VERTEX DECOMPOSITIONS OF PLANAR GRAPHS*
Donald Fusscll and Ramakrishna Thurimella
Department of Computer Sciences
The University of Texas at Austin

Austin, Tcxas 78712-1188

TR-87-34 September 1987

*This work was supported in part by the U.S.Office of Naval Research under contracts N00014-86-K-597 and NOGO14-86-
K-0763.



Abstract

Vertex decompositions of graphs are useful in designing fast parallel al-
gorithms for vertex coloring. Vertex arboricity of a graph is the minimum
number of sets into which a vertex set can be partitioned such that the sub-
graph induced by each set is an acyclic graph (a forest). It is well known
that the vertex arboricity of planar graphs is 3 and that of outerplanar
graphs is 2, from a result due to Chatrand and Kronk [CK 69]. In this
paper, it 1s shown that outerplanar graphs can be vertex partitioned into
two sets, one inducing a forest and the other an independent set. As a
result it can be concluded that all 4-connected planar graphs can be vertex
partitioned into three sets such that two of them induce forests and the

third is an independent set.



1 Introduction

Vertex decompositions are useful in coloring the vertices of a graph on a
parallel computer [BJ 85]. Recently it was shown [D 86] that the vertices
of a planar graph can be colored with six colors on a parallel computer
efficiently. The idea is to partition the vertex set into two sets such that
each of them induces an outerplanar graph. One way of obtaining such a
partition is by picking any vertex v and finding the shortest distance, in
terms of the number of edges, from v to all other vertices, and partitioning
the vertex set depending on whether the distance is odd or even. Each
partition can be colored with 3 colors, in parallel, thus giving a six-coloring
of the whole graph. Since the partitioning algorithm, which is a single
source shortest path computation, has a fast parallel solution six-coloring
has a fast parallel algorithm.

In this paper we show that a large class of planar graphs, 4-connected
planar graphs, can be vertex partitioned into three sets, where two of them

induce forests and the third one is an independent set. As this result is ob-



tained by appealing to Tutte’s theorem [T 56] on planar graphs 'and since
it is not known if Tutte’s theorem parallelizes, it is not clear if our result
vields a parallel algorithm for five-coloring of 4-connected planar graphs.
However polynomial time algorithms to construct such decompositions on
a sequential computer can be easily extracted from our proofs, given the
result on the complexity of finding Hamiltonian circuit in 4-connected pla-
nar graphs due to Gouyou-Beauchamps[GB 82]. Also, our approach raises

several interesting questions for further research.

2 Definitions

Definition 1 V(G) and E(G) stand for the vertex set and the edge set of

a given graph G, respectively.

Definition 2 A graph G is said to be planar if G can be embedded in a
plane without any edge crossings. A planar graph is called outerplanarif G

can be embedded in a plane so that every vertex lies on the exterior region.

Definition 3 The subgraph G’ induced by a subset V/(G) of the vertex
set V(G) is a graph whose vertex set is V/(G) and the edge set E(G') is a
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subset of E(G) such that the edges in E(G’) are those with both end nodes

in V'(G).

Definition 4 A Hamiltonian circuit of a graph G is a closed path in which

each vertex of G appears exactly once.

Definition 5 A connected graph G is r-connected if at least r vertices must

be removed to disconnect the graph.

Definition 6 A vertexset V(G)is called an independent set if the edge set
of the graph induced by V(@) is an empty set. Similarly, a subset V'(G)

of V(G) induces a forest if the subgraph induced by V'(G) has no cycles.

Definition 7 A subset V'(G) induces a mazimal forest (tree) if V/(G) in-

duces a forest (tree) and for all v € V(G) — V'(G), the subgraph induced

by V/(G)U {v} has a cycle.

3 Results

We assume the given planar graph G is triangulated. If it is not, then

apply any of the known sequential/parallel algorithms to triangulate it.



Triangulated graphs are also referred to as maximal planar graphs since no
more edges can be added to a triangulated graph without destroying its
planarity. As our main result claims that partitions induce forests and an
independent set and if we prove this result for maximal planar graphs then

it holds, clearly, for any subgraph induced by a smaller edge set.

Theorem 1 The vertez set of any mazimal outerplanar graph can be par-

titioned into two sets, one of which induces a iree and the other is an

independent set.

Proof: The theorem clearly holds for any graph with the size of the
vertex set less than 3. So assume that the graph has more than two vertices.
Let v be a vertex of degree 2. Note that the existence of such a vertex is
guaranteed in any maximal outerplanar graph with more than two vertices.
Assume, inductively, that there is partition Vi and V, of the vertex set
V(G)—{v}, where V; induces a tree and V, induces an independent set. To
extend the partition to V(G), include v in V; if both neighbors are in V5.

Clearly, V, U v is an independent set of G. If both neighbors are not in ¥,



then include v in V;. The following observation proves that V3 U v induces
a tree. Notice that there is an edge between the two neighboring vertices
of v, as the graph is maximal. Hence both neighbours of v cannot be in V;
and one of them has to be in Vi. Therefore we have the desired partition
of V(G).

