INTRODUCTION TO LOGIC PROGRAMMING
Krzysztof R. Apt
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-35 July 1988
(Revised and Extended Version)

In this version some minor errors have been corrected and some new material has been inciuded:
Section 2.7 on properties of SLD-resolution, and Section 7 on stratification.

Introduction to Logic Programming
(Revised and Extended Version)

Krzysziof R. Apt
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdarm, The Netherlands
and
Department of Computer Sciences, University of Texas at Austin, Austin,
Texas 78712-1188, USA.

We provide a systematic and seli-contained introduction 1o the theory of logic programming.

Note: This work was performed in part at the Laboratoire d'informatique, Ecole Normale Supérieurs, 45 rue
&'Ulm, 75250 Paris, France and at the Cenire for Mathematics and Computer Science, Amsterdam, The

Netherlands. This paper will appear in : Handbook of Theoretical Computer Science, (J. van Leeuwen,
Managing Editor), North Holiand.

1. INTRODUCTION

1.1. Background

Some formalisms gain a sudden success and it is not always immediately clear why. Consider the case
of logic programming. It was introduced in an article of KowaLski [K] in 1974 and for a long time -
in the case of computer science - ot much happened. But now, 14 years later already the Journal of
Logic Programming and Annual Conferences on the subject exist and a few hundred of articles on it
have been published.

Its success can be atiributed to at least two circumstances. First of all, logic programming is closely
related to PROLOG. In fact, logic programming constitutes its theoretical framework. This close con-
nection led to the adoption of logic programming as the basis for the influential Japanese Fifth Gen-
eration Project. Secondly, in the early eighties a flurry of research on alternative programming styles
started and suddenly it turned out ihat some candidates already existed and even for a considerable
time. This led to a renewed interest in logic programming and its extensions.

The power of logic programming Stems from two reasons. First, it is an extremely simple formal-
ism. So simple, that some, when confronted with it for the first time, say “Is that all?”. Next, it relies

on mathematical logic which developed its own methods and techniques and which provides a

rigorous mathematical framework. (It should be stated however, that the main basis of logic program-

ming is automatic theorem proving which was developed in a large part by computer scientists.)

The aim of this article is to provide a self-contained introduction to the theory of logic program-

ming, In the presentation we try to shed light on the causal dependence between various concepts and
notions. Throughout the paper we attempt to adbere to the notation of Lrovp [L], the book which
obviously influenced our presentation. This will hopefully further contribute to the standardization of
the notation and terminology in the domain.

1.2. Plan of this paper

We now provide a short description of the content of the paper. It is hoped that this will facilitate its
reading and will allow 2 better understanding of the structure of its subject.

The aim of Chapter 2 is 10 introduce in the fastest possible way the notion of SLD-resolution cen-
tral to the subject of logic programming.

In Chapter 3 a semantics is.imroduced with the purpose of establishing soundness of SLD-
resolution and several forms of its completeness. Most of these results are collected in the Success
Theorem 3.25. :

In Chapter 4 the computability by means of logic programs is investigated. It is among others
shown that all recursive functions are computed by logic programs.

SLD-resolution allows us o derive only positive statements. Chapter 5 deals with the other side of
the coin - the derivability of the negative statements. After rejecting the Closed World Assumption rule
as ineffective, the full effort is directed at an analysis of a weaker but effective rule - the Negation as
Failure rule and its relation to the construction called completion of a program. The final outcome is
the Finite Failure Theorem 5.32 dual to the Success Theorem.

After this extensive analysis of how to deal with positive and with negative statements, the mixed
statements (so called general goals) are investigated in Chapter 6. While the resultiilg form of resolu-
tion (called here SLDNF ™~ -resolution) is sound, the completeness can be obtained only after imposing
a number of restrictions, both on the logic programs and the general goals. Finally, in Chapter 7 we
investigate a subclass of general programs, called stratified programs, concentrating on their semantics

The paper concludes‘by a short discussion of related topics which are divided into six sections: gen-
eral programs, alternative approaches, deductive databases, PROLOG, integration of logic and func-
tional programming, and applications in artificial intellhgence.

Finally, in the appendix a short history of the subject is traced.

7. SYNTAX AND PROOF THEORY

2.1. First order languages :)
Logic programs are simply sets of certain formulas of a first order language. So to define them we
recall first what a first order language is, a notion essentially due to G. Frege.v‘ By nebesSitfour treat- -
ment is reduced to a list of definitions. A reader wishing a more motivated introduction should con-
sult o?e or more standard books on the subject. Personally, we recommend MANIN [M] and SHOEN-
FIELD [S}. :

A first order language consists of an alphabet and all formulas defined over it. |

An alphabet consists of the following classes of symbols: ‘
® variables denoted by x,y,z,v,4,...,
@ constants denoted by a,b,c.d....,
® function symbols denoted by f,g,-5--,
e relation symbols denoted by p,q.7,.-.,
@ propositional constants, which are: true and faise,
® connectives, which are: — (negation), V (disjunction), A (conjunction), — (implication) and <
(equivalence),
quantifiers, which are: 3 (there exists) and V (for all),
® parentheses, which are: (and) and the comma, that is: ,.

Thus the sets of connectives, quantifiers and parentheses are fixed. We assume also that the set of

variables is infinite and fixed. Those classes of symbols are called logical symbols. The other classes of

symbols, that is constants, relation symbols (or just relations) and function symbols (or just functions)
may vary and in particular may be empty. They are called nonlogical symbols. Each first order
language is thus determined by its nonlogical symbols.

Fach function and relation symbol has a fixed arity, that is the number of arguments. We assume
that functions have 2 positive arity - the 1dle of O-ary functions is played by the constants. In con-
trast, 0-ary relations are admitted. They are called propositional symbols, or simply propositions. Note
that each alphabet 18 uniquely determined by its constants, functions and relations.

We now define by induction two classes of strings of symbols over a given alphabet. First we define
the class of terms as follows:

e 2 variable is a term,

® aconstant is a lerm,

e if fis an n-ary function and 7,...,, are terms then f (¢ 1,...,1,) Is @ term.

Terms are denoted by s,4,u. Finally, we define the class of formulas as follows:

e if pis an n-ary relation and 7,,...,1, are terms then p(fy,...,1,) is a formula (called an atomic foor-
mula, or just an atom),

e true and false are formulas,

e i Fand G are formulas then so are —F, (FVG), (FAG), (F-G) and (F<>G),

e if Fisa formulaand xisa variable then 3xF and VxF are formulas.

Sometimes we shall write (G<F) instead of (F—G). Some well known binary functions (like +) or

relations (like =) are usually written i an infix notation i.. between the arguments. Atomic formulas

are denoted by 4,B and formulas in general by F,G. 1f Fis a quantifier-free formula with variables

X1yeensXn, WE write 3F for 3x,..3x,F and VF for Vx,..Vx,F. Formulas of the form VF are called

universal formulas. A term or formula with no variables is called ground.

Given two strings of symbols e; and e from the alphabet we write e; = e when e; and €2 are
identical. Usually these strings will be terms or formulas.

The definition of formulas is rigorous at the expense of excessive use of parentheses. One way to
eliminate most of them is by introducing a binding order among the connectives and quantifiers. We
thus assume that —,3 and V bind stronger than v which in turn binds stromger than A which binds
stronger than — and <. Also, we assume that V,A,— and <> associate zo the right and omit the
outer parentheses. Thus thanks to the binding order we can rewrite the formula

vy ((p(x) A —r(p)) = (=q(x) V (AVB))

as
Vny(p AT () = —g(x) V (AVE))

which thanks to the convention of the association to the right further simplifies to
VyVx(p A= () = —q (x)VAVB).

This completes the definition of a first order language.

2.2. Logic programs

To bar an easy access t0 NEWCOMETS every scientific domain has introduced its own terminology amd
notation. Logic programming is no exception in this matter but it borrowed most of its terminclogy
from automatic theorem proving. Thus an atom or its negation is called a literal. A positive literal 1is

just an atom while a negative literal is the negation of an atom. Note that true and false are not
atoms.
In turn, a formula of the form

V(L1V - VL)
where L,...,Ln are literals, is called a clause. From now on clauses will be always wriiten in 2 special
form called - yes, you guessed it - a clausal form. The above formula in a clausal form is written as

A 1,«--7Ak &« B},...,B,;

where A 1,..,Ax 18 the list of all positive literals among L1,...,Lm, called conclusions and By,-..,B,, 18

the list of remaining literals stripped of the negation symbol, called prernises. Informally, it is to be
understood as: (41 or ... or) if (B and ... and B,). Thus for example the formula

Vx¥y(p(x) vV =4 V ~q(y)VB)
looks in clausal form as

px)B « A,q(y).

1 a clause has only one conclusion (k =1), then it is called a program clause or a definite clause. lis
conclusion is then usually called a head and the list of its premises a body. When the set of premises
of a program clause is empty (n =0), then we talk of a unit clause. They have the form 4 «. When
the set of conclusions is empty (k =0), then we talk of a goal or a negative clause. They have the
form «<B,,...,B,. Finally, when both the set of premises and conclusions is empty then we talk of the
empty clause and denote it by O. It is interpreted as a contradiction.

To understand this interpretation we are in fact brought to the question of meaning of a formula
LV..VL, when m = 0, ie. of the empty disjunction. Now, the empty disjunction is considered 2s
always false because it asks for an existence of a true disjunct when none of them exists. In contrast,

the empty conjunction is considered as always true because it asks for truth of all conjuncts, which
holds when none of them exists. ~

Now, we can define a logic program (or just 2 program)
clauses.

~ Logic programs form a subclass of general logic programs. To define the general programs we first
" introduce the concept of a general clause. It is a construct of the form -

A 1,...,Ak & L] ,...,L,,

- it is a finite non-empty set of program

where 4,...,4, are positive literals and Li,..,L, are (not necessarily positive) literals. When there 1is
only one conclusion (k =1), we talk of a general program clause, and when the set of conclusions is
empty (k =0) we talk of a general goal.

A general clause 4 1,...,Ay « Lq,...,L, represents the formula
V(A V... VAV=Ly V..V <L)

Now, a general logic program (or just a general program) is a finite non-empty set of general pro-
gram clauses. ‘ -

~ Note that true and false are not used to define (general) programs. These formulas will be however
" peeded later, in Section 5.5. , o

With each (general) program P we can uniquely associate a first order language L, whose constants,
functions and relations are those occurring n P. All considerations concerning a (general) program P
refer to the language Lp. In particular, in statements like “Let P be a program and N a goal” N is
always assumed to be a goal from Lp. ‘ '

There are two ways of interpreting a clause 4 « By,...,B,. One is: to solve 4 solve B; for
i = 1,...,n. The other is: 4 1s true if By,...,B, are true. The first interpretation 18 usually called pro-
cedural interpretation whereas the second is called declarative interpretation. It is this first interpreta-

tion which distinguishes logic programming from first order logic. We shall discuss this double
interpretation in more detail at the end of Chapter 3.

2.3. Substitutions

Consider now a fixed first order langnage. In logic programming variables are assigned values by
means of a special type of substitutions, called “most general unifiers”. Formally, a substitution is a
finite mapping from variables to terms, and is writien as

6= {xl/Il,...,xn/t,,}.

Informally, it is to be read: the variables x,...,x, become (or are bound 10) 11,...,1x, respectively.

The notation implies that the variables xi,..,x, are different. We also assume that for
i=1,n x%t. 0 1,1, are different variables then 8 is called a renaming. A pair x;/1; is called a
binding. If all 7,,...,7, are ground then § is called ground.

Substitutions operate on expressions. By an expression we mean a term, a sequence of literals or a
clause and denote it by E. For an expression E and a substitution 6, Ef stands for the result of
applying 6 10 E which is obtained by simultaneously replacing each occurrence in E of a variable from

5

the domain of § by the corresponding term. The resulting expression E6 is called an instance of E. An
instance is called ground if it contains no variables.

If § is a renaming such that no variable of E omitted in the domain of § appears in the range of 6,
then E@ is called a variant of E. In other words, E is a variant of E if 6 is a renaming and every
variable of E which appears in the range of § also appears in the domain of 6. Thus for example
x <y'+z’ is a variant of x <y +z whereas x <y’ x is not.

The following lemma, whose proof we omit, clarifies the concept of a variant and implies that
“being a variant of” is a symmetric relation.

LemMa 2.1. For all expressions E and F
E is a vanant of F iff E is an instance of F
and F is an instance of E. [J

Given a program P we denote by ground (P) the set of all ground instances of clauses in P. Note
{hat this set can be infinite. Given an atom A we denote by [4] the set of all its ground instances.

Substitutions can be composed. Given substitutions 6 = {x1/t1,-.,x,/1,} and
N = {§1/51sYm/m} their composition b is defined by removing from the set

(1 /8100 X0/ 1y Y1/ S 1500/ S}

those pairs x;/1;m for which x;=;n, as well as those pairs y;/s; for which Vi€{X 1peerXn)

Thus for example when § = {x/3,y/f(x,1)} and 5 = {x/4} then bn = {x/3,y/f(4,1)}. This
definition implies the following simple result.

LeMMA 2.2. For all substitutions 8,m and y and an expression E
i) (EOm= E(n)
i) (fnyy = 60m). U

This lemma shows that when writing a sequence of substitutions, also in the context of an expres-
sion, the parentheses can be omitted. By convention substitution binds stronger than any connective
or quantifier.

We say that a substitution 6 is more general than a substitution 7 if for some substitution y we have

7 = by.

2.4. Unifiers

Finally, we introduce the notion of unification. Consider two atoms 4 and B. If for a substitution §
we have 48 = B, then 0 is called a unifier of A and B and we then say that 4 and B are unifiable. A
unifier 6 of 4 and B is called a most general unifier (or mgu in short) if it is more general than any
other unifier of 4 and B. It is an important fact that if two atoms are unifiable then they have a most
general unifier. In fact, we have the following theorem due to ROBINSON [Ro}.

Turorem 2.3. (Unification Theorem) There exists an algorithm (called a unification algorithm) which

for any two atoms produces their most general unifier if they are unifiable and otherwise reports non-
existence of a unifier.

ProOF. We follow here the presentation of Lassez, MAHER and MARRIOTT [LMM]. We present an
algorithm based upon Herbrand’s original algorithm (HERBRAND [He] p. 148) which deals with solu-
tions of finite sets of term equations. This algorithm was first presented in MARTELLI and MON-
TANARI [MM].

Two atoms can unify only if they have the same relation symbol. With two atoms p(sy,...,5,) and
C p(ty,enty) to b unified we associate a set of equations

{Sl B SRRV S i,,}.

A substitution @ such that 5,6 = £16,...,5,0 is called a unifier of the set of equations
(51 = ti,enSn = t,}. Thus the set of equations {§; = Iy,..8n = t,} has the same unifiers as the
atoms p(sl,...,s,,) and p(t1,.-1n)- Two sets of equations are called equivalent if they have the same
unifiers.

A (possibly empty) set of equations is called solved if it is of the form {x; = u#1,...X, = U, Where

x;’s are distinct variables and none of them occurs in a term u;.

A solved set of equations {X; = Uy,...Xn = u, } determines the substitution {x,/u1,...,X,/ty y. This
substitution is a unifier of this set of equations and clearly it is its mgu, that is it is more general than
any other unifier of this set of equations.

Thus to find an mgu of two atoms it suffices to transform the associated set of equations into an
equivalent one which is solved.

The following algorithm does it if this is possible and otherwise halts with failure.

Unification algorithm

Non-deterministically choose from the set of equations an equation of a form below and perform the
associated action.

(D) f(S15m080) = FAGEESY) replace by the equations s = 11,8y = In
) f(1yss) = g(t1,stm) where f=g
halt with failure
(B)x =x « delete the equation
(4) t = x where tis not 4 variable
: replace by the equation x =1
(5) x = t where x #1 and x has another occurrence in the set of equations
if x appears in t then halt with failure
otherwise perform the substitution {x/1}
in every other equation '

The algorithm terminates when 1o step can be performed or when failure arises. To keep the for-
mulation of the algorithm concise we identified here constants with Q-ary functions. Thus step (1)
includes the case ¢ =¢ for every constant ¢ which leads to deletion of such an equation. Also step (2)
includes the case of two consiants.

First, observe that for each variable x step (5) can be performed at most once, sO this step can be
performed only a finite number of times. Subsequent applications (if any) of steps (1) and (4) strictly
diminish the total number of occurrences of function symbols on the left hand side of the equations.

This number is not affected by the application of step (3). Moreover, in the absence of step (1), step
(3) can be performed only finitely many times. This implies termination.

Next, observe that applications of steps (1), (3) and (4) replace a set of equations by an equivalent
one. The same holds in the case of a successful application of step (5) because for any substitution 6,
x6=16 implies that the substitutions § and {x/1)0 are identical.

Next, observe that if the algorithm successfully terminates, then by virtue of steps (1), (2) and (4)
the left hand sides of the final equations are variables. Moreover, by virtue of step (5) these variables
are distinct and none of them occurs on the right hand side of an equation. So if the algorithm suc-
cessfully terminates it produces a solved set of equations equivalent with the original one.

Finally, observe that if the algorithm halts with failure then the set of equations at the failure step
does not have a unifier.

This establishes correctness of the algorithm and concludes the proof of the theorem. U

To illustrate the operation of the above unification algorithm consider the following example.

ExAMPLE 2.4. Consider the following set of equations

() = e glay) = glax)).

Choosing the first equation step (1) applies and produces the new equation set
(x = f(2), glay) = glax)}

Choosing the second equation step (1) applies and yields
(x =f@)ra=ay = x}.

Now by applying step (1) again we get
{x =f@)y = x}

The only step which can be now applied is step (5). We get
(x=1G»y =1}

Now no step can be applied and the algorithm successfully terminates. O

Call a substitution 8 idempotent if 66 = 6. Call unifier of 8 of two atoms A and B relevant if all

variables which appear either in the domain of 8 or in the terms from the range of 6, also appear in 4
or B. In Section 2.7 we shall rely on the following observation.

COROLLARY 2.5. If two atoms are unifiable then they have an mgu which is idempotent and relevant.

PrOOF. The unifier produced by the procedure used in the proof of the above theorem is of the form
{x1/u150es %0/ u,} where none of the variables x; occurs in a term u;, so it is idempotent. Moreover, in

{he unification algorithm no variables from outside of the unified atoms are introduced. Thus the pro-
duced mgu is relevant. [

Given a substitution § denote its domain by dom(f) and the set of variables which appear in a term
from the range of 8 by r(f). Given an expression E denote by var(E) the set of variables which

appear in it. The following observation will be needed in Section 2.7.
Leva 2.6. Let E be an expression and § an idempotent substitution. Then
var(E6)Ndom(f) = 2.

ProOF. It is easy to see that for any substitution #

var(E)Ndom(8)Cr (D). M
But for an idempotent substitution 6 also
dom(@Nr) = 2.)

(1) and (2) imply the claim. I

2.5. Computation process - the SLD-resolution
Logic programs compute through a combination of two mechanisms - replacement and unification.
This form of computing boils down 0 a specific form of theorem proving, called SLD-resolution. To
better understand this computation process let us concentrate first on the issue of a replacement in
the absence of variables.

Consider for a moment a logic program P in which all clauses are ground. Let
N = <« Aj,...A, (n=1) be a ground negative clause and suppose that for some i1 <i <n,

8

C = 4; « By,.... Bk (k=0) is a clause from P. Then
N = « A ls--'yAi '—hBl9~"7Bk7Ai+19---eAm

is the result of replacing A; in N by By,.... Bk and is called a resolvent of N and C. 4; is called the
selected atom of N.

Tierating this replacement process we obtain a sequence of resolvents which is called a derivation. A
derivation can be finite or infinite. If its last clause is empty then we speak of a refutation of the ong-
nal negative clause N. We can then say that from the assumption that in presence of the program P
the clause N = <A 1,4k holds we derived the contradiction, namely the empty clause. This can be
viewed as a proof of the negation of N from P. ' '

Assuming for a moment from the reader knowledge of semantics for the first order logic (which is
explained in Section 3.1) we note that N stands for —A4q V..V =4k, 0 its negation stands for
© AV V—A) which is semantically equivalent to Ay A..NAg. Thus 2 sefutation of N can be

viewed as a proof of AN NAg.

If we reverse the arTows in clauses we can view a program with all clauses ground as a context-free
grammar with erasing rules (i.e. rules producing the empty string) and with no start of terminal sym-
bols. Then a refutation of 2 goal can be viewed as a derivation of the empty string from the word
represented by the goal.

An important aspect of logic programs is that they can be used not only to refute but also to com-
pute - through 2 repeated use of unification which produces assignments of values to variables. We
now explain this process by extending the previous situation 10 the case of logic programs and nega-
tive clauses which can contain variables. v ,

Let P be a logic program and N = «A,,..,A, be a negative clause. We first redefine the concept

of a resolvent. Suppost that C = A «Bq,...Byisa clause from P. If for some i, 1<i<n 4 and
A unify with an mgu 6, then we call : :

N = ("‘(A lr-'vAj ;—lsB 1 3-")Bk7Ai +17'"3An)0

a resolvent of N and C with the mgu 6. Thus 2 resolvent is obtained by performing the following four
steps:

a) P select an atom A;,

b) try to unify A and 4;, :

¢) ifb) succeeds then perform the replacement of A; by By,...Bk in N,

d) apply to the resulting clause the mgu 6 obtained in b).

As before, iterating this process of computing a resolvent e obtain a sequence of resolvents called
a derivation. But now because of the presence of variables we have to be careful.

By an SLD - derivation (we explain the abbreviation SLD in a moment) of P U {N} we mean 2
maximal sequence N 0N 1,-.. of negative clauses where N = N, together with a sequence Co,Cis.r Of
variants of clauses from P and a sequence 6p,61,... of substitutions such that for alli = 0,1,...

1) N;g isa resolvent of N; and C; with the mgu 0;,
ii) C; does not have a variable in common with Ng,Co,--,Ci—1-

The clauses Cg,C1,-- aT€ called the input clauses of the derivation. When one of the resolvents N; is
empty then it is the last negative clause of the derivation. Such a derivation is then called an SLD -
refutation. An SI.D-derivation is called failed if it is finite and it is not a refutation.

A new element in this definition s the use of variants that satisfy ii) instead of the original clauses.
This condition is called standardization apart. lts relevance will be extensively discussed in Section 2.7.
The idea is that we do not wish to make the result of the derivation dependent on the choice of vari-
able names. Note for example that p(x) and p(f(y)) unify by means of the mgu binding x 10 fo)-
Thus the goal «p(x) can be refuted from the program p{f ()<

The existence of an SLD - refutation of PU{N Yor N = «4 1senyAj can be viewed as a contrad-
iction. We can then conclude that we proved the negation of N. But N stands for
¥x ;.. ¥x{—4 (V. VA), WHETE X150 Xs are all variables appearing in N, s0 its negation stands for

9

V. x4 ...V —Ay) which is semantically equivalent (see Section 3.1) to 3x1...3x,(A4 1 A AAR).
Now, an important point is that the sequence of substitutions 6,01, - - - ,0,, performed during the
process of the refutation actually provides the bindings for the variables x1,...,%,. Thus the existence
of an SLD - refutation for PU {N} can be viewed as a proof of the formula (4 A...AA4R)0...0,,. We
justify this staternent in Section 3.2.

The testriction of bg...0,, to the variables of N is called a computed answer substitution for PU{N}.

