
16828
16¢8e
isipg
j6152
16282
16283
163p€
16358
$bagd
164%8
jes5p@
165%@
16678
16652
16702
i675%8
15314
jp882
jesee
1695¢
17802
17ese
17178
i715¢
{v7epe
j7ése
175¢8
1755¢
17ap2
17&%5¢
175082
i78%¢
1Ten?
17852
177pe

EwND]

PROCEDURE INCR{vAR ARGIINTEGER}J
BEGIN

LAGEBAREL}
ENDI

PROCEDURE DECR{VAR ARGIINTEGER)}
BEGIN

ARGEEARDGS]]
ENDY

PROCEDURE SHOWMSG (MSGINESSAGEYS
¢% T&RDEP « PRDCEDURE TO WRITE THE PERTINANT INFORMATION FROM MEG
;git§£ é?;, ;:E ALLOWABLE YALUES OF MSG,MBGKIND MUST BE ACLOUNTED
N THE CASE STATEMENT 80D THAT ALL ALLOWABLE MESSk
PPt 10 Tov. LE GEE Caw BE
BEGIN
WRITELN{TTY)}
WiTH M8G DO BEGIN
WRITE(TTY,® MTIME = ¢ HMTIME:6,® HAS KIND ®°3}
CASE MKIND OF
UNDEF INEDIBEGIN
;R}Tt;N(Y?Y,’ UNDEFINED, MESSBAGE UDATA = *,UDATAYY
ND}
JOB SBEGIN
WRITELN{TTY,? JOB, JOBWUKRER s #,J0BNUMBER}]
END?
ENDS

END Y
END}

PROCEDURE COPYMSGTOFROM{VAR DESTIMESSACESFROMIMESSAGE))
{# TARDEF » COPIES THE FROM MESSAGE TO THE DEST MESS4GE, %)
{# MUST BE ABLE 7O COPY ALL TWE NECESBARY PARTS OF &Ll POUSSIBLE
MESSAGE VARIETIES, A5 DETERWMINED IN ANY PARTICULAR Cali BY THE
VALUE DF FROM MKIND &3
BEGIN
UEST,HTIME g® FROM MTIME}
DEST MKIND 18 FROM MEINDJ
CASE FROM MKIND OF
UNDEFINEDSDEST ,UDATAISFROM UDATAY
écs $DEST JUBNUMBERsFRON  JUBNUMBER]
RD§
IF (INTERTRACE>B) THEN
WRITELN({TTY,® MESSAGE COPIED®}}
. 1F (INTERTRA&CE>Sg) OR (NETCMNTRACE»SE) THEM (ONTINUEY
MUt

PROCEDURE B8HOWPORT(IDEPORYIU}Y

£« DUMPTTY STATE OF PODRT

BEGIN

#1TH PORTSIIDY DO BEGIN

WRITELNITIYZ
WRITE(TTY,” PORT 7,10:13,° PSENDERe® ,PSENDERI3,F PRECEIVERs?}}
WRITELM(TTY,PRECEIVERTS,® PSELIGIBLE®’,PSELIGIBLEDS
WRITE{TTY,® PRELIGIBLE®’ PRELIGIBLE," FIHAITINGe! PSWAITING)]
WRITELTTY,® PRWAITINGS? ,PRWAITING,® PSWMFLe’,PEMPLI3,% PRMPL27}y

&3
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18608
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18708
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18800
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196082
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19189
19192
19209
1%Ese
15370
§GiRE
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j9esg
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19558
196p8
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gevpe
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gpupe
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2e852
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WRITELNI{TTY,PEMPLEI3))
HRITELN{TYY,? PHIJ 2 °,Pultlit}s
WRITE(TYY,” PEYTIME=" ,PETIMEI®,? PRTIME® T ,PRTINMEIB)S
WRITELN(TYY,? PMSGLUUNTE? PHAGIDUNTEE, 7 FHMESSAGE 18 ¢3;
SHURMEBG (FHEBEAGEY S
ENDT  [# WITH a)
ExDY

PROCEDURE PRETATETYPE(STESTATETYPE):
fs PRINT PRUCESS STATE GIVEN BY BT FIELD WIDTH I8 § w3
BEGIN
C&8E §7 OF
EGTIWRITE(TITY,® %8BT 7)}
BLESWRITE(TTY,® BLK 7}
CHNEWRITE(TTY,;® CuN *}¢
TRM§WRITE(TTY,? TRN 3§
ENDY
ENDS

PROLEDURE PRMBGRIND (MRIMEBGKINDIS
(= TARKUDEP ® wRITE THE MESSAGE KIND PRINTNAME &7 THE CURREWT CURSQOR
oW TTY %}
BEGIN
C&8E ®Wr OF
UNDEFINEDIWRITE(TTY,® UNDEFINED )¢
JOBIWRITE(TTY,? JOB 7}
EnDg
EMD}

FROCEDURE PRPROCKINDITYSPROCKIND] S

(e TARDEP = PRINT LODGICAL PROCESS KIND GIVEN BY TY A7 CURRENT CURECR
FIELD ®107H 18 &,

&}
BEGIN
CASE TY DF
SDUNLCE IWRITE(TTY,® BSOURLE 931}
B INK IWRITE(TTY ¢ SINK )12

FORKZ 1WRITE(TTY,? FDRKZ 733
MERGEZ IwWRITE(TTY,® MERGEZ *¢}7
DELAY IWRITE(TTY,® DELAY €34
GUtuE2BI4RITEL(TYY,® QUEUER2E *3§
EMpg

ENDI

PROLEDURE PRSIGNATURE(IDIPROCID) !

(e PRINT PROCESS XIND, IWNETANCE, AND PROCESS IU FOR THE PROCESS
NUMBER Pa8SED A8 1D, AT THE CURRENTY CURSBOR PUDIYTION, FIELD ¥IDTH
18 3i

BEGIN
PRPROCKRINU(LPSIID] (ATYPEDS

WRITELTTY,® INSTANCE e ¢, LPE[ID) AINSTANCEI4,® UNIQUE 1D = #,3D14}}

EnNDI

=}

FPROLEDURE SHOWPROCESS(IDIPRUCID)Y
% DUMPTYY SYATE OF THE PROCESS NAWED 1D,
BEGIN
WRITELH{TTY )
WHITE(TTY,® BHUWPROCESSE?):
PREIGNATURE(ID)

2}
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2i2ae
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2iepe
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215p2
E15%€
giep®
2ie5¢
gitre
217%€
gigpe
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22¥PE
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g2ape
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22628
ZEsEE
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gz8s¢
gzype
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23ere
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£33%¢
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23452
23572
2335%¢
23epg

HITH LPSIID) DO BEGIW
WRITELNI{TIY)S
WRITE(TTY,? ASTATE »7);
PRETATETYPE(ASTATE )}
WRITE{TTY,? AWEKTSTATE 2%}
PRETATETYPE (ANEXRTETATE )Y
WRITELN{TYY}§
WRITE{YTY,® ATIMELEFT =® ®,ATIMELEFTIG,® ABUMXDTTIME ® €33
BRITELNCTTY  4BUNKQTTINE R, ? ASUKCHNNTIME 8 *, ASUMIKNTIMEIE)
HWRITE{TTY,® ASUMBLKYIHE 2 ¢, A3UMBLKTIMEI®)}
WRITE(TTY,” ATRMYIME B ® ATRMTIMEIB,f AMPC & 7, AWMPCI4)]
WRITELN{TTY, ¢ AXQGTTIME » ¢, AX0TTIMESG))
WRITELNITTY,® ATIMELEFY 28 P, ATIMELEFTIS)S
WRITE(TTY,? &PORT = ¢, 4PDRY164,? MESSAGE BUFFER ¢33
WRITELN{TTY,*CONTAINE THE MESSAGE®)s
BHOWMBG (4MERSAGE) S
ENDY

ENDJ

PRODEDURE SHOWDWN(PROLSIPROCID) )
fe TARUEFP % FPRINT OWNED DATA FOR PROC
Lr Tanoep o o DCEBS GIVEN BY PROCS %3
BEGIN
BRITELN{TTY)¢
WRITE(YYY,® PROCESS 7,PROCSI6,® HAS OHN P
?ﬁPRGCK!ND{QﬁNQ?ﬁDCS},G?RGCKIéS}T S DFNED DATH FOR OPROCKIND=T)
WRITELN(TTY)?
wiTK DWW {PROCS] DU
CASE OPROCKIND OF
SUURCESBEGIN
WRITELTTY, ¢ BOQUTPORT & ¢,300UTPDRTI3)}
WRITE(TYIY,® SOCON =7 ,80C0N)
WRITELN(TTY,? SOMU = 7 ,80WU)}
WRITE(TTY;® SOTIHE 8 )}
WRITE(TTY,® 7,80T1%E¥6,° BOMEGLUDUNT ® ¢, SOMEBCOUNTESY
WRITELN(TTY,® SDBEQ » ¢,80BEQI6Y)
ENDJ
SINKIBEGIN
WRITE(TTY,® S1INPORY e *,87INPORTI3,” LOCAL TIME = 73;
:RIEELwif?V¢SBTIﬁEEee‘ SIJOBCOUNT ® ¢, SIJOBCDUNTIS)}
ND§
QUEUEZBIBEGIN
WRITE{TTY,® GEBINPORY & ¢ ,02BINPUKTIZ,® QG2BOUTPORY = 8}
WRITELN(TTY,C2BDUTPDRT3,F GReTINE = a,sezfxxgxb1§
WRITE(TTY,® BZUINPTIR & °,Q2BINPTRIT,® D2BOUTPTR & ?);
WRITELNITTY,B2B0UTPTREIY, * G2EJOBCUUNT & 7, D2BJDBCOUNTIS)S
BEEORAYISHAY (8, 02804AY) A
QEeEMAXIEMIN(}9,02R0MAXY
HRITELW{TTY,? Q200MAY = 7,02B0MAX12))
IF (VTARGETTRACE2{B) THEN BEGIN
FUR 13®€ YU G2BOMAXY DU BEGIW
WRITELN(TTY,® Q2OBUFFERI?,132,°] CONT% MESSAGE 1°
WRITE(TTY,® MESSAGE TIME s ',éaesusrtai§§:?§§ teE 1T
WRITELNITTY,® JOB BEQUENCE NUMBER = ¢
REABUFFERZIII 18)¢
END]
WRITE(TYY,® QZ2BUFFER CONTAINS ¢ ZINFTR=D280U 2
WRITELNITTY,® JOBS 7} PEEOINFTR-GREOUTATRIZ) )
ENDy

7

=
oo
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gi1pe
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E3850
2i9e8
£398¢
24¢08
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2815%¢
2e2p0
2L2se
24300
24358
24408
24459
L1414
2a%5%8
24508
24658
2aTHE
2G4THE
g4802
24850
2avpp
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2sepe
25058
25ipQ
£5159@
25208
25258
253p0
25350
25409
25458
25508
25558
Z5000
e5e%@
257e®
257%%
ESBRG
258658
25gpré
g5ene
FY134
2aP%2
g2eing
ZeiBe
2egel
E2HERD
263p0
2&3%¢g
X 1d
geaneg
26568
26559

ENUE

END

HERGEZIBELIN
WRITELTTY,® H2INIPORT ® # _ MPINIBORTIZ, " MZINZPDRT & 9}
WRITELNITTY,®2INZPURTE3,7 MPDUTPURY & 7, M20UTPDRTI3)}
WRITELTTY,? ®2INITINME 8 7 MPINITIWEIG,® HZINZTIME 8 f)7§
WRITELNLTTY, M2IN2TINELGE}S
WRITELYTY,® M2HAYEL B 7, MZHAVEL)}
WRITELN(TTY,” HPHAVEZ ® ¢ BMoMAVEZ))
WRITELTTY,;® MEZJUBICOUNT 2 *f M2JOBICOUNTEE)E
WRITELN(TTY,® MBJOB2COUNY = 7, MPJOBZLOUNTIG))

if

(TARGETTRACE®»2Q) THEW BEGIN

WRITELN(TTY,® MZINIMEE CONTAINS TRE MESBAGE 2 °)g
EHUWMBG (MZINIMBE) )

WRITELN{TTY,® MPINZMED CONTAINE THE MESSARE 3 f3g
SHOWMSL (Mg INgNS8G)§

ENDT

END}

FORKZIBEGIN
WRITECTTY, ® FRINPORT ® £,FRINPDRT3,? FROUTIPGRT & 7}
ARITELN{TTY,FROUTSPORTSIZ, ¢ FROUTZPORT ® ¢, F2OUTZPDRTEE)]
WRITE(TTY,” F2TIME # *,F2TIME16,* FROUTICOUNT = ¢33

WRITELM{TTY, F2OUTSICOUNTEG,* F2DUTECOUNT =

WRITELN(TYY,® FZRHD 8 7, FZRWD}}
ENDJ

DELAY

BEGINW

WRITELTTY,® DINPORT ® f . DINPORTI3,° DDUTPORY 8 9}

WR

WR
WK1
WRT

TELNITTY,DDUTPORTEZ,® DTIME = #,DVIMEIG)]

TE(TTY,* DJDBLOUNTY 8 °,DJOBCOUNTESE,® DEMYU ef,DEMUYJ
TELN(TTY,? DLON 8 *,DCONYJ

TELNL(TYY,® DEUMPTIME = ¢ DBUNMFTIMELG) S

END}
ENDF (e CASE =)
WRITELWNITIY)S

PRUCEDURE SBHUWNETHDRK]

{# SMOWS THE PROCESS IDENTITIES, TYPES AND INBTANCES, AND CONNEDTIV]
OF PRUCESSES AND PURTS

V4R PROCIGPROCIDIPORTJIPORTIDS

BEGIN

WRITELN{TTY !