Observe that if the graph is not maximal then, by a similar proof, we
would have a set inducing a forest (not a tree) and the other an independent
set. Also, it can be verified, by strengthening the inductive hypothesis, that
the tree or the forest (when the outerplanar graph is not maximal) induced

by Vi Uvis mazimal O
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Theorem 2 For a planar graph G, if there ezists a subset V/(G) of the
vertez set of G that induces o maximal tree then there ezists a partition of

V(G) consisting of three sets where two sets induce forests and the third is

an independent set.

Proof: Outerplanar graphs can also be characterized as planar graphs
without any subgraph homeomorphic to Ky or K,3 [BCL 79]. Let the
subgraph induced by V(G) — V'(G) be G". We will show that G” is outer-
planar. From application of the previous theorem we would get the desired
decomposition.

Assume G” has a subgraph Gg, that is homeomorphic to K,;. Let
a,b, c,d be the vertices that correspond to the four vertices of K,. Consider
any embedding of Gk, on a sphere. Notice that any three distinct vertices
z1,%2,73 in {a,b,¢c,d} form a closed curve in the embedding and let the
fourth vertex be z4 € {a,b,c,d}. All the the four closed curves induced
by some distinct z;,z;, 23 have one region empty and the other contains
z4. The tree induced by V'(G) is connected and therefore is enclosed by
one of the four closed curves. But since V/(G) induces a maximal tree,
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inclusion of any vertex from the complementary set would create a cycle.
Therefore there are atleast two edges from z4 to two nodes of the tree. By
Jodan-curve theorem [M 75] this is impossible unless the G is nonplanar.
Similarly, by considering the three closed surves of a graph homeomorphic
to K,3 we can conclude that G” can not have a subgraph homeomorphic

to K, 3 unless G is nonplanar. Therefore G” is outerplanar. O

Corollary 1 The vertez set of any 4-connected planar graph can be parii-
tioned into three sets such that two sets induce forests and the third is an

independent set.

Proof: We know from Tutte’s theorem that any 4-connected planar
graph is Hamiltonian. For a given embedding in a plane, any Hamiltonian
circuit divides the remaining edges of the graph into two categories: internal
chords and ezternal chords. Removal of all internal chords or external
chords leaves a maximal outerplanar graph, for which we know there is a
maximal tree from Theorem 1. Clearly the same tree is also a maximal tree

for the whole graph. I



4 Discussion

Even though we can deduce that there is a maximal tree in every 4-
connected planar graphs from Tutte’s theorem, it appears to be difficult
to find one efficiently without finding the Hamiltonian circuit. The exam-
ple in Fig.1l shows that if we try to build a maximal tree starting from
a vertex and adding vertices that do not create a cycle together with the
subset collected so far, then we will be forced to pick vertices, because of
the maximality condition, that have no edges in common with the vertices

collected so far and as a result the induced subgraph would be a forest

instead of a tree.

See figure 1.



Figure 1. A 4-connected, triangulated graph in which removal of a
mazimal forest (the subgraph with dark solid edges) leaves a subgraph (the

subgraph with dotted edges) that is homeomorphic to .
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Another natural question to ask is, do all planar graphs haver such de-
compositions? Notice that triangulating an arbitrary planar graph makes
it 3-connected. The triangulated graphs would be 4-connected if there are
no separating triangles. One possible approach would be to find a forest in
the interior (in an embedding) of every separating triangle whose removal
leaves a graph in which the vertices from the interior do not form a cycle
with two of the three vertices of the separating triangle. Then we can,
inductively, “empty” the interiors of the separating triangles starting with
the innermost triangles. Unfortunately this approach does not work, as is
shown in the following. Consider the graph shown in Fig.2. The triangles
{a,b, f}, {b,¢c,d}, {d,e, f} and {b,d, f} are separation triangles. The inte-
rior consists of the subgraph induced by the vertex set V; = {1,2,...,12}.
There are several subsets V/ of V; that induce forests. One such subset
is V! = {1,2,4,5,7,8,10,11}. It is not difficult to verify that for every
such V; the complementary graph induced by {a,b,..., f} U(V; = V/) has a
subgraph homeomorphic to K 3.

See figure 2.
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Figure 2. A triangulated planar graph. The vertex sets {a,b, f},

{b,c,d}, {d,e, f} and {b,d, f} form separation triangles.
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To summarize, we gave polynomial time computable algorithzﬁs to par-
tition the vertex set of a 4-connected planar graph where two sets of the
partition are 2-colorable and the third set is 1l-colorable. Unfortunately,
the sets are constructed using a Hamiltonian circuit, and also the sets are
maximal in some sense. As it is not clear if a Hamiltonian circuit can be
constructed efficiently on a parallel computer and since maximal objects are

hard to construct in parallel [KW 85] the following questions are relevant:

1. Is it possible to a find a partition of planar graphs where each set in

the partition is easily colorable on a parallel computer?

2. Given a planar graph does there exist a subset of the vertex set that
induces a connected tree which is maximal? If so, can it found effi-

ciently, i.e. in polynomial time?

3. Can the vertex sets of all planar graphs be partitioned into three sets
where two of them induce forests and third is an independent set?

(Note that this is a weaker question than the above question)

4. Is it possible to find the desired three partitions of the vertex set in
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4-connected graphs without finding the Hamiltonian circuit?
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