According to the definition of SLD - derivation the following two choices are made in each step of
constructing a new resolvent:

® choice of the selected atom,
@ choice of the input clause whose conclusion unifies with the selected atom.

Now, the first choice is in general dependent on the whole “history” of the derivation up to the
current resolvent. Such a history consists of a sequence Ngo,N,...,Nx -1 of goals with selected atoms,
a goal N, a sequence Cy,C1,sC—1 Of input clauses and a sequence 8,01, . . . ,8, . of substitu-
tions such that for all i = 0,...k —1 Ny, is a tesolvent of N; and C; with mgu 6; where the selected
atom of N, is used in step a) above. Let now HIS stand for the set of all such histories in which the
last goal Ny is non-empty.

By a selection rule R we now mean a function which when applied to an element of HIS with the
last goal Ny = «A,..,A, yields an atom 4; 1<j<L

Such a general definition allows us t0 select different atoms in resolvents that occur more than once
in the derivation or, in general, in identical resolvents with different histories.

Given a selection rule R we say that an SLD - derivation of PU{N} is via R if all choices of the
selected atoms in the derivation are performed according to R. That is, for each non-empty goal M of
this SLD-derivation with a history H, R(H) is the selected atom of M.

Now, SLD stands for Selection rule driven Linear resolution for Definite clauses.

2.6. An example

To the reader overwhelmed with such a long sequence of definitions we offer an example which hope-

fully clarifies the introduced concepts. We analyze in it the consequences of the choices in a) and b).
Consider 2 simplified version of the 8 - puzzle. Assume a 33 grid filled with eight moveable tiles.

Our goal is to rearrange the tiles so that the blank one is the middle.

We number the fields consecutively as follows:

11213
41516
71819

and represent each Jegal move as a movement of the "blank” to an adjacent square.

First, we define the relation adjacent by providing an exhaustive listing of adjacent squares in
ascending order:

adjacent(1,2)«, adjacent(2,3)<, ..., adjacent(8,9)«, (horizontal adjacency)
adjacent(1,4)<, adjacent(4, <, ..., adjacent(6,9)« (vertical adjacency)
and using a rule
adjaceni(x,y)«adjacent(y,x) (symmetry) (a)

In total, 24 pairs are adjacent. (A more succinct representation would be possible if addition and sub-
traction functions were available.)

Then we define an initial configuration by assuming that the blank is initially, say, on square 1.
Thus we have

oonﬁguration(l,nii}e—-,

10
where the second argument - here nil - denotes the sequence of squares visited.
Finally, we define a legal move by the rule
configuration(x,y. f)<—adjacent(x,y),configuration(y, § (b)

where y.0is a list with head y and tail { written in the usual infix notation.
As a goal we choose the negative clause

«configuration(s,f)

stating that no sequence of visited squares leads to a situation where square 5 is blank.
The following represents an SLD - refutation of the goal of length 7.

« configuration (5,0 (®) {#t}, {x/5,U/y.b}

« adjacent (5,y), configuration (y,4) @) {x/x1,y/y1}, {(x1/5.y:1/y}

« adjacent (y,5), configuration (y, %) adjacent (4,5) «, {y/4}

« configuration (4,f;) (®) {x/x2,/y2.W8}, {x2/44/y2.6}
« adjacent (4,y,), configuration (y2,5) (a) {x/x3,p/y3}, {x3/4,y3/y2}

« adjacent (y,,4), configuration (y2,5) adjacent (1,4) «, {y2/1}

« configuration(1,%) configuration (1,nl) «, {§/nil}

0

Selected atoms are put in bold. We thus always select the leftmost atom. On the right the input
clauses and the mgw's are given. Note that at various places variants of the clauses (a) and (b) are
used. The sequence of mgu’s performed binds the variable { to 4.1.nil through the consecutive substitu-
tions {¢/7.64},{y/4},{t/y2-%},{y2/1},{k/nil}.

This provides the sequence of squares leading to the final configuration. Thus the refutation of the
initial goal is constructive in the sense that it provides the value of ¢ for which the formula
« configuration (5, does not hold.

Another choice of input clauses can lead to an infinite SLD - derivation. For example here is a
derivation in which we repeatedly use rule (a):

« configuration (5,0 () {¥/4}, {x/5Uph}
« adjacent (5,y), configuration (y,%) (a) {x/x1,p/y1}, {x1/5p1/y}
« adjacent (y,5), configuration (y,%) (@) {x/x3,9/y2}, {x2/,y2/5}

« adjacent (5,y), configuration (y,%)

Also, another choice of a selection rule can lead to an infinite SLD - derivation. For example, a

repeated choice of the rightmost atom and rule (b) leads to an infinite derivation with the goals con-
tinuously increasing its length by 1.

11

2.7. Properties of SLD-derivations

In the next chapters we shall need the following two lemmata concerning SLD-derivati
them rely on the condition of standardizing apart introduced in Section 2.55. rivations. Both of

Levma 2.7. Let Ng,Ny,.. be an SLD-derivation with a sequence Cq,Cy,... of input clauses and a

sequence 9,01,... of mgu’s. Suppose that all §;—s are idempotent and relevant. Then for all m=0 and
n>m

D var(N,)Ndom(8,) = 2.
2) var(N,8,)Ndom(8,) = 2.

ProoF. 1) We prove by induction on i that for all i >0

var(Np +i)Ndom(6,) = 2. m

N,,+; is of the form EG,, so for i=1 (1) is the consequence of Lemma 2.6. Su
holds for some i >0. Since each §; is relevant, by the form of N; 41 for all j=0 ppose now that (1)

var{N; + 1) Cvar(N)U var(C;).

@

Since 6,, is relevant,
dom(8,,) Cvar(N,,) Uvar(Cy),)

so using (2) m tumes
dom(8,,) Cvar(Ng)Uvar(Co)U... Uvar{(C,,). 4

Now

var(Np, +i+1) Ndom(6,,)
(by) with j=m +1)C (var(N, +;)Ndom(8,)) U (var(Cp +:) 0 dom(8,,))
(by (1) and (4)) Cvar(Cp) N(var(Ng)Uvar(Co)U... U var{C,,))
(by standardizing apar)C 2.

This proves the induction step and concludes the proof of 1).
2) 1t suffices to note that by assumption on 6, —s

var(N,8,)C var(N,)U var{C,)
and use 1), (4) and standardizing apart. O

We now show that up 1o renaming the computed answer substitution of an SLD-derivation does
not depend on the choice of variables in the input clauses. To this purpose we prove a slightly
stronger result first which uses the notion of a resultant of an SLD-derivation.

Given a goal N = «Ay,...., 4, we denote by N~ the formula 4;A... A4 Th O~ i
conjunction which we identify with true. : k- Lhen is the empty

Given an SLD-derivation Ng,N,... with a sequence of mgu’s b,01,... of length =i b
level i) we mean the formula ges e gth >1by a resuliant (of

N,N —-)N(')V 0@...9,' -1
Thus the resultant of level 0 is the formula N5 —Ng .
Lemma 2.8 (Variant lemma) (LLOYD and SHEPHERDSON [LSD. Let Ng,Ny,... and N'g,N'y,... be itwo

SLD-derivations of PU{N} where N = Ny and N = N’s, with the input clauses Co,Cy,... and
C'0,C'1pemns respectively. Suppose that each C'; is a variant of C; and that in each N'; atoms in the same

12

positions as in N; are selected. Also, suppose that all mgu’s used in these two SLD-derivations are
relevant. Then the resultants of these two SLD-derivations are their respective variants.

ProoF. We prove the claim by induction on the level of resultants. For i =0 there is nothing to
prove. Assume the claim holds for some i =0.

Let 8y,0;,... be the mgu’s of the first SLD-derivation and 6'y,8';,... the mguw’s of the second SLD-
derivation. By the induction hypothesis

Res = N —Nyb...0, -
is a variant of
Res’ = N'7—N'o#,..00 1.
Thus for a renaming § with dom(6) Cvar(Res’)

Res=Res’0 (1
By assumption C; is a variant of C’;. Thus for a renaming n with dom(n) Cvar(C’;)
C,'EC’,"H- (2)

Given two substitutions ¢ and £ with disjoint domains we denote by 6 U their union which is defined
in the obvious way. Put now

vy = (U9,

We prove the following four facts.
1) vy is well defined.
2) Forsomeo, y = §0.
3) Niy1=N'iq0.
4) Nyby..6=N"o0..0 ;0.
ad 1)
We only need to show that the domains of § and » are disjoint. We first show that
var(Res"YNvar(C';) = 2. 3
By the assumption, #,,....0; _, are relevant, so by the same argument as the one used in the previous
lemma, but now applied to the ranges of §'; instead of their domains, we get for j = 0,...,i —1

(@) CWN9)Uvar(C'o)U... Uvar(C’i—1). e
Also, as in the proof of the previous lemma
var(N';)Cvar(N'g)Uvar(Clo)U... U var(C’; —1). (5

Now

var(Res’) = var(N';))Uvar(N'o0...8 1)
C var(N’)Uvar(N'g)Ur(@p)U..Ur(@;-1)
(by (4 and (5)) C var(N oy Uvar(C'o)U..var(C'; - 1),
so (3) follows from the standardizing apart.
Now pote that dom(f)Cvar(Res’) and dom(n)Cvar(C’;), so by (3) the domains of 6 and 7 are
indeed disjoint.
ad 2)
Let B’ be an atom from C’;. Then var(B")Cvar(C’;), so by (3)
var(B)Ndom(#) = <, (6

since dom(f) Cvar(Res’).

13
Similarly, also by (3), for an atom 4’ from N;

var(A")Ndom(n) = 2. (N
Thus by (6) for an atom B’ from ',

B'(0Un=B" 8)
and by (7) for an atom A’ from N';

A(GU=A'8. (©)

Let
C; = Bo<Bi,..B,
N, = <A dn,
C; = Bg«B'1,...B'y,
N = «A',ndn
By (1) and (8) for j = 0,...k

BjEB'J-(GU'n) o
and by (2) and (9) for j = 1,...m

A=A 6U). b
Let now A’, be the selecied atom of N’;. Then A, is the selected atom of N; and

A8;=B,b; (1D
Now

A’y
= AU

(by (11)) = Ad;

(by (12)) = B,

(by (10)) = B'o(0U);

= By,
s0 v is a unifier of A’; and B'g. Now, since §; is an mgu of 4’; and B'y, for some o,y = ;0.
ad\i’)e have
Nigy = (""(A1,...,Ag...],.B],...,Bk,Ag+1,...,Am)9§
(by (10) and (11)) = <-—(A’1,...,A’g..,,B‘a,...,B’k,A’H1,...,A’,,,)(9U13)0,~
= (‘“(All,...,A,g_},B,j,...,B,k,A,g+;,...,A,m)Y
(by fact 2) = e—(A’;,...,A’g,;,B’;,...,B'k,A’H_;,...,A’m)ﬁ’;ﬁ
= N'ii0.
ad 4)
We have dom(n) Cvar(C’;), so by {3)

var(N'o®...0/; —1)Ndom(n) = 2. (13)

Now
Nobs...6;

(by (1)) = N'oFo..ti -1 80;
(by (13)) = N'o8o..0—1(6Un)¥;
= N’Qﬁig...@’gﬁl‘}’

14

Now, putting facts 3) and 4) together we see that the resultant of level i +1 of the first SLD-
derivation is an instance of the tesultant of level i +1 of the second SLD-derivation. By symmetry the
* resultant of level i +1 of the second SLD-derivation is an instance of the resultant of level i +1 of the
first SLD-derivation. By Lemma 2.1 these resultants are the variants of each other. Ul

COROLLARY 2.9. (Variant corollary). Let ® and ¥ be two SLD-derivations satisfying the conditions of
Lemma 2.8. Suppose that @ is an SLD-refutation with a compuied answer substitution 6. Then ¥ is an

SLD-refutation with a computed answer substitution m such that 6 is more general than m and 7 is more
general than 6.

PrOOF. It suffices to consider resultants of level k of ® and ¥, where k is the length of the SLD-
refutation ¥, and apply the previous lemma. [:

The above corollary shows that the existence of an SLD-refutation does miot depend on the choice
of variables in the input clauses.

To be able to use the results of this section we shall assume from now on that all mgu’s used in all
SLD-derivations are idempotent and relevant.

2.8. Refutation procedures - SLD-irees

When searching for a refutation of a goal, SLD-derivations are constructed with the aim of generating
the empty clause. The totality of these derivations form a search space. One way of organizing this
search space is by dividing SLD-derivations into categories according to the selection rule used. This
brings us to the concept of an SLD-tree. '

To this purpose we first explain how from sequences (here SLD-derivations) a tree can be con:
 structed. Consider a set of possibly infinite sequences W such that no element of W is an extension
of another element of W. With such a W we can uniquely associate a tree whose nodes are the ele-
ments of these sequences, whose branches are all the sequences in W and in which different nodes
have different prefixes. We call such a tree a prefix tree constructed from W. v : ,

Let P be a program, N a goal and R 2 selection rule. The SLD-tree for PU{N} via R groups all
SLD-derivations of PU{N} via R. Formally the SLD-tree for PU{N } via R is the prefix tree con-
structed from all SLD-derivations of PU{N} via R. Thus the root node in an SLD-tree for PU{N}
is N and every node in this tree is a goal whose descendants are all its resolvents with (the variants of)

the clauses of P, where the selected atom is chosen according to R. We call an SLD-tree successful if it
contains the empty clause.

The SLD-trees for P U{N} can differ in size and form.

ExaMpLE 2.10 (APT and VAN EMDEN [AVE]). Let P be the following program:

1. path(x,z)« arc(x,), path(y,z),
2. path(x,x)<,
3. arce{b,c)<.
A possible interpretation of P is as follows: arc(x,y) holds if there is an arc from x to y and path(x,y)

holds if there is a path from x to y.

Figures 1 and 2 show two SLD-irees for P U {«path(x,c)}. The selected atoms are put in bold, used
clauses and performed substitutions are indicated. The input clauses at the level i are obtained from

the original clauses by adding the subscript ”i” to all variables which were used earlier in the deriva-
tion. In this way the standardizing apart condition is satisfied.

|« path(x,c) |

{z/c, X, iz} £1 2%, {x/c, xy/c}
[« arc(x,y), pah(y.c) | O
31 {x/b, y/ic}

{ «are(¢,y,) path(y, ,C)i 0

(no descendant)

FIGURE 1

| «<path(x,c) |

{zle,x, X} #1 2%, {®/e, x,/c}

[—arcxy), path(y,e) | O

/. / y;’c,x jc}

[w30 PG 9

3
AQENER S B/l

e—arc(x,y) arc(y,c)

(infinite subiree) {y/b}

{no descena’arzz }

FIGURE 2

16

Note that the first tree is finite while the second one is infinite. Both trees contain the empty
clause.

2.9. Bibliographic remarks
Efficient unification algorithms were proposed by PATERSON and WEGMAN [PW] and MARTELLI and
MONTANARI [MM]. See also the survey on unification by SIEKMANN [Si].

SLD-resolution is a special case of SL-resolution of KOWALSKI and KUEHNER [KK] and was pro-
posed as a basis for programming in Kowarski [K]. The name was first used in APT and VAN EMDEN
[AVE] where also the notions of a success set and SLD-trees were formally introduced. SLD-trees
were informally used in CLARK [C] where they were called evaluation trees.

The selection rule was originally required to be a function defined on sequences of atoms. Our for-
mulation follows the suggestion of SHEPHERDSON [She] (see p. 62). The proof of Lemma 2.8 differs
from the original proof. Corollary 2.9 was independently established in K1L.oP and MEYER [KM].

3. SEMANTICS

3.1. Semantics for first order logic

To understand the meaning of a logic program, or a first order formula in general, we now provide
the definition of semantics due to A. Tarski. Again, our treatment is very brief. More extensive dis-
cussion of this fundamental issue can be found e.g. in MANIN [M] or SHOENFIELD [S].

We begin by defining an interpretation. An interpretation I for a first order language L consists of:
e anon-empty set D, called the domain of I, ' ' :

@ an assignment for each constant ¢ in L of an element ¢ of D, o

® an assignment for each n-ary function f'in L of a mapping f; from D* to D,

e an assignment for each n-ary relation r in L of an n-ary predicate r; on D, i.e. a subset of D".
Our aim is now to define when a formula of L is true in an interpretation for L. To this purpose we
first relate terms to elements of the domain of an interpretation. We do this by making use of the

notion of a state (or a variable assignment). A state (over I) is simply a function assigning to each vari-
able an element from D.

Given now a state o, we extend its domain to all terms, that is we assign to a term 7 an element o(?)
from D proceeding by induction as follows:

e for a constant ¢ we define o(c) as ¢; (thus o(c) does not depend on),

e if f(i1,..,1,) is a term then we define o(f (t1,51a)) as fi(o(t1),...,6(t,)), the result of applying the
mapping f; to the sequence of values associated with the terms 11,...,7,.
Observe that for a ground term ¢, o(z) has the same value for all 6.

We can now define a semantics of a formula. Given a formula F we define inductively its truth in
a state o over I, written as I k,F, as follows:

e if p(ty,..,1,) is an atomic formula then
I Fop(fl,...gi,,) iff (G(l]),...,ﬁ(f,,)) € pi,

that is, if the sequence of values associated with terms 7y,...,1, belongs to the predicate py,
e [t irue, not I+ false,
e if Fand G are formulas then

I v, —F iff notI &, F,
18, FVGiff I &, F or I &G,
I ?GVXF it I T—‘ng/d}F foralld € D.

Here ofx/d] for 2 state o, an element d of D and a variable x, stands for the state which differs from

17

o only on the variable x 10 which it assigns the element 4.

This allows us already to define truth of clauses. The truth of other formulas is defined by express-
ing the remaining connectives and the quantifier 3 in terms of —,V and V:
FAG as —(—FVv—G),
F—G as —FVG,
FesG as (F —GING—F), (and then using the

above two definitions)

IxF as —Vx—F

Finally, we say that the formula F is true in the inierpretation I, and write I ¢ F, when for all states
o, I v, F. Note that [as the empty disjunction is false in every interpretation /. Let now S be a set
of formulas. We say that an interpretation I is a model for S if every formula from S is true in I
When S has a model, we say that it is sazisfiable or consistent. Otherwise, we say that it is unsatisfiable
or inconsistent. When every interpretation is a model for S, we say that S is valid.

Given another set of formulas S we say that S semantically implies ' ot S’ is a semantic conse-
quence of S, if every model of S is also a model of S’. We write then S & S’ and omit the { and }

brackets if any of these sets has exactly one element. S and S’ are semantically equivalent if both
S S’ and S’ ¢ S hold.

Several simple facts about semantic consequence and semantic equivalence can be proved and will
be used in the sequel. Already in Section 2.5 we used the fact that the following formulas are valid:

-——.V)C]...VXSF «> Bxl...axs—xF,
(AN VA © A A A,

3.2. Soundness of the SLD-resolution
Recall that for a goal N = «Aq,..,Ax N~ stands for the formula A A..AA;. Then OO~ is the

empty conjunction so it is valid. The following lemma is immediate.
Lemma 3.1. If M is a resobvent of N and a clause C with an mgu 6 then
CeM~—-N~6. O

As a consequence we obtain the following theorem due to CLARK [C1] justifying the statement made
in Section 2.5.

THEOREM 3.2. (Soundness of SLD - resolution). Let P be a program and N = «Ay,...,Ax a goal. Sup-

pose that there exists an SLD - refutation of P U{N} with the sequence of substitutions 8y,-..,8,. Then
(A A N Onisa semantic consequence of P.

ProoF. Let No,owNns1s with Ng = Nand N4 = O, be the SLD-refutation in question and let
Coy..., Cy be its mput clauses. Applying Lemma 3.1. n +1 times we get

Pe0~—N"6y...0,
which imples the claim. U

COROLLARY 3.3. If there exists an SLD - refutation of PU{N} then PU {NY} is inconsistent. [

Another straightforward consequence of Lemma 3.1, which will not be used in the sequel, is that all
resultants of an SLD-refutation of PU {N} are semantic CONSEqUENCes of P.

18

ExampLE 3.4. Reconsider now the program P studied in the example in Section 2.6 with the goal

« configuration (5,f. Since we exhibited there an SLD - refutation of P U {« configuration (5,9}, we
conclude by the above corollary that P U {« configuration (5,0} is inconsistent, that is

P £ 3t configuration (5,f). More specifically, by the Soundness Theorem we have

P ¢ configuration (5,06, ... ; where 6, . . . 6, is the sequence of performed substitutions. As we saw
before this sequence binds { to 4.1.nil, so we have P r configuration (5, 4.1.nil). [J

A natural question arises whether a converse of the above Corollary or of the Soundness Theorem
can be proved, that is whether certain form of completeness of SLD - resolution can be shown. To

handle this question we introduce a special class of models of logic programs, called Herbrand
models.

3.3. Herbrand models

Let L be a first order language whose set of constants is not empty. By the Herbrand universe U, for
L we mean the set of all ground terms of L. By the Herbrand base B; for L we mean the set of all
ground atoms of L. If L is the first order langnage associated with a program P (that is L is Lp) then

we denote Uy and By by Up and Bp, respectively. Now, by a Herbrand interpretation for L we mean
an interpretation for L such that

a) its domain is the Herbrand universe Uy,

b) each constant in L is assigned to itself,

¢) if fis an n-ary function in L then it is assigned to the mapping from (U.)" to U, defined by
assigning the ground term f (y,...,2,) to the sequence #,,...,#, of ground terms,

d) if 7 is an n-ary relation in L then it is assigned to a set of n-tuples of ground terms.

Thus each Herbrand interpretation for L is uniquely determined by a subset I of the Herbrand base
B, which fixes the assignment of predicates to relation symbols of L by assigning the set
{(t1,sta)ir (f1,,1,)EI } 1O the n-ary relation symbol r. In other words, we can identify Herbrand
interpretations for L with (possibly empty) subsets of the Herbrand base B; . This is what we shall do
in the sequel.

To avoid some uninteresting complications we assume from now on that whenever a program P has
variables then it also has some constants. This guarantees that its Herbrand base and the set ground
(P) are not empty. The case of programs containing variables but no constants is hardly of interest.

With this restriction another umninteresting complication arises when a program uses only proposi-
tional symbols. Then its Herbrand universe is empty. To handle this case one can simply drop the
condition that a domain of an interpretation is non-empty when L is constant-free and function-free.

By a Herbrand model for a set S of sentences we mean a Herbrand interpretation which is a model

for S. The following simple lemma shows why Herbrand models naturally arise when studying logic
programs. '

LEmMA 3.5. Let S be a set of universal formulas. If S has a model then it has a Herbrand model.

ProoF. For an interpretation [let Iy = {4:4 is a ground atom and/t4 } denotes the corresponding
Herbrand interpretation. A simple induction on the length of the formulas shows that I and I satisfy
the same quantifier-free ground formulas. From this the lemma follows. [

COROLLARY 3.6. Let P be a program and N a negative clause. If PU{N} is consisteni then it has a
Herbrand model. [

We conclude this section by introducing two often reoccurring qualifications. A Herbrand model of
a set of formulas § is the least model of S if it is included in every other Herbrand model of S and it
is minimal if no proper subset of it is a Herbrand model of S. The least model is minimal but the

19

converse is not always true (take for example § = {4V B} with A,B ground atoms).

