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Abstract

This paper presents a scheme for intelligent backtracking in Prolog programs. Rather than doing the
analysis of unification failures, this scheme chooses backtrack points by doing the analysis of data depen-
dency between literals. The other data-dependency based methods previously developed can not be easily
incorporated in the Warren's abstract machine, and are not able to perform across-the-clause backtracking
intelligently. Qur scheme overcomes all these problems. For many problems this scheme is just as effec-
tive as intelligent backtracking schemes based upon (more accurate) analysis of unification failure, and
yet incurs small space and time overhead. To demonstrate the usefulness of our scheme, we have
modified a Warren’s abstract machine simulator to incorporate our intelligent backtracking scheme, and
have evaluated its performance on a number of problems. _
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1. Introduction

The backtracking method used in standard Prolog implementations is uninformed:; i.e., once
a goal fails, backtracking is done to the most recent choice point (that has untried altematives)
even if this choice point has nothing to do with the current failure. This kind of *‘naive’’ back-
tracking can result in a lot of unnecessary search, as the same failure can occur many times before
an appropriate choice point is selected. A number of intelligent backtracking schemes have been
developed to avoid this kind of redundant backiracking [1], [8], [19], [2], [20].. Most of these . -
approaches perform unification failure analysis to select a backtrack point. This analysis entails .
substantial overhead, which makes the scope of their practical application rather limited. An
intelligent backtracking scheme is useful only if the overhead of the scheme is less than the sav-
ings due to reduced backtracking.

In this paper we present a scheme for intelligent backtracking in Prolog programs that is
based upon the analysis of data dependency between different literals. A data-dependency-based
method was first proposed by Conery & Kibler [7] in the context of AND/OR process model.
Lin, Kumar & Leung [18] and Woo & Choe [25] found that Conery’s method was incorrect, and
presented correct methods for intelligent backtracking. Although these methods are quite suitable
in the context of AND/CR process model, they can not be easily incorporated in the Warren’s
abstract machine (WAM). They also require non-trivial overhead to construct the dependency
graph dynamically in the sequential execution of Prolog. Furthermore, these methods construct
dependency graphs at the clause level (i.e., a separate dependency graph for each clause); hence
they are not able to perform across-the-clause backtracking intelligently. The scheme presetited
in this paper overcomes all these problems. It (implicitly) maintains a single dependency graph
for the whole proof tree, permitting intelligent backtrécking across the clause. The overhead for
maintaining the implicit graph is minimal, and the scheme easily integrates with WAM.

For many Prolog programs, our scheme is just as effective in eliminating redundant back-
tracking as other schemes that are based upon (more accurate) analysis of unification failure, and
yet it incurs small space and time overhead. To demonstrate the usefulness of our scheme, we




have modified PLM level I simulator [11} (which is a variation of Warren’s abstract machine) to
incorporate our intelligent backtracking scheme, and have investigated its performance on a
number of problems. An earlier version of this paper appears in [16].

Section 2 presents an abstract version of our intelligent backtracking algorithm. Section 3
discusses how this scheme is incorporated in PLM. - Section 4 compares our scheme with intelli-
gent backtracking schemes developed by other researchers. Section 5 presents performance
results of our scheme on various problems, and analyzes overheads and gains due to the scheme.
Section 6 presenis a simpler (but less accurate) version of our scheme that has smaller overhead.
Section 7 contains concluding remarks and discusses relevance of our approach to parallel execu-
tion of logic programs.

2. The Intelligent Backtracking Scheme

2.1 Preliminaries

A literal P is dependent upoﬁ those literals that have contributed to the current bindings of
variables in the arguments of P. This dependency is captured in a dependency graph in which
each node is a literal and there is an arc going from node Q to node P if P is dependent upon Q.
Next we discuss how to construct a dependency graph of literals in a proof tree.

In Prolog a variable V is assigned a value (which could be a constant, a structure, a list or

some other variable) when some goal® P is unified with some clause head. Due to the singlé |

assignment property of logic programs, once some value is assigned to V, it is not changed unless
failure occurs. (Upon failure a new clause head may be unified with P, which may result in a new
value being assigned to V.) Note that variables in the term assigned to V will continue to be
assigned values as goals are matched with clause heads during the execution of logic program.
Whenever unification of a goal P with some clause head results in assignment of a value to a vari-
able, we attach a tag P to the variable V. (Upon failure if backtrackmg is done to P, then the
assignment of both the tag and the value to V are undone.) '

At any time during execution, for any variable V (that has been created) there is a set of
goals generators(V) that have contributed to the current value of V. This set of goals consists of
precisely the tag of V and the tags of other variables that exist in the term assigned to V. If

XX are the vanables in the arguments of a goal P, then each literal in {generators(X)

3 We use the terms "goal” and "literal” to mean the same thiﬁg.
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I1<i<n} is a predecessor of P in the dependency graph. Thus by merely keeping a tag with each
variable, we can find predecessors of any literal in the dependency graph.