WRITELN{TTY

o WETWORR DEFINITION FOLLOWS, HERE ARE THE PROCESSES

FOR PRDCIsel TO HIGHPRUL U0 BEGIN
WRITELTTY,? °J3
PREIGNATURE(PRDCIJS
WRITELN{TYTY) S

END}

WRITELN{TTY)}
WRITELNITTY,
WRITE(TTY,®
HWRITELNE{TTY}}

For PpRTJI®Y TO WIGHPORTY DO WITH PORTBI[RPUORTJIY DO BEGIN

HRITEL(TTY

WRITE(TYY,?

PRMSGRIND

? WERE ARE THE PORTS )}
SENDER  RECEIVER  PORTID  WEGKIND *F)j

, ¢ f PSENDERII,? * PRECEIVERIZ)}
* L PORTIE3,? ey

(PHESSAGE ,MKIND}}

WRITELN(TTY)}

END}

YRITELN{TTY):

ENDF

P F20UT2C0UNTE6)

TY
*)

?2;

72
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PROCEDURE PARWAIY (WHICHPORYIPORTIDIREGUESTERIPROCIDIMPLIINTEGER) ]
{= REQUESTING FROCESS INVOKES PROCEDURE PARWALT TO INITIATE
FAWALLEL WAJTING FUR & MEBSAGE DVER PORT 8 WHICHWPODRT,
EHDULD THI® BE THE POKT UVER WHICH THIS PRUCESS WEXT
COMMUNICATES, EXECUTION BHOULD RESUME A7 THE CONTROL
POINY ®PL { MEY4 PROGRAM COUNTER ), THI& PROC WILL
CHECH THAT THE REGUESTING FROCESS I8 NAMED 485 A PARTY
TO COMMUNICATION OVER THE WNAMED PORYT, AND THAY THE TYPE OF
MESSAGE BENY YO THIS PORT AGREES WITH THE TYFE NAMED IN THIS
PURT®S PURIREC, AN ERRUR MESSBAGE I8 PRINYED UPON CALL
IF THESE REQUIREMENTE 4RE NOT SATISFIED, 8}

BEGIW

IF {(INTERTRACESNETBLKTRACENETCMNTRACESTARGETTRACE)Y » B THEW
WRITE(TYY,? PaRWAIY CALLED?)}

IF (INTERTRACE»1€) UR (WETBLETHACE»{B) OK (TARGETTRACE>12) THEWN BEGIN
WRITE{TYY,®, PRUCESS 7, REQUESTERIZ,® WILL AwW&]Y PDRY L HNICHPORTIZS 2
IF (PORTE[WHICHFOKET) (PBENDER & REDQUESTER] THEN BEGIN

WRITE(TTY,® TO SEND A WERSAGE WiTH MTIME 2 73§
WRITELN(TTY LPS IREQUESTER) ;4MESSAGE HTIME Y
ENDJ
WRITE(TTY,? AT KETTIME & ¢, NETTIMEC FSIREQUESTER) (AXGTTINELS) ]
CHRITELN{TTY,;® ®WITH REBUME PDINT 7, ,WMPLi&]}
ENp Y

IF (PURTSI#HICHPORT] ,PSENDERSREQUESTER] AND

(PQQYS:&HItﬁPQRT},?&ESS&GE,&&I&Q<>L?Si§§§u55¥iié.s%ESSAGE,%xiR&}

THEN BEGIN

HRITE(TTY,® BERIOUS ERROR wes PROCESS 7, REGUESTERIZ))
HRITELN(TTY,® HeS ALYERED THE WESSAGE TYPE OF PORT £33
WRITE(TYY,® NUMBER *,wWHICHPDRTIL, " EFFECTIVELY CHANGING 3
WRITELNLTTY,“178 TYPE w## ERROR DEVECTED IN PARWAIT?)g
SHOWPROLCESS(REDUESTER) ]
SHOWPOKRT (WHICHRPORT )}
HRITEL(TTY,? THIS VIOLATES AN INYAWRIANT OF THE PORT?}s
;RETELN(Y?Yf', FIXED MESSAGE TYPE?)}
ND§

IF PORTS[WHICHPORY] ,PBENDER v REDUESTER THEN BEGIN {2 SEND =)
COPYMBGTOFKOM(PURTS (WHICHPORY] PHMEESAGE ,LPEIREQUESTER) (AMESBAGE )}
PORTS [WHICHPURY] ,PSELIGIBLE 58 TRUE;

PORTBIHWHICHPURY) FPSWAITING te FALBES
PORTBIMHICHPORT) PEMPL 2 MPL}
LPBIREUUESTER] (ANEXTSTATE e BLKS
END  ELSE
IF PORTSIWHIUHPORT] ,FRECEIVER s REUUESTER THEN BEGIN
(% REGUESY TO RECEIVE OVER THIS LINE o)
PORTS (WHICHPORT] PRELIBIBLE §= TRUE}
PURTS [WHICHPORT] PRMPL t& MP(}
LPE[NEUUESTER) (ANEXTBTATE 18 BLX}
END ELSE BEGIN
WRITE(® THIB ILLEGAL REQUEST IGNDRED®):
WRITE(TTY,?, REQUESBTER *,REGUEBTER|Z,® I3 NOT )}
HRITELNI{TTY,? CONNECTYED?);
WHITE{TYY,® TU THE PORTe?, WHILHPORTIZ,® WNAMED IN€}}
WRITELNITTY,® PAR®AIT CALL?}:
END:

IF (PURTSIWHICHPURT) ., PEENDERBREQUESTER) AND (RETOHMNTRACE» (8} THEN BEGIWN
WRITELNITTY,® THE WMESSAGE 70 BE BENT 18731
SHUWMBG (L PSIRECUESTER] ,AMESSAGE) S .
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procedure that creates the processes, which should be unique
to each call. The value of this "unigueid®™ becomes the
process—identifier of the resulting process created. This is
the wvalue that is used as the index into the OWN and LPS
arrays for the process. If 211 the processes are well be-
haved, and never access the OWN and LPS arrays with arguments

ther Vthan their own unigue identifier, then some level of
protection is maintained for the process' local data. Since

processes are resumed with this same argument as & cazllin

Lo

parameter, "ID", some nforcement of protection would be

afforded by disallowing any reference to OWN or LPS with

arguments other than this ID, and alsoc flagging as an error
any attempt to alter the value of this wvariable within a
process. It would also be necessary to keep the OPROCKIND
field of the OWNDATA entry for the process from changing
during execution since this would alter the structure of the
iocal data, possibly providing access to the data of another
process, so any code that attempted to change this wvalue

should be disallowed.

In the SIM QUEUE2¢ type, initialization occurs at
MPC = 1. Here it can be asserted that there is room in the
gueue; in fact, it is empty. Accordingly, the process ini-
tially waits to receive its first message. Whenever input is
received, the process resumes at MPC = 2. At this label, it
is known that there is at least one message to send, so the

process can wait to send it out even without checking the
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ENDE
IF (INTERTRACE+NETBLETRADESNETOMNTRACESTARGETTRACE 283 THEN BEGIN
WRITELW{TTY,? PARWAIT RETURKED ¢33}
ENDJ
EWD

PROCEDURE DUMPTTY}
(e DISPLAY THE WORLD #]
var PROCIEPROCIDIPORTJEPORTIOD?
BEGIN
ERITELNITTY) )
WRITELNITTY,® e¢ PROCEDURE DUMPTTY CALLED ®e& HERE ARE THE PDORTS®}}
FOR PORYTJIsy T0 HIGHPDRT D0 BHOWPDRTIPORYJIG
WRITELNI{TTY,® WERE ARE THE PROCESS?® RECODRDS)g
FurR P®ROCI t= § TO HIGHPROC DD BEGINW
SHOWPROCESS(FRUCL)E
SHOWDEN (PROLII?
ENDY
WRITELNITTIY )
WRITE(TTY,® NETYIMESY  NETTIMESS, 7 NETSUMXRTITIME®®)}
WRITE(TTY,NETSUMERTTIMEIE, " RETSUMIHNTIMES®  NETBUMCHMNTIME IR}
WRITELN{TTY,? NETSUMBLRTIME="  NETBUNMBLETIME:E)
HRITELTTY,® WETHMSGLIMIT=®  NETMEGLIMITEIE,® NETTIMELIMITE?)
WRITE(TTY METTIMELIMITEIE,® NETMSGLOUNTs® NETHMEGCUUNTIEY )
WRITELNITTIY,? PORTJe,PORTJI&,° PROLIE?,PROCIIGY}
WRITE(TTY,® NETDEADLOCKe 7 . RETDEADLOCK,? NETTERM2 ¢, METYERM)}
WRITELN{TIY,? METCHMNTRACE®’ NETOMNTRALEIZY)
WRIVEL(TTY, ° MWETHEOTTRACE=F NETYHUTTRACERZ,® NETBLKTRALE=®);
WRITELN{TTY,® INTERTRAUEE=?,INTERTRACEIZ)}
WRITELN(TTY,® DEADLUCKCOUNY = ¢, DEADLDCRCDUNTIS) )
WRITELN{TTY,® END DUMPTTY %}%
ENDE

PROCEDURE TRACELP{IDIPROCID)
fe PRINY INFOURMATION ABOUT THE BTATE OF THE (OUGICEL PROCESS NaMED
1D, MORE IWFORMATION I8 PRINTED THE LARGER THE CALLING VALUES
OF THE TRACE YARIABLESR, NOTHING I& PRINTED &7 &LL IF &LL TRALE
VARS ARt ZERD, CALLERS SHWDULD PRINT PERTINANTY DETAILS ABDUT
THE LOCATION FROM WHICH TRIE ROUTIKRE 18 CALLED, £,5, WHEN
CHLLED &Y THE BEGINNINE OF THE PROCEDURAL DESCRIPYION OF &N LB,
THE COUDE ®mIGHT 8E:
WRITE(TTY,? ENTER TARGEY PROLESS?);
TRACELP(ID}Y
WRITELK(TIV)
EnDJ

2]
BEGIN
IF [INTERTRACE®2) DR {TARGETTRACE®E) OR (NETEQRTTRACE®D) THEN BEGIN
PREIGNATURELID)
WRITELN{TTY)}
ENDS
IF (INTERTR&CE>9 J THEN BHOWPROLESS(ID)I
IF (TaRGETTRALE>9) THEN BHUHDWN{ID}J
END?

PROCEDURE DEFINEPORT(DIRECTIONIPORTDIRECTIONTYPEJOWNERIFROCIDS
VaR PORTNUMIPDRTID}G

e THIS ROUTINE wILL BULICIT INFORMATION FROW THE USER &BOUT



32500
325%8
3Zeee
32658
3eTpe
32758
izépe
ize%@
iz%p0
329%@
3z2e0@
33p5€
3iee
33158
33gpee
3ip%e
333p@
335%€
iap@
334%8
335¢¢
33558
33690
13652
337e@
337589
izepe
1385¢
339pQ
319%@
34002
2av5@
34190
355%¢e
lazpe
342%@
3¢i08
343%2
3aep@
30452
3enpe
343554
3608
3de58
3a7p0
Javse
jugpe
34859
349p@
314958
I5gRL
i5g%¢
isige
35158
35208
352%8@
3%3p0
35350
354p8

& PDRY wHDSE DIRECTION, ONE OF INN OR DUT, I8 PABBED In &%
DIRECTION, WU we0OBE OnEW PROCESS I8 NAMEU AS DWNER, THE
PURTNUMBER ®]LL BE RETURNED 28 PODRTNUM, AND THE PORTB ARRAY
WilLL BE UPDATED ®WITH THE UBER<BUPPLIED DATA, THIB IWlLuDEs
THE PORTID, WEBSAGE KIND, AND THE BEWD DR RECEIVE TIME A4S
DETERMINED BY wWHETHER THIS® 1B AN INN, OR AN QUY PORT, &3}

YaR INDATA, J1IWTEGERJRINDIMEERKINDS
BEGIN

WRITELN{TTY,? ENTER PORY ID NUMBER?):
BREAKS
RESET({TIVv)s
READ(TTY, FURTHUM)?
(= DONEY BET THWE FROM QPERSTIOR ,,,
WHITELTTY,? ENTER THE INTEGER CUDE FOR THE TYPE OF WMEBSAGE €3
WRITELN{TYY P8ENT DYER THIS PORT®}p
Tgsyg
£e TaRDEP ¢ KEXT LINE COMTAINS 187 AND LABT MBOEIND 8UALARE ENDCOMMENT
FOR ®IwDisUNDEFINED 0 JOB DO BEGIN
HRITE(TYY,? Feliz,* 8 )y
PuMEBLKIND[RIND] ]
INCRITYS
EnDy
WRIVELH{TTY)
BREAK ]
RESET(TTYI)}
READ(TTY,INDATAYY
&}
INDATAL®E
CL8E IWDATA OF
fe &L MESBACE KINDE MUST BE ACCOUNTED POR Iw CASBE RANGE =)
BENINDIBUNDEF INED)
$iRIND BB}
ENDS
(¢ WRITE(TTY,® ENTER TIME UNITE FOR €3}
Ca8E DIKECLTION DF
INNIWRITELNITYY, 7INPUT FROM THIS PORY )
DUTIWRITELNITYIY,"DUTBYUY Y0 TH1& PORY #3§
EnDY
BREAK]
RESETL(TTY ¢
READ(TTY,INDATA}} %}
InDaTEEn L}
WiTH POETEIPORTNUM] DD BEGIN
CASE DIRECTIODN DF
INNIBEGIN
PRECEIVERI®DWNER]
PRYIMEISINDATAS
EnDy
DUTSBEGIN
PEENDERIBDRNER
PSTIMEre LAY
END S
ENDJ
PMEESAGE MRINDIBRINDY
ENDY
IF (INTERTRALDERZD) OUR (TARGETTRACE>3A) THEN BEGIWM
WRITE(TTY,? PORT f,PORINUMIZ,® 18 INCIDENY OW®)g
PRSIGNATURE (OWNER)§