3.4. The immediate consequence operator
To study Herbrand models of programs, following vaN EMDEN and KowaLski [VEK], we introduce
the immediate consequence operaior Tp mapping Herbrand interpretations to Herbrand interpretations.
We put for a program P and a Herbrand interpretation [
A e Tp(I) iff for some atoms Bj,....B,
A « By,...,B, is in ground (P)
and I ¥ ByA...AB,.
Alternatively, for a ground atom A4
A € Tp(I) iff for some substitution §
and a clause B«B,,...,B, of P
we have A = B and I ¥ (B A...AB.

In particular, if 4« is in P, then every ground instance A6 of 4 is in Tp(I) for every I. The fol-

lowing simple observation from VAN EMDEN and KowaLsk1 [VEK] relates Herbrands models of P
with the operator Tp.

PROPOSITION 3.7. For a program P and a Herbrand interpretation I, Iis a model of P iff Tp(I) C I

Proor. First note that I is a model of P iff itis a model of ground (P). Now the latier is true iff for

every clause AeB,,...,B, in ground (P) I BiN..AB, implies] ¢ 4, ie. 4 € I. But this 15 true iff
Ty Cc 1. O

When T'(I) C I holds, I is called a pre-fixpoint of T. Thus to study Herbrand models of a program
P it suffices to study the pre-fixpoints of its immediate consequence operator Tp. This brings us to a
study of operators and their pre-fixpoints in 2 general setting.

3.5. Operators and their fixpoints
Consider now an arbitrary, but fixed, complete lattice (for the definition see e.g. BIRKHOFF [Bi]) with
the order relation C, the least upper bound operator U and the greatest lower bound operator N. To

keep in mind the subsequent applications to logic programs and their interpretations we denote the
least element by @, the largest element by B, and the elements of the lattice by I,J,M. Given a set
o0 o0

A={I,:n= 0,1,..} of elements, we denote UA and N4 by | I, and) I, respectively.
n=0 n

=0
Sometimes we rather write |J I, and (1} 1.

n<a n<w
Consider an operator T on the lattice. T is called monotonic if for all IJ I CJ implies
T(I) C T(J). Tis called finitary if for every infinite sequence

Iycl C..,
o 0
T(UL) € UTW,)
a=0 n=0

holds. If T is both monotonic and finitary then it is called continuous. A more often used, equivalent
definition of continuity is: T is continuous iff for every infinite sequence

20

B

s N

I, C..,

L)y = UTdy)
0 n=0

0

T(

A

holds.

As already mentioned in the previous section any I such that T(I) C I is called a pre-fixpoint of T.

If T(I) = I then I is called a fixpoint of T and if T(/) 2 [then I is called a post-fixpoint of T.
We have the following classical theorem.

TueoreM 3.8. (Fixpoint Theorem) (KNASTER and Tarski [Ta]). 4 monotonic operator T has a least
fixpoint Ifp(T)) which is also its least pre-fixpoint. [
We now define powers of a monotonic operator T. We put
o) = 1,
T + 1) = T(Tn{d),
Tte(l) = U Tnd)

n<w

and abbreviate Ta(D) to T1ea.

Powers of a monotonic operator\generalize in a straightforward way to transfinite powers TTa(1)
where « is an arbitrary ordinal. We shall not need them in the sequel.
The following well known fact holds.

 Levma 39. If T is continuous, then Tw is its least pre-fixpoint and its least fixpoint. O

In the next section we apply these observations to the study of Herbrand modelé.

In Chapters 4 and 5 we shall also use largest fixpoints and downward powers of monotonic opera-
tors. We put for a monotonic operator T

Tyod) = 1,
Ty + 10 = T(TnD),
Td) = N Tind).

n <

Downward powers generalize in a straightforward way to transfinite downward powers T {e(I) where
o is an arbitrary ordinal. We abbreviate T}a(B) to Tla.
Note that

Tin(I) C TH(n +1)}I)
does not necessarily hold but by monotonicity for all n=0
Tt C TNn+1)
does hold. Analogous statement holds for the downward powers.

The dual theorem to the Fixpoint Theorem 3.8 is

TaroreM 3.10. A monotonic operator T has a greatest fixpoint gfp(T) which is also its grealest post-
fixpoint. U

A monotonic operator T is called downward continuous if for every infinite sequence
Ip 211 2.

21
oD [+0]
T(N1) = NTU)
n=0 7 =0
holds.

We have the following well known lemma.

LemMa 3.11. Let T be a monotonic operator. Then for every a we have Tla2D (T). Moreover, for
some o, Tya = gfp(T). IfTis downward continuous then this ordinal is <. Dﬂg@ S

We denote the smallest ordinal « for which Tla = gfp(T) by 17!l and call it the downward closure
ordinal of T or the closure ordinal of T).

3.6, Least Herbrand models

Let us first investigate the properties of the immediate consequence operator. Note that Herbrand
interpretations of L with the usual set theoretic operations form a complete lattice so when studying
this operator we can apply the results of the previous section.

LEMMA 3.12. Let P be a program. Then
i) Tp is finitary.
i) Tpis monotonic.

PROOF.
i) Consider an infinite sequence
IpcI C..

of Herbrand interpretations and suppose that

o0
A e Tpo(U L)
n=0
Then for some atoms B,...,Bx
=]

A<«By,...Bx isin ground (P), and moreover | I,eBiA - - AB,. But the latter implies that for
n=0
some I,, namely the one containing all By,..., Bk,

LBy A... ABy.So A eTp(l,)
i) Immediate by definition. U

As an immediate consequence of the above lemma we have:

TuroreM 3.13. (Characterization Theorem) (VAN EMDEN and KOWALSKI [VEKY]) Let P be a program.
Then P has a Herbrand model Mp which satisfies the following properties:

i) Mp is the least Herbrand model of P.

ii) Mp is the least pre-fixpoint of Tp.

iii) Mp is the least fixpoint of Tp.

iV) M P = TPTW-

PrOOF. It suffices to apply Theorem 3.8 and Lemma 3.9. Ul
By the success set of a program P we denote the set of all ground atoms 4 such that PU{«<A} has
an SLD-refutation.

CoROLLARY 3.14. The success set of a program P is contained in its least Herbrand model.

22

PrOOF. By Corollary 3.3 and the above theorem. [J

3.7. Completeness of the SLD - resolution
We can now return to the problem of completeness.

We first prove the converse of Corollary 3.3 that is the following result due to HiLL [H]. The proof is
due to ApT and VAN EMDEN [AVE]

THEOREM 3.15 (Completeness of SLD - resolution) Let P be a program and N a goal. Suppose PU{N}
is inconsistent. Then there exists an SLD refutation of PU{N}.

First we need the following lemma.

LeMMa 3.16 (Substitution lemma) Let P be a program, N a goal and § a substitution. Suppose that there
exists an SLD - refutation of PU{N@)}. Then there exists an SLD - refutation of PU{N}.

PrOOF. We proceed by induction on the length n of the SLD-refutation of PU{N 63. By the Variant
corollary 2.9 we can assume that @ does not act on any of the variables appearing in the input clauses
of this refutation. Let N = «41,...4¢.

If n=1 then k =1 and 4,0 unifies with a head of a unit input clause. So 4 unifies with the head
of the same clause. This settles the claim.

If n>1 then consider the first input clause By<B1,...,B,, of the refutation. For an mgu 7 we bave
A;6y = By where 4,6 is the selected atom of N6. Thus by the assumption on 6 4;6n = Bob, so 4; -
and By unify. For some mgu ¢ and a substitution v we have o = &y. R

By the assumption on P U (N6} and there exists an SLD - refutation of .

PU {(——(A 10,...,/4,‘ ..10,B 1 0,...,Bm9,A,‘ +19,...,Ak9)n}

of length n—1. By the induction hypothesis there exists an SLD - .tefutation of
PU{(—(A1,...,A,’-—],B},...,Bm,A;.q.],...,Ak)g}. o E . N

Consider now an SLD - derivation of PU{N} in which the first selected atom is 4; and the first
input clause is By<Bi,.,B, with the omgué Its first resolvent is
(4 1,_,_,Ai,1,B1,...,Bm,A;+1,...,Ak)£ which by the above settles the claim. (.

We now establish the converse of Corollary 3.14.
LEMMA 3.17. The least Herbrand model of a program P is contained in the success set of P.

PrOOF. We make use of the continuity of the immediate consequence operator Tp which provides an
internal structure to Mp.

Suppose 4 € Mp. By the Characterization Theorem 3.13 iv) for some k > 0, 4 € TpTk. We now
prove by induction on k that there exists an SLD - refutation of PU{«A}. For k = 1 the claim is
obvious.

If k > 1, then for some ground atoms By,....B, the clause 4 « By,..,B, is in ground (P) and
{B1,...Bs} C Tp1(k —1). By the induction hypothesis, for / = 1,...,n there exists an SLD - refutation
of PU{«B;}. But all B; are ground so there exists an SLD - refutation of PU {«By,..,B,}.

Consider now an SLD - derivation of PU{«4} with the first input clause being the one of which
A«B,,..,B, is a ground instance. Its first Tesolvent is a negative clause of which «By,...,B, is a
ground instance. The claim now follows by Lemma 3.16. [

We are now in position to prove the Completeness Theorem.

23

PROOF OF THEOREM 3.15. Suppose that N = <A j,...4,. Mp is not a model of PU{N} so N is not
true in Mp. Thus for some substitution 8 {A0,...,A,0} C Mp. By Lemma 3.17, for i = 1,...,n there
exists an SLD - refutation of PU{«A4;6}. But all A;f are ground so there exists an SLD

: - refutation
of PU{N§} and the claim now follows by Lemma 3.16. [

3.8. Correct answer substitutions

The completeness theorem can be generalized in various ways. We provide here two such generaliza-
ions.

First we introduce the following notion. Let P be a program and N = «A4,,...,4, a goal. We say
that @ is a correct answer substitution for PU{N } if 8 acts only on variables appearing in N and
P (A A...AA,)8 holds.

Note that if 8 is a correct answer substitution for PU{N} then for all y, PU{Nby} is inconsistent.
Consequently, PU{N} is inconsistent as it is equivalent to a weaker statement that for some
vy PU{Nv}1s inconsistent. _

The following theorem is 2 kind of converse of the Soundness Theorem 3.2.

THEOREM 3.18 (CLARK [C1]). Consider a program P and a goal N. For every correct answer substitution

6 for PU{N) there exisls a computed answer substitution for PU (N} which is more general than 8.

We present here the proof due to LLOYD [L]. First we need the following strengthening of the Sub-
stitution lemma.

LevmMa 3.19 (Lifting lemma). Ler P be a program, N a goal and § a substitution. Suppose that there
exists an SLD - refutation of P U{N} with the sequence of mgu’s Oy, . . . ,0n. Then there exisis an SLD

- refutation of PV (N} with the sequence of mgu's @, . .. L& such that 8.0/, is more general than
06,...0,.

PROOF. By a straightforward refinement of the proof of the Substitution lemma 3.16. O

LEmMa 3.20. Let P be a program and N a goal. Suppose that § is a correct answer substitution for
PU{N}. Then the empty substitution is a computed answer substitution for PU{NB}.

PROOF. Let X1,...X%, be the variables of N§. Enrich the language of P by adding new constants
a1y..,8, and let ¥ be the substitution {x1/a1,..,%n/ s }- PU{NGy} is inconsistent so by the Com-
pleteness Theorem 3.15 there exists an SLD - refutation of PU{N6by}. By the Variant corollary 2.9
we can assume that the variables x,...,x, do not appear in the input clauses used in this refutation.
But Ny is ground so the answer substitution computed by this refutation is the empty substitution.

By textually replacing in this refutation g; by x;, for i with the empty substitution as the computed
answer substitution. [

We are now ready to prove the desired theorem.

PROOF OF THEOREM 3.18. By the above lemma there exists an SLD - refutation of PU{N} with the

empty substitution as the computed answer substitution. Let 6g, . . . ,8, be its sequence of mgu’s. By

the Lifting lemma 3.19 there exists an SLD - refutation of PU{N} with the sequence of mgu’s
#,, . ..,#, such that #,...¢, is more general than 66,...9,,.
Let v| N denote restriction of the substitution v to the variables of N. Then 0.0,

eral than 86,...6, | N. But the former is the computed answer substitution of the SLD
PU{N) whereas the latter equals §|N. [

N is more gen-
- refutation of

24

3.9. Strong completeness of the SLD - resolution

Another way to generalize the Completeness Theorem is by taking selection rules into account. We
follow here the presentation of APT and VAN EMDEN [AVEL

TuroreM 3.21. (Strong completeness of SLD-resolution) (HirL [H}). Let P be a program and N a
goal. Suppose that P U{N} is inconsistent. Then every SLD-tree with N as root is successful.

This theorem states that if PU{N} is inconsistent then there exists an SLD - refutation of P U{N}
via every selection rule.

To prove it we first introduce the following notion. Given a program P we call a goal N k-refutable,

k = 1, if in every SLD-tree with N as root there exists the empty clause with a path length from the
root of at most k.

Another straightforward refinement of the proof of Substitution lemma yields the following,

LeMMA 3.22. Let P be a program, N a goal and 0 a substitution. Suppose that N 6 is k-refutable. Then N
is k-refutable. [

Next two lemmata generalize corresponding facts about refuted goals.

LeMMA 3.23. Let P be a program and let F,...,F, be sequences of atoms. Assume that Fy,...,F, have no

variables in common. If each «F; is k; - refutable for i = 1,..,n then «F;,...,F, is ky+..+k, - refut-
able, , ‘

PrOOF. By straightforward induction on ki + ...+ k. 0
LemMa 3.24. If A is in the least Herbrand model of P, then for some k <A isk - refutable.

PrOOF. By repeating the argument from the proof of Lemma 3.17 using the above lemma with each
F; being a single ground atom. [‘ o

We can now prove the strong completeness of SLD - resolution.

PROOF OF THEOREM 3.21. By repeating the argument from the proof of the Completeness Theorem
3.15 using Lemmas 3.24, 3.23 and 3.22. U

Summarizing the results obtained in Sections 3.4, 3.6, 3.7 and the present one we obtain the foliow-
ing characterizations of the success set.

THEOREM 3.25. (Success Theorem) Consider a program P and a ground atom A. Then the following are
equivalent:

(a) A isin the success set of P.

(b) AeTrlw.

(¢) Every SLD-tree with <4 as oot is successful.
(d) PrA

ProoF. First note that by Corollary 3.6 and the Characterization Theorem 3.13 i)
Pe A iff A e Mp.

The rest follows by the Characterization Theorem 3.13 iv), Corollary 3.14, Lemma 3.17 and Lemma
324. O :

25

The sirong completeness theorem shows that when searching for a refutation of a goal any SLD-

tree is a complete search space. Of course whether a refutation will be actually found in a successful
SLD-tree depends -on the tree search algorithm used.
Note that in fact we proved more.

THEOREM 3.26. Let P be a program and N a goal. If PU{N} is inconsistent then for some k N is k -
refutable. :

PROOF. By inspection of the proof of the Strong Completeness Theorem 3.21. O

This indicates that given a program P when searching for a refutation of a goal N it is enough to
explore any SLD-tree till a certain depth depending only on N. However, this depth as a function of

the goal N is in general not computable. This is an immediate consequence of the results proved in
the next chapter.

3.10. Procedural versus declarative interpretation

In the last two chapters we studied two ways of interpretating the logic programs. They are sometimes
referred to as a procedural and declarative interpretation.

Procedural interpretation explains how the programs compute, ie. what is the computational
mechanism which underlies the program execution. In the framework of programming languages
semantics it is sometimes referred to as the operational semantics.

On the other hand, declarative interpretation provides the meaning of a program, that is it attempts
10 answer the question what semantically follows from the program without analyzing the underlying
computational ‘mechanism. In such a way declarative interpretation provides a specification for any
underlying computational mechanism, i.c. it explains what should be computed by the program. In the
framework of programming language semantics it corresponds with the denotational semantics.

To summarize the above we can say that procedural interpretation is concerned with the method
whereas declarative interpretation is concerned with the meaning. Any form of a completeness
theorem can be viewed as a proof of a match between these two interpretations. In practice of course
{his match can be destroyed when, as explained at the end of the previous section, the computational
mechanism is supplemented by an incomplete (tree) search algorithm.

3.11. Bibliographic remarks

The name immediate consequence operator was introduced in Cirark [C1]. GaiiiEr [G] presents 2
different proof of the completeness of the SLD - resolution based on the use of Gentzen sysiems and
indicates how to extend it to obtain 2 proof of the strong completeness of the SLD-resolution. The

strongest completeness result is that of CLARK [C1] which combines the claims of Theorems 3.18 and
321. Lioyp [L] provides a rigorous proof of this theorem.

4. COMPUTABILITY

4.1. Computability versus definability

Once we defined how logic programs compute and analyzed the relation between the proof theoretic
and semantic aspects, let us reflect on the question what objects logic programs compute. We show

here that logic programs are computationally complete n the sense that they have the same computa-
tional power as Tecursive functions.

Assume that the language L has at least one constant, so that the Herbrand universe Uy is not
empty. Moreover, assume that L has infinitely many relation symbols in every arity. We say that a

26

program P computes a predicate R C U’i using a relation r i for all 14,....5,€UL
(t1,--,0n)ER I there exists an SLD-refutation of PU{« Pl 1yeestn)}

A semantic counterpart of this definition is obtained by saying that a program P defines a predicate
R C U, using a relation r if for all t4,....,5,€ Uy

(t1,rta)ER Il P Er{t],0nln)

Both definitions presuppose that Lp CL and Uy, = UL. We have the following result.

THEOREM 4.1. Let P be a program, R a predicate and r a relation. Then the following are equivalent:
(a) P computes R usingr.

(b) P defines R using 1.
(¢) Forall 11,.....,€UL

(t1,stn)ER T 7 (t1,ens2)EMp.

Proor. By the Success Theorem 3.25 and the Characterization Theorem 3.13. O

Thus the question which predicates are computed by logic programs reduces to the question which
predicates are defined over their least Herbrand models.

This question has various answers depending on the form of L. We study here the case when L has
finitely many but at least one constant and finitely many but at least one function symbol. Then the
Herbrand universe Uy is infinite. The assumption that the set of constants and the set of functions are
finite allows us o reverse the question and analyze for a given program P which predicates it com-
putes over 1ts Herbrand universe Uz,. The assumption that in each arity the set of relations is infinite
allows us to construct new clauses without syntactic constraints. '

4.2. Enumerability of UL

We call a binary predicate R on Uy an enumeration of Uy if R defines the successor function on Uj.
In other words, R is an enumeration of U, if we have Uy = {fk(u):n <w} where u is some fixed
ground term and fg is 2 one-one function defined by fr(x) = y iff (x,y)eR.

As a first step towards a characterization of predicates computable by logic programs we prove the
following result due to ANDREKA and NeMETI [AN]. Our presentation is based on BLAIR [B2].

TueoreM 4.2. (Enumeration Theorem) There exisis a program Successor which computes an enumera-
tion of Uy, using a binary relation succ.

ProOF. The construction of the program successor is rather tedious. First we define the enumeration
enum of U, which will be computed.

We start by defining inductively the notion of height of a ground term. We put
height(a) = 0 for each constant 4,
height(f (1,--»1n)) = max(height(t1),..., height(z,)) + 1.

Next, we define a well-ordering on all ground terms. To this purpose we first order all constants

and all function symbols in some way. We extend this ordering inductively to all ground terms of
height <n (n > 0) by putting

f(S‘;,...,Sk) < g(l;,‘..,tm) iff
(height(f(s;,...,sk)),f,si,,..,Sk) < (height(g(zh...,zm))?g,t;,...,tm).

27

Here < is a lexicographic ordering obtained from the ordering of natural numbers, ordering of
function symbols and the already defined ordering << on ground terms of height <n. This extension
is compatible with the fragment of < defined so far. By induction < is defined on all ground terms.

From the following three observations and the assumption about the number of constants and
function symbols it follows that < is a well-ordering of type w:

a) If heighi(s) < height(t) then s < .

by If height(f (s1 ,..,5¢)) = height(g (t15erIm)) and fi8 smaller than g in the chosen ordering then
f(S],...,Sk) < g(fi,...,lm).

c) If heigh[(f(Si,...,S,',Si+1,...,Sk)) = height(f(s;,...,s,-,t,-H,...,tk)) and 541 < i+ then
f(S),...,Si,Si +1 ,...,Sk) < f(S 1seersSiali+1 ,...,lk).

We now define enum to be the graph of the <-successor function. Note that

d) If ¢ is the < -maximal term of height n then its <-successor is the <-minimal term of height
n+l

) Otherwise, the < -Successor of 1 = f(t1,-,1,) is Obtained by first locating the rightmost term ¢
whose (already defined) <-successor I'; has the height smaller than the height of 7. Then
f (11,.,.,t,-,1,t',»,a,...,a,t’,,) is the <-successor of ¢, where a is the < -least constant and 1, is the
< -least term s such that height (f (F1yestim 150 1505, 0,5)) = height(?)

To compute the relation enum we systematically translate its definition into clauses. We proceed by
the following steps.

1) For counting purposes we identify a subset Ny of Uy with the set of natural numbers N. Let fo be

the smallest function in the chosen ordering. We put
N, = {n:neN}

where 0 = a and for each 7, n+1 = fol@,.an).
The following program Nat computes N using a relation nat:

nat{a) <,
nat (fo(@,....8%)) < nat (x).

In turn, the program Sy obtained by adding to Nat the clause
sp(x,fo(@,...,8,X)) « nat x)

computes the successor relation on N; using a relation 5z.

2) Using the programs Nat and S; the definition of the height function can now be transiated into a
program height with a binary relation / such that

heightt h(1,k) il t is a ground term of height 7, where k = 7.

3) Note that 7 is the <-minimal term of height n. Thus adding a clause min(x,x) « nat(x) we get a
program minimun such that

minimum € min(t,k) iff 7 is the < — minimal term of beight n, where k = n.

Let now b be the <-largest constant and f1 the largest function in the chosen ordering. Note that
the <-maximal term of height 0 is b, of height 1 f1(b,...,b) etc. Thus adding clauses

max(b,a) <,
max(fi(x,...x),y") < max(x,y),5.(,7")
we get a program maximum such that
maximum £ max(s,k) iff 7 is the < —maximal term of height n, where k = n.

4) Using the above auxiliary definitions the program successor can now be constructed by translating

28

the statements d) and e) into clauses. The details are straightforward though lengthy and we omit
them.

This concludes the proof. U

4.3. Recursive functions

To characterize the predicates computable by logic programs we need to recall the basic concepts of
the recursion theory as developed by S.C. Kleene. We follow here SHOENFIELD ISk

For brevity denote the sequence ay,...,a, by @. Let for i = 1,..,n the projection function P} be
defined by :

Pi(a) = a.

For a given predicate R C N", Ky stands for its characteristic function defined by
K@ =0 if a eR '
Kr@ =1 1iff a ¢ R

We define the class of (total) recursive functions over N inductively by putting
R1. The functions P7, +, X and K. are recursive.

R2. If g,hy,.... by are recursive functions and fis defined by

then fis recursive.
R3.Letgbea recursive function such that

va3b g(a,b) = 0.
Then the function f defined by

f@ = pb. g@b) =0
is tecursive. Here pb. R stands for the least b such that R holds.
A predicate over N is recursive if its characteristic function is recursive. A predicate R is recursively
enumerable if for some recursive predicate S
7z e R iff 3b@@b) € S.