Fig. 1 shows a Prolog program, and the tags of relevant variables after certain goals hav_é
been invoked. For the purpose of illustration, each goal has been given a number. This number
is used to tag variables when they become bound during the invocation of the corresponding goal
(in reality, the address of the e¢hoice point of the goal is used for tagging).

If a'goal P fails to unify with any of the clause heads that can possibly match P, then clearly
the current values of variables X, that occur in the arguments of P are not satisfactory. The bind-
ings of variables X, will not change unless at least one goal in
modifying(P) ={parent of P} *U{predecessors of P in the dependency graph}
is unified with a clause head that is different from the current one. Let Q be the most recent goal
in modifying(P). Clearly, if backtracking is done to any goal that is more recent than Q, then P
would again fail because the values of X, (the cause of unification failure) 'would remain

unchanged. Hence, in our intelligent backtracking scheme, we directly backtrack to Q and thus
skip all the backiracking points that are more recent than Q and less recent than.P. Since back-
tracking to Q alone may not cure the failure of P (because other goals in modifying(P) may be
culprits), we pass modifying(P)-{Q} to Q. If later Q fails, then backtracking point is selected
' from modifying(Q)umodifying(P)-{Q}. To keep track of the backtracking goals of other
relevant goals, we maintain B-list with each goal P.. B-list(P,) represents those goals that may be

able to cure the failure of the goals that have directly or indirectly caused backtracking to P;. The

following is a precise description of our intelligent backtracking scheme.

2.2, The Algorithm

When P, is invoked for the first time (i.e., when P. is unified for the first time with the head
of a clause), initialize B-list(P,) to contain the parent of P. Whenever some goal P fails, do the
following,.

1. Let TEMP = B-list(P){ generators(X))| 1<i<n}, where X.'s are the variables that occur in

the arguments of P. Select P m such that P_ is the most recent choice point in TEMP.

4 The parent of P is the goal with whom the head of the clause containing P has been
unified. '
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2.  AJdTEMP-{P_}10 B-list(Pm) and backtrack o P_.

In the program of Figure 1, when r(X) is invoked, it fails. At this time, generators(X) =
{[1}, [5]} and the parent of r(X) is {1]. Our intelligent backtracking scheme chooses goal {5] (i.e.,
e(U)) for backtracking, as it.is the most recent goal in parent(r(X))ugenerator(X). In WAM, the
backtracking would be first done to [3] and then to [6] before reaching [5].

3. Implementation details

We have modified PLM level I simulator to implement our intelligent backtracking scheme.
PLM [12], [11] is a special-purpose high-performance PROLOG machine based on Warren's
abstract machine (WAM) [23]. In the following discussion, familiarity with WAM is assumed.

Whenever we try to solve a goal P (i.e., a literal P), we create a choice point for P. In addi-
tion to keeping the information that is normally kept in a choice point, we also keep information
about the number of arguments of P, and a pointer to B-list for P. B-list(P) is kept on the heap,
and 1s initialized to contain the parent of P when the choice point for P is created. In the process
of unifying P with a clause head, whenever a variable is assigned a value (which could be another
variable, constant, list or structure), the variable is tagged with the address of the choice point of
P. The tag is kept in a word that follows the content cell. Since, in our modified version of PLM,
there is always a unique choice point for a goal that has been solved or that is being solved, we
will use P to refer to both the goal and its choice point. '

Note that in WAM the choice point for P is created only if there are more than one applica-
ble clauses available for P. Furthermore, in WAM the choice point of P is discarded just before
trying the last applicable alternative for P. In our implementation, in both of these cases we have
to keep the choice point around, as B-list and arguments of Pare needed in case some failure hap-
pens to cause backtracking to P.

Whenever failure occurs (in unification), the current (i.e., the most recent) choice point is
checked for an altemate clause. If one is available, it is tried. Otherwise intelligent backtracking
is invoked as follows. (Note that in the standard WAM, the most recent choice point would
definitely have at least one alternate clause available; otherwise it would have been eliminated.)
Arguments of the goal P corresponding to the current choice point are inspected to collect
generators(X,) for cach variable X, that occurs in the arguments of P. These are put into the B-list

of P in such a way that B-list remains ordered (i.e., the most recent choice point comes first) and
contains no duplications. Head P_ of the modified B-list(P) is chosen for backtracking, and the



remaining part of B-list(P) is merged into B-list(P ).