76

WRITELN{TTY,? WERE 18 THE PORT}§
EHOWPORT (PORTHUR}E:
END}

Sy

UNCTION AWAITS (PROCIPROLIDJPORTIPDRTIOD) 1B00LEAN]

‘+ RETURNS TRUE IFF PRDEL I3 WAITING FOR COMMUNICATION OVER PORT e)
BEGIN

¥1TH PORTE[PORT) DO

B AWEITRIE(((PRECELYERsPROC) AND PRWAITING &ND PRELIGIBLE) OR
neor ({PSENDERRPADL) AND PSWAITING AND PSELIGIBLE} )
ENDS :
z5e
5178
gggg i@éﬁ%ﬁ§§iﬁ%!tieﬁ*ttttt»’%?ﬁ%%ﬁ?tt*lttftﬁ!ttt*Stt%i’ﬁﬁﬁtt**ﬁiiﬁt!t:ttf
5298 ¢ 2
LBRE ® DEFINITION DF T&BEET PROCESSBES vis PASCaL PROCEDURES #
830e # &
RE Y :«tz§a§ttfssﬁﬁ;t!ttstﬁ:%%%%&!'!gtﬁttﬁﬁttR#tsﬁtta!’ttt*ﬂﬂﬁ!xt:ast!t)
PROCEDURE L PSOURCE(IDERROLIDIY
e THE TYPE DF THMIS LULILAL PRUCESS I8 OBTAINED BY REMOVING THE

FLP? FRUM JT8 NAME, THI® DETERMIRES THE OwNDATA ENTRY FDR
FROCESSES OF THE TYPE DESCRIBED BY THE FOLLUWING CODE, 2}

vaR DELAYIINTEGER]

FRGIEDURE CREATEMESBARE tViH MBGIMESSAGE I TIMETINTEGERFRINDEMEORINDY
DATHIENTEBGER) S
8 IWNITIALIZE THE MESEALGE WITH THE BUPPLIED TIME, KIND; AND BINGLE
HORD OF DATA,
BEGTIN
& ¥ITH M35 DO BEGIN
# MTIMETeTINES
HKINDEBKIND]
CA8E WEIND DF g TARDEP s DEFENDING Ox RIND OF HEG #)
(= HMUST ACDOURT FOR EVERY POBSIBLE YALUE DOF ®KIND EXP LATER &)
JOBIJOBNUMBERI.DATAY
UNDEFINEDIUDATASBDATAY
ENDE
EnbDs

®3

Z

BEGIN
TF(TARGETTRACE»B) UR {INTERTRACE»Z) THEN BEBIN
WRIVE({TTY,? (REJoUNTERING *}}
PREIGHATURE LID) Pl TELN{TIY ) IEND)
17K LPB{ID) DO
WITH OWNIIDI DD BEGIN
AXQTIIMES® L}
LASE aMPLC UF
BIBEGIN fe CREAYTE THIS LP BDURCE INSTANCE »)
WRITE YTV, 7 CREATET}
FREIG HRE(ID)}
HRITELHLTIVIY
WRITELYTY,® FOR THE DUTPUT PDRT,;*1g
DEFINIPORT(DUY,10,800DUTPORY Y
WRITE(TTY,? ENTER REAL EXPONENTIAL DELAY ‘)¢




3B65T
3B78E
iavee
igspé
38858
k1324
3p9%¢
isppe
3gpse
3vige®
k95382
iggpre
‘39g%%
i9ip2
393%¢2
33%ap@
3%a5¢
1%%¢2
395%5¢
398028
E965E
Ig7p@
397%¢
i9BpE
398%€
i99p€
3995¢
4ppee
5ppse
epLBE
&pise
agzZee
&pgse
ap3re
4p3%¢e
spap®
apese
apseg
gysse
spep
£PeSE
4pTRe
aglse
[11-14
GpeseE
syl
¥ 11314
L 2% 14
s18%8¢
aiipe
ayi%5g
g12p8
g125¢€
413p¢@
8313%€
41698
gyene
83598
€155¢@

WRITELK(TTY,® PARAMETER BO0MU %}

BREAK]

RESETITTV}}

TTGISASTS FLID Y

WRITE(TTY,? ENTER REAL CONSTANT DELAY “31
WRITELN(ITY, "PARAMETER BOCONT)}

BREAK ] ‘

BEBETLTTY}]

READ(TITY, BOCONY ]

END}
$EBEGIN {s FIRSY CALL 7O THE PROUCESS WUMBER 1D #)
SOMBLLDUNT IR

BELAYEETRUNC (=SOMUeLN{RANDDM(B))] ¢ TRUNC{SDLONYI
IF (B80CON=8,B) THEN IRCR(DELAYI]
AXDTTIMEIBDELAYY
BOTIMEISDELAYY
EHET R B
CRE&TEﬁi&SiSE{ﬁﬂESSAGE,SG?I%EséBS,&SSi&};
PARWALY (BODUTPORT 1D, &34
EnDJ
2IBEGIN {e JUBT SENT OVER BODUTPORT =)
QELAYBtTﬁvhi{*SSRSQ&N{RANﬁaﬁ{ﬁ})) 4 TRUNC{SDCON}}
1F (SOLUNSP @) THEN INCR(DELAYI T
REQTTIIMEIEDELRY]
SOTIMEeSDTIMEDELAY]
INCR(BOMSGCOURT )Y
INCR{BDSEQ)
ceiuTEﬁE&SiGE{SﬁESS&SEgsS?zhigégsg30$£Q)s
PaRWAIT(EO0UTPORY ID, 20
EnD}
teppiBEGIN (e L&SY Call FOR ANY ETALTIBTICE =)
WRITE(TTY,” REFORT FROW?P}J
PREIGHNATURELLIDI |
WRITELN{TIY)?
eMOWORKN{ID)
ENDY
$EIDEBEGIN (e HeBUBe]J COMPUTATIDN )
WiTe PORTSISLOUTPORTY DO BEGIW
{e¢ & SOURCE BLwAYE WAITE TC QUTPUT w3
PHWIJESSOTINES
gwD}
ENDS

jegevt {2 WD ACTION REDUIRED AFTER ¥iJ FOR BOURLCE =3}

CTHERSIBEGIN
PREIGNATURE (ID)
WRITELN(TTY,” CALLED WITH BAD AWPL & 7 AMPLI&}]
§ROWPROCESB(IDY? '
EMUWDwN(ID] ]

IF [INTERTRACE»22) OR (TaRGETTRACE®22) THEN DUMPTTY

END]
ENDS {e CABE =)
END
IF{INTERTRACE»B) OR (TARGETTRACE>®) THENW BEGIN

WRITE(TTY,? LEAVING ¢3) '
THACELPLID) S

ENDJ

Enp) (e LFBOURCE PRDCEDURAL DEBCRIPTION 2]

PROCEDURE LPSINKLIDEPHOCID)Y



816p8
2585%8
217¢8
41758
ai8pe
41838
[ 38114
81958
LY-d1:14
gz&%e
gzige
&2i58
LY 44
gzese
agipl
4gi%¢
EFape
&2458
[ ¥4-13
22%%8
§2600
42658
&eipe
42758
L2217
L¥3-53
&Z9RT
&29%8
53998
43gse
a3ipe
£31%¢
&3200
43g%8
§33p8
&335¢
8360C
4%8%8
§315¢¢€
4E5%¢
a36p8
45652
e37pe
63752
e3epe
63858
8392
g3%ese
qappé
supse
gayp”
La1se
sLzpe
caz%e
44302
au3%g
8549
G4u%€
sa%ep

fe THE TYPE OF THIS LOUGICAL PROCESE 18 DBYAINED BY REMOVING THE
e pf FROM IT3 NaME, THIE DETERMINES THE OWNDATZ ENTRY FOR
PROCESSES 0F THE TYPE DEBCRIBED BY THE FOLLOWING CODE, &)

vaR DELAYIINTEGER}

PROCEDURE CONSUMEMESBAGE (VAR HMSGIMEBSAGE)S

BEGIN

(% TARDEP # DO A% YDOU WILL WITH THIS MEESABE BEFORE 17 DIES #)
MEG MK INDEBUNDEF INED?
HEG MTIMEGRR]

ERD}

BEGIN

IF(TARGETTRACES®) DR (INTERTRACE»B) YHEW BEGIN

HRITE(TTY,? (REJ=EMTERING #)§
PREJGNATURE (DI FWRITELWNLTTY) JENDS

#ITH LPSIIDI DO

iF

WITH OWNIID) DD BEGINW
AXQTTIMESS®LY
CASE amPC OF
BIBEGIN fe CREATE THIS INSTANCE OF & SINK (P %3

WRITELTTY.® CREATE®}}
PREIGNATURELID) S
WRITELN(TTYI S
WRITE(TTY,* FOR THE INEUT PORT,%}1
DEFINEPURT (INN,ID,B81INPORT)

ENDI
§EBEGIN fe FIRSY CaLL 7O THIS BINK PROCESE =}
g1TIMEs=Rg

SIJUBLDUNT =B
PERWAIT(BIINPORT , 1D, 213
END}

2IREGIN fs JUSBT RECEIVED & JOB, DU BOMETHING & DISCARD =)
§31TiMEL12AMESSLGE MTIME]
INCR (81 JOBCOUNTS
CONBUMEMESSAGE (AMESSAGE )Y
PARWAIT(SIINPORT 10,2}
EnDI

sepesBEGIN (e LAST Cali, PRINT LUCAL REPORY =}
WRITE(TTY,® REPURY FROW®}J
PREIGNATURE(ID)}
BRITELN{TYIY)}
EHOWURNL{ID)
ENDE

83017 (e SINK CDOWMPUTES NCO ® 8UB 1J FOR ANY PORTE 23

1e2plf  (® AND [ANNDT CHANGE THE AWAITED PORTE «)

OIRERBIBEGIN
PRSIGMNATURE(ID)
WHITELN(TTY,? CALLED WITH BAD &WPL ® 7,4MFL14)}
SHOWPRDCESS{ID) !
EHOWURNI{ID) )
1F {INTERTRACE®20) DR (TARGEITRACE»20) THEN DUWPTTY}
ENDY

ENDI (e CA8E 2}

END}
{INTERTRACE>8) OF (TARGETTRACE®E) THEN BEGIR
¥RITE(TTY, ¢ LEAVING 73§

78



4455¢
54600
44658
84798
24756
44800
448506
56900
448950
45600
45056
45ip@
451588
45200
§52%@
2453p@
45359
4540€
GR4%0
45500
85556
45600
45658
45708
4STS8
asepe
45850
45906
45958
L1411
86850
465pe
46158
46200
462509
86308
46352
46ape
45458
4e5p@
46%%2
46600
1131
46760
46TR0
45800
46850
ae990
869586
2413
27858
47100
&715@
47206
47252
47300
47350
47400
87450

79

TRACELR(ID}}
ENDJ
ENpE? (¢ LPSINK FROCEDURAL DEBCRIPTION &)

PROCEDURE (PDELAY(IDIPROCID)S

{% THE TYPE OF THIS LUGICAL PROCESS IS OBTAINED BY REMOVING THE
SLPF FROM [T8§ NAME, THIS DETERMINES THE OWNDATA ENTRY FOR
PHOCESSES OF THE TYPE DESCRIBED BY THE FOLLUWING CODE, %}

¥ar UELAYEINTEGER]

BEGIN
IF(TARGETTRACE>Q) OR (INTERTRACE»@) THEN BEGIN
WRITE(TTY, ¢ (REJ=ENTERING 7}
PREIGNATURE(IDIFWRITELN(TTYIFEND)
WITH LPSIID] DO
WITH DAN[IDY DO BEBIN
AXQTTIMESSL}
C43E aAMPL OF
BEREGIN (% CREATE THIS LP SINK INSTANCE #»}
WRITELTTY,® CREATE?}}
PREIGNATURE(ID)S
WRITELNITTY) !
WRITEC(TTY, ¢ FOR INPUY PORT,%J)J
DEFINEPORT{INN,ID,DINPDRT)}
WRITE(TITY,® FOR QUTPUTY ?Gﬁ?af)i
DEFINEPORTIOUT,ID,D0UTPORT) S
WRITELN{TTY,? ENTER CONSTANT DELAY REAL PARAMETER DLON73 g
BRE&K]
REBET(TYY}}
READ(TIY,DCON) S
WRITELN(TTY,® ENTER EXPONENTIAL DELAY REAL PARAMETER DEMUT)J
BREA&KJ
RESETLTTY)?
BREADL{TYY DERUYS
ENDY
1IBEGIN {e FIREY CaLL Y0 THI& PROCESS w}
DSUMPTIMESaD)
DTIMEI=G}
DJOBLCOUNTERE]
PARWAIT(DINPORTID, 2}
ENDE
2EiBEGIN (s JUST RECEIVED INPUT #)}
DYIMETeHAX (DTIME (AMESSAGE MTEINE)
INCR(OJOBODUNT Y §
DELAYIEBTRUNC (=DEMURLNIRANDOMIB)I]) + TRUNCIDCON):
IF (DLOUNBB,E) THEN INCRE{DELAY}J
AXGTYIMESSDELAY S
DSUMPTIMEIeDBUMPTINEDELAY Y
DTIMEIeDTIME+DELAYS
AMESBAGE MTIME:eDTIMES
PARWALIT(DOUTPORT 10335
EnDJ
ZIBEGIN £ JUST BENT QUTPUT =}
PARWALT(DINPORY 1D, 231
ENDS
1BBAIBESIN £e LAST CaLL, PRINT REPORT =}



87%¢8@
875%¢
&Te08
87658
67798
47758
GrERE
e78%0
gFspe
479%%
X114
L8250
a8ipg
88122
LT 4]
£BE2%2
[Y-534 ]
GB3%9
GELRE
zeese
eBspe
£85%2
L8680
48658
agTpe
GB7%9
[ 3-3-34 4
48558
GBIRQ
§895¢
a%vpe
LA i1
&93ipQ
g91%e
495208@
89258
49378
89352
ag4ap@
494a%¢
9582
455%¢
&360¢
eg6%9
23790
2%7%¢g
agep2
49ESR
L3144
899%9
Spene
s2eSE
sgip@
5p1%¢
50gee
Sygse
55378
58352
Bg4pt

8¢

WRITE(TTY,® REPORT FROW®)J
PHSIGHNATURE(ID)Y
WRITELNITYY)?