A predicate R is R.E. complete if for every recursively enumerable predicate S there is some recur-
sive function f such that

aeSiff fa)e R
R.E. complete predicates are not recursive. It is a well known fact that there exists a recursively

enumerable predicate which is R.E. complete.

In the sequel we shall use various well known simple results from the theory of recursive functions.
We also rely on some standard techniques like coding. This allows us to investigate the complexity of
subsets of the Herbrand base B; as its elements can be coded by natural numbers.

We have the following simple result.

TuroREM 4.3. For every program P, Mp is recursively enumerable.

ProOF. By the Characterization Theorem 3.13iv) we have 4 € Mp iff for some relation p and
[yennsly € Up, A = P(Il,...,in) and 1k P(Z},...,fﬁ)ETPTk.
The result now follows by the standard techniques of the recursion theory because the predicate

((kA): 4 € TpTk)

29

is, after appropriate coding, recursive. [

4.4, Computability of recursive functions

The Herbrand universe Uy does not coincide with natural numbers but thanks to the Enumeration
Theorem 4.2 we can make such an identification. This allows us to transfer the notions of the recur-
sion theory from N to Up.

We now prove the following theorem.

TuroREM 4.4. (Computability Theorem) (ANDREKA and NEMETI [AN]) For every recursive function f
there is a program P which computes the graph of f using a relation py.

ProoF. We assumné that each program given here incorporates the program successor which uses
different relations than those used here. We proceed by induction on the construction of recursive
functions.

ad RI. We can define + in terms of the successor by simply rewriting two well known axioms of
Peano arithmetic as clauses:

P (%,0.%) <,
P + (xs,yaz) €« Succ(y’,y),succ (Z,,Z),P -+ (xvylazl)'
Other functions admit equally straightforward presentations.
od R2. Suppose by induction that there exist programs Po,...,Px computing the graphs of functions

gl using the relations pg.ph,s-»Ph,» correspondingly. We can assume that Pyg,...,P; have no

relations in common apart from those occurring in successor. Then the program PyU - - - UP, aug-
mented by the clause

Pf(x 1 geees X Xt l) e Ph; (X H 9-'-3-"(%}’])7-"7‘ph;t (x H 7-"7x€7yk>’Pg(y 1 ,--~:}’k,xe+})
computes the graph of the function f defined as in R2.
ad R3. Let f and g be recursive functions as given in R3. By in
which computes the graph of g using a relation pg.
The program Py is obtained by adding to P, the following clauses with 2 new relation r:

ducti i
ction there exists a program P,

PAE s Xies Xk 1) € Pg(X10mees Xk 1,007 (X 15 Xu +1)s

r(x1 ,...,Xk,O) -

F(X1ems Xk}) € succ(y',y),r(x;,...,xk,y’),pg(x LoeesXisY S Z)P <{0,2).

~ The intended meaning of 7(X1,...Xk+1) 180 W <Xk+1 = g(%1,»Xk,y)>0). Note that under this
interpretation 7(x1,0-,%,0) holds and 7{x1,..., Xk, +1)ff F (X1 oy XpoWAG (X 15000, %p,1)>0 and this is
exactly what the last two clauses express. Ul

COROLLARY 4.5. A predicate R on Uy is recursively enumerable iff some program

' P computes il using a
relation 1.

PROOF. =>. Suppose that for some recursive predicate S
7 € R iff 3b@@,b)es.

Let Ps be the program computing the characteristic function Ks of S using a relation ps. Then the
program Pg augmented by the clause

30

PR(X i ,...,Xk) « PS(-X 1 7'"7-xk’y36)

computes the predicate R using relation pg.
«. By Theorem 4.1 and Theorem 4.3. U

This allows us to prove the converse of the Computability Theorem.

COROLLARY 4.6. Suppose that a program P computes the graph of a total function using some relation.
Then this function is recursive.

PROOF. A total function is recursive iff its graph is recursively enumerable. [
Also, we can obtain the following characterization of the recursion theoretic complexity of Mp.
COROLLARY 4.7. For some program P, Mp is R.E. complete. A fortiori Mp is not recursive.

PROOF. Let R be a recursively enumerable, R.E. complete predicate on Up. By Corollary 4.5 and
Theorem 4.1 we have for all 2

aeR iff r{a)eMp,

where P is a program which compuies R using a relation 7. This shows that Mp is R.E. complete, as
well. O

We conclude this section by mentioning the following strengthening of the Com\putabi}ity‘ Theorem

4.4 which we shall use in the next section. Following BLAIR [B2] we call a program P determinate if
TPTOJ = Tp,l,w. : v ‘

THEOREM 4.8. (BLAIR [B2]). For every recursive function f there is a determinaie program P which com-
putes the graph of f using a relation p. a :

The proof is based on a detailed analysis of the programs constructed in the proof of the Computa;
bility Theorem 4.4 and we omit it.

4.5. Closure ordinals of Tp
In this section we study the downward closure ordinals of the operators Tp for programs P.

We noted in Section 3.6 that for a program P the operator Tp is continuous. However, Tp does not
need to be downward continuous. To see this consider the following program P:

Px) «px)
g(a) < p(x)-

Then for n=1 we have Tpln = {g@)u{p(fF@):k=n}, so Tplw = {g(a)}. 1t follows that
Tpi{w+1) = @, hence [ITplll = w+1 and Tp is not downward continuous. Note that by Lemma
3.1 gp(Tp) = Tpl{w+D) = 2.

This asymmetry is one of the most curious phenomena in the theory of logic programming.

To characterize the downward closure ordinals of the operators Tp we first introduce some
definitions. We shall consider well-founded (partial) orderings on natural numbers. For a well-
founded ordering R we write a<gb instead of (a,b)eR and denote by dom(R) its domain.

With each well-founded ordering R we can associate in a standard way an ordinal IRl by means of
a transfinite induction:

llall = 0if a is 2 <gz—minimal element of dom(R),

31
lall = sup(Ibll+1:b<ga) otherwise,
NRIl = sup(lialli:a € dom(R)).

An ordinal « is called recursive if @ = |IR|| for some well-founded ordering R which is a recursive
predicate. The least non-recursive ordinal is denoted by w§ (w; of Church and Kleene).
The following theorem characterizes the ordinals | Tp}!l.

TureoreM 4.9. (BLAIR [BI])
i) For every a<<w$k there exists a program P such that | Tplll = a.
ii) For every program P, ITpll<w$t.

ProOF. i) It is clear how to construct for any natural number n=0 a program P such that
ITpll = n. Suppose now that w<a<wf*. For some § we have a = w+p.

Assume {rom now on that L has exactly one, unary, function symbol f and exactly one constant a.
Then U, coincides with natural numbers.

Let R be a recursive well-founded ordering such that IRll = B. Given a relation ¢ we denote by [q]
the set of all ground atoms of the form g(z1,....,2,)-

Let P, be the program P from the beginning of this section augmented by the clause
q(y) < p(x).
Then Tp o = [gland Tp la = & for a>w.

By Theorem 4.8 there exists 2 determinate program P, which computes R using some relation r.
We can assume that Py and P, are disjoint. Then for any a=w

Tp,lanlr} = R,
where
R, = {r(s1) : (s,H)eR]}.
Let P be the program

g(x) < r(:x),q()
and finally let

P = P,UPUP;.
Then

TplwN(giVlrD = [g]JUR.
Thus

Tl w+ DN ([gIVUIrD = {g(s) : s € dom(R),lIslI=1}UR,
and more generally, for every v

Tl e+7)NIqIVEFD = {g(s) : s € dom(R),lIslIZY} UR,.
Thus for y<f

Tpl(w+y)FTp Y 0+y+ 1)
Also

Tplw+BN(gIVIr) = R,
50

32

Tpl(w+B) = Tp, Yot B) = Tple
and consequently

Tpi(a+1) = Trla,
ie WTplll = a.

The proof that for some program P in fact ||Tplll = w§ and the proof of ii) rely on advanced
results from the recursion theory and are beyond the scope of this paper. [

4.6. Bibliographic remarks

There is a considerable confusion concerning the actual formulation and origin of the results of the
first part of this chapter. The statement that Jogic programming has a full power of recursion theory is
usually attributed to TARNLUND [T] who showed that Turing machines can be simulated using logic
programs. However, in his proof additional function symbols are used and the paper of ANDREKA and
NemETI [AN] actually appeared earlier as a technical report.

A syntactically stronger form of the Computability Theorem 4.4 in case when L has exactly one,
unary function symbol and exactly one constant was proved in SEBELIX and STEPANEK [SS]. For such
L the Computability Theorem 4.4 is implicitly contained in SMULLYAN [Sm]. Related results were
proved in ITAl and Makowsky [IM], KowaLsk1 [K3], SHEPHERDSON [Shel] and SONENBERG and
Topor [ST]. The last paper discusses all these tesults in detail. BORGER [Bol] discusses connections
between logic programming and computational complexity of various classes of formulas. FITTING
[F3] studies in detail computability by means of logic programs on domains other than the Herbrand
base, in particular integers, words and trees. . '

That Tp does not need to be downward continuous was originally observed by Andreka and
Nemeti, and Clark. The class of determinate programs is extensively studied in AQUILANO, BARBUTI,
BocCHETT! and MARTELLI [ABBM], where they are called functional programs.

5 NEGATIVE INFORMATION

5.1. Non-monotonic reasoning

SLD resolution is an example of a sound method of reasoning because only true facts can be deduced
using it. More precisely, we call here a Teasoning method ”+” sound if for all variable-free formulas ¢
Pr¢ implies Prg, where Pr¢ denotes that ¢ can be proved from a program P. And we call "+” weakly
sound if Pr¢ implies consistency of PU{é}. Now, putting (see Section 2.5) Prsip Ixq... 3%,
(A1 A...A4y) iff there exists an SLD-refutation of P U {«—A4,...,4r}, we see that "rs;p” i sound by
virtue of Soundness Theorem 3.2. '

We call a reasoning method "+" effective if for any program P the set {¢:Pr¢} is recursively enu-
merable. Now, “ks;p” is easily seen to be effective by using the standard techniques of recursion
theory. Effectiveness is 2 desirable property as it amounts to saying that it is decidable whether an
object is a proof of 2 formula. Ineffective reasoning methods cannot be implemented.

SI.D-resolution is also an example of a monotonic method of reasoning. We call here a reasoning
method '+ monotonic if for any two programs P and P’

Pr¢ implies PUP'+¢.
Otherwise, "+ is called non-monotonic. Clearly, if there exists an SLD-refutation of P U{N} then also

there exists an SLD-refutation of PUP'U{N}.

However, SLP-resoiution is a very restricted form of reasoning, because only positive facts can be
deduced using it. This restriction cannot be overcome if soundness or monotonicity is to be main-
tained. More precisely, the following simple yet crucial observation holds.

33

LemMa 5.1, Let " | ~" be a reasoning method such that P | ~—A for some negative ground literal —A.
Then " | ~" is not sound. Moreover, if " | ~" is weakly sound then it is not monotonic.

PROGE. Note that the Herbrand base is a model of P but not a model of —4. Thus ”|{~" is not

sound. Suppose it is monotonic. Then we get PU{4}|~—A. But PU{4}U {—A} is inconsistent, sO
7| ~" is not weakly sound. [J

However, in some applications it is natural to require that also negative information can be
deduced.

FxampLE 5.2. Consider

= {element(ﬁre),element(air),elemenz(water),element(earth),stuﬂ(mud)}.

Then we naturally expect that —element (mud),—stuff’(fire) and similarly with other elements. [

By Lemma 5.1 any such extension of SLD-resolution leads to a non-monotonic reasoning,

5.2. Closed world assumption
One natural possibility 1s t0 consider here the following rule (or rather meta-rule):
A cannot be proved from P
A
where A is a ground atom.
This rule is usually called the closed world assumption (CWA). It was first considered in REITER Rl
The notion of provability referred to in the hypothesis is that in first order logic. For our purposes it

is sufficient to know that it is equivalent here to provability by means of the SLD-resolution.
Given now a program P consider the set

CWA(P) = {—=A A is a ground atom for which there
does not exist an SLD —refutation of PU{« A}}.

We have
Levma 53. -4 € CWA(P) iff A € Bp\ Mp.

PrOOF. We have -4 € CWA(P) T 4 is not in the success set of P. The claim now follows by Corol-
lary 3.14 and Lemma 3.17. O

As an immediate consequence we get
TueoreM 5.4. (REITER [R]). For any program P, PUCWA(P) is consistent. O

Thus closed world assumption viewed as a reasoning method is weakly sound. Unfortunately, it is
not an effective reasoning method. Namely, we have the following theorem.

THEOREM 5.5. Assume that L is as in Chapter 4. Then for some program P the set CWA(P) is not
recursively enumerable.

ProoE. By Corollary 4.7 there exists a program P such that Mp is a recursively enumerable but not
recursive subset of Uy. Then by a well known theorem Bp \ Mp, the complement of Mp, is not recur-
sively enumerable.

34

This concludes the proof in view of Lemma 5.3. U

5.3. Negation as failure rule

A way out of this dilemma is to adopt some more restrictive forms of unprovability. A natural possi-
bility is to consider —4 proved when an attempt to prove 4 using SLD-resolution fails finitely. This
leads to the following definitions.

An SLD-tree is finitely failed if it is finite and contains no empty clause. Thus all branches of a
finitely failed SLD-tree are failed SLD-derivations. Given a program P its finite failure set is the set of
all ground atoms A such that there exists 2 finitely failed SLD-tree with <A as root. '

We now replace CWA by the following rule:

A is in the finite failure set of P
—A

‘ntroduced in CLARK [C] and called the negation as failure rule. (A more appropriate name would be:
negation as a finite failure rule.)

First of all it is useful to note that the negation as failure rule viewed as a reasoning method is
weakly sound. Indeed, if 4 is in the finite failure set of P then by the strong completeness of SLD-
resolution (Theorem 3.21) -4 1s in CWA (P), so it suffices to apply Theorem 5.4.

Thus by Lemma 5.1 negation as failure is a non-monotonic form of reasoning. It is also an effective
form of reasoning because it is decidable whether a finite tree is 2 finitely failed SLD-tree.

Finally, observe that using the negation as failure rule we can trivially deduce —element (mud) and
_stuff (fire) from the program P given in Example 5.2. ‘ '

5.4. Characterizations of finite failure

We now provide two characterizations of finite failure, due to AT and VAN EMDEN [AVE] and
Lassez and MAHER [LM]. We follow here the presentation of LLoYD [L]. ’

First we introduce the concept of a fair SLD-derivation due to LassEz and MauER {LM]. An SLD-
derivation is called fair if it is either finite or every atom appearing in it is eventually selected. (An
atom at the moment of selection will be actually an instantiation of the original version.) For exam-
ple, the second derivation given in Section 2.6 is not fair as the atom configuration (y,h;) is never
selected in it. An SLD-tree is fair if each of its branches is a fair SLD-derivation. A selection rule is
fair if all SLD-derivations via R are fair. Thus an SLD-tree is fair if it is via a fair selection rule.

THEOREM 5.6. Consider a program P and a ground atom A. Then the following are equivalent:
(a) A is in the finite failure set of P.

(b) A ¢ Tplw.
(c) Every fair SLD-tree with <4 as 100t is finitely failed.

To prove that (2) implies (b) we need two simple lemmata which are counterparts of Lemmas 3.22
and 3.23.

Livma 5.7. Consider a program P, a negative clause N and a substitution 8. If PU{N} has a finitely
failed SLD-iree of depth <k then so has PU{NB}.

PrOOF. By a straightforward induction on . O

LemMa 5.8. Consider a program P and sequences of atoms Fy,...F,. Assume that Fy,....,F, have no

variables in common. If PU{«F,,..,F,} has a finitely failed SLD-tree of depth <k then so has
PU{«F;) for someie{l,..,n}.

35

2{00}1 By a simple induction on k using an analogous argument as that in the proof of Lemma 3.23.

PrOOF OF THEOREM 5.6
(a) = (b).

We prove a stronger claim namely:

LEMMA 5.9. Suppose PU (A} has a finitely failed SLD-tree of depth <k. Then A & Tp k.

ProoF. We proceed by induction on k.

The claim clearly holds when k =1. Assume it holds for k —1 and suppose by contradiction that
A € Tplk. Then for some clause B<Bj,...,B, in P A=B0 and (B16.,....B,0y CTplk —1) for some
substitution §. Thus for some mgu Y Ay=RBy and § = yo for some o.

Hence «(B1,--»Ba)Y 18 the root of a finitely failed SLD-tree of depth <k —1. By Lemma 5.7 s0 is
«(B,...,By)f. Now using Lemma 5.8 with each F; being a single ground atom we get that for some
i, 1<i<n, the goal «B;# is also the root of a finitely failed SLD-tree of depth <k —1. By the induc-
tion hypothesis B;6 & Tpl(k —1) which gives the contradiction. [l

To prove that (b) implies (c) we need the following lemma.

LEmMA 5.10. Consider a program P and a goal «A1,...,;Am. Suppose there is an infinite fair SLD-

derivation Ng,N1,... with No = A1y, Ay and the sequence of substitutions 04,61,... Then for every
k = O there exists n=0 such that

m
) {A,Hoﬁ,,] CTplk
i=1
PrOOF. We proceed by induction on k. The claim is clearly true if k =0. Suppose it holds for k—1.

Fix i € {},...m}. By fairness for some p=0, the atom 4;6;...6, -1 is selected in the goal N,. By the
induction hypothesis for some s=0 7

18-y 1l Tl =D
)=

holds where N; +1 is «By,...,B,. But
g
iAig()'--gp +s}; TP(U [Bjﬁp-"gp +5D
j=1

SO
[Ai8o-8, +:1C Tr

by the monotonicity of Tp.

Thus for each i€ {I,.,m} there exists n;=0 such that [4:6..0,]CTplk. Put now
n = max(fyetm) B

PROOF OF THEOREM 3.6 CONTINUED

(b)y=(c).

Suppose that 4 & Tplw. Consider a fair SLD-tree with «A as root. By Lemma 5.10 all of its
branches are finite. But this tree does not contain the empty clause. Otherwise by the Success
Theorem 3.25 we would have 4 € TptwC Tplw. Thusitis a finitely failed SLD-tree.

(c)=(a).

Obvious as for every goal N there is a fair SLD-tree with N as root. U

36

Equivalence between (a) and (b) is due to APT and VAN EMDEN [AVE] and between (a) and (c) due
to Lassez and MAHER [LM]. The first equivalence can be seen as a theorem dual to the equivalence
between (a) and (b) in the Success Theorem 3.25. The second equivalence can be seen as a counter-

part of the equivalence between (a) and (c) in the Success Theorem 3.25 where duality is achieved by
restricting the attention to fair SLD-trees.

5.5. Completion of a program

Another way of inferring negative information {rom a logic program is that of using the concept of a
completion of a program due to CLARK [C]. ~

A program can be seen as a collection of statements of the form ”if ... then ---”. This does not
allow us to conclude negative facts because only positive conclusions are admitted. But treating the
clauses as statements of the form ”... iff ---” we obtain a stronger interpretation which allows us to
draw negative conclusions. In doing so we should exercise some care. For example we wish to inter-
pret the program {4<«B, A«<C} as A«<>BVC and not as (A B)N4 <C).

First, assume that =" is a new binary relation symbol not appearing in P. We write s34t as an

abbreviation for —(s =1). We perform successively the following steps, where x1,...,X,,... are new vari-
ables. ‘

Step 1. Remove terms.
Transform each clause p(1y,...,1,)<Bj,...,Bn of P into

P (x;,...,x,,)<—(x1 =1PALAX, =AB, A...\B,,.

Step 2. Introduce existential quantifiers. :
Transform each formula p(x;,...,x,)«F obtained in the previous step into

P (X 1 ,...,x,,)<——3y 1 Bde,

where y1,...,ys are the variables of the original clause.
Step 3. Group similar formulas.
Let

PxiXn)e=F,

PX 1y Xn)eFy

be all formulas obtained in the previous step with a relation p on the left hand side. Replace them by
one formula

p(x 1 ,...,xn)G—F] V...VFk.

If F,V...VF, is empty, replace it by true.
Step 4. Handle "undefined” relation symbols.
For each n-ary relation symbol ¢ not appearing in 2 head of a clause in P add a formula

q(x;,...,x,,)e—~ false,

Step 5. Introduce universal quantifiers.
Replace each formula p (x1,..., %,)< F by

VX 1. 9%, (p (x 1,00 X) F).

Step 6. Introduce equivalence.
In each formula replace "«" by "<”.

We call the intermediate form of P obtained after step 5 the IF-definition associated with P and

37

denote it by IF(P). We call the final form the IFF-definition associated with P and denote it by

IFF(P). By ONLY-IF(P) we denote the set of formulas obtained from IF(P) by replacing every-
where "« by "—"".

ExampPLE 5.11.
i) Reconsider the program P from Example 5.2. Then

IFF(P) = {Vx(element(x) &> x = fire vx = air V x = waler x = earth),
Vx (stuff (x) «» x = mud)}.
Note that both IFF(P)—stuff (fire) and IFF(P)e—element (mud) provided we interpret =" as
identity.
ii) Consider the program

P = {link(a,b) <, link (b,c) «,

connected (u,v) < link (u,v),

connected (u,v) « link(u,z), connected(z,v)}.
Then
IFF(P) = {VxVy(link () & (x=a Ay=Db)

V(x=b Ay=c),
VxVy(connected (x,p) & JuIv((x= WA =v)Nink (u,v))
vIuIvaz ((x =u)A(y =v)Alink (u,2)Aconnected (z,v))) }.

It is easy 1o see that both IFF(P)kconnected(a,c) and IFF (P)e—connected(a,a) provided we interpret
#=" as identity. O

We thus see that negative information can be inferred using the JFF-definition provided we inter-
pret the relation symbol ”=" properly. The problem of the proper interpretation of =" is more
subtle than it appears. As a first siep we extend the interpretation of a first order language so that
#=" is interpreted as identity.

Let] be an interpretation of the first order language associated with P. We put for any two terms
¢, and 7, and a state ¢ OVer I

Ikt =1y iff o(t1) and o(t,) are the same elements of the domain of I.

However, this does not yet solve the problem because, even though mud and earth or a and b are
different constants, they. s}ﬂl can become equal under some interpretation. To exclude such situations
we add to the JFF-definitions the following free equality axioms which enforce proper interpretation of

P e 87

H f(xl,...,x,,):f(y;,...,y,,) = X1 TP 1IALAZ, = Yn

for each n-ary function f,
(2) f(xlv"'sxn)#g(}H’"'sym)

for each n-ary function f and m-ary function g such that f=g,
(3) x=#t

for each variable x and term ¢ such that x =1 and x occurs in 1.

Here, similarly as in the proof of the Unification Theorem 2.3 we identify constants with O-ary
functions. Thus (1) includes ¢ = ¢ for every constant ¢ as a special case and (2) includes ¢=4d for all
pairs of distinct constants as a special case.

The resulting interpretation of = turns out 1o be sufficient for our purposes. Observe the striking
similarity between the free equality axioms and steps 1, 2 and 5 of the unification algorithm used in

38

the proof of the Unification Theorem 2.3. We shall exploit it in Section 5.7.

Given now a program P we denote by comp (P) the set of formulas IFF(P) augmented by the free
equality axioms. comp (P) is called the completion of P.

5.6. Models of completions

In order to assess the proof theoretic power of completions we study their models first. However, in
contrast to the case of models of logic programs it is not sufficient to restrict here attention to Her-
brand models. This is the content of a proposition we prove at the end of this section.