Implementing CUT

In PLM whenever CUT is encountered in the body of a clause, all the choice points from
the top of the stack to P (where P is the goal that was unified with the head of the clause contain- -
ing CUT) are eliminated. In our implementation, they can not be simply eliminated, as they may
have been used as tags for variables that may occur in the arguments of goals appearing after the
CUT symbol. CUT can be handled in our scheme if one of the following is done after encounter-
ing CUT.

1. For every variable that has been assigned a value after the invocation of P (where P is the
parent goal of CUT), change its tag to P. This can be done by maintaining another TRAIL
like stack to keep track of all the variables that have been assigned values. (TRAIL in
WAM keeps track of only some variables.) Now eliminate all the choice points between
CUT and P.

2.  Mark all the choice points between CUT and P with a special flag. In future, if backtrack-
ing is done to any such choice point, then'eliminate all choice points untit P.

We have chosen to irﬁplem_ent the second alternative, as it was easier to implement, and it
also requires less overhea-d'in terms of CPU time. Note that the generator/consumer approach for
finding culprits for a failure works fine as long as CUT is used only as a device for saving search
space. If CUT is used to perform non-monotonic reasoning, then it is possible that some solu-
tions can be missed by this scheme. Consider the following example:

goal: - p(X,T), q(X).

Program:

1y p(Y.a).

2)  plb).

3 q@) r(Z,0), !, s(U).

4) rba) : b
5 r(c,b).

6) s(b).

After p(X,T) is successfully unified with the head of the clause 1, T is bound to a, Y is bound to
X, and X remains unbound. When the execution continues, q(X) fails. At this point generator(X)



= nil, and B-list(q(X)) = {top goal}. Hence backtracking is done to the top goal, and the program
halts without finding any solution. If the clauses used to solve g(X) are pure. Hom Clauses, then
the result would be correct because if the execution of q(X) cannot succeed for unrestricted value'
of X, it should not succeed for any specific value of X. However, since clause 3 has CUT, it is no
longer a pure Hom Clause.  In the above example, q(X) succeeds if X = c, as clause 4 would be
avoided in solving 1(Z,U) and -a solution can be generated using clauses 2, 3, 5, and 6.

The problem happened because, for a goal p, generator(X) contains only those goals that
have made any non-variable binding to the variables X in the arguments of p. The goals that
"couple” variables X in the arguments of .p with other variables (and hence have the potential of
changing the bindings of X via other clauses) are not in generator(X). If the proof tree under-
neath p has nonlogical operators such as CUT or NOT, then p should become dependent upon all
those goals that are "coupled" with the variables X in the argument of p; i.e. goals that have
changed the bindings of these variables as well as those goals that could have changed them.
Let’s designate this new set as coupied(X); i.e., the set-of goals that are coupled to variable X.
Clearly, if a goal has a noh-mondtonic operator underneath, then for each variable X in the argu-
ment of p, we need to compute coupled(X) instead of generator(X) to construct modifying(p).
Note that the data structure that will permit the coﬁipﬁtatibn of coupled(X) is a bit more compli-
cated. Our current implementation does not create such data structure. Therefore, it can only
execute those programs that use CUT primaﬁly for the purpose of saving search space.

4. Comparison with Related Research

4.1 Data-dependency Based Methods

The data-dependency based methods of Lin, Kumar & Leung [18] and Woo & Choe [25]
use dependency graphs at the clause level. ‘These graphs are already available (from the forward
execution) if AND parallelism is being executed in the framework of AND/OR process model. In

principle, the same technique can be used to perform intelligent backtracking in the sequential ~

execution of Prolog. But constructing dependency graphs at the clause level (in the sequential
execution) can be very expensive, and it is awkward to incorporate the clause-level backtracking
scheme in WAM. The scheme presented in this paper was discovered when we were trying to
find an efficient sequential implementation of our previous scheme. The main feature of the new
scheme is that it uses one dependency graph for the wholeproof tree. As we saw in Section 2,
this graph is implicitly available if we keep a tag with each variable. Since this method performs
backtracking at the proof-tree level, it integrates well with WAM and it is more powerful than
clause-level data dependency based backtracking schemes. This is illustrated in the following
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S. Performance Results

We have tested our scheme on a variety of problems. To compare the performance of our
scheme with other schemes [3], [2], we have run it on the same programs that were used to evalu-
ate these schemes.

We have modified the PLM level I simulator to provide us the number of machine cycles
required by each PLM instruction. The computation of machine cycles is based upon the infor-
mation provided in [11}, [12