EHOWOAN{ID) ]

ENDJ

1g121BEGIN (e WeSUB IJ COMPUTATION #3

IF AWAIYS(I0,DOUTPORT) THEN BECGIN
PORTSIDDUTPURT] ,PHIJieDTIRE}
END ELSE BEGIN fe AWRITING IKPUY =)
PORTEIDOUTPORT] (PHIJ1ePUHTEBIDINPORY] (PrlJy
ENDE
EnND}

$B2et) (e NU CHANWNGE OF AWAITED POURTSE CAN OCCUR =2}
OTHERSIBEGIN

END}
ENDJ

PREJEGNATURELIDY)
WRITELWN{TTY,? CALLED wWITH BAD AWMPC ® f,aWMPLI8))
SHUBPROCESE(IDY !
SHOWOWN{ID)} S
IF {INTERTRACE228) QR [VTARGETTRALE=20) THEN DUNPTTY!
EnDS

{2 CASE =)

IF (INTERTRACE®»G} OR (TARGETTRACE»2) THEN BEGIN
WRITE(TTY,® LEAVING 63
TRACELP(ID}}

EWUY

END}

(e LPDELaY PROCEDURAL DESCRIFTION w)

PRUCEDURE LPMERGEE(IDIPROCID)Y

e THE TYPE OF TRIS® LUGICAL PROCESS I8 DBTAINLD BY REMOVING THE
*LPf FRDM 178 WAME, THIS DETERMINES THE OWNDATA ENTRY FOR
PROCESSES OF THE TYPE DESCRIBED BY THE FOLLUKING CODE, ES

PROCEDURE DECIDENEXTLIDIPRDLIU)S
e DECIDEs THE NEXY AWAITED LINES FOR HMERGEZ
sCCORDING YO THE FOLLOWING ACTIONW TVABLE

% MAVEY o HAVEZ o INITIMECINZTIME » INJTIMERINZTIME o INZTIMEINITIHE
R RS RS E RGNS R RE L AR R R LB AR F AR AR RN F R R R SRR AR R RSB AR RS RERREERREDE

FALSE o Fa 8E » AWAIT BOTH INFT & AWALYT BOTH INPT ¢ 2R2IT BOTH

w

%
%
#

FALBE » TRUE & RAIT § INFUT e WALT JOBZ DUT e WAIT JOBZ QuUY
YRUE = FALSBE a WALIT JORY DUTY ® WALIT JUBI OQUY * WalY 2 INPUT
TRUE ¢ TRUE ® ®AIY JDBYL QUT « WAIT JDBZ2ee DUT o HWEIY JOBZ DUT

THE se ENTRy COULD AL3D BE ®alY JOBY OUT,
17 I8 ASSUMED THAT ALL PREVIOUSLY BCHEDULED CQUTPUT HAS BEEN SENT
ouT,

BEGIN

WiTr OwWMNIID? DD

WiTw LPSLIDY 0O

IF WOV (M2HAVE] DR M2HAVEZ) THEN BEGIW

e AWAIT INPUT FROM BDTH INPUT PORYSE, § AND 2 =)
PARWAITI(MZINIPDORT, 1D, 211
PAaRWAITIM2INZPORY,ID,3)

END ELSE

IF (NDT M2HAVEY ANWND (M2INITIME«MZINEZYIML)) THEN BEGIN



5Pe%E
sgyhee
5g55€
S¢efE
5ge5¢€
spyee
2p7%¢E
R0BPE
EPESRE
spupl
SP9s¢
Siepe
3351
Ziigg
L3R S-14
%1202
H1ERT
S13p2
51352
514p2
536%¢
51%p2
515%¢
Ziepe
Sisse
s37et
$175%
zjgee
%185¢
319¢¢€
E19%e
SgeRe
Erdd-T.
S$g3¢98
S21%8
szave
522%¢
s$z23p2
5g3%¢
5z&9¢
22852
sgeee
T332
5269¢
52852
52792
5£71%¢
s28P¥
s2e%e
2998
52958
53702
EETA
s3ie2
53152
T3zt
$3E52
533p2
53382

81

fs AWALT INPUT FRDM PORT 1 e}
PEBWAITIMZINIPORT, ID, 2]}
END ELSE IF (W2INiTIME<M2INgTIME} THER BEGIH
{e BEND MEBSAGE FROM PORY § 2]
MEHAVE] 1eF RLBEY
COPYMSGTUFROM{AMESEAGE , M2INIMEG)]
AMESSAGE MIIMEEsMINIMZINITINE (REINZTINRED !
PARWAIT(MZDUTPORY, ID,8)}
END ELSE IF HMgHAVEZ THEN BEGIN
(e SEND MEBSAGE FROM PORT 2 #]
MEHAVEZESsF AL 8E )
COPYMSGIOFROM(AMESSAGE , M2INEMEE) ]
AHESSAGE MTIMEIeMIN(MPINITINE MZINETINEY ]
PARWAIT(MRDUTPORY, 1D, 4}
ERD ELBE IF (MZIWiTIMEeWPINZTIME] THEN BEGINW
{s SEND MESSAGE FRO™ PORT 1 8}
MErAVEL12F AL BE S
COPYMSGYOFROM{AMESRSAGE M INIMEE] ]
AMESEAGE MTIMESeMIN(MZINITINE M2INZTINE} S
PALRWAIT (MPOUTPORY, 0,837
END ELBE BEGIN
(% &WAIT INPUY FRO® B =)
PERRAIT(MFINEPORT, ID 3]}
END}
ENDF  {% DECIDENEXT PROUCEDURE, .. UBED ONLY BY #EHGEZ =}

BEGIN
IF{TARGETTRACE®E) UR (INTERTRACE»®) THEN BEGIW
WRITE(TTY, ¢ {(REJ=ENTERING #}}
PREIGNATURE(IDIIWRITELNITIY]IENDS
HITH LPE1ID) DO
#1TK DWNIID] DU BEGIW
LXQTTIME e}
CARE 4&MPL OF
BIBEGIN e CREATE THIE INBTANLL e}
wWRITELTTY,;® CREATE® )}
PREIGNATURE (D]}
WRITELNITYY} S
WRITELTTY,® FOR INPUT PORY §,°33
DEFINEPORY(INN, ID . MEINIPORT]
HRITELTTY,® FOR INPUT PORT 2,°}1
DEFINEPURTLINN, ID,M2ZINZRORT)}
¥RITE(TTIY,® FOR QUTPUT PORT,7}}
DEFINEPORT{QUT, ED,ME0OUTPORT}]
ENDS
JEIBEGIN (o FIREY [&LL ®3
MPINITIME LB
%2 JOBILOUNTRE]
®2J0BBCOUNT IR
MPINZTIMEL2Q} .
MPHAVE] ISFALBE}
MpHAVEZ 2FALSES
MPINIMEG MEIND IR JDBY
MPINZMSE MUINDIBJORS
DECIDENEXT(ID}}
EnD
2EBERIN (2 JUBT RELEIVED DVE®R INI =}
MaHAYELIBTRUE]
MPINITIME s aeMESSAGE ,MTIME]



EET IR
53452
53588
%3%%¢
236p€
%365€
23790
$378¢
53808
BIBRE
$1%08
£39%2
Lepp
Le¥%2
%4199
54182
RL2ee
56£%%2
Seiee
La3%Q
S6ap?
4852
54%p2
54%%8
54608
54658
BeTHEE
5¢7%2
FLI-3dd
S5485¢
S4948
$49%2
s500¢
§5959
5s102
553%¢
552082
55258
L5RL7E
£535%
£%4¢82
BE4REG
555eg
555%%¢
S56p8
55652
§57p8
55758
58P
55852
§5902
35958
Loy
5658
56109
Se158
56208
56248
53¢

INCR{MZJIOBILOUNT )]
COBPYMBGTUFROMIMEINIMEG , AMESSARBE]S
DECIVENEXT{ID) !

ENDY
3IBEGIN (e JUBY RECEIVED DVER jNE =]
meHAVEZ B TRUES

MPINZTIME IS AMESSAGE MTINES
IngR{MZJOBECOUNT) )

COPYMEGTUFROM (MZINEMEG, AMEBSAGED ]
DECIDENEXTLID)S

END
LIBEGIN (e JUBYT BENTY DVER QUTPUTYT 8}
DECIDENEEY (1D}
EnD?

i@ IBEGIN f¢ PRINT FIWaL REPORY e}
WRITELTIY;® BEPORT FROM)!
PREIGNATURELID)?
WRITELW{TTY)}
BHOWURKI{ID) ]
ENDY
$EIBIREGIN {2 W=SUB IJ COMPUTATION e}
IF AwAITB(ID,M2DUTPORT) THEN (2 WAITING TO DUTPUT 2]
WiTwW PORTSIMRODUTPDRY! DO
PHIJISHIN{MZINITIME  MEINETINE]
ELEE PORTSIMZDUTPORY] .Pelise
MIN{ PORTSIMBINIPORT] PHIJ,
PORTE[MZINZFORT] PHIJYS
Enpy (e W 8SUB IJ CORPUTATIOR #)
$1E2PEBEGIN (e ATTEMPT 70 LHaWGE LINEB AWAITED ED ]
IF NOT A®AITS(ID,M2UUTPDRT) 1HEN BEGIN
(&« MDVE LINE TImE® FORMWARD 17 PDSSIBLE &}
MEINITIMEISMAY (MZINITIME, PORTS[MEZINIPORT] (PHIJIS
MZINZTIMEIsMAX (MR INSTIME ,PORTS (MZINZPORT] PHIJI
(s« TRY FOR & DIFFERENT BEY UF LIKES &3
PURTS [MBINIPDRT} ,PRELIGIBLEIFALSE}
PORTSIMEINEPORT] ,PRELIGIBLEISFALSEY
DECIDENEXT(IOYS
PORTS IMZINIPORT) PREAITINGIETRUE]
PURTS IMgINEZPORT) PRRAJTINEIBTRUES
PORTS [MBDUTPORT) PEWAITINGIBTRUEY
EmDy
ENDY

UTHERSIBEGIN
PREIGNATURE(ID
WRITELN(TTY,® CALLED ®WITH BAD AMPL = 7, AMPCi&})
SHOWPROCEBE(ID) ¢
BHOWOWN{ID)E
1f (INTERTRACEPZEY 08 (TARGETTIRALE®2Z) THEN DUMPTTYS
ENDE

ENDE {2 CABE #)

ENDY

1F (INTERTRACE»®) UR (TARGETTRACE»Z) THENW BEGIN

ENDT

WRITE(TTY,? LEAYING 73}

TRACELP{ID}¢

ENDS

te LPHMERGEZ PRUCEDURAL DESCRIFTION 2}
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5:3%2
86840
264%8
56508
1331
1134
S6e%8
s567p@
56758
5680E
S6p%2
5e928
569%9
E7epe
R7¢RE
1100
B71%8
s72e8
g72%¢@
273f8
87388
57470
57850
57508
575%¢
57608
87650
sr7ipe
877%8
57870Q
57850
27908
37989
BEUPE
58u5¢
S810G
586158
SBEpR
17314
&83p9
BEARE
56600
55458
583p€
38%RE
58eP€
%8058
BEIFE
58750
SBBRT
S8B5E
2529289
28958
L5088
39458
%9188
59188
59208
59258

PRUCEDURE LPFORRZ(IDIPROCID)S

{e¢ THE TYPE OF THIS LDGICAL PROCEBE I8 OBTAINED BY REMOVING THE
e pf FROM JY5 RAME, THIE DETERMINES THE OWNDATA ENTRY FOR
PROCESSES OF THE TYPE DEGCRIBED BY YHE POLLOWING CODDE, 2]

BEGIN
IF(TARGETTRACES®) U (INTERTEACE=E) YHEN BEGIN
WRITELTTY,? (HE}=ENTERING ¥}
PREIJGNATURE LIDIIBRITELR{TTYIFENDS
HITH LP&LID) DO
N]TW OWNIID} DD BEGIW
AXDTTIMER®1?
CASE AMPL DF
GIBEGIN [® CALL 70 CREZTE THE PROCESS =)

HRITELTTY,? CREATE®)}

PRSIGNATURE (1D}

ERITELN(TTY)}}

KRITE(TTIY,* FOR INPUT PDRT,®)!