Therefore we shall consider here arbitrary models but we shall study them by means of a natural
generalization of the immediate consequence operator Tp. First, following JAFFAR, LASSEZ and LLOYD
[JLL], we introduce the concept of a pre-interpretation for a first order language L. Its definition is
identical to that of an interpretation given in Section 3.1 with the exception that the clause explaining
the meaning of relations is dropped. We then say that an interpretation I is based on J if I is obtained
from J by assigning to each n-ary relation r of L an n-ary predicate r; on the domain of J, that is by
fixing the meaning of the relations of L. Thus each interpretation based on J can be uniquely
identified with a set of generalized atoms, i.e. objects of the form r(aj,...,a,) where r is an n-ary rela-
tion of L and a,...,a, are elements of the domain of J. That is what we shall do in the sequel.

We now generalize the operator 7p so that it acts on interpretations based on a given pre-
interpretation. To this purpose we first introduce the following useful notation.

Fix an interpretation I. Let 4 = p(ty,....1,) be an atom and let ¢ be a state over 1. Then we denote
by Ao the generalized atom plo(ty),...,o(t,)). ‘

Let now J be a pre-interpretation and let J be an interpretation based
P and a generalized atom D

‘on J. We put for a program
D e Th(I)iff for some state o over]

and a clause B<B,,....B, of P

we have D = Bo and [£, BiA...AB,.

Thus 7% maps interpretations based on J to interpretations based on J. The operaior T% enjoys
P p P Tp! P P €Njoy

several properties similar to those of Tp. We list them in the following proposition omitting the proofs
analogous to those of Proposition 3.7 and Lemma 3.12.

PROPOSITION 5.12. Let P be a program and J a pre-interpretation. Then

i) T} is finitary.

ii) T% is monotonic.

ity For an interpretation I based on J, I is a model of P iff Th(H)cl. O

We now wish to prove a similar characterization for models of completions. To this purpose we
first note the following.

LemMa 5.13. For a program P, P and IF(P) are semantically equivalent.

ProoF. In steps 1,2,3,5 each formula is replaced by a semantically equivalent one. In turn, in step 4
valid formulas are introduced. [J

COROLLARY 5.14. For a program P and a pre-interpretation J, an interpretation I based on J is a model
of IF(P) iff TH(HCI O '

We also have the following.

39

THEOREM 5.15. For a program P and a pre-interpretation J, an interpretation I based on J is a model of
ONLY-IF(P) iff To(I)21.

To prove it we first need the following lemma.

LEMMA 5.16. Let I be an interpretation based on a pre-interpretation J and P a program. Let
Vx-i...Vx,,(p(xl,...,xn)-»F) be a formula in ONLY-IF(P). Then for every state ¢ over I

(%15 X)0 € TH(I) iff TG F.

Proor. If p does not appear in a head of a clause in P then both sides of the claimed equivalence are
necessarily false. Otherwise

pxinxne € Th (D)

i for some state 7 over J and some clause p(t1,estn) =B B of P
It, By A..AB,, and o(x;) = 7(1;) fori = 1,..,n

iff Tk, 3y ... 3ya((x =1)AAC = LIAB AL AB)
for some clause p(f1,....1n)<B1,.s B of P with y1,....¥d
being all its variables

iff Ie, F. O

PrOOF OF THEOREM 5.15. We have
I is a model of ONLY-IF(P)

iff for every formula
V1 VX (P (X 150ees %)= F) in ONLY-IF(P)
and every state ¢ over I
p(X1smesXn)0 €L implies I¥, F
iff (by Lemma 5.16)
for every relation p of P and state o over J

P Xy, Xn)o€l impliesp(xi,...,x,,)oeﬂ(I)
i THDDI. O

Combining Corollary 5.14 and Theorem 5.15 we get the following characterization of the models of
IFF(P).

THEOREM 5.17. Let P be a program and J a pre-interpretation. Then an interpretation I based on J is a
model of IFF(P) if TRy = 1

PROOE. IFF(P) is semantically equivalent to the set IF(P) U ONLY-IF(P) of formulas. U

Restricting attention to Herbrand interpretations we can now draw some consequences about the
completion of 7.

TiEoREM 5.18 (APT and VAN EMDEN [AVE]). Let P be a program.
i) A Herbrand interpretation I is a model of comp(P) iff Tp(I) = 1.
ii) comp(P) has a Herbrand model.

iil) For any ground atom A, comp (P) U {4} has a Herbrand model iff A € g2fp (Tp).

PROOF.

i) Every Herbrand interpretation is a model of the free equality axioms.
ii) By1i)and the Characterization Theorem 3.13.

iii) By i), Lemma 3.12 ii) and Theorem 3.10. I

40

Moreover, we have the following observation which brings us to the end of this section.

PROPOSITION 5.19. There is a program P and a ground atom 4 such that comp(P) U {A} has a model
but it has no Herbrand model.

ProoF. Take the program P considered at the beginning of Section 4.5. As gp(Tp) = D, by
Theorem 5.18 iii) comp(P) U {g(a)} has no Herbrand model.

However, comp (P) U {g(a)} is consistent. Indeed, take as a domain of the interpretation a disjoint
union Z U N of the set of integers and the set of natural numbers. Interpret the constant a as zero in
the set N and f as a successor function, both on the set Z and the set N. Finally, interpret p as true

for all elements of Z and g true only for the zero of N. The resulting interpretation is a model of
comp(P) U {g(a)}. O

In the next section we provide a characterization of a finite failure which provides a more direct
proof of the above proposition.

5.7. Soundness of the negation as failure rule

Recall that completion of program was introduced in order to infer negative information from a pro-
gram. We now relate it 10 the previously studied way of deducing negative information - that by
means of the negation as failure rule. To this purpose we first investigate models of the free equality
axioms. Assume a program P and denote these axioms by Eq. As Eq does not refer to relations, it
makes sense to say that a pre-interpretation J is a model of Eq. Similarly, it is meaningful to talk

about states over a pre-interpretation. For each ground term ¢ denote its value in the domain of J by
1;. We write Jr,5 =t when o(s) equals o(7). :

LemMa 5.20. Let J be a pre-interpretation which is a model of Eq. Then the 'doﬁzain of J contains an iso-
morphic copy of Up.

PrOOE. It suffices to show that for all ground terms s,t 5; = ; implies s=1. We proceed by induc-
tion on the structure of ground terms. '

If s; = 1, then by axioms 1 and 2 s and 1 are either the same constants or are respectively of the

form f(sy,...,5) and f(t1,...,1,). The claim now follows by axiom 1 and the induction
hypothesis. [l

In the sequel we shall identify this isomorphic copy with Uj. Given a pre-interpretation J let By
stand for the set of all its generalized atoms. If J is a model of Eq then by the above lemma B; con-
tains an isomorphic copy of the Herbrand base B,. We identify this copy with B,.

The following lemma clarifies the relation between the unification and free equality axioms.

Lemma 5.21. (CLark [C))

() If the set {s; = 11,....5, = I} has a unifier then for some of its mgu {X1 /Uy, Xp /U)
Ege sy = DALNASy = By = X1 = Up A AX, = g

(b) If the set {51 = 11,..,8n = ly} has no unifier then
Ege sy = LiALAS, = 1y = false.

ProOF. Modify the unification algorithm given in the proof of the Unification Theorem 2.3 as fol-
lows. First display each set {s7 = 11,...,8 = tyy of equations as a formula s; = 11 ALAS, = 1.

Then interpret the replacement and deletion steps as operations on these formulas. Interpret the halt
with failure action as a replacement of the formula by false.

Observe that if ¢ is obtained from ¢ by applying one of the steps of the algorithm then Eq k1.

41
Indeed, for any x and 1, poAX = [AQ — (G AP)[x/1] 18 a valid formula. Other cases are immedi-
ate.
The lemma now follows from the correctness of the unification algorithm. U

Given a pre-mterpretation J and a state ¢ over J, call a substitution 8 invariant over a state o if for all

x, o(x) = o(x8).

COROLLARY 5.22. Let J be a pre-interpretation which is a model of Eq. If for some state o over J
JEgS1 = L1IACAS, = 1,
then for some mgy 6 of {(51=11,s5 =1,} invariant over ¢
Je(sy = LiALNAS, = . U
Call now an interpretation I based on J good if for all sequences of atoms F, Ik, F for some state o

implies 1 +F6 for some substitution 6.

Obviously not all interpretations are good. But those of interest to us are. First we need the follow-
ing two lemmata.

LEMMA 5.23. Let J be a pre-interpretation which is a model of Eq. Let I be based on J. Suppose that I is
good. Then Th(I) is good, as well.

ProoF. Consider a sequence 4 i,...,Ax of atoms. The operator T: 4, does not depend on the choice of
the names of variables in P. Thus we can assume that each of the variables of P appears in at most
one clause of P and none of them appears m Ay, Ag-

Suppose now that T%(I)FOA 1 A... N4y for some state o. By the definition of T 4, foreachi = 1,..k
(here exists a clause By«<Bi,...,Bl, in P and a state 7; such that] k, Bi A..AB, and 4;0 = Bi7;. o

Define now a state 7 by '

;(x) if x appears in B;<Bi,..,B.,
7(x) {o(x) otherwise

Then
I::lel,/.\..,k Bj (1)
j =1 ..., m
and foreach i = 1,...k
A,‘T = B,"T. (2)
By Corollary 5.22 and (2) there exists a substitution § invariant over 7 such that for each i = 1,...,k
By the definition of invariance and (1)
Is, A B
i=1,....k
j='-1 m;

j=§ ,,,,, m;

We can assume that v is such that each B}'-By ground.
Thus by the definition of 7% for each i = 1,...,k Biye Tp(I),ie. by (3) Th(DEA A A Y.

42

This concludes the proof. [J

LEMMA 5.24. Let J be a pre-interpretation which is a model of Eq. Let I be based on J.
Suppose that I is good. Then

B,NTH(I) = T,(B,NJ).

PROOF. Suppose 4 €B,NTy(I). Then for some state ¢ over] A=Bo and Ik, 4;A..AA4, where
B«Ay,...,A, is a clause from P. Thus ¢ when restricted to the variables of B is a ground substitu-

tion, say 1. We thus have Jk,(4;A... A4,). But I is good so for some substitution § Te(4 1 A... A4,).
Thus B, NTHA A NA 2. Moreover A=Bnd, so A€ T,(B,NI).

u now A€T,(B,NI) then a fortiori 4€B, Nty 7(B, ﬂI) so by the monotonicity of TJ we have
A€B,NTH(I). '

This lemma states that all ground atoms inferred from / by means of T, can already be inferred by
means of T,,, provided I is good.

This brmgs us to the following important consequences of Lemmata 523 and 5.24 which will be
also used in Chapter 6.

COROLLARY 5.25. Let J be a pre-interpretation which is a model of Eq.
(i) For every n=0 T n is good.

(i) For every n=0B,NTyin = T,|n.

(iii) B,NTYlw = Tiw

PROOF.

i) We have T{»J,O = B;. But Bp C By, so for all sequences of atoms F and all substitutions § B;:Fé.
Thus 7% |0 is good and by induction usmg Lemma 5.23 for every n=0 T n is good.

ii) We proceed by induction on . For n = 0 it is a consequence of the fact that B, CB;.
Suppose this claim holds for some n=0. Then

B,NTyYn+1) = B,NTH(T;|n)
(by i) and Lemma 5.24) = T,(B,NT,|n)
(by induction hypothesis) = T,(T,in)
= T,|(n+1).
This implies the claim for n +1.
i) Immediate, by ii). [
Finally, we prove the following lemma which will be also needed in Chapter 6.
LemMA 5.26. Let P be a program and I a model of comp(P). Then Bp NI CTplew.

Proor. I is based on some pre-interpretation J. I is a model of IFF(P), so by Theorem 5.17
Th(I) = I. Thus by Lemma 3.11

IC T;Hw.
J is a model of Eq, so by Corollary 5.25 iii) and the above inclusion the claim follows. [J

We can now relate the completion of a program and negation as failure rule.

TueoreM 5.27. (Soundness of the negation as failure rule) (CLARK [C]) Let P be a program. If 4 is in

43
the finite failure set of P then comp (P)—A.

ProoF. Let I be a model of comp(P) and suppose that 4 is in the finite failure set of P. Then by
Theorem 5.6 A & T,lw, 50 by Lemma 5.26 above A€B,NlI, ie Ir—4. U

5.8. Completeness of the negation as failure rule
We now prove the converse of the above theorem. We follow here essentially the presentation of

Lroyp [L] based on a proof due to WOLFRAM, MAHER and Lassez [WML]. We first show how to
construct models of the free equality axioms.

Let @be a set of substitutions. We call @ downward directed if
6,meC => there exists y€C such that y<6 and y<u.

Here y<0 means that 6 is more general than vy.
Suppose now that Cis a set of substitutions. Put for two terms s,!

s~ iff for some €€ s6=16.

LeEMMA 5.28. Suppose that € is a downward directed set of substitutions. Then ~c¢ is an equivalence rela-

tion which is a congruence w.r.t. all function symbols. Moreover, the pre-interpretation induced by ~¢ is
a model of Eq.

ProoOE. The relation ~¢ is always reflexive and symmetric. By downward directedness of C it is also
transitive.
Let [s] stand for the equivalence class of term s w.r.l. ~¢. Let f be an n-ary function symbol. If

=10l J[s.] = [1,] for some terms $1,715s8nlns then by downward directedness of C for
some 9€C

S]GEI]&, s ,s,,OEt,ﬁ.
Hence f{(s1,-,5: 0= FAGTEN A VG1esa)] = If @1 tn))

Thus the eqt_livalence relation induced by ~¢is indeed a congruence. This means that ~¢ induces a
pre-interpretation of L. That this interpretation is indeed a model of Eq is easy to see as non-unifiable
terms have necessarily different equivalence classes w.r.t. ~e. O

The essence of the proof of the completeness theorem lies in the following lemma.

LevMa 5.29. Consider a program P and a goal N. Suppose there is a non-failed fair SLD-derivation
with N as the initial goal. Then comp (P)U {=N} is consistent.

PROOE. Let @ = No,Ny,.. with Nog = N with the sequence of substitutions §o,6;,... be the SLD-
derivation in question and let N = A1, A;. Then mN=3(41A...A4;). We use this derivation to
construct 2 model of comp(P)U {34, A NAs)}-

Let C = {fp...6; : i=0}. Note that Cis downward directed. By the last lemma the pre-interpretation
J induced by ~e is 2 model of Eq. Let [s] denote the equivalence class under ~¢ of a term 5.

We now construct an interpretation / based on J by putting

I= {p({tl},...,{t,,}):p(t;,...,1,,) appears in a goal from @)
We first show that 1 C T}f(I), ie that] is a model of ONLY —IF(P).

Suppose that p(t1,..,1,) appears 1o a goal N; of ®. Since ® is non-failed and fair, there exists j=i
such that p(si,...,s,;)?_p(ti,...,1,,)49,-...63-1 is the selected atom in N;.

In Section 2.7 we assumed that each mgu 0, is idempotent and relevant. Thus by Lemma 2.7 for any
¢m such that m >, 6; does not act on the variables from N, or N,,8,,. Fix k, 1<k <n. Thus, since %

44

appears in N;,

36, =1 M
for i<, and, since #;0;...6; appears in N;0;
%0,..0,6, = 1,6,...6, ©))
for 0<<j.
Thus
140;...0,6,...0, _,0;
(by (2) applied j times) = 4,6;...6,6;
(by the idempotence of §,)= 1,6;...6; i
(by (1) applied i times)= #.6,...0;. 3

Hence for all &, 1<k <

[l
| (by @)= [:..6,]
(by the definition of 5;) = [5:6;].

But by the definition of I we have
p(s16;),...1s.0;De TH(D), 50 p({t1],-- 1) ETH), as desired.

Now by Theorem 3.10 and Theorem 5.17 I can be extended to a model of comp(P). By the con-
struction I is a model of 3(4 1 A NA4;), and a fortiori so 1s its extension. [

We are now in position to prove the desired theorem. It is formulated in a slightly more general
form which will be needed in Chapter 6. :

THEOREM 5.30. (Completeness of the negation as failure rule) (JAFFAR, LASSEZ and Lioyp [JLL]). Let
P be a program. If for a goal N comp(P)N, then PU{N} has a finitely failed SLD-tree.

ProoF. Assume there is a non-failed fair SLD-derivation with N as the initial goal. By the last lemma

comp(P)U{~N} is consistent. Thus by contraposition, comp (P):N implies that every fair SLD-tree
with N as root is finitely failed. Thus P U{N} has a finitely failed SLD-tree. [

It is perhaps useful to indicate here that using Lemma 5.29 an alternative proof of the implication
(b) = (c) in Theorem 5.6 can be given without the use of Lemma 5.10.
Indeed, assume there is a non-failed fair SLD-derivation with <-4 as the initial goal. Then by Lemma
5.29 comp(P)U {4} has a model. This implies by Lemma 5.26 that 4 € Tp |w. Thus by contraposition,
A ¢Tplw implies that every fair SLD-tree with <-4 as root is finitely failed. S

5.9. Equality axioms versus identity
CLarK’s [C] original definition of free equality additionally included the following usual equality
axioms:
) x=x
@) x1 = 1ANXy = Y = [(X100 X) = [15eeVn)

for each function symbol f,
(3) x1 = JiAAXy = Yp = (X 1500X0) = PO 15w Vn))

for each relation symbol p including =.

Denote these axioms by EQ. We did not use EQ at the expense of interpreting equality as identity.

Fortunately, both approaches are equivalent as the following well known theorem (see e.g.

45
MeNDELSON [Me] p. 80) shows.

THEOREM 5.31. Let S be a set of formulas in a first order language L including =. Then for every for-
mula ¢

Sré iff SUEQE . ¢,

where v, stands for validity w.r.t. interpretations of L which interpret = in an arbitrary fashion.

PROOF. =>. An interpretation of = in a model of EQ is an equivalence relation which is a
congruence w.r.t. all function and relation symbols.

This implies that every model of EQ is equivalent (i.e. satisfies the same formulas) to a model in
which equality is interpreted as identity. This model has as the domain the equivalence classes of the
interpretation of = with the function and relation symbols interpreted in it in a natural way. The
proof of the equivalence proceeds by straightforward induction on the structure of the formulas.

«. When = is interpreted as indentity, all axioms of EQ became valid. [

5.10. Summary

Summarizing the results obtained in Sections 5.4, 5.7 and 5.8 we obtain the following characteriza-
tions of the finite failure.

THEoREM 5.32. (Finite Failure Theorem) Consider a program P and a ground atom A. Then the follow-
ing are equivalent:

(a) A isin the finite failure set of P.

(b) A€T,|w.

(c) Every fair SLD-tree with <4 as oot is finitely failed.
(d) comp(P)—A. d

These results show that the negation as failure rule is a proof theoretic concept with very natural
mathematical properties. Comparing the above theorem with the Success Theorem 3.25 We see a
natural duality between the notions of success and finite failure.

However, this duality is not complete. By the Characterization Theorem 3.13 and the Success
Theorem 3.25 A is in the success set of P iff 4 €lfp(T,). On the other hand the “dual” statement: 4 is
in the finite failure of P iff A €gfp(T,) does not hold because as noted in Section 4.5 for certain pro-
grams P we have gfp(T,)T, w.

Clause (d) of the Fmite Failure Theorem suggests another possibility of inferring negation. Con-
sider the following rule implicitly studied in APT and VAN EMDEN [AVEL

A is false in all Herbrand models of comp (P)
—A

Call this rule Herbrand rule. Then the results of this chapter can be summarized by the following
figure from LLOYD [L] (p. 86) assessing the content of Lemma 5.3, Theorem 5.18 iii) and Theorem 3.6.

A inferred under negation as failure rule
5

4 inferred under CWA

—A inferred under
Herbrand rule

46

5.11. Bibliographic remarks

Theorem 5.17 is a straightforward generalization due to JAFFAR, Lassez and Lroyp [JLL] of a special
case (Theorem 5.18 a)) proved in APT and VAN EMDEN [AVE]. The notion of a finite failure set was
introduced in APT and VAN EMDEN [AVE].

Lemma 5.20 appears as an exercise in LLoyD [L] (p. 88). Proofs of Lemma 5.21 and Theorem 5.26
seem to be new. Lemma 5.21 was generalized by KUNEN [Kul] who proved that that Eq is a complete
axiomatization for the fragment L(=) of L containing = as the only relation symbol.

JAFFAR and STUCKEY [JS] proved that every program is semantically equivalent to a program P for
which gfp(Tp) = Tple. MAHER [Ma] provided a partial characterization of programs P for which
g (Tp) = Tple. | .

6. GENERAL GOALS

6.1. SLDNF -resclution

When trying to extend the results of chapters 3 and 5 to general programs we encounter several
difficulties. In this paper we examine only a very mild extension of the previous framework, namely
the use of logic programs together with general goals. This provides some insight into the nature of
the new problems.

We have to explain first how general goals are to be refuted. For this purpose we need only to clar-
ify how negative literals are to be resolved. It is natural to use for this purpose the negation as failure
rule studied in the previous chapter. Strictly speaking this rule was defined only for ground atoms, but
it can be extended in an obvious way to the non-ground case.

This leads us 1o an extension of the SLD-resolution called SLDNF -resolution (SLD-resolution

_with Negation as Failure rule) introduced in Clark [C]. We added the superscript “-” to indicate that
it is used here only with non-general programs. R ‘
Formally, we first introduce the notion of a resolvent of a general goal. Let. P be a program and
G=«L,...,L, a general goal. We distinguish two cases. Fix i, 1<i<n. R

a) Literal L; is positive. Suppose that C=4«B\,..., By is a clause from P. If I; and 4 unify with an
mgu 6 then

(__(Ll a'"7Li -1 :B 1 ""er)Li +1 ’"'7Ln)0
is a resolvent of G and C with the mgu 6.
b) Literal L; is negative, say —4;. Suppose that P U {«4;} has a finitely failed SLD-tree. Then
(""Lia-"9Li -1 7Li +1 ,...,L,,

is a resolvent of G.
L, is called the selected literal of G.

Now, given a program P and a general goal G, by an SLDNF -derivation of PU{G} we mean a
maximal sequence Gg,G,... of general goals where Gy = G, together with a sequence Co,Cy,... of
variants of clauses from P and a sequence 6p,0;,... of substitution such that for all i=0,1,...

e if the selected literal in G; is positive then G, is a resolvent of G; and C; with the mgu 6;,

e if the selected Hiteral in G; is negative then G; 4, is a resolvent of G;, C; 1s arbitrary and 6; is the
empty substitution,

e C; does not have a variable in common with Gg,Co,...,Ci—1.

Note that if the selected negative literal —4 in a general goal G is such that PU{«A} has no
finitely failed SLD-tree, then G has no successor in the SLDNF -derivation. Also note that a success-
ful resolving of a negative literal introduces no variable bindings.

The notions of SLD-tefutation, computed answer substitution, selection rule and SLD-trees general-

ize in an obvious way to the case of SLDNF -resolution. In particular we can talk of successful and
failed SLDNF -trees.

47

6.2. Soundness of the SLDNF -resolution

In any soundness or completeness theorem we need to compare the existence of SLDNF -
refutations with some statements referring to semantics of the program under consideration. However,
a direct use of the programs is not sufficient here because of the negative literals. For example
PU{« A} is always consistent. What we need here is an exiension of P which implies some nega-
tive information. An obvious candidate is the completion of P, comp(P), which was actually ntro-
duced by CLARK [C] to serve as a meaning of general programs when studying SLDNF-resolution.

After these preparations we can formulate the appropriate soundness theorem, essentially due to
Crark [C].

TaEOREM 6.1. (Soundness of SLDNF -resolution) Let P be a program and G=«L,,..,Ly a general

goal. Suppose that there exists an SLDNF -refutation of PU{G} with the sequence of substitutions
8y,...,0,. Then (L, A AL)by...8, is a semantic consequence of comp(P).

To prove it we need the following mild generalization of Theorem 5.27, essentially due to CLaARK [C].

LemMa 6.2. Consider a program P and an atom A. Suppose there is a finitely failed SLD-tree with <A
as root. Then comp(P)e—A.

ProOF. By Lemma 5.7 there exists no=1 such that for every ground substitution 8§, PU {4 0} has a
finitely failed SLD-tree of depth <n,. By Lemma 5.9 for every ground substitution 6, A6& T, ne.
Suppose now that for some interpretation I based on 2 pre-interpretation J, Itcomp(P), and more-
over for some state o I, A. By Theorem 5.17 T;(I):I. Thus by Lemma 3.11 I CTy|no. So we have
TJ |nok,A. But by Corollary 5.25i) TS |ny is good, so for some ground substitution 8 Ty norAS.
Now by Corollary 5.251) AGeT,|no. This contradicts the former conclusion. [l

We can now prove soundness of SLDNF -resolution.

PROOF OF THEOREM 6.1. Let 4,...,4; be the sequence of positive literals of G and —Bj,...,—B,, the
sequence of negative literals of G.

1f 1=0 or m =0 we disregard the corresponding step in the considerations below.

With each SLDNF ™ -refutation of PU{G} we can associate an SLD-refutation of P U {«A4,...,4;}
obtained by deleting all resolvents arising from the selection of negative literals and by deleting all
negative literals in the remaining resolvents. By the soundness of SLD-resolution (Theorem 3.2) and
the fact that empty substitutions are used when resolving negative literals

Pe(A, /\.../\A;)@Q...Bn .

But comp(P)E IF(P) so by Lemma 5.13
comp(P)HA A NANg...0, .
Also, by Lemma 62, fori=1,.m
comp(P)—B;6g...0, -1

where —B;fp...6, -1 is the selected literal of G, (0<p <n).
Thus

comp(PYe(—B 1 A.. AmByy)o...0n
which concludes the proof. [

COROLLARY 6.3. If there exisis an SLDNF -refutation of PU{G} then comp(P)U{G} is inconsistent.
O

48

6.3. Floundering

We now consider the problem of completeness of the SLDNF -resolution. Unfortunately even the
weakest form of completeness does not hold as the following example shows.

ExampLE 6.4. Consider the following program P:
play—pa),
r(b)« .

Then in every model I of the free equality axioms
IKVx(p(xyox=a A p@)--pd) ,

so by the definition of completion comp(P)r—p(b), that is comp(P)U {«—p(x)} is inconsistent. How-
ever, PU{<p(x)} has no finitely failed SLD-tree, so there is no SLDNF -refutation of
PU{«—px)}. O

A natural way out of this dilemma is to impose on SLDNF -resolution some restrictions. Clearly,
the problem is caused here by the use of non-ground negative literals. Notice for instance that in the
above example P U {«<p(b)} has a finitely failed SLD-tree so there exists an SLDNF -refutation of
PU{e—p (b))

We thus introduce the following restriction. We say that a selection rule is safe if it only selects
negative literals which are ground. From now on we shall use only safe selection rules. But a safe
selection rule is not defined on some sequences of literals. This means that certain general goals have
no resolvents under a safe selection rule.

We say that an SLDNF -derivation of PU{G) via a safe selection rule flounders if it is of the form
Gy,...,Gx with Gy = G, where Gy contains only non-ground negative literals. PU{G) flounders if
some SLDNF -derivation of PU{G} (via a safe selection rule) flounders. :

Obviously, restriction to safe selection rules does not restore completeness of SLDNF -resolution -
a smaller number of selection rules cannot help. But one would hope that a restriction to programs P

and general goals G such that PU{G) does not flounder, does help. Unfortunately such hopes are
vain. k B

ExaMPLE 6.5. Consider the following program P:
r{a)« ,
r(b)er(b) ,
r(by—q(a)
g(a)—q(@)
and the general goal G = «r(x), ~g(x).
We now claim that
i) PU{G) does not flounder,
i) there is no SLDNF -refutation of PU {G},
iii) comp(P)U{G} is inconsistent.
Both i) and ii) are easy to check. To prove iii) take an interpretation I based on a pre-inierpretation

J such that Trcomp(P). By Theorem 517 T;(I)ZI. Thus by the form of P the following three facts
hold:

a) r(a)el,
b) gla)el —r(b)el,
¢ qbdel

This means that either Ir r(a)/\—g(a) or It r(b)/\—gq(b) holds, ie. Ik 3x{r(x)/\—g(x)) so G is not
truein 1. O

49

6.4. Restricted completeness of the SLDNF ™ -resolution

Thus to obtain completeness of SLDNF ™ -resolution further restrictions are necessary. To this pur-
pose we first introduce the following notions.

Given a program P we define its dependency graph Dp by putting for two relations r,g
(r,q) € Dp iff thereis a clause in P using in its head and g in its body.

We then say that r refers io g; depends on is the reflexive transitive closure of the relation refers to.

Thus a relation does not need to refer to itself but by reflexivity every relation depends on itself.
Now, given a program P and a general goal G, we say that PU{G} is strict if the relations occur-

ring in positive literals of G depend on different relations than those on which relations occurring in

negative literals of G depend. Note that this implies that no relation occurs both in a positive and
negative literal of G.

More precisely, given a program P and a set of relations R first put
DEP(R) = {q: some p in R depends on g}.
Then P U{G} is strict if
DEP(G*) N DEP(G™) = &,
where G* (resp. G) stands for the set of relations occurring in positive (resp. negative) literals of G.

Note that for the program P and the general goal G studied in Example 6.5 PU {G} is not strict.

We now prove the following result established independently by CavipON and Lroyp [CL] and
K.R. Apt (unpublished).

TurorEM 6.6. (Restricted completeness of SLDNF ™ -resolution) Let P be a program and G a general

goal such that PU{G} is strict and PU{G} does not flounder. Suppose comp(PYU{G} is inconsistent.
Then there exists an SLDNF ™ -refutation of PU{G}.

In the proof we shall use the following well known theorem from mathematical logic due io K.
Godel (see e.g. SHOENFIELD [S)).

TuroreM 6.7. (Compactness Theorem) A set of formulas has a model iff every finite subset of it has a
model. T

Using the Compactness Theorem we obtain the following lemma which will be needed in the
sequel.
LemMa 6.8. Let P be a program. There exists a model Np of comp (P} such that
By N Np = Tpi,w.
- Proor. Let {4 15,4, } be a finite subset of Tplw. By Theorem 5.6, for i = 1,..,n, 4; is not in the
failure set of P. Thus by Lemma 5.8 PU{«A41,...,4,} does not have a finitely failed SLD-tree. Now,

by the completeness of the negation as failure rule (Theorem 5.30) there is a model of

comp(PyU{4 1s--sAn}. Thus by the Compactness Theorem 6.7 comp(P)UTplw has a model, say Np.
We have

Bp N Np D Tplew.

Moreover, we have by virtue of Lemma 5.26
Bp N Np C Tple

This concludes the proof. U

50

The model of comp (P) construcied m this lemma is in a sense “big”. Note that by Theorem 5.6 we
have

Npt—A iff A is in the finite failure set of P.

Thus in a sense Np is “dual” to Mp which is a "small” model of comp(P) and for which by the
Characterization Theorem 3.13 and the Success Theorem 3.25

Mp & A iff A is in the success set of P.

In the proof of Theorem 6.6 we shall use both types of models. But first we need the following sim-
ple modification of Lemma 3.9.

LevMa 6.9. Let T be a continuous operator on a complete lattice. Suppose that I C T(I). Then TTe(I)
is a fixpoint of T.

PROOF. Let B be the largest element of the original lattice L. The set {J:I CJ CB) with the opera-

tions C,U and N from L forms a complete lattice with the least element /. By assumption on T and
1, T is an operator on this lattice and the claim follows by Lemma 3.9. U

Before we apply this lemma we introduce the following notation. Given two programs P; and P,

we write P, < P, to denote the fact that relations appearing in the heads of clauses from P; do not
appear in P;.

Informally, when P; < P, then P, does not depend on P;. More formally, we have the following
lemma. ' : '

LEMMA 6.10. Let Py and P, be two programs such that Py < P,. Then fdr any interpretation I based
on a pre-interpretation J and n=1

T4, (Th, () = Tk (9).

Proor. All elements of Tﬁ tn(I) are of the form 7(11,estm)0 where r appears in a head of a clause
from P,. U

Limma 6.11. Let Py and P, be two programs such that Py < P,. Suppose that I is a model of
comp (P 1) based on a pre-interpretation J. Then T}, f(I) is a model of comp {(PLUP,).

PrOOF. By Theorem 5.17 we have] = T{p’ (I C T{%u p, (I). Moreover, by Proposition 5.12 T'}i up, 18

continuous. By Lemma 6.9 T,y p, 7(I) is a fixpoint of T,yp, so by Theorem 5.17 T % up, fe(I) 1s a
model of comp (P1UP).
On the other hand, using Lemma 6.10 and the fact that

Th,up,) = Tp, tn(l)

for every n=0.
Hence

T} (@) C I, we get by an induction on 7

Th,up, Te(l) = Th, 1e(l)
which concludes the proof. [l

We can now prove the desired result.

PROOF OF THEOREM 6.6. Let P¥ (tesp. P ™) be the set of clauses of P whosé'heads contain a relation
belonging to DEP (G*) (resp. DEP(G™)). By the assumption of strictness, PT and P~ are disjoint.

51
For some set Pg of clauses
=P, UPT UP".
Note that PT U P~ < Py. Consider now the interpretation Mp+ U Np-. Note that Mp+ and Np-
are disjoint because no relation occurs both in P* and P”. Thus Mp+ U Np- is a model of
comp(P+) U comp(P ™), ie. a model of comp(P” UP™). This model is based on some pre-

interpretation J. By Lemma 6.11 M = T}, 1(Mp+ UNp-) is a model of comp (P).
By the assumption comp (PYU{G}) is inconsistent, so for some state ¢

M?OA AT NA g/\—-yBl /\.../\—me

where A1,...,A, is the sequence of positive literals of G and —Bj,...,—B,, is the sequence of negative
literals of G.

If¢=0orm = 0 we disregard the corresponding step in the considerations below.

By the definition of Pt and P~ and the form of M we have Mp+k,AiA..NA, and
Np- ;0.113, A...A—B,,. Thus o, when restricted to the variables of 41 /.. A4y, is 2 ground substitution,
say 8.

By Corollary 3.6 and the Characterization Theorem 3.13i) 8 is a correct answer substitution for
PHU{eAy,di)-

Applying now Theorem 3.18 we obtain a computed answer substitution y for PTU{eA ..., 41
which is more general than 6.

Fix some i, 1<i<m. By the assumption PU{G} does not flounder. Thus if ¢ = 0 then B; is
ground, so B;o is a ground atom. If { > 0 then B,y is ground, so B;f is ground and consequently B;o
is a ground atom, as well. But Np- k;—B) A...A—B,,, 50 Bjo€Bp- \ Np-.

By Lemma 6.8 we now have B;o¢ Tp- |w. By Theorem 5.6 Bio is in the finite failure set of P7. By
the form of P, B;o is in the finite failure set of P.

We thus showed that there exists an SLDNF ™~ -refutation of PU{G}. U

This theorem can be generalized in the same ways as the completeness theorem of SLD-resolution
(Theorem 3.15) was. The proofs of these generalizations are straightforward modifications of the
above proof and use the generalizations of Theorem 3.15 presented in Sections 3.8 and 3.9.

6.5. Allowedness

Unfortunately restriction to programs P and general goals G such that PU{G) does not flounder is
not satisfactory as the following theorem shows.

TrEOREM 6.12. (Undecidability of non-floundering) For some program P it is undecidable whether for a
general goal G, PU {G? does not flounder.

PrOOE. This is a simple consequence of the computability results established in Section 4.4.

Let P be a program and ¢(x) an atom such that the variable x does not appear in P. Note that for
any ground atom 4 there exists an SLD-refutation of PU {4} iff PU{«A4,—g(x)} fiounders. Indeed,
in the SLDNF ™ -derivations no new negative literals are introduced.

By Corollary 3.14 and Lemma 3.17 we thus have

AeMp iff PU{«A,—q(x)} flounders.

But by Corollary 4.7 for some program P (the complement of) Mp is not recursive. Consequently it
s not decidable whether for such a program P, PU{«4,~g(x)} does not flounder. O

A way to solve this problem is by imposing on PU{G} some syntactic restrictions which imply
that P U{G) does not flounder.

52

To this purpose we introduce the following notion due to LLoyD and Topor [LT]. Given a pro-
gram P and a general goal G, we call PU{G) allowed if the following two conditions are satisfied:
a) every variable of G appears in a positive literal of G,
b) every variable of a clause in P appears in the body of this clause.

Note that a) implies that all negative literals of G are ground if G has no positive literals and b)

implies that every umit clause in P is ground.
Allowedness is the notion we are looking for as the following theorem shows.

TaeoreM 6.13. (Lioyp and Topor [LT]) Consider a program P and a general goal G such that
PU{G} is allowed. Then

iy PU{G} does not flounder,
i) every computed answer substitution for PU{G} is ground.

ProoF. i) Condition b) ensures that every general goal appearing in an SLDNF ™ -derivation satisfies
condition a). Thus P U {G} does not flounder.

ii) By the fact that every unit clause in P is ground. [

Property ii) shows the price we have to pay for ensuring property 1.
Combining Theorems 6.6 and 6.13 we obtain the following conclusion.

COROLLARY 6.14. Let P be a program and G a general goal such that PU{G} is strict and allowed.
Suppose comp (P)U {G) is inconsistent. Then there exists an SLDNF ™ -refutation of PU{G}. O

Finally, observe that the definition of allowedness can be weaken a bit by :equiﬁng condition b) to

hold only for clauses whose heads contain a relation appearing in DEP (G1). Indeed, Theorem 6.13
then still holds by virtue of the same argument. ‘

6.6. Bibliographic remarks

Usually, the case of programs and general goals is not considered separately. Consequently soundness
of the SLDNF~ -resolution (Theorem 6.1) is not spelled out separately. The proof of Lemma 6.2
seems to be new. The problem noted in Example 6.4 was first identified in CLARK [C]. Example 6.5
seems to be new. The name floundering was introduced in SHEPHERDSON [Sh] but the concept first
appeared in CLARK [C]. Lemma 6.8 was independently proved in SHEPHERDSON [She2]. Theorem 6.12
was independently, but somewhat earlier, proved in BORGER [Bo].

The notion of striciness was first introduced in APT, BLAIR and WALKER [ABW] for the case of gen-
eral programs. The definition adopted here is inspired by CAVEDON and LLoyp [CL] where a much
stronger version of Theorem 6.6 dealing with general programs is proved. The definition of allowed-
ness is a special case of the one introduced in LLoyp and Topor [LT] for general programs. Similar,

but less general notions were considered in CLARK [C], SHEPHERDSON [Sh] and APT, BLalR and
WALKER [ABW].

53

7. STRATIFIED PROGRAMS

7.1. Preliminaries

General programs are difficult to analyze because of their irregular behaviour. In this chapter we

study a subclass of general programs obtained by imposing on them some natural syntactic restric-
tions. Programs from this subclass enjoy several natural properties.

First, we generalize in an obvious way some of the concepts to the case of general programs. To
start with, given a general program P we introduce its immediate consequence operator Tp by puiting
for a Herbrand interpretation I

A e Tp(I) iff for some literals L,...,L,
A«Ly,...,L, is in ground(P)
and ILy A ALy,

Next, given a general program P, we define its completion by using the same definition as the one
given in Section 5.5 but now applied to general clauses instead of clauses. As before, comp (P) stands
for the completion of P.

Some of the results relating models of P and comp (P) to the operator Tp remain valid and will be
used in the sequel. We have

LevMa 7.1. Let P be a general program and I a Herbrand interpretation.
i) 1Iis a model of P iff Tp(DHCL

i) Iis a model of comp(P) iff Tp(I) = L.

PROOF.

i) Analogous to the proof of Proposition 3.7.

i) Analogous to the proof of Theorem 5.18i) - all corresponding lemmata remain valid.
iii) Analogous to the proof of Lemma 3.12i). O

Lemma 7.1 iil) remains valid when T is considered as an operator on a larger lattice Bpr,
P CP’, as then for any J €Bp Tp(J) = Tp(J NBp). We shall use this observation in Section 7.4.

Tt is worthwhile to note that several other results do not generalize to the case of general programs.
For example, for the general program, P = {A«—B) the associated operator Tp is no longer mono-
tonic, as Tp(B) = {4} and Tp({B}) = 9. Thus Lemma 3.12ii) does not generalize.

The same general program has two minimal models - {4} and {B} but none of them is the smal-
lest. Thus Theorem 3.13 does not generalize. In turm, completion of the general program A <——A4 is
‘nconsistent, so Theorem 5.18ii) does not generalize either.

We thus see that it is not clear what intended meaning should be associated with a general pro-

gram. None of the previously available possibilities - the one, semantic, based on Mp and another,
proof theoretic, based on comp (P), can be considered.

where

7.2. Stratification

To tesolve these difficulties we introduce appropriate syntactic restrictions. Intuitively, we simply
&isallow a recursion “through negation”. To express this idea more precisely we use the notion of a
dependency graph introduced in Section 6.4. Given a general program P consider its dependency
graph Dp. We call an arc (r,q) from Dp positive (tesp. negative) if there is a general clause in P such

that 7 appears in its bead and g appears in a positive (resp. negative) literal of its body. Thus an arc
may be both positive and negative.

Following APT, BLAIR and WaLker [ABW] and VAN GELDER [VG] we call 2 generai program
siratified if its dependency graph does not contain a cycle with a negative arc.

54

An alternative definition of stratified programs is the following. Given a general program P and a

relation r, by a definition of r (within P) we mean the set of all general clauses of P in whose heads r
appears.
We call a partition

p=P,U..UP,

a stratification of P if the following two conditions hold for i=1,...,n

i) if a relation appears in 2 positive literal of a general clause from P;, then its definition is con-
tained within ‘\é P;.
At

ii) if a relation appears in a negative literal of a general clause from P;, then its definition is comn-
tained within U P;.
H

j
We allow P, to be empty. A head of a general clause is viewed here as one of its positive literals. We
call each P; a stratum.

Now, both definitions are equivalent as the following lemma shows.

Lemma 7.2. (APT, BLAIR and WALKER [ABW]) 4 general program P is stratified iff there exisis a
stratification of P.

ProOF. If a general program is stratified then the definition of each relation symbol is contained in
some stratum. Assign to each relation the index of the stratum within which it is defined. Then if
(p.q) is a positive arc in the dependency graph of P, then the level assigned to ¢ is smaller or equal
than that assigned to p, and if (p,g) is 2 negative arc, then the level assigned to g is strictly smaller
than that assigned to p. Thus there are no cycles in the dependency graph through a negative edge.
For the converse, decompose the dependency graph of P into strongly connected components each
of maximum cardinality, (ie. such that amy two nodes in a component are connected by a cycle).

Then the relation “there is an edge from component G to component H” is well founded, since it is

finite, and contains no cycles. Thus for some 7 the numbers 1,...,n can be assigned to the components
so that if there is an edge from G to

H, then the number assigned to H is smaller than that assigned

1o G. Now, let P; be the subset of the general program P consisting of the definitions of all relations
which lie within a component with the number i.

We claim that
P=P,U..UP,

is a stratification of P. Indeed, if ¢ is defined within some P; and refers 1o 7, then r lies in the same
component or in a component with a smaller number. In other words, the definition of r is contained
in P; for some j<i. And if this reference is negative, then r lies in a component with a smaller

number because by assumption there is no cycle trough 2 negative edge. Thus the definition of r is
then contained in P; for some j<i. O

This lemma allows us to use both definitions of a stratified general program interchangingly.
ExaMPLE 7.3.
i) Consider the general program

P={pe, gepr, T <4}

Then P is not stratified because the dependency graph of P contains a cycle (g,r),(r,q) with a
negative edge.

ii) Consider the gemeral program P={pe, gep, r<—g}. Then P is stratiied by
(p}U{gp}Iy {re—q). Also {pe, gepjU{r—g}isa stratification of P.

55

Thus a general program can be stratified in more than one way. U

Of course, it also makes sense to talk about stratification of programs (i.e. general programs “without
negation”). By definition every program is stratified but not every partition of it is a stratification. The
following simple lemma relates the notion of stratification to the notation introduced in Section 6.4.

LemMa 7.4. A partition
P:P1 U \:JP,,

of a program P is ils stratification iff for every i =1,..,n we have (jkiiP,-)<P,-. O

As a first step towards a better understanding of stratified (general) programs we study in more detail
their semantics. In view of Lemma 7.1, to stu

dy Herbrand models of a general program P and its

completion, it suffices to consider the pre-fixpoints and fixpoints of its immediate consequence opera-

tor Tp. However, as just observed, the associated imm

ediate consequence operator Tp does not need
1o be monotonic. This brings us to the study of non-monotonic Operators and their pre-fixpoints and

fixpoints in an abstract setting. We follow here the presentation of ApT, BLAIR and WALKER [ABW].

7 3. Non-monotonic operators and their fixpoints
Consider an arbitrary, but fixed, complete lattice and assume the notation used in Section 3.5.

All operators are considered on this fixed lattice. First we define cumulative powers of an operator T.
We put

o) = 1,
Thn + XD = T)V T),
Tho) = U TnlD).

n<w
Cumulative powers easily relate 10 the usual powers as clearly for all a<<w and J
Te(]) = (TUId)tall)

where Id is the identity operator, U stands for a union of
Section 3.5 are now adopted for arbitrary operators.
We have the following lemma.

two operators and the powers defined n

Levma 7.5. If T is finitary then for all 1 Tw(l) is a pre-fixpoint of T, i.e.
T(Te(D) S ThelD)-
ProoF. Since T is finitary,

T(rie)E U T T 0)

c U T + XD
n=0
CcTpal). O

We say that an operator T is growing if for all 1,J,M
1¢J CMCThll)

implies

56

T(J)C T(M).

Thus growing is a restricted from of monotonicity.
The following lemma holds.

LemMA 7.6 If T is growing then for all 1
The(I) CTUT(Te(I)).

PrOOF. An easy proof by induction shows that for all i=0 we have T0i (1) C G T(Tfn()), so
n=0

Thl)C @OT(Tﬁn @). (1>

We now have

Tho(l) = 1U Q Tn(D)

Gy () € 1V U T

(by assumption) C IUT(Tfe(I)). O

The following corollary generalizes Lemma 6.9 and shows interest in studyin

g finitary and growing
operators. -

CoOROLLARY 7.7. Let T be finitary and growing. Suppose that I CT(I). Then THex]) is a fixpoint of T.