DEFINEPORT (INN,ID,F2INPORT )

WRITELTIY,® FOR OUTPUT PORT 1,°32

DEFINEPURY(OUT,; 10, FEDUTIFORT) S

WRITELTYY,® FDR QUTFUY FDRT E,°)}

DEFINEPDRT(OUY . ID,FE0UTEPORT) ]

WRITE(TTY,? wWHAT J8 PROBABILITY OF A& BRANLH #3g

WRITELNITYY, P70 QUTPUYT PORY 1 7731

BREAK]

RESET(TTY}}

READITTY, FERAD}I

ENDS

$EBEGIN ts FIRST CALL 7O THIS INBTANCE OF FORKZ =)

Fetintiegy

FEOUTICOUNTEES

FeOUTRLOUNT 8B}

PARWAIT(FZINPORT ID;2) %

END}

ZIBEGIN (¢ JUST RECEIVED INPUT UVER FZINRORY )

FeTIME s AMEBEAGE MTIME]

TF(BANDDM (P)cef 2RHM0) THEN BEGIN (s BEND ON § 2]
INCR{FZOUTICOUNT) S
PARWAIT(FZOUTIPORT,ID,3)¢
EWD ELSE BEGINW {2 BEND OWN 2 o)

INCREFEOUT2COUNTY ]
FARWAIT(F2OUTEPORT, 1D, 334
END S

END}

ZIBEGIN fe JUBT SENT & JOB OUY ]

PARBAIT(F2INPORT 1D, 2}

ENU S

1goptBEGIN (e FINAL CALL FOR REFURTS o)

WRITE(TTY,® REPORT FROMP)J

PREIGNATURE(ID]}

WRITELN{YTY}S

SHUWDHNLID) )

ENDE

{GIZIBEGIN fe ¥ SUB IJ COMPUTATION 1w}

I1F awAlTB(ID,F2INPDRT) THEN BEGIN (2 WAITING INPUT 23

PUKTSIFE0UTIPORTI (PHIJIePURTE(FRINPORT] PRI
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59382
59350
5%¢p0
598%¢
%952
5958Q
$96p8
B9k
59760
59782
SGEPG
59882
29906
S9eRe
spupe
[LXAY
buiee
L1214
6pepe
5PESE
6B3I0Q
62352
EP40T
6ELSE
euSeE
6B5RE
(3213
5B6%E
82708
60758
5RERS
6UESE
6p908
EUYED
sleee
ERE 214
8311689
LSRR
61608
61254
613972
[ 39 21
siep?
e1a%e
t15¢8
&1359
313147
6i6%¢
61708
831782
s18p¢€
6185€
61982
6195¢
sEpee
&2u%2
sZige
£2i%8
622¢0

iF

ERUDY

84

PORTBIFPR0UTRPDRT] FRIJISPORTBIFZINPORT] Pl
END ELSE IF AWAITS(ID,F2OUTIPORY) THEW BEGIN

fx AWAIYING DUTPUY ON DUTFPUT PORT § ¢}

PORTE (FEDUTLPORT] PHIJERFETINES

PURTSIFRUUTEPORT) PHIJIsPORTS(FR2INPORT] (PHIJ

END ELSE BEGIWN (o AWAIYING OUTPUY QVER PORT 2 21

PORTS[FROUTEPORT] PHIJEBF2TINEY
PUKTBFEUUTLPORY] (PHIJISPURTS [FRINPORY] (PHIJY
ENDY

END? fe b SUB IJ COMPUTATION o)

1g2p8} (e AFTER W BUB IJ COUMPUTATION, FORY AWAITS THE

§4ME PORYS 1Y DID BEFORE %3

DYHERSIBEGIN

ENDY
ENDJ

PROIGHNATURELIDY:
WRITELN{TTY,? CALLED ®ITH BAL AMPC ® 7,4MPLIG)}
EHORPROCESS(IDY
SHOWDRNLIDI}
IF (INTERTRACESZ28) DR (TARGETTRACE>28) THEN DUBPTTY}
EnNDE

(e CASE =)

[{INTERTRACE»E) OR (TARGETTRACE»D) THEN BEGIN
WRITE(TTY,® LEAVING )1
TRACELPLID):

EnDJ

{e LPFORK2 PHOLDEDURAL DESCRIPTION #)

PROCEDURE LPUUEUERR(IUIPROLIDIY

f= THE TYPE DF THIS LOGICAL PROCESS IS DBTAINED BY REMDVING THE
LR FROM ITS N&aME, THIB DETERMINES THE OENDATA ENTRY FOR
PROCESSES OF TWE TYPE DESCRIBED BY THE FOLLOWING CODE, &}

YaR I8INTEGER]

BEGIN

IF(TANGETTRACE>®) OR ([INTERTRACE»Z) THEN BEGIN

WRITELTTY,®

(REJ=ENTERING #)§

PRYIGHNATURE(IDIJWRITELN(TTY) JENDS
WiTk LFBLIOY DO
HWITH OWNIID! DU BEGIW
AXgYTImERely}
CASE aMpPL OF
ZyREGIN (& CREATE e}

WRITE{TITY, " CREATE®}g
PREIGNATURELID) ¥

WRITELN{TTY] ]

WRITE(ITY,; " FDR INPUT PORT,7}J
DEFINEPURT (INN, ID . GPEINFORTII
#R1TeLTTY,® FOR QUTPUT PDRT, 73}
DEF INEPURT(DUT, 1D, BEE0UTPORT !
SRITELNITTY,? ENTER QUEUE CAPRLITY, 1,,28 73j
BREAK?

RESET(TTIYYS

READITYY Q280BMexY}
GECUMAX18GERAMAX=1]



e2E%8
SE588
B2352
beapw
62489
62508
52550
LT4-14d4
62658
62788
62788
62808
6eese
b290282
szYse
63008
63¢52
£3262
83iP9
£3i5¢
elépe
£325¢
63310
633%¢
634p€
634%2
ei5ee
63558
63600
63659
&37p8
637%€
EIBER
63652
6290282
£3958
L42RE
bapse
bairg
66156
642PC
&42%¢
68500
84352
b64p0
baase
sus22
66350
6u4ep2
g4ese
ea7@e
64754
[ X314
546582
64328
4980
e5069
&5URE
65108

DPREMAXIEMAY (2, B200%AK)}
GEEUMAXIBMINLI9,0200LMAL)
ENDS ;
SEBEGIN (e FIREY CALL TD THIB INSTANCE OF & QUEUEZS o)
BeeINFTREIRL}
RPBCUTPTRIeY}
GeeTiMEI=g}
GZRJDBLOUNT 2B}
Paba] T(QEBINPOREY, ID, B}
ENUE
ZIBEGIN  (®» JUBY RECEIVED DVER IWNFORT )
GReTIMEICPAMESSAGE MTIHES
INLCR{RPLJIOBLDUNT )
CEUBUFFERIGZRINPYR HOD 28] t3AMESSAGE MTIMES
QeeBUFFERZ IQ2ZBINFTIR MOD 28] 1eAMEESAGE ,JUBNUMBER]
INCR{GZBINFIR]}
IF [QZYINPTR<sCPBDUTFTRGGZDUMAN] THEN
PARKAIT(DZBINPORTY, ID,23
AMEBSAGE MTIMES=sG2BTIMES
BPaBRAITICZUDUTPORY, ID, 2}
ENDY
S{BEGIN fe JUST BENT DVER DUTPDRT ¢)
INCR{GEUOUTPTR) ¢ ’
IF [G2BDUTPTE<QEBINPTR) THENW BEGIW
EMESEAGE  MTIHEIsGRETINE}
AMESEAGE ,MKINDISJDB]}
i%ESSAGE,JOBNaﬁﬁiﬁitQEES&{?&QEtﬁezaw???ﬁ ®OD 2E8)7%
PARWAIT(QRBOUTPORT,I0, 337
ENDJ
FARWAIT(G2CINPRRT 1D, 23
EnD1E
iBEEIBEGIN (e FINAL CALL FOR REPORT e}
WEITE(TTY,® REPORY FROM?)}
PREIGRNATURELID}
WRITELN{TTY)?
EHMOWURNLIID) §
ENDS
1@iWIBEBIN (e w BUEB IJ COMPUTATION %
IF AWAITS(1D;G2¥0UTPORY) THEN BEGIN  {¢ WAIT DUTPUT =)
PURTBIRZBOUTPORT] (PHIJEsQRBTINEY
EnND ELBE BEGIN
PORTSIGEBUUTEORT) PRIJISPORTEIQERINPORTI ,PRIJ]
ExD} )
ENDS
1221 (e & QUEUE LCAMNDT CHANBL AWAITED LINES =)

CTHERSIBEGIN
PREIGNATURE(ID)S
WRITELN{TYY,® CALLED WITH BAUL AMPL 8 ¢, 4aWPli1a}}
SHOWPROCEBS{IDIS
SHOWOEN{IDYE
1F (IWNTERTRALE®Z9) OR [TARGETTRACE>2@] THEN DUMPTIYZ
EnDy
EMDS fe CASE 2}
ENDY
IF (INTERTRACE»B) UR (TARGETTRACE»P) THEN BEGINW
WEITE(TTY,? LEAYING *)¢
TRACELPLIDI]
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25188
5208
85258
553508
65388
65409
5658
65508
55556
85600
85058
85700
85782
s8R
55658
5900
595
Y1
£6€58
so1pe
66188
BEERE
86258
be3IpE
66350
beupa
B64%0
56500
6552
66550
66658
56798
66 TEE
BHERD
56650
o978
669%¢
67200
67258
67198
7158
67208
s725¢2
7300
67358
7472
7458
67508
£75%5¢
£76p2
T80
71D
6TIRE
s78p2
7858
67990
798¢
By
6BPSY

86

EwmDy
EmDpi (= LPOUEUEZZ PRUOCEDURAL DESCRIPTION #]

fw HERE 18 & BABY LP T0 PLAY WITH 5.5

PRUCEDURE LPMAME(ID}Y
(% THE TYPE OF THIS LOGICAL PRDCESS 18 OBTAINED BY REMOVING THE
PLBE FROM ]1T8 NAME, THIS DETERMINES THE DWNDATE ENTRY FOR
PROCESSES OF THE TYPE DESCRIBED BY THE FOLLOWING CDDE, EXDDUMMENT

¥ &R

BEGIN
IF(TARGETTRACE>E) DK (INTERTRALE®®) THEN BEGIN
RRITE(TTY,? (REI=ENTERING %)%
PRSIGNATURELIDIJWRITELNITTYIFENDY
wITH LPEIID) OO
WITH DWNIID} DU BEGIN
AXQITIKE:®L
CAB8E awpPl OF
BIBEGIN
PREIGNATURE(ID) Y
ENDY

OYHERSIBEGIN
PRSIGNATURELID}
WRITELN{TTY,? CALLED HWITH BAU AWPL ® f,AaMPLI8}])
SHORPROCESE{IUI ¢
SHOWUMKNLIDYS
IF [INTERTRACE®Z8) OR (TARGETTRACE»28) THEW DUMPTTYZ
ENDS
ENDE (e CASE ENDCOMMENT
ENDJ
IF (INTERTRACE®E) OR (TARGETTRACE>G) THEN BEGIN
WRITE(YTY,® LEAVING *)3
TRACELPLIDIY
ENDE
ENDS {e LPNAME PRDCEDURAL DESCRIFTION ENDCDMMENT

END DOF THE COMMENT CONTAINING THE PROCEDURAL TEMPLATES £

PROCEDURE INITIALIZEYS

BEGIN
NETDEADLDCKRIsFALSE]
METToHMseFALBE
NETBUMXBTTINER®B)
NETSUMCHNTINEI®Y])
NETSUMBLKTINME IR
DEADLOCKCOUNT 88



58178
bBLRT
68175
EBERE
68250
eB30E
68358
sBang
pRasE
LESRE
6ED5T
sEEPE
58L5E
68702
ERTSE
5B8PE
6BE59
eB9p@
HBYSE
[P 4
69UEE
85108
£9150
LYERE
69288
69398
89358
69408
£9650
59590
595%€
X134
596580
63798
59758
e98PE
89658
69900
E9952
TevpE
TpuUsSe
18100
Tei%9
jeERT
Tpese
TR3P0
Tgs58
11414
fgese
72508
Tesse¢
12679
Teese
TeTGe
H 4
128PE
Ypas:
Teyne
T84¥58

NETTINES =D}

NETFaIRI®L]

NETHEGLOUNT 8B
EMD]

PROCEDURE BETTRACES
{e SDLICITS YALUES FOR TRACE YAREB AND TIWE AWD MEBSAGE LIMITS
FROM THE DPERATOR =)
BEGIN
WRITELN(TTY,® SET TRACE VALUES, 8=s» ND TRADE, BiGee» MORE TRACE?}}
WRITELN{TTY, ¢ REENTER THE INTERPRETVER TRALE VALUE®}}
BREAK ]
KESET({TTY}?
BEADL{TYY, INTERTRACE}}
WRITELN{TTY,# ECHD fLINTERTRACE DG, ENTER TARGET TRACE %}
BREAK]
RESET(TIY]?
REAULTTY, TARGETTRALE)S
WRITELN(TTY,? ECHO 7, TARGETTRACEI4&, " ENTER DEADLOCK TRACE 3¢
BREA&R S
RESET(TTIY)}
READ(TTY,NETDEADTRACE}]
WRITELN{TTIY,? ECHU ¢ KETDEADTRACE:8,° ENTEH COMMUNICATION TRACE®) ]
BREAK]
HESETLTTIY)!
READ{TTY,NETCHNTRATE}}
WRITELN{TTY,® ECRD ? L NETCMNTRALEE3,° ENTER EXECUTION TRACE®}J
BREAK]
RESET(TIV)S
EEKQiYYY,NETxQ?¥RAC£3}
WRITELN{TTY,? ECHD PONETEQTTRACE:3,* ENTER BLODCKING TRACE® !
BREAK]
RESETLITIVY}
READ(TTY,NETBLKTRACE}}
WRITE{TYY,? ECHO ?, NETBLKTRACE§3,” MESSAGE COUNT= FoRETHMSGCOUNTYE
WRITELNITTY,® ENTER HMEBSAGE LImMIT?)g
BRE &K}
RESETLTTY)!
READ{TTY, NETHEGLIMIT))
WRITELN(TTY,? ECHD L NETHMSGLIMIT,? TIME NOw = fORKETTIMED S
WRITELNITTY,? ENTER TIME LINMIT®)}
BREAK]
RESET(TTYIY
READ(TT¥ NETTIMELIMNIT) S
ARITECTTY,® ECHD F,NETVIMELIRITIE,® THEBE HAYE BEEN 9}
WRITELN(TTY,DEADLOCKCDUNT L, DEADLOCKS, ENTER NEW LIMITTJ}
BREAK}