ProoOF. Since T is growing, I CT(NCT(THw(I)), so IUT(Tfw(I)) = T(The(I)) and the claim fol-
lows by Lemmata 7.5 and 7.6. '
Next, we study families of operators. Let T'y,...,T, be operators. We put

Ng = 1,

Ny = T1fe(No),

Nn = Tnﬂw(Nn—l)-

Clearly NoCN; C... CN,. Of course all N;—s depend on I and from the context it will be always
clear from which one.

Let T stand for the union of the operators T'y,...,T,,, i.e. for the operator defined by
TU0= YT,
i=

We wish to determine under which conditions N, is a fixpoint of T. To this purpose we introduce the
following concept.

We call a sequence of operators T',..., T}, local if for all 1,J
ICJCN,
imples
| T()=T,(J NN))

57
fori=1,..,n _
Informally, locality means that each T; is determined by its values on the subsets of N;.
The following two lemmata show interest in studying local sequences of operators.
LemMa 7.8 Suppose that the sequence T1,...., T, is local and that all T;—s are finitary. Then
T(N n) c N ne
Proor. We have

T = YT
(by Tocality) = U TN

(by Lemma 7.5) €

N;

iC»

P

I
Z

O

Levma 7.9. Suppose that the sequence Ty,....T, is local and that all T;—s are growing. Then
N, CIUT(Ny).

ProoF. We proceed by induction on 7.
If n =1, the lemma reduces t0 Lemma 7.6.
Assume the lemma holds for 7 — 1. Then again by Lemma 7.6

Nn c Nn"'l UTH(Nﬂ)
(by the induction hypothesis)
n—1
c Iv U Ti(Nn—l) U Tn(Nn)

i=1

(by locality) = TU'U TV)UTH,)
i=1

= JUT(N,). O

COROLLARY 7.10. Suppose that the sequence Ty,.... Ty is local and that all T;—s are finitary and grow-
ing. Then

N,=IUT({N,). U

Thus for 2 local sequence T1,..., Ty of finitary and growing operators, N, is a fixpoint of T when
I=02.
We now prove that under some assumptions N, is a minimal pre-fixpoint of T containing .

Levua 7.11. Suppose that the sequence Ty,..., T is local and that all T;—s are growing. Suppose
ICJCN,

58

and

TJ)CJ.
Then

J=N,.

ProoF. We prove by induction on j =0,...,n that
N;CJ. 1

For j=0 it is part of the assumptions. Assume the claim holds for some j<<n. We now prove by
induction on k that

T 1 k() CJ.
For k =0 this is just (1). So assume (2) holds for some k=>0. We then have
Ty 190+ D) € Tjr (TP (V) U
(by (2) and since Tjty 18 growing) C Tj+1¢J AN;+)UJ
(by locality) = Tj41(/)UJ
(by the assumptions) CJ.

Thus by induction for all k=0 (2) holds, so N;4; CJ. This proves (1) for all j ={,...,n and con-
cludes the proof. O : Co

@

Finally, we provide an alternative characterization of N;. To make it‘ more readable we. |
that I= &. Then by definition Ng = & . nOW assuIne

Let now T, denote the union of T1,...,T}, ie. T{(X) = TH(XHU..UTi(X).

jieEMMA 7.12. Suppose that the sequence T,..., Ty is local and that all T;—s are finitary and growing.
4

K = {(J:Ti)=J, TWJ NN)CTD},
K, = (JT()=J, T2 NN)CTa), N1 T},

K, = {(J:T.(H=J, T,(NN,)CT,(J), Np—i cJ}
Then for i =1,..,n

Note that each K; is the collection of all fixpoints of T; which include N;_;, where additionally the
condition T:{J NN; 1) CT:{J) is required.

Proor. Fix some i, 1<i<n.

By Corollary 710 used for =@ and n=i, and the fact that N;_; CN;, we conclude that N;
belongs to K;. Thus MK CN;. '

To prove the converse take J €K;. We prove by induction on k that for k=0
Tipk(N; 1) CJ.

: Q)
For k =0 it holds by the definition of K;. Assume this claim holds for some k£ =0. Then

59
Tyfk(N;-1) SN o
so by (1) and (2) and the fact that T; is growing
TAT Mk W;-1)) C T ON)
(by the definition of K;) C TiJ)
C T
(by the definition of K;) C J.
Thus the claim holds for k +1. This implies N; CJ, so N; C Nk. [

7 4. Semantics of stratified programs
We now apply the results of the previous section to provide 2 semantics for stratified programs.

Throughout this section we consider a general program P stratified by
p=P,U..UP,

We now define a sequence of Herbrand interpretations by putting
M, =Tp f(2),
My=Tp (M),

Mn = TP,ﬂw(Mn ~1)~

Let Mp=M,. Note that Mp depends on the stratification and that for programs P,Mp has already 2
different meaning. We shall show in the next section that these apparent ambiguities in fact do not

exist — Mp does not depend on the stratification of P and consequently by virtue of the Characteriza-
tion Theorem 3.13 it coincides for programs P with the previous meaning,
We first prove that Mp is 2 model of P. To this purpose we need the following lemmata.

LemMa 7.13. Consider a stratum P; (I<i<n). Tp, considered as an operator on the complete lattice
{I1:1CBp) is growing.

ProoF. Suppose that for some I CBp, I CJ CMCTpfe(l) and let AeTp(J). For some general
clause A «Li,....L, from ground(P;) we have

Jel,y A AL,

If L; is positive then also MeL;. If L; is negative, say —p(t1,--51%), then neither p(t1,...,ix)€] nor p
appears in a head of a general clause from P, because P; is a stratum.

However, for any Herbrand interpretation NCBp and a ground atom r(sy,.,Sm)s i
r(sl,...,sm)ETPiﬁw(N) then 7(s1,...,S»)EN OI 7 appears in a head of general clause from P;.

Thus p(t;,...,tk)ez Tp fel]), s0 MeL,;, as well. This implies that 4 €Tp (M). O

LA 7.14. Consider the straia Py,....Pn. The sequence of operators Tp,,...,Tp, considered on the com-
plete lattice {I:] CBp) is local.

ProoF. Choose some I CBp and consider the sequence Ny,.... N, of subsets of Bp defined in the pre-
vious section. Fix some i, I<i<n.

Suppose that (1, tk)ENa \ N Then p appears in a head of a general clause from C) Pj, so
j=itl

by the definition of stratification p does not appear in a general clause from P;. Thus p{t1,ti)€Bp,.

80

Hence
N, By, CN;
and consequently
N,NBp =N;NBp,

M
since N; CN,.
Suppose now that I CJ CN,. We have
JNBp, = JNN,NBp,
(by (1)) = JON;NBp. @

Thus
T ()
(by the definition of Tp) = Tp(JNBp)
(by (2)) = Tp(JNN;NBp)
(by the definition of Tp) Tp(JNN). O

We can now conclude by

i

TuroreM 7.15. (Characterization Theorem) (APT, BLAIR and WALKER [ABW]) Let P be a general
program stratified by

P=P, U... UP,,.

Then

i) Mp is a Herbrand model of P.

i) Mp is a minimal Herbrand model of P.
iil) Mp is a Herbrand model of comp (P).

Proor.

i) By Lemmata 7.1i), iii), 7.13 and 7.14 and Corollary 7.10.
i) By Lemmata 7.1i) and 7.11.

iii) By Lemmata 7.1ii), iii), 7.13 and 7.14 and Corollary 7.10. [I.

Finally, we provide an alternative characierization of Mp. To prove the desired theorem we first
introduce a notation and prove a lemma.

Given a general program P, let
Negp = {A:for some B«L,,...,L, € ground(P) and i, 1<i<n, L; = —4}.
Thus Negp stands for the set of ground instances of atoms whose negation occurs in a hypothesis of
general clause from P.

Lemma 7.16. Let P be a general program and 1,J Herbrand interpretations. Suppose that
IcJ

and
INNegp = JNNegp.

Then

61
Tp(D) CTPU)-

PRrOOF. Suppose that A € Tp(I). For some general clause A«Ly,...,L, from ground(P) we have
TeLy ... ALy,.
If L; is positive then by assumption also JeL;. If L; is negative, say —B, then Bgl, so BelNNegp

and by assumption B @J N Negp. But by definition B eNegp, 50 BegJ,ie JeL;.
This implies that 4 €Tp{). O

Assume now a given stratification Py U..UP, of P. To shorten the notation let from now on P;
stand for P U... UP;. Then P=P,. Let M range over the subsets of Bp. Put

M@= N {(M:Tp,(M)=M},
M@®,)= () {M:Tp,(M)=M, MNBp =M(®1)},

M@= () (M:Te,(M)=M, MNBp_ =M®P,-1)}.

Note that by Theorem 7.1ii) each M(P;) is the intersection of all Herbrand models of comp (P;) which
on the previous Herbrand base Bp_, agree with the previous model M(P;—1). In the definition of
M(P;) each Tp, 15 considered as an operator on the complete lattice Bp. We now prove

TuporeM 7.17. (APT, BLAIR AND WALKER [ABW])

ProOF. We prove by induction that for i =1,..,n M;=M(®P;). This implies the claim since M,= My
and M(P,)=M(P). For i =1 it is a consequence of the Characterization Theorem 3.13 and the fact
that TPI(M)ng,.

Suppose the claim holds for some i,1<<i<n. Note that by the Characterization Theorem 7.15111)
and Lemma 7.1i), Ty, (M;+1)=Mi+1- Also M; 41 NBp,=M(P;) by the induction hypothesis and the

definition of stratification. Thus M; 4+, is an element of the collection whose intersection is M(P; +1).
This proves that M@®;+1)CM; 4.

To establish the converse inclusion take M from the collection whose intersection is M(P;+). Thus
Tp,,(M)=M M
and
M®P;)=MnNBp,)
(2) implies by the induction hypothesis M; = M N Bp, 50
M;CM.
Moreover, by the definition of stratification, Negp,,, CBp,, 80

€)

‘Neg}’i-ﬁ = Negpi+l nBPi‘ (4)
Now
Man ﬂNegPs-n
(by 3) = M;NNegp,,
(by the induction hypothesis) = M(P)NNegp,,
(by 2)) = MNBp NNegp,_,

62

(by (4)) = MNNegp, .
Thus by Lemma 7.16
Tp,, (M NM)CTp, (M). (%)
We can now apply Lemma 7.12 with N;=M; and T;=Tp,. By (1), 5) and (3) MeK;;; so
mKi+l cM and by Lemma 7.12 M, CM. By the choice of M, M, 1, QM(P,-_H).
This concludes the proof of the induction step. U

7.5. Perfect model semantics

We now prove that the Herbrand model Mp does not depend on the stratification of P. We follow
here the approach of PrRzymusINskl [P]. It is conceptually advantageous to carry out these considera-
tions in a more abstract setting. :

Consider a given general program P. Let < be a well founded ordering on the Herbrand base of
P, Bp. If A<B then we say that A has a higher priority than B.

Let M,N CBp. We call a Herbrand interpretation N preferable to M, and write N<M, if N+M
and for every BeN \ M there exists A €M \ N such that A<B. Wewrite N<M if N=M or N<M.
We call a Herbrand model of P perfect if there are no Herbrand models of P preferable to it. Thus a
perfect model of P is a <-minimal Herbrand model of P.

The intuition behind these definitions is the following. N is preferable to M if it is obtained from M
by possible adding/removing some atoms and an addition of an atom to N is always compensated by
the simultaneous removal from M of an atom of higher priority. This reflects the fact that we are
determined to minimize higher priority atoms even at the cost of adding atoms of lower prionity. A
model is then perfect if this form of minimization of higher priority atoms is achieved in it. ’

The following lemma clarifies the status of perfect models.

LEMMA 7.18. Let P be a general program and let < be a well founded ordering on Bp.
i) Every perfect model of P is minimal.
i) For no two Herbrand models M,N of P, both M <N and N <M.

PRrOOF.

i) Immediate, since NC M implies N <M.

ii) Suppose by contradiction that for some Herbrand models M,N of P both M <N and N <M.
Then none of them is a subset of the other. Thus N\ M is non-empty. Let AgeN\ M. N is prefer-
able to M, so for some A;eM\N, 4;<A¢. But M is preferable to N so for some A,EN\ M,
A,<A;. Continuing in this way we obtained an infinite < —descending sequence of ground atoms
which contradicts the assumption that < is a well founded ordering on Bp.

One can also prove that the relation “N is preferable to M” is a partial order but we shall not need
this in the sequel.

Subsequent considerations are carried out for a fixed stratified general program P and a well
founded ordering < on Bp defined by first putting for two relation symbols p,q,
p<g iff there exists a path from ¢ to p in Dp with a negative arc,
and then putting for two atoms A,BeBp,

A <B iff p<gq where p appears in 4 and ¢ appears in B.

By the definition of a stratified program , < is a well founded ordering on Bp. Note that the orien-
iation of < is different than the one suggested by Dp. If p<<g then p is defined in a strictly lower
stratum than ¢ and all ground atoms containing p are of higher priority than those containing g.

Fix from now on a stratification P;U..UP, of P. Note that MpNBp, = M;. For a Herbrand

63
interpretation N of Lp,, denote NN Bp, by N,. Note that Ny CN; C...CNy.

LevMa 7.19. Let N be a Herbrand model of P. Then for all i =1,....n we have M;<N;.

Proor. We proceed by induction on i. Note that N;& P;. As P, 1s a program, by the Characteriza-
tion Theorem 3.13, M is 1ts smallest model. Thus M; CN;, and a fortiori My <N;.

Suppose the claim holds for some i=>1. Call an element BeM,; 4, regular if B&N;+, implies that

for some A€N; +1 \ M+, A<B. To prove that M; .1 <N;+ we need to show that all elements of
Mi+1 arc regular.

o0
We have M; +1 =—‘kL—)0Tpmﬂk(M,~). We now prove by induction on k that all elements of Tp,, 1k(M;)

are regular.

To take care of the case k =0 consider some BeM;\ N;i41. Then BeN;, so by the induction
hypothesis for some A eN;\ M;, A <B. Moreover, N;CBp, so A€Bp, But M;;;NBp, = M;, 0
A¢M; 4. Thus 4 eN; 31\ M; 4+ and consequently B is regular.

To take care of the induction step, fix k=0 and denote Tp_ fk(M;) by M. Assume that all elements
of M are regular and consider some BeTp,, (M)\ M. For some general clause BeLy,...,Ls in
ground Pi+1)

MeLiA.AL.

Let Aj,...,4; be the positive literals among Ly,...,Ls and let —B1,..,—Bn be the negative literals
among Ly,...,Ls- We have 41,...,4;€M and By,....Bn gM.

Suppose now B¢N;+1. Niq11s 2 model of P; ., so either some Aj&N; 4, or some BjeN; 1. "

some Aj&Ng+1 then AjEM\N3+1. As A] 18 Icgula:r, for some AEN;.:H\M,‘.*.} ,A<A! By the
definition of < also A<B.

If some B;jeNiy then BjeNis1\ M, so BjeN;i\M;. Moreover, by the definition of
stratification BjEBP,v But M, 1+ ﬂBP; = M,, s0 BjﬁMg-H. Thus BjENg_H \M,q-;. Moreover, by the
definition of < we have B; <B.

We thus showed that B is regular. By induction on k we now proved that M;.;<N;+,. Thus by
induction on i, WE proved the lemma. O

Lemma 7.20. Let IJ be Herbrand interpretations for Lp.

If for all i = 1,...,n we have I;<J;, then
I<J.

ProoF. Let BeI\J. For some i, 1<i<n, we have B€l; \J. So BeBp,_. But J;=J NBp, so B&J;.
Since I;<J;, for some AeJ\I;, A<B.So 4 eBp. But ;=1 NBp,so Agl 0
This brings us to the main result of this section.
TreoreM 7.21. (PRZYMUSINSK1 Ph
i) For every Herbrand model N of P, Mp<N.
i) Mp isthe unique perfect model of P.

PROOF.
i) By Lemmata 7.19 and 7.20.

ii) By i) and Lemma 7.18%i) Mj is a perfect model of P. By i) it is also unique. U

Note that i) in view of lemma 7.18) provides an alternative proof of Theorem 7.15 i).

COROLLARY 7.22. (AFPT, BLAIR AND WALKER [ABW]) Mp does not depend on the stratification of P.

S SR R

64

ProoF. The proof of Theorem 7.12ii) does not depend on the stratification of Mp. U

Theorems 7.15 and 7.16 show that Mp is a natural model of a stratified program P. However, the
most convincing evidence that Mp is indeed natural, is supplied by Theorem 7.22. The notion of a
perfect model turns out to be the key concept in assessing the character of Mp.

7.6. Bibliographic references

Stratified programs form a simple generalization of a class of database queries introduced in CHAN-
pra and HAREL [CH]. Similar concepts were also introduced in BARBUTI and MARTELLI [BM] and, in
the context of deductive databases, in NaQvi [N].

The proofs of Theorems 7.17 and 7.21 and of Corollary 7.22 differ from the original ones. The
notion of a stratified program was further generalized by PRzyMUSINSK1 [P] to a locally siratified pro-
gram. Lirscarrz [Li] provides a characterization of the model Mp of a stratified program P using the
prioritized circumscription. Other connections between stratification, the model Mp and non-

monotonic reasoning are surveyed in PRZyMUsINSKI [P1]. APT and BLAIR [AB] analyze the recursion
theoretic complexity of the model Mp.

8. RELATED TOPICS

Our presentation of logic programming is obviously incomplete. In this section we briefly discuss the
subjects we omitted and provide a number of pointers to the literature.

8.1. General programs

SLD-resolution and the negation as failure rule was combined by CLARK[C] into a m‘oreApowerfui

computation mechanism called SLDNF-resolution allowing us to refute general goals from general

programs. The reader is referred to LLoYD[L1] for a detailed account of SLDNF - resolution.
SHEPHERDSON|SHE2] discusses and compares various approaches to the proof theory and semantics

of general programs. The strongest completeness results dealing with the SLDNF-tesolution were
proved in CAVEDON and L1oYD [CL] and KUNEN [Ku2].

8.2. Alternative approaches

The approach to logic programming we discussed in this paper is undoubtedly the most widely
accepted. However, various alternatives exist and it is worthwhile to point them out.

Proof theory. FITTING [F] proposed an alternative computation mechanism based on a tableau
method. GaLiiEr and Raatz [GR] introduced a computation mechanism in the form of an inter-
preter using graph reduction. BROUGH and WALKER [BW] studied interpreters with various stopping
criteria for function-free programs. APT, BLAIR and WALKER [ABW] introduced an interpreter with a
loop checking mechanism and with an ineffective means of handling negative literals. PRZYMUSINSKI
[P] generalized this interpreter to an SLS-resolution (Linear resolution with Selection rule for Stratified
programs) in which negative literals are resolved in an ineffective way.

Variants of SLD - resolution, called HLSD - resolution and SLD-AL - resolution were introduced
and studied in NaisH [N] and VIEnLLE [V], respectively.

Semantics. MYCROFT [My] suggested to use three valued logic (corresponding to the possibilities:
provable, refuted and undecidable) to capture the meaning of logic programs. This approach was sub-
sequently studied in detail in FITTING [F1] and KUNEN [Ku] and KuUNeN [Ku2].

To describe the meaning of general programs MINKER [Mi] proposed the use of minimal models
(leading to the generalized closed world assumption GCWA), BIDOIT and HurL [BH] proposed the use
of positivistic models and PRZYMUSINSKI [P] introduced the concept of a perfect model.

65

8.3. Deductive databases

Deductive databases form an extension of relational databases in which some of the relations are
implicitly defined. They can be viewed as logic programs where the explicitly defined relations are
those defined only by means of unit clauses, whereas the implicitly defined relations are those defined
by means of non-unit clauses, as well. Moreover, so-called particularization axioms are needed 1o
define the intended domain. Additionally, integrity constraints are used 1o impose a desired meaning
on the relations used.

The main difference between deductive databases and logic programming

lies in their emphasis on
different problems. In deductive databases one studies such issues like query processing (i.e. computa-

tion of all answers to a given goal), integrity constraint checking, handling of updates (i.e. additions
and deletions of ground unit clauses) and processing of negative information.

Recent research concentrates on efficient implementation of recursive queries, i.e. queries about

recursively defined relations (see €.g. the survey of BANCILHON and RAMAKRISHNAN [BR]), reduction
of recursive queries 10 non-recursive ones (see €.g. NAUGHTON and SAGIV [NS]), comparison of
expressive power between various query languages (see €8 CuanDrA and HareL [CH], SHMUELI
[Shm]), and handling of negative information both in terms of intended semantics (see €.g. MINKER
[Mi}, APT, BLAIR and WALKER [ABW], VAN GELDER [VG], Lirscarrz [Li], NaQvI [Na], PRZYMUSINSKI
[P]) and in terms of query processing, handling of updates and integrity constraint checking
HenscHEN and PArk [HPY, DECKER [D], LLOYD, SONENBERG and Topor [LST)).

Farlier research in this area is surveyed in GALLAIRE, MiNkER and Nicoras [GMN] while more
recent research is discussed in KaNELLAKIS [Ka] (Section 4) and MINKER [Mil].

(see e.g.

8.4. PROLOG

PROLOG stands for programming in logic. It is a programming langnage conceived and implemented
in the beginning of 1970’s by COLMERAUER ¢t al. [CKRP). In its pure form it can be viewed as logic
programming Wi the "left-first” selection rule and with the depth-first strategy for searching the
empty node in an SLD-tree. Negation is implemented by means of the negation as failure rule. For
efficiency Teasons an important test (the check in step 5 of the unification algorithm whether x
appears in ! - so-called occur check) is usvally deleted from the unification algorithm and a special
control facility (called cut) to prune the search tree is introduced. These changes make PROLOG
different from logic programming and make it difficult to apply to its study the theoretical results con-
cerning logic programimin

g.
Theoretical study of PROLOG concentrated on efforts to provide a rigorous semantics of it in

terms of interpreters explaining the process of SLD-tree traversal (see €.g. JONES and MYCROFT {IMD),

by means of denotational semantics (see e.g. FITTING [F1]) or by relating both approaches (se€ €.g.
DesraY and MISHRA [DM)).

More practical considerations, apart of a study of implementations of PROLOG (see e.g. Camp-
pELL [Cal), led to an investigation of efficient backiracking mechanisms (see e.g. COX and PIETRZY-
xowski [CP]) and of various additions, like meta-facilities (see e.g. BOWEN and Kowaiski [BK] and
STERLING and SHAPIRO [SSh]), modules (se€ €.8. GoGUEN and MESEGUER [GM)), control mechanisms
(see e.g. NAISH [N]) and parallelism (see €.g. Concurrent Prolog of SHAPIRO [Sh] and PARLOG of
Crark and GREGORY [CG1).

Good books on PROLOG programming are BraTkO [B] and STERLING and SHAPIRO [SSh].

8.5. Integration of logic and functional programming
Logic or PROLOG programs use relational potation. This makes it awkward to define functions

expliciﬂy which have to be rewntien and used as relations.

Functional programming is based on the use of functions as primitive objects and shares with logic
programming several aspects like the use of recursion as the main control structure and reliance on

e e

66

mathematical logic (especially lambda calculus).

Several attempts to combine advantages of both formalisms in one framework originated with the
LOGLISP language of ROBINSON and SIEBERT [RS].

Direct definition of functions by means of equations leads to the problem how in the framework of
logic programming equality is to be handled. Solutions to this problem involve the use of extended
unification, where identity is replaced by equality derivable from axioms defining functions, the use of
term rewriting techniques in the form of a narrowing procedure and the use of some subset of the stan-
dard equality axioms EQ defined in Section 5.9 written in a clausal form.