RESET{TTIY)}

READ(TTY,DEADLOCKLIMITIY

WRITELN{TTY,? ECHO *,DEADLOCKLIMITI4, 7 ERD SETTRACE 733
END}

PRUCEDURE RESUME (PROCNUMIPROCIDIG

(%« RESUME 15 INVOKED WHEN THE PROCESS PROCNUM ENTERS THE EXECUTING
8YATE, PROCHNUM ALSD INDERES THE ARRAYS LPS AWND DN CONTAINING
THE PROCESS? BYATE AND OWNED DATA RESFECTIVELY, £
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Tieae BEGIN

TLERD IF (INTERTRACESNETUMNTRALESNETEOTTRACE«TARGETTRACE) » 8 THEW
Tiipe WRITELNI{TYY,? PHOLESS 7, PHOCKUMIZ,” RESUMED? )y

fiis8e LPBIPROCNUM] ,ABTATE 3e 20T}

711208 LPS[PROCNUM] (ANEXTSTATE Be TRMj (s PROCESS MAY BLY YU BLE WITH PARWALIT =]
718%6 fe IN WeB3UB 1J COMPUTATION, PROLESSES REMAIN BLOCKED UNLESS

713p2 In THE PROCESS OF COMPUTATION, & PROCESS DETERMINES 178 WExT
713%8 STATE WILL BE TERMINATED, AND BETS IT78 ANEETETATE ACCORDINGLY w)
TLARE IF (LPSIPRUCWUM] (AMPLEI®1B) DR {LPB[PROCNUN] (AMPLelB28) THEN BEGIN
7i4%€ LPSIPROCNUM) (ASTATEIeBLK]

74500 LPSIPROCNUM] (ANEXTEYATEFSBLKS

Ti5%9 END

718080 CASE LPEIPROCNUNM] ,ATYPE OF

Tie58

TiTpe {# TARDEP & RESBUME PROCESS PRUDCEDURE’E PROGRAM e}

71782

758p2 SOUNKLE $LPSUURCELPROINUMY Y

TI85E BINKEILPBINKR(PROLCKUR} S

74908 FORKZILPFORKZ (FROCUNUM] ]

71958 MERGEZILPMERGEZIPRDCNUMY]

TEepe DELAYSLPDELAY(FPROCNUM] S

TEw%e CUEUERRILPOUEUEZR (PROUNUMY S

TEipe ENDS

121589 WITw LPSIPROCNUKM] DD BEGIN

J2EPD ATIMELEFY %2 AXRYTIRE}

TEERE ENDJ

12308 EnD]

Te35¥

T24p9 PHUCEDURE FIREPQRY(PURTNUMEPDRTYID) S

1zese

TESHE e THE PDRT PDRINU# IS CTOMMITTED TO FIRE, THE MESSAGE 18 COPIED
725%@ FROM THE PONT MESSAGE BUFFER INTOU THE RECEIVERFE BUFFER, THE
I2epd SENDING AND RECEIVING PRUCESSES ARE MARKED A3 BTATE = {OMe

TE658 MUNICATING, AND THMEIR TIME REMAIWING FIELDS BEY THE BENDTYIKE
F27p8 aND RECEIVETIME SPECIFIC 7O THIE PURT, THE MESSAGE COUNTE ARE
727%8 INCREMENTED FOR THE PORT, AND NETWORX YOTAL, THE BEWNDER AWD
12414 WECEIVEX ARE DISGUALIFIED FROM FURTHER COMMUNICATION BY SETTING
TEBSE APPHOBRIATE ELIGIBLE FIFLDS FOUR ALL PORTS NAMING THEM, THE

12308 PROCESSES WILL MDT BE ACTUALLY RESUMED UNTIL THEY HAVE waITED OUY
72952 THEIR COMMUNICATION TIME, %3
TigeR

Tipse yaw 18PORYIUY
Tiipe BEGIN

73158 1F [INTERTRACESNETBLRTRACESNETCMNTRACECTARGETTRACEY » & THEW BEGIN
732e8 WHITELNITTY S

73282 WRITELN(TTY,® PURT ?,PORTWUMIZ,® FIRED?)?!

733e¢ ENUE

T338¢ I1¥F [INTERTRACE»12) OR (WETBLKTRACE»12)

T3ape OR (NETCHMNTRAECE>1®) OR (TENGETYRACE»18) THEHN

T3as8 SHOWMSG(PURTSIPDRTNUM] [ PMEBSAGE) )

133500 INCH (NETHMSEGLOUNT) S

F35%8 INCR(PORTSIPOWNTNUM] (FMBGLOUNT )

73602 WITH PORTEIPOHTNUM] DU BEBIN

736%8 WITH LPSIPSEDER] DO BEGIN

731p2 I1F {INTERTHACE»3P) OR (NETBLKTRACE>(D)

T3758 UR (WETCWMNTRACE>18) OR [TARGETTRACE®1€) THEW BEGIW
136p% WHITE{TTY,? PROCESS ¢,PRSENDER:Z,” GUES FROM %}
73850 WRITELW{TIY,? BLR 70 CHN A48 BENDERT)}

72928 ENDS



739%€
TapPE
TavSE
7einp
74158
Taepe
T4ERG
X144
74350
78608
74858
74598
74880
T46pe
TEE5E
T4TRE
74759
T4828
T&B5Q
T4%00
18958
15888
TSERD
75108
15150
75200
Tee%8@
TE3pG
75358
15400
75459
75508
75558
75678
75658
15788
T5TRG
75688
TEESD
759¢@
T5Y5E
T6820
TeLSR
TeipE
Te15@
TeERY
16258
16302
TL358
I£111-
THE58
16508
Te%%0
76608
TEESE
76763
TeT88
T6BFE
TLBSE

89

a¥MPL g8 PSHPLY
ATIMELEFT s FP3TIME}
AETATE i® (M}
£P0QHT pe PORTNUME ’
END S
WITH LPS{PRECEIVER] DU BEGIN
1F (INTERTRACE®18) DR (NETBLETRACE»(E)
08 (WETCMNTRATE®$8) OR (TARGETYRACE®§8) THEN BEGIN
WRITE(TTY,? PRUOCESS P, PRECEIVERIZ,® GOES FROMP)
WRITELN(TTY,;® BLK VO CHN A8 RECEIVER®}}
ENDS
BYIMELEFTY 88 PRTIMES}
ABTATE 18 CMN}
AFORT e PORTINUMS
LMPD 52 PHMPLS
COPYMBLRYDFROMIAMEBSACGE ,PMESELGE )
END S
ENDJ
fe TURN DFF ELIGIBLE BITSE FOR PORTE WAMING PROCESS I %3
POR Jesi YO HIGHPORTY DD BEGIN
PURTBL1] PEELIGIBLEI=(PORTEI1IPSELIGIBLE) AND
(PQRT&{I!.PSENDER<>PDETS{PS§TNG%},PStNQER}}
PURTSI]) PRELIGIBLESs (PORTS (1] FRELIBIBLE] AND
(PGRYSKZ};?RESEi¥E§¢)PQ€?SLPGRTNuH},FRiSEIVER):
ENDE

ENDE

PHUCEDURE BCHEDULE (YAR PDRTFIRINGDRDERIPORTPODINTERSD S

{# UBER MAY PROVIDE THE SCHEDULER FROCEDURE 10 CHaNGE THE WAY THE

PURTS ARE BELECTED YO FIRE, AT EWD, PURTFIRINGURDER[I]=B IFF

YHERE ARE NDT AS MANY A8 1 READY PDRTS, AND POWRTFIRINGORDER({Z}eJ
1FF J I8 TO BE THRE ITHW PORY 70 FIRE, '

THIE IMPFLEMENTATION I8 FalR BECAUSE 17 FAVORS THE PORT » NETFAIR

1F THIS PURT 15 REALY 7O FIRE, &nD NETFAIR I5 ALWAYS INCREMENTED
HUDULD HIGHPORT WHEN PROCEDURE SCHEDULE 18 INVORED, HENCE HIGHPDRY
1S AN UPPER LIMIT TU THE YIME Tral & RE&DY PORT CaN wWAIT FOR
COMMUNICATION, WD PROCESS 18 SCHEDULED FOR

MORE THAN ONE MESSAGE FIRING,

®]

ORFIRESARRAY I, . PROCHMAX] OF BOOLEANINEXT ,PROCIEPROCIDIPORTJSPORTIDS

BEGIN
1F (INTENTRACE»Z)OR(NETCMNTRACE>B) THEN WRITELN(TTY, ¢ SUMEDULE CALLEDTF

1% (INTERTRACER23¥) OR (NETCMNTRACE»32) THEN BEGIN
WRITELN{TTY,? HMERE AKE VHE POKTE")]
FOR BORTJsEf TU HIGHPORT DO SHOWPURTI(FORTII}
ENDS
F0R PURTJiey 1O PDRTMAY DD PORTFIRINGORDERIPOURTI] 189y
FpR PROCIE®] 70 PRULHMAX DU OKFIREIPROCIISE=TAVE)
NEXT t= {¥
w]1TH PORTSINETFAIRY OO
17 PRWAITING AND PSWAITING AWD PRELIGIBLE AND FSELIGIBLE THWEN BEGIWN
PURTFIRINGDRDER INEXT) iBNETFALIRY
WEYT2223
IF NETFAIReHIGHPDRT THEN WETFAIRimi ELSE INCR{NETFAIR)J



76902
16958
Treee
17458
71102
17158
rreee
7iese
71308
71380
T1608
7745
71398
Y1888
Tiede
Trese
TIT88
¥7i5¢@
A R-14]
77858
T79p€
771982
78009
LR 11
Teine
¥gi5¢
H-X3d
TBESY
reing
TE359
Te4Be
TB458C
78509
7855%¢
TEERD
HE-1 314
TET®G
H:2 k1
78878
H-1-3-1
TE90C
TBYSE
TSLP2
7958
7%i8¢
1915%5¢
192e0
1928¢
igieg
73358
T94p8
79480
79528
79559
196008
79652
791pe
79752
79508

OKFIRE [PSENDER) 1a8F AL 8E
DKEIRE [PRECEIVER; t8FALSES
END
FQR PORTJIel 70O RIGHPORY §0 ®RITH PDRYSIPORTJI DO
IF PRWAITING AND PSWAITINMNG AND PRELIGISLE &ND PSELIGIBLE
AND DKFIRE [PSERDER] AND OKFIRE({PRECEIVER] THEN BEGIN
PORTFIRINGURDERINEXTI §2PORTJE
INCRINEXT )
QKRFIRE [PSENDER} 8BFALBE}
OKF IRE(PRECEIVER] p2FAL8E
ENDJ
END)

PROCEDURE PASSHESSACES])

fe BUAN THE COMMUNICATIONS TEBLES, IN THE GLDBAL PORTE, AND
SELECT THE PORTS THAY WILL FIRE DURInNG THE CURRENT MOMENT
OF TIME, A&ND FIRE THEM, PASSHEBRAGES HAWDLES THINGS PDRYS DO =}

ki

YAk POKYSTOBEF JREDIARRAYI], ,PORTHAX] OF INTEGERJNEXTEINTEGERY

BEGIN
IF [(INTERTRACE»®) DR {NETCHMNTRACE2B) THEN
WRITELN{TTY,® PASSHMEBSAGES CALLED"}}
SCHMEDULE (PORTBTOBEFIRED) S
REXT 88 1§
WHILE (PORTSTUBEFIREUINEXT) €» §) AND (NEXT €8 HIGHPORT) 00 BEGIw
FIREPURT(PORTSTOBEFIREDINEXTI )] '
INCRINEET) S
ENDS
ENDT

PROCEDURE AxE(PROCIIPROCID)Y
% AYXF CanN BE CALLED Y0 MaARK & PROCESS 48 TERWMINATED FOR ANY
ABNDRMAL TERMINATION WOT DICTATED 8Y THE LOGICAL PROCESS CODE =)

YaR PORTJIIPORTIDS
BEGIN
IF [INTERTRACE+NETXRTTRACESNETTRMTRACE<TARVETTRACE) » © THENW BELIN
WRITE[TTY,® A¥E CALLED TD TERMINATE PROCESS 7,PROCIEZ)y
WRITELN{TTY)!
ENDy
Hi1Te LPSIPRDCI] DD BEGIW
ASTATEEBTRM]
FOR PORTJts: 10 HIGHPORY D0 ¥ITH PORTEIFPDRTJI DO BEGIN
(% JF PURTJS NAMES PROCI, SEY FALSE THE READY AND ELIRIBLES #)
PSWAITINGIePSWAITING AND (FSEWDER<»FROCI}}
PRuAITINGIsPRWAITING ARD (PRECEIVER<®PROCIZE
PSELIGIBLEI2PSELIGIBLE AND {PSENDER«®»PROCIIG
PRELIGIBLEISPRELIGIBLE AND (PRECEIVERCPRUCI}}
END?
ENDJ
ERUT

PHOCEDURE TICHKS
(2 TICK UPDATES THE GLDBaL CLOCK WETTIME, INCREWMENTING 17 ONCE
PER Call, &L80, CHARGE ALL PROCESSES ®ITh ONE TIME UNIT

Se



¥98%8
79920
73958
E2PRR
Byese
gpipe
BBL%e
gpene
BBERS
gpie2
Be3%¢
sgare
LY
gp5es
BESSE
LY
BpesS2
8uT08
BETRE
BPEPD
[-E1-E3
Bpvee
&p9se
BiBRe
gB1e%8
giiee
813152
&8i20¢
Bl2%8
8i3w0
Bi3%¢
B1408
3% 31
Ei%ee
&155¢
816068
Biesg
Bi7¢¢
81722
B1BPB
LRY L3
By%02
81952
B2URD
B2ySE
82190
8ei%8
Bzep?
Bgese
823003
B235%¢
BE&DZ
B2&%E
22528
B25%8
32e08
82658
82790
82758

ACCOHUING TO THEIR BTATE, PRDCESSES HITH ABTATE® CHN DR X087
ARE COUNTING DUWN THRIR ATIMELEFY FIELDE, IF 17 WNOK BECOWES
IERU, EWNTER BYATES BLK OR TRE, OR %07 RESPELTIVELY, & PROLCESRS
ENTERING THE BLK BTARTE HAS ALREADY SPECIFIED THE PORTSE QVER
WHICH 1Y 18 ELIGIBLE 7O COMMUNICAYTE VIA PAHWAIT CALLE, HKARK

THEM A3 XWAITING NOk, Xe8 BENDER DR R RECEIVER, TICK BARICALLY

$EES ALL OF YHWE PRUCEBBES THROUGHK THE CURRENT TIME UNIT, SWATEVER

THEIR CURRENTY 8TATE., TICK HAKDLES THINGS Pﬁs:iasea 0o &)
Y&R PROCISPROCIDIPORTJEPORTIOS

ALIVERBUOLEANS

BEGIN
IF INTERTRACE®#Q THEN WRITELN(TTY,® TICK CALLED, NETTIME o ¢, NETTIMEI?)

INCR{NETTIME}
FOR PROCIE®sS 7D HIGHPROC DO
W1TH LFSIPRDCI] DD BEGIN
C48E A487ATE OF
¥BT & BEGIN
IF [(INTERTRACE»22) OR (NETXRTTRACE=22)
OR [TARGETTRACERZE) THEW BEGIN
WRITE(TTY,? PROCESBS *,PROCIIZ,? I8 EXECUTING )
ERITELN{TTYY, STIMELEFY 18 ¢, ATIMELEFTIR) i
END}
PDECR{ATIMELEFYY I
INCH{ASUMXRTTINED Y
INCRENETBUMXBTTIRES S
IF ATIMELEFT<sg THEWN BEGIN
{¢# PDBSIBLE NEXT B8TATES ARE TRM aND BLK 2)
ABTATEIBANEXTSTATES
IF ABTATE=TRM THEW BEGIN
ATRMTIMEIEeNETTIRE}
IF (INTERTRACE»12) DR (NETXRTTRACE»1R}
DR (NETTRMTRACE>»$E) OR (TARGETYRaCE2i8)}
THEN BEGIN
WRITE(TYY,*® PROLESS #,PROC}$3,? GOES 73
WRITELR(TTIY, FRUM YRTING TO TRMEDE);
ENDJ
END ELBE (¢ ASTATE = BLK =%}
IF [INTERTRACE»3®) OR (NETXQTTRACE»}E)
OR (NETBLKIRACE»1D)
OR (TARGETTRACES(E) THEN BEGIN

WRITE({TYY,® PROLCESS 7,PROCIE3,% GOEET)}

WRITELNITTY,® FROM XBTING TO BLKED®}]
END}
END) {a IF ATIMELEFT<=2g 2}
ENDJ (% PRDCI XGTING 2]
CHN $BEGIN
1F (INTERTRALE®Z2) UR (NLTLMNTRACE»28)
UH {TARGETTRACE»20) TwHEw BEGIWN
WRITELTTY,? PROCESS °,PROCII3,® IS COMMUNICAT)S
WRITELN(TYY,®TInNG, TIMELEFT IS 7, ATIMELEFTI3)}
ENDY
INCR{NETBUMUIMNTIMED !
DECR{ATIMELEFT)}
INCK (ASUMOCHNTINE)
IF(ATIMELEFTeE) THEN RESUML(PRDCIZ:
ENDS
BLEK § BEGIN
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B29ee
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83yse
83162
g3ise
83200
83258
g3ipe
83358
giup@
B350
g35¢@
§3550
Biep2
BE3e%Q
83i7pe
83752
B3840
3852
Ei%pe
83yhe
gugee
54859
seieg
84150
gezpe
842589
Ba3p@
846352
gaape
BLaSE
Busne
8a5%g
Baepe
84650
84702
BaT7%Q
B4gpe
B4use
sasne
BaYEQ
85ope
&5¢5¢
85ipQ
85150
852,82
8525¢
85500
§535¢
B54p@
85452
8350¢€
853se
85600
85658
gsine

IF (INTERTRACE»22) OR (MNETBLKTRACE»2D)
OR (TARGETTRACUE»28) THEW BEGIN
WRITE{TTY,® PROCESS °,FROCIE3,7 BLOCKED®)
HRITELWNITYY) !

EnNDY
INCRINETRUMBLKTINEY ]
INCR{ASUMBLKTIME) s
ENDS

TRM &}
ENDS
ENDJ (e WITH )

FOR PROCIfsY YO KIGHPROLD 0D

EnDY

IF {(LPSIPRUCII (ASTAYE 2 BLK) THEN BEGINWN

{2 ALL BLOCKLU PROCESSES muSY BE wWaITING FOR 47 LEASY OnE
PROCESS THAT WAS NUT TRMED ‘ %)
aLIVEesFALSES {# IF THERE 18 WONE, THIB PROCESS IS AXED =23
FUR PORTJie) TU WIGHFPORT DD WITH PORTS{PDRTJIY DD BEGIN

(e IF PORTJ WAMES PRUCT THEN MARK THE APPR, XWAITING TRUE #)

PEWAITINGEIBPSWAITING

OR (PSENDEREePRDLCI) S
PRwAITINGIBPRWAITING
DR (PRECEIVER=PROCI)E
{e IF PROCI 18 AMAITING & LIVE PARTNER ON THIS PDRT, THEN =)
ALIVERe&L IVE OR 2 MARK IT 4% LIVINE #}
[(PRECEIVER=PROCI) &ND {LPS(FSENDER) ,ASTATE»TRM} )}

ALIVEIBALIYE DR
. ((PSENDER®PROLL) AND (LFSIFRECEIVER) ASTATE<»TEN) )}
ND§
IF NOYT BLIVE THEN BEGINW

AXE (PROCINS

IF [INYERTRACE«NETBLKTHACESNETTRMIRACECTARGETTRACE) » @ THEWN

WRITELN{TITY,® BECAUSE ALL AwWAITED PROCESSES ARE TRMED?)7

END? ‘ ’

ENDE e JF BLRED s}
fe TICK &)

PROCEDURE COUNTBYSTATEIVAR RESULTITALLEYBYSTATE)}
e COUNT THE NUMBER UF PROCESSES IN EACH B87aTE 2}
¥aw PROCIEFROCIDS

BEGIN

1F INTERTRACE«»2 THEN WRITELNITYY,? COUNTBYSTATE CALLED®)}
#1Tw RESULT DU BEGIW

ENDS

EQTInGleg)
CHMNINGIER)
BLKED tspg
TRMED t=gp
FOr PROCIte) TO nIGHWPROC DO

C&4SE LPS(PROCI] AS3TATE OF
KBTIINCRI{XBTING) S
BLKEINCKR(BLEED)
CHNEINCR(CHNING )
TRMIINCR{TREMED)

END}

IF INTERTRACE»1Y THEW BEGIW

WHITE(TTY,® COUNTE BRE XQTING & #,¥GTINGI3,® CHMNING = €3
WRITELN{TTY,CMNINGES,? BLKED # °,BLKEDI3Z,? TRHED = F,TRMEDIZ ]S
END:

ENDy (2 WITH 2}
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85758

§5809 FROCEDURE PRINTSTATIBTICSS

BBESE (= CAN Bt BXTENDED A4S THE WEED ARISES )
B59rE YAR PRUCIIFROCIDIPORTIEPDRTIDIBUMIINTEGERJFACTOREREAL Y
E59%8¢ BeGIN :

BLEPT WHITELNITTY,? NETWORK PERFORMANCE STATISTICS FOLLOWI®))

BHESE WHITE(TTY,® ELAPSED TIME 2 ®,METTIMEST,? TOTAL EXECUTION TIHME = 9}
B6i0E WRITELWN{TTY,NETSUMXGTII®EIS, ® FOR & WMULTIPHOLESBSING FACTOR %)
63158 FACTORGENETSUMXUTTIME/NETTINE} '

86200 WRITE(TTY,"DF S,FACTOR,? VOTAL MESSAGE COUNT ® )9

85230 BRITELN{TTY,NETHMEGLOUNTEY, 7 TOTAL COMMUNICATION TIHME =1%}j
BE30E WHITE (TTY,RETSUMCHNTINEEG) S

686350 WRITELN{TTY,® NEYSUMBLETIMES® ,NETBUMBLETIMEI®,® PORT BUMMARIES: %)}
BL4DT WRITELWNETYY,? PORTIDC SENDER RECEIVER STIME RTIHE WMEG=COUNT?)3
B665E FUR PORTJE®2Y TO HIGHPORY DO WITH PORTS{PDRIJ] DU BEGIN

BESPD WRITE(TTY,? ? ,PORYJS1&,° ¢, ,PSENDERIE,® 7, PRECEIVERSQ)}
BHEESE BRITELNITTY,® FLEETIMELS,* ¢ PRTIMEIG,T T PMSGLOUNTES)
BBE0D ENUY

Bee50 3IF (INTERTRALE »>18) OW (TARGETTRACE»10) THEN BEGIW

BeTRE WRITELN{TIY,® PROCESS BUMMARYI®)}

86750 FOR PROCI=i TO MIGHPROL DO SHOWPROCESS{PROCIMJ

BLEDE WRITELNITTY)S

86858 END}

B6IRE WRITE(TTY,;® THERE WERE ¢, DEADLOCKCOUNTES,? DEADLOCKE INf)g

B695Q WHITELNLTTY,? THE BEQUENTIAL SIMULATION )}

s7epe  ENDI

BTBSY

87198  PROUCEDURL IN]TPORTS)

7150 g2 TAKDEP ¢ INITIALIZE THE PORT TABLES 8}

87289 vaK ItPUORTIO}
&72%8 BeGIN

BTIpS IF INTERTRACE<®R THEN WRITELNLITTY,? INITPDRYS CALLED")y

B7i%E FOR Tied YO PURTHMAX DO

BT&pE HITH PURTS (1} DU BEGIW

BT&RY PRELIGIBLEISFALSES

87508 PESWAlTINGIBF ALBEY

B7559 PREAITINGESFALBES

87008 BPRELIGIBLEI=FALSE

B76%C FEHPLEBLS

_BY7I0E PHMPLI2L}

B77%8 PHSGCOUNTEIBY}

grgea ENDS

E18%8 WRITELN{TTY,? ENTER THE TOTAL NUMBER OF POHTE UBED IN THIS® NET?):
BTYPQ BHLAKS ,
BT95¢ RESETLTIY)!