Recent proposals in this area are collected in DE GROOT and LINDSTROM [dGL] which is a standard

reference in this domain. See also BELLA and LEevi [BL], GALLIER and RaaTz [GR1], and VAN
EMpEN and YURawa [VEY].

8.6. Applications in artificial intelligence

Strictly speaking, logic programming is just a restricted form of automatic theorem proving. Various
proposals of extending it to more powerful fragments of certain logics can be seen as attempts to
increase its expressive and manipulative power while preserving efficiency. In particular a substantial

effort has been made to adapt it to the needs of artificial intelligence. While research in this area is of

a much more practical character, we can still single out out certain investigations of more theoretical
nature.

Use of logic programming as a formalism for knowledge representation and reasoning was advo-
cated in KOWALSKI [K1]. Analysis and implementation of more powerful logics and various forms of
reasoning in the framework of logic programming was undertaken by FARINAS DEL Cerro [Fa] for
modal logic, by vaN EMDEN [VE] for quantitative reasoning and by PoOLE [Po] for hypotbetical rea-
soning. IR

More practical work in this area deals with natural language processing, the original application
domain of PROLOG (sec e.g. the special issue of Journal of Logic Programming [JLP]) and with the

use of logic programming and PROLOG for the construction of expert system shells (see e.g.
BraTKO [B] and WALKER [W].) , _

APPENDIX

Short history of the subject

The following is a list of papers and events which have shaped our views of this subject. Obviously,
this account of the history of the subject is by no means objective (as none is).

1972 A. Colmerauer and R. Kowalski collaborated to develop from resolution theorem proving a
programming language.

1973: COLMERAUER et al. [CKRP] implemented PROLOG.

1974: KowaLsgl [K] proposed logic (programming) as a programming language and introduced
what is now called SLD-resolution.

1976: Van EmpEN and KowaLskl [VEK] studied the semantics of logic programs and introduced
the ubiquitous immediate consequence operator Tr.

1978: RETeR [R] proposed in the context of deductive databases the Closed World Assumption rule
as a means of deducing negative information.

67

1978: Crark [C] introduced the Negation as Failure rule as an effective means of deducing negative

information for logic programs and proposed the completion of a program, comp (P), as a description
of its meaning.

1979: Kowaiskl [K1] analyzed logic programming as a formalism for kn

owledge Tepresentation
and problem solving.

1979: KowaLsSKl K2} investigated logic programming as a formalism for a systematic development
of algorithimns.

1981: Crark and GREGORY [CG] proposal a parallel version of logic programming which
influenced subsequent language proposals in this area.

1982: Logic pmgramming was chosen as the basis for a new programming language in the Japanese
Fifth Generation computer system project.

1982: Apt and VAN EMDEN [AVE] characterized the SLD-resolution, Negation as Failure rule and
completion of a program by means of the operator Tp and its fixpoints.

1983: In the book [CT] edited by K.L. Clark and S-A. Tarnlund, a number of articles were col-

Jected that indicated a wide scope of applications of logic programming and revealed its manipulative
and expressive power.

1983: JAFFAR, LasSEZ and Liovp [JLL] proved completeness of the Negation as Failure rule with
respect to the completion of a program.

1984: Lrovp [L] gathered in his book several results on logic programming in 2 single, uniform
framework.

1984: A.J. Robinson tounded the Journal of Logic Programming.

1986:1In the book [dGL] edited by D. De Groot and G. Lindstrom, Sever

al approaches aiming at
an integration of logic and functional programmng were presented.
1986: ApT, BLAIR and WALKER [ABW] and VAN GeLDER [VG] identified stratified programs as a

natural subclass of general logic programs and proposed stratification as a means of handling negative
information.

1986: J. Minker organized the Workshop on Foundations of Deductive Databases and Logic Pro-
gramming which brought together researchers working in both areas.

Note
We use in this paper the terminology of LLoyD [L] which differs from that of LLoyp [L1}. In LLOYD

[L1] a program 1 called a definite program and in turD a general prograim i called a normal program.
Similar terminology is used there for goals and general goals.

68

Acknowledgements

We would like to thank Marc Bezem, Roland Bol, Stephane Grumbach and Jan Willem Klop for

detailed comments on the first version of this paper. Also, we profited from discussions with Howard

Blair, Lawrence Cavedon, Maarten van Emden, Jean Gallier, Joxan Jaffar, Jean-Louis Lassez, John

Lloyd, Michael Maher, Teodor Przymusifiski, John Shepherdson and Rodney Topor who commented
on the subject of this paper in four languages. R Our task was significantly simplified thanks io John
Lloyd who collected in LLoYD [L] most of the results presented here in a single framework. Figure 3
was reproduced with his permission. We would like to thank Eline Meys and Ria Riechelmann-Huis
for typing the continuously growing and changing manuscript.

REFERENCES

[AN] H. ANDREKA and 1. NEMETI, The Generalized Completeness of Horn Predicate Logic as a Pro-
gramming Language, Acta Cybernetica 4, 1978, 3-10.

[AB] K.R. APT and H. BLAIR, Arithmetic Classification of Perfect Models-of Stratified Programs,
Technical Report CS-R8810, Centre for Mathematics and Computer Sciences, Amsterdam,
1988, also to appear in: Proc. 5th International Conference on Logic Programming, The MIT
Press, Cambridge Mass., 1988.

[ABW]K.R. APT, HA. BLAIR and A. WALKER, Towards a Theory of Declarative Knowledge, in: Foun-
dations of Deductive Databases and Logic Programming (Minker, J., ed.), Morgan Kaufmann,
Los Altos, 1988. :

[AVE] K.R.APT and M.H. van EMDEN, Contributions to the Theory of Logic Programming, J. ACM,
vol. 29, No. 3, 1982, 841-862.

[ABBM]C. AQUILANO, R. BARBUTI, P. BOCCHETTI and M. MARTELLI, Negation as Failure. Complete-
ness of the Query Evaluation Process for Horn Clause Programs with Recursive Definitions, Jour-
nal of Automated Reasoning, vol. 2, 1986, 155-170. - :

[BR] F. BANCILHON and R. RAMAKRISHNAN, An Amateur’s Introduction 1o Recursive Query Process-
ing Strategies, in: Proc. ACM Int. Conf. on Management of Data, Washington, D.C., 1986,
16-52. ’

[BM] R. BarBUTI and M. MARTELL], Completeness of the SLDNF-resolution for a class of logic pro-
grams, in: Proc. 3rd International Conference, on Logic Programming, Lecture Notes in Com-
puter Science, vol. 225, Springer-Verlag, 1986, 600-614.

[BL] M. BeLLia and G. LEVI, The Relation between Logic and Functional Languages, a Survey, Jour-
nal of Logic Programming, vol. 3, 1986, 217-236.

[BH] N.Bmorr and R. Huli, Positivism Versus Minimalism in Deductive Databases, in: Proc. of the
sth ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, Cambndge,
Mass., 1986, 123-132.

[Bi] G. BIRKHOFF, Lattice Theory, American Mathematical Society Colloquium Publications, vol.
25, 1973.

[Bl] H.A. BLAR, The Recursion-Theoretic Complexity of Predicate Logic as a Programming
Language, Information and Control, vol. 54, No. 1-2, 1982, 25-47.

[B2] H.A. BLAR, Decidability in the Herbrand Base, manuscript (presented at the Workshop om
Foundations of Deductive Databases and Logic Programming, Washington, D.C., August
1986).

[BK] K.A. BoweN and R.A. KOWALSK1, Amalgamating Language and Metalanguage in Logic Pro-

gramming, in: Logic Programming (Clark, K.L. and S.-A. Tarnlund, eds.), Academic Press,
New York, 1982.

[Bo] E. BORGER, Unsolvable Decision Problems for Prolog Programs, in: Computation Theory and

Logic (E. Borger, ed.), Lecture Notes in Computer Science, vol. 270, Springer-Verlag, 1987,
37-48.

[Bol] E. BORGER, Logic as Machine: Complexity Relations between Programs and Formulae, n:
Current Trends in Theoretical Computer Science (E. Borger, ed.), Computer Science Press,

69

1988.

[B] L BRATKO, PROLOG Programming for Artificial Intelligence, Addison Wesley, 1986.

[BW] D. BrOUGH and A. WALKER, Some Practical Properties of Logic Programming Interpreters, in:
Proc. of the Japan FGCS84 Conference, 1984, 149-156.

[Ca] J.A. CAMPBELL, (ed.), Implementations of Prolog, Ellis Horwood, 1984.

[CL] L. CavEDON, and J. LLOYD, A Completeness Theorem for SLDNF-Resolution, Technical Report
87/9, Department of Computer Science, University of Melbourne, 1987.

[CH] AK. CHANDRA and D. HareL, Homn Clause Queries and Generalizations, Journal of Logic Pro-
gramming, vol. 2, No. 1, 1985, 1-15.

[C] KL CLARK, Negation as Failure, in: Logic and Data Bases, (Gallaire, H. and J. Minker, eds)
Dlenum Press, New York, 1978, 293-322. ’

[C1] KL. CLARK, Predicate Logic as a Computational Formalism, Research Report DOC 79/59
Department of Computing, Imperial College, 1979. ’

[CG] K.L. CLark and S. GREGORY, A Relational Language for Parallel Programming, in: Proc. ACM

Conference On Functional Programming Languages and Computer Architecture, Portsmouth,
N.H., 1981, 171-178.

[CG1] K.L. CLARK and S. GREGORY, PARLOG: 4 Parallel Logic Programming Language, ACM
Trans. on Prog. Lang. and Systems, vol. 8, No. 1, 1986, 1-49.

[CT] Kgé,z CLarRK and S-A. TARNLUND (eds.), Logic Programming, Academic Press, New York,
1982.

[CKRPIA. COLMERAUER, H. Kanoul, P. ROUSSEL and R. Pasgro, Un Sysiéme de Communication

Homme-Machine en Francais, Groupe de Recherche en Intelligence Artificielle, Universite
’ Aix-Marseille, 1973.

[cp] P.T. Cox and T. PIETRZYKOWSKI, Deduction Plans: a Basis for Intelligent Backiracking, in:
IEEE PAMI, vol. 3, 1981, 52-65.

[DM] S.K. DEBRAY and P. MisHRa, Denotational and Operational Semantics for PROLOG, Journal of
Logic Programming, vol. 5, No. 1, 1988, 61-91.

D] H DECKER, Integrity Enforcement in Deductive Databases, in: Proc. 1st Int. Conf. on Expert
Database Systems, Charleston, S.C., 1986.

[VE] M.H. vaN EMDEN, Quantitative Deduction and its Fixpoint Theory, Journal of Logic Program-
ming, vol. 3, No. 1, 1986, 37-53.

[VEK] M.H. VAN EmDEN and R.A. KowaLskl, The Semantics of Predicate Logic as a Programming
Language, 3. ACM, vol. 23, No. 4, 1976, 733-742.
[VEY] M. VAN EvpEN and K. YUKAWA, Logic Programming with Equations, Journal of Logic Pro-

gramming, vol. 4., No. 4, 1987, 265-288.

[Fa] L. FARINAS pEL CERRO, MOLOG: A System that extends PROLOG with Modal Logic, New
Generation Computing, vol. 4, No. 1, 1986, 35-50.

[F] M. FrITiNG, Partial Models and Logic Programming, Theoretical Computer Science, vol. 48,
1986, 229-253. '

[F1] M Fi1TING, A Deterministic PROLOG Fixpoint Semantics, Journal of Logic Programming, vol.
2, No. 2, 1985, 111-118.

[F2] M. FITTING, A Kripke-Kleene Semantics for Logic Programs, Journal of Logic Programming,
vol. 2, No. 4, 1985, 295-312.

[F3] M. FrIimiNG, Computability Theory, Semantics, and Logic Programming, Oxford University
Press, New York, 1987.

[GMNJH. GALLAIRE, J. MiNker and J.M. Nicoras, Logic and Databases: a Deductive Approach,
ACM Computing Surveys, vol. 16, No. 2, 1984, 153-186.

Gl I GALLIER, Logic for Computer Science, Harper & Row, Inc., 1986.

[GR] J. GALLIER and S. Raatz, A Graph-based Interpreter for General Horn Clauses, Journal of
Logic Programming, vol. 4, No. 2, 1987, 119-156.

[GR1] J. GALLIER and S, RaaTz, Extending SLD-Resolution 10 Equational Horn Clauses using E-

70

Unification, Technical Report, Department of Computer and Information Science, University
of Philadelphia, 1987.

[GM] J.A. GoGUEN and J. MESEGUER, Equality, Types, Modules and (Why Not?) Generics for Logic
Programming, Journal of Logic Programming, vol. 1, No. 2, 1984, 179-210.

[dGL] D. pE GrOOT and G. LiNDsTROM (eds), Logic
tions, Prentice-Hall, Englewood Cliffs, N.J., 1986.

[HP] L. HenscHEN and H.S. Park, Compiling the GCWA in Indefinite Deductive Databases, in:
Foundations of Deductive Databases and Logic Programming, (Minker, J., ed.), Morgan Kauf-
mann, Los Altos, 1988.

[He] J. HERBRAND, Logical Writings, (W.D. Goldfarb, ed.), D. Reiter Publishing Company, Dor-
drecht, 1971. '

{(Hl R. Hni, LUSH-Resolution and its Completeness, DCL Memo 78, Department of Artificial
Intelligence, University of Edinburgh, 1974.

[IM] A. ITal and J.A. MAKOWSKY, Unification as a Complexity Measure for Logic Programming,
Journal of Logic Programming, vol. 4, No. 2, 1987, 105-118.

[JLL] J. JAFFAR, J.-L. Lassez and J.W. LLOYD, Completeness of the Negation as Failure Rule, in:
Proc. IJCAI-83, Karlsruhe, 1983, 500-506.

[JS] J. JaFFAR and P.J. STUCKEY, Canonical Logic Programs, Journal of Logic Programming, vol. 3,
No. 2, 1986, 143-155.

[JLP] Journal of Logic Programming, vol., No. 4, Special Issue on Natural Language and Logic Pro-
gramming (M.C. McCoro, V. Danw and H. ABRAMSON, guest eds.), 1986.

[Ka] P.KANELLAKIS, Elements of Relational Database Theory, This volume.

[KM] J.W. Kiop and J.J.Cu. MEYER, Toegepaste Logica: Resolutie Logica en Epistemische Logica,
Course Notes, Free University Amsterdam (in Dutch), 1987. o L

(K] RA. KOWALSK], Predicate Logic as a Programming Language, in: Proc. IFIP *74, Stockholm,
North Holland, 1974, 569-574. o

[K1] R.A. KowALsKl, Logic for Problem Solving, North Holland, New York, 1979.

[K2] R.A. KOWALSK], Algorithm = Logic + Control, C. ACM, vol. 22, No. 7, 1979, 424-435,

[K3] R.A. KOWALSK], The Relation Between Logic Programming and Logic Specification, in:
Mathematical Logic and Programming Languages, (Hoare, CA.R. and J.C. Shepherdson, eds),
Prentice-Hall, Englewood Cliffs, N.J., 1985, 11-27.

[KK] R.A. KOWALSKI and D. KUEHNER, Linear Resolution with Selection Function, Artificial Intelli-
gence 2, 1971, 227-260.

[Ku] K. KuNEN, Negation in Logic Programming, Journal of Logic Programming, vol. 4, No. 4,
1987, 289-308.

[Kul] K. KUNEN, Answer Sets and Negation as Failure, in: Proc. 4th International Conference on
Logic Programming, The MIT Press, Cambridge, Mass., 1987, 219-228.

[Ku2] K. KuNEN, Signed Data Dependencies in Logic Programs, Technical Report No. 719, Depart-
ment of Computer Science University of Wisconsin, 1987, to appear in Journal of Logic Pro-
gramming.

[LM] J.-L. Lassez and M.J. MAHER, Closures and Fairness in the Semantics of Programming Logic,
Theoretical Computer Science, vol. 29, 1984, 167-184.

[LMMJJ.L. LASSEZ, M.J. Maner and K. MarrioTT, Unification Revisited, in: Foundations of Deduc-
tive Databases and Logic Programming, (Minker, J., ed.), Morgan Kaufmann, Los Altos, 1988.

[Li] V. Lirscurrz, On the Declarative Semantics of Logic Programs with Negation, in: Foundations
of Deductive Databases and Logic Programming (Minker, J. ed), Morgan Kaufmann, Los
Altos, 1988.

[L8] J.W.LLoYp, Foundations of Logic Programming, Springer-Verlag, Berlin, 1984,

[L1] J.W.LioYp, Foundations of Logic Programming, Second Edition, Springer-Verlag, Berlin, 1987.

[LS] J.W. Lioyp and J.C. SHEPHERDSON, Partial Evaluation in Logic Programming, Technical
Report CS-87-09, Dept. of Computer Science, University of Bristol, 1987. '

Programming, Functions, Relations and Equa-

[h!

[LST] J.W. LLoYD, EA. SonNENBERG and R'W. TOPOR, Integrity Constraint Checking in Stratified
Databases, Journal Logic Programming, vol. 4, No. 4, 1987, 331-345.

[LT] J.W.LioyD and R. TOPOR, A Basis for Deductive Databases II, Journal of Logic Programming,
vol. 3, No. 1, 1986, 55-67.

[Ma] M. MAHER, Equivalences of Logic Programs, in: Foundations of Deductive Databases and
Logic Programming, (Minker, J., ed.), Morgan Kaufmann, Los Altos, 1988.

M] YL MAanNIN, A Course in Mathematical Logic, Springer»Veﬂag, New York, 1977.

[MM] A. MARTELLI and U. MONTANARIL, An Efficient Unification Algorithm, ACM Trans. on Prog.
Lang. and Systems, vol. 4, No. 2, 1982, 258-282.

[Me] E MENDELSON, Introduction to Mathematical Logic, ond Edition, Van Nostrand, Princetion,
N.J. 1979.

Mi] T MINKER, On Indefinite Databases and the Closed World Assumption, in: Proc. of the 6th
Conference OB Automated Deduction, (D.W. Loveland, ed.) Lecture Notes in Computer Sci-
ence 138, Springer-Veﬂag, Berlin, 1982, 292-307.

[Mil] J. MIN’KERE) Perspectives in Deductive Databases, Journal of Logic Programming, Vol. 5, No. 1,
1988, 33-60.

Myl A MycroOFT, Logic Programs and Many-valued Logic, in: Proc. of Symposium on Theoretical
Aspects of Computer Science, Lecture Notes in Computer Science 166, Springer-Verlag, Berlin,
1984, 274-286.

[N] L. NaisH, Negation and Control in PROLOG, Lecture Notes in Computer Science 238,
springer-Verlag, Berlin, 1986.

[Na] S.A. NaQvh A Logic for Negation in Database Systems, in: Foundations of Deductive Data-
bases and Logic Programming, (Minker, J., ed.), Morgan Kaufmann, Los Altos, 1988.

NS} JF. N AUGHTON and Y. SAGIY, A Decidable Class of Bounded Recursions, in: Proc. 6th ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, San Diego, 1987, 227-2317.

[PW] MS. PaTERSON and M.N. WEGMAN, Linear Unification, 3. Computer and System Sciences,
16, No. 2, 1978, 158-167.

[Po}] DL. POOLE, Default Reasoning and Diagnosis as Theory Formation, Technical Report 86-08,
Departmem of Computer Science, University of Waterloo, 1986.

Pl T PRZYMUSINSKL On the Semantics of Stratified Databases, in: Foundations of Deductive
Databases and Logic Programming, (Minker, J., ed.), Morgan Kaufmanz, Los Altos, 1988.

Py T PRZYMUSINSK, Non-Monotonic Reasoning vs Logic Programming: A New Perspective, 10
appear in Handbook on the Formal Foundations of AL, Y. Wilks and D. Patridge, eds.

[R] R. RETER On Closed World Data Bases, in: Logic and Data Bases, (Gallaire, H. and J.
Minker, eds), Plenum Press, New York, 1978, 55-76.

[Ro] JA. ROBINSON, 4 Machine-oriented Logic Based on the Resolution Principle, 3. ACM, vol. 12,
No. 1, 1965, 23-41.

[RS] JA. ROBINSON and EE. SiEBErT, LOGLISP: Motivation, Design and Implementation, in: Logic
pmgramming, (Clark, K.L. and S.-A. Tarnlund, eds), Academic Press, New York, 1982, 299-
313.

[SS] J. SEBELIX and P. STEPANEK, Horn Clause Programs for Recursive Functions, in: Logic Pro-
grammin& (Clark, K.L. and S_A. Tarnlund, eds), Academic Press, New York, 1982, 324-340.

[Sh] EY. SHAPIRO, A Subset of Concurrent PROLOG and its Interpreter, Technical Report TR-003,
1COT, Tokyo, 1983.

[She] J.C. SHEPHERDSON, Negation as Failure: A Comparison of Clark’s Completed Data Base and
Reiter’s Closed World Assumption, Journal of Logic Programming, vol. 1, No. 1, 1984, 51-79.

[Shel] J.C. SHEPHERDSON, Undecidability of Hom Clause Logic and Pure Prolog, Unpublished
manuscript, 1985.

[She2] J.C. SHEPHERDSON, Negation in Logic Programming, in: Foundations of Deductive Databases
and Logic Programming, (Minker, J., ed.), Morgan Kaufmann, Los Altos, 1988.

[Shm] O. SuMuELl, Decidability and Expressiveness Aspecis of Logic Queries, in: Proc. of the 6th

vol.

%(;iNzlglGACT -SIGMOD Symposium on Principles of Database Systems, San Diego, 1987,

J. SHOENFIELD, Mathematical Logic, Addison-Wesley, Reading, Mass., 1967.

1.H. SIEKMANN, Universal Unification, in: Proc. of the 7th Conference on Automated Deduc-
tion, Lecture Notes in Computer Science 170, Springer-Verlag, Berlin, 1984, 1-42.

R.M. SMULLYAN, Theory of Formal Systems, Annals of Mathematical Studies, vol. 47, Prince-
ton University Press, 1961.

E.A. SONENBERG and R. ToPOR, Logic Programs and Computable Functions, Technical Report
87/5, Department of Computer Science, University of Melbourne, 1987.

L. STERLING and E.Y. SHAPIRO, The Art of Prolog, The MIT Press, Cambridge, Mass. 1986.

A. TarsKi, 4 Lattice-theoretical Fixpoint Theorem and its Applications, Pacific J. Math. vol. 5

1955, 285-309. | '
S.-A. TARNLUND, Horn Clause Computability, BIT, vol. 17, No. 2, 215-226.

A. vAN GELDER, Negation as Failure using Tight Derivations for General Logic Programs, in:
Foundations of Deductive Databases and Logic Programming (Minker, J., ed.), Morgan Kaut-
man, Los Altos, 1988.

L. VIEnLLE, A Database-Complete Proof Procedure Based on SLD-Resolution, in: Proc. of the
Fourth International Conference on Logic Programming, 1987, The MIT Press, 74-103.

A. WALKER, Syllog: an Approach to PROLOG for Non-programmers, in: Logic Programming
and its Applications, (Van Caneghem, M. and D H.D. Warren, eds), Ablex, 1986, 32-49.

[WML]D. WoLFRAM, M. MaHER and J.L. Lassez, 4 Unified Treatment of Resolution Strategies for

Logic Programs, in: Proc. of the Second International Conference on Logic Programming,
1984, 263-276. ’