BB¥RY READ(TIY,HIGHPORT}}

58859 WHITELN{TTY,? ECHDO 7, ,MIGHPURTIG}S

5B1BE ENDY

88315%@

Begpe sEGLEDURE INITPRUCSY

gagse fe TARUEP ® JN]TLALIZE PROCEDURE TABLES %)

Be3ing vam J,INDEX, IONEXYT RINDMAXI®, , PROCHAXJKINDIPROCRINDS
BB3%D BEGIN

314 I INTERTRACE<®BE THEN WRITELN{TTY,? INITFROCS CALLED®);
BB&E%Y FuR lied TO PROCHAEY DU ®ITH LPSII! DO BEGIN

EBSFE ASTATETRYOTE

BBESE ASUMELTTIMEI8E]

BELPB ASUMBLKTIMESSE]

85650 ASUMCHMNTIME 183}



BETOQ
88752
88820
58858
BEYEE
BB9S2
89¢p@
g9sae
89100
8918¢
BIZpB
59250
BS300
83352
§94p0
B94%8
g9se®
BYSSE
83670
89658
EY7PC
89758
835PQ
8965
B995@
89958
PR
90253
6100
IS8
SE2pe
98258
223P0
97359
GgUp e
90450
%0502
gps%e
87602
Srese
pTRe
97780
SVERR
9pESE
9EYRG
$r9%5¢
F1URe
91859
$1100
$1154%
9iepe
91259
91200
9313%8
940G
914%8
91508
91952
23602

ETHMUTIME e}
ENDY
IONE¥TERLS
FOR KIwDie SOURCE 7O WUEUEZE DD BEGIN
WRITELTTY,® HWOwW MaNY PROCESSES OF TYPE #3
PRPROCKIND (KINDI] ’
HRITELNL(TIY,® %7)3
BREALR ]
REBET{TTY)S
READ(TTY, KINDMAX)}
1F (RINUKAEX>B} THEN
FUR Iisi 7O KINDMAX DU BEGIN
CWn [IDNEXT] ,OPRDCKINDISKIND]
LPSIIONEXTI JATYPRIBKIND
LPSIIDNEXT] (AINSTANCESR]S
LPSIIDNEXTS (ANMPL 128}
{¢ THAT ABSIGNMENY DISTINGUISHED THIS CALL AS & CREATE =)
RESUME (JUNEXTI
INCROIDREXTSS
ENDJ
ENDJ
HIGHPRDOL18IDNEY T}

ENUT

PROCEDURE BREAKDEADLUCK} .
e AYTEMPT TU BREAKX DEADLOCK BY LETTING ALYy PROCESSES [OMPUTE W BSUB IJ

BY REBUMING THEWM &7 AMPL 8 1018, EACH CaLL 70 PROCI LEYS PROCI
REVISE DUMNWAND DR LEAVE CONETAWNT 17S EBSTIMATE OF THE EARLIEST
FPROCI COULD THY YO SEND ON THE ARC 70 PROCJ, ®HEW PROCI IS

SU REBUMED THE RPTH TIME, 17 COWMPUTES THE KFTH EETIHMATE OF

B SUB 1J FOR ALL DUTPUT PORTE 70 PROCJS BASED On THE AVAILABILITY
OF THb {#=1378 ® SUB HI ON &LL INPUY FDRTS FROW PROLH, THIS

HAYING BEEN COMPUYED ON THE FREVIDUS HIJPASS,

PURTS HAVE & ,PWIJ FIELD ®WILH I8 wRITTENW BY THE SENDER, AND

READ BY TWE RECEIVER, OF WEBSAGES ON THE BOUNWD PDRT, 3

YaR WIJPASS PROCI‘PRUCICIPDRTPIFORTIDS
BEGIN

1F (INTERTRACESNETURBUTRACE4NETOHMNTRACENETHOTTRACE«NETBLRKTRACE»®)
THEN BEGIN
WRITELN{TTY,? BREAKUEADLOCK ATYEWPTED AT WEYTIME s ¢, NETTIMELB)]
END I
FOR PwOCIte § TO WIGHPRUC DO LPS(PROCI)  &MPLIsR12}
FOR PURTPI® § TO HIGHPURTY DU ®W1TwW PORTEIPORTF)] DD BEGIN
PriJiereyintg
ENDy
FOR wlJPASSse § YO HIGHWPROL DD BEGIN
IF (NETDEADTHACE®12) THEW BEGIN
WRITELN(TTY,® COWMPUTE W (7,W1JPAB813,7) FOR &LL PORTE®}1
ENUJ
FOR PRULIg® § YU HIGHPRQD DD BEGIN
RESUME (PROTIE
ENDE
IF {(NETDEADTRACE»2E] THEN BEGIN
WRITE(TTY,? HMERE ARE W (Kef,W]JPA&ZSI3,") BUB 1IJ FOR i
WRITELNL{TTY, "4LL PORTE 1J ?3;
WRITELTYY,® i J #wiK} SUB 1J 38
WRITELNI{TTY}?

94



%16%@ FOR PORTPi®i YU WIGHFPDRY D0 WITH PORTSIPORTEY DD BEGIN

91708 WEITELTTY,® S,PSENDERIE, ¥ *,PRECEIVEREZ) ]

931758 HRITELN{TTY,? ?L,PRIJEB,® £33

91802 END Y ’

g18%8 EWDY

%ispe ENDE

91988 FUR PROCISey 0O HIGHPROLC DO BEGIN

g2epe LPSIPROTY) 4MPLE2iR28}

$20%¢ RESUME (FRDCI)?

gZLpPE END

g215%8€ END}

kI tid

$gése 184 MAIN PROGRAM 23

SZipe

32358 BEGIN

§2a02 WRITELN{TYY,® BESIN PRUGRAM DSIWe)g

gPusg INITPROLS 3 £ INJT TARGET MWETWORK PHOUESS RECDRDE 8)

§24TS INITPURTSES 2 IKIT TARGEY NETWORKR PUORT RELORDS %]

BESPE WRITELW{TTY,® END UF NMETHORX SPECIFICATION, INBPECY 4ND VERIFY €3}
925%9Q SHOWNETWORK? (e DIBPLAY MWETWORK FOR USER €}

3g%60 BUFFERSIZER=} {* BUFFERSIZIES wILL BE 1,2,8,8, & 1¢ ®}

2607 REPEAT (e RUN THE PROGRAW WITH & NEw BUFFERSIZIE =)

Cra 4] INITIALTZES {2 INITIALIZE INTERPRETER VYARE FOR FRESH BUN #)
BETLE INITPORTE} e INIJALIZE THWE PORY RECURDS %3
BEEPE SETTRACE} o IMITIALIZE THE TRACE AND LIMIT VARIABLES =)
SE8%Q HRITELN{TIYY}

BPYpE HRITE(TTY,? BEGIN THE SIMULATION, HETTIME = ° . NETTIMEIB);

92%2% WRITELWN(YTY,? BUFFERSIZE = ?,BUFFERSIZEIZ))

$2937 BREAK]

$2%%¢ FOR PRUOCILEmg VO HIGHPROC DU BEGIN (% ALTIVATE PROCESS I 2)

23800 LPEIPROLCI) (aMPLEe

§3¢S€ {2 TH&AT ASSIGNMENT DISTIMBUISH THIBZ CALL YO

g3ipe THE PROCESSES A3 THEIR INITIAL ACTIVAYION =)
23158 RESUME(PROCI) )

$3208 (¢ FORCINEG THE QUEUEZ® BUFFERSIZES FOR EXPT, 2}
§32%5¢% IF LPEIPROCLI ATYPERQUEUERZE THEN OwrN[PROCL] ,C2BOHMAXISBUFFERSIZE=§1
X314 ENDJ fe &L{ PRDOCESSES ARE EXECUTING 2}

31359 IF CIWNTERTRACE>S2) THEN DUMPTITY}

§i4p0 REFPEAT {e SIMULATE PASSAGE OF ONE TINME UNIT FOR NETWDRE =23
93450 Ticws {2 &LL LFPS DU THEIR THING FOR ONE TIME UNIT #)

EE 144 PAESHMESBAGESY fe FIRE SOME READY PORTS IF POUSSIBLE »)

23552 COUNTBYSTATE(COUNTY Y {2 COUKY THE BURYIVOHS, &wWD DTHERS #)
Fieme IF (COUNY XQOTINGEZ) AND {COUNT CHMNINGsE) THEN (2 ND ONE ALIYE =2}
CEIN IF (COUNT TRHEDPeHIGHPRULY THEN MWETTERMISsTRUE (e ALL DE&D s}
37080 ELSE BEGINWN {2 NEITHER DEAD MNUW ALIVE== DEADLDCKED] =23
937582 IF(METUEADTRACESR) THEN BEGIN

grepe WRITELW{TTY,® NET DEADLOCKED, RETTINE =8 ¢, NETTIWE}}
k2133 ENDY

¢x9p2 NETDEADLOCK IeTRUE

$39%4 INCR(DEADLOCKCOUNT} ¢

Yu¥sP BHEAKRDEAULOCH Y

24122 Pas3MES3AGES)

BG18Y COUNTBYSTATE (COUNT )

BUEPE NETUEADLUCKEB ([COURT EBTINE 28 B) AND [COUNT,CMNING 2 2)¢
%4258 1F (INTERTRALE»®) QR [NETDEADTRALE?®)

94370 OR (TARGETTRACE»E) THEN BEGIN

953%Q #RITE(TTY,” PROCEDURE BREAKDEADLOCK ®AS ¢3g

Yaepd CASE WETDEADLOCK OF

%4450 TRUBIWRITELNITYY, "UNABLE YO BREAK DEADLOCR®)#



%6508
g65%%
84608
96658
ge7p@
9475¢
QLBPE
94852
guegen
94952
$5¢08
BEYRT
¥5iee
$33%¢
§52¢80
$52%8
$53p0
953582
¥54p6
954582
95523
95585¢
95608€
95652
95709
9575¢@
5802
§585E
95508
35%%¢
9SyeR
93597¢
b1 1414
1384

36

FALSEIWRITELWN(TTY,"ABLE 70 BREAK DEADLOCK®);

Enpy
ENDJ
END§ )
(= IF TIME DR MEEBAGE LIMITS EXCEEDED, GIVE OPERATOR A CHANCE
TO ENTER NEW LIMITS, CHANBE THE TRACL VARIABLES, ETC, %]

IF (NETTIMESNETYIMELIMIT) OR (NETHSGCOUNT®NETHAGLIMIT)
OR (IWTERTRACE>3P) OF (DEADLOCKCOUNTPDEADLOCKLIKIT) THEN BEGIN
SETTRACES
WRITELN(TYY,? RESUME SIMULATION, WATDH YOUR TIME 33
BREAR}
ERD}
UNTIL NETDEAULOUR OR WETTERM DR (NETTIMERNETTIMELIMIT)
Ok (NETMSGCOUNT»NETMSGLIMIT) DR (BEADLUCKRCOUNT»DEADLOCKLIMIT)
WRITE(TTY, " TARGEY SIMULATION TERMINATED BELCAUSBE®);
IF (DRADLOCKCOUNTPDERDLOCDKLIMIT) THEN
WRITELN{TTY,” DEADLOCK LIMIY EXCEEDED 7}
ELBE IF WETDELADLOCDRK THEW
WRITELWN{TTY,® DOF UNRESOLVABLE DEADLDLK #3j
IF NETTERM THEN WRITELN(TTY,” AL{ PROCESSES TERMINATED®);
IF (NETTIMESNETTIMELIMIT) THEN WRITELN(TYY,* TIMELIMIT EXCEEDED?))
IF NETHSGUOUNT>NETHMSGLINIT THEN WRITELN(TYY ¥ M8G LIMIT EXCEEDED? )}
WRITELN{TYYY}
{# RESUME PROCESSES ONE LABY TIME 10 PRINT THREIR SUMMARIES ETC, =)
FOR PHOCIte] TO WIBHPROL DO BEGIN
LPEBIPROCI) 4WPLER L1080}
RESUME (PROLCI) S (2 BY CONYENTION, THE LABT CALL 7O PRDEI =)
ENDJ
PRINTEYATISTILSS
BUFFERSIZE wBUFFERSIZECRUFFERSIZE S
UNTIL (BUFFERSIZE®2€)}
BRITELN{TTY,? END PROGRAM DSIMe};

ENp,



APPENDIX 2

SOME TEST RESULTS

This appendix reports the results of simulation runs
on two Gifferent networks where the sizes of all the buffers
( = gqueue sizes in processes of type QUEUE28) were succes-

sively set to 1, 2, 4, 8, and 16.

The connectivity graph of network 1 is shown in fig
B-1. A1l SOURCE type nodes emitted jobs every 10 time units.
The server, or DELAY, nodes had a service time with an expo-
nential distribution, and 2 mean service time of 7.8 time
units. 211 FORK nodes had a probability of #.4 of sending a

received job out to its respective SINK node.

The relative frequency of job arrivals from SQURCE
nodes and departures to SINK nodes was such that the network
tended to fill up with jobs over a period of time, and final-

ly encounter a deadlock where all nodes except the SINK node

n

were waiting to send out a job. The times at which this
occurred depended on the buffer sizes. The following table
summarizes the behavior ¢f this network. Elapsed time is the
total time from the beginning of the simulation to the final
deadlock. MPF represents the "multiprocessing factor™, taken

as the 7ratio of the total amount of execution time for all
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nodes in the network, to the elapsed time for the network.

Buffer | Elapsed Execution | Deadlock | MPF

i
Size | Time i Time | Count |
e e s e e e o e e o e e o e
1 | 630 | 2876 i 2 i 4.57
2 ! 439 | 214¢ i 2 | 4.88
4 | 891 | 4794 | 4 I 5.38
8 I 1864 ! 12346¢ | Z | 6.68
16 | 1588 ! 19892 | 2 | 6.38

In all cases, at least one deadlock was detected and
recovered from. With identical job arrivals, service times,
and departure times, one would expect the HMPF and total
execution times to be larger for networks with larger buffer
sizes. As the results show, this was not always the case in
this run, although the trend is there. This may have been
caused in part by short-term fluctuations in the RANDOM
function on the DEC-18. This is possible because these
results were obtained in a single run of the program, without
ever resetting the “"seed" of the pseudo-random number genera-

tor‘

The graph of the second network tested is shown in

fig A-2. Here, the SOURCE emitted & job every 20 time units.

The node labelled DELAY-1 had a constant service time of 2.0

time units. The other DELAY nodes had exponential service
times with mean value = 2.0. Jobs entering FORK 1 were sent

to the SINK with probability 0.2. Jobs entering FORK 2 were

equally likely to go to QUEUE 2 or QUEUE 3.

Again, the buffer sizes were set te 1, 2, 4, 8, and



NETWORK 2

fig A-2
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16, and statistics collected for each size., This network did
not fill up with jobs like network 1. Each run continued
until the elapsed time was 1001. A1l of the deadlocks en-
countered were those arising as a result of the waiting rules
for the processes. The following table summarizes the behav-

ior of this network.

i i
............. o o o e
1 ! 1758 | 29
2 | 1724 | 27
4 | 1677 ! 24
8 I 1773 I 23
16 | 1782 é 21

In this network, the larger buffers always resulted
in fewer deadlocks, although the net-wide sum of execution

time seems uncorrelated.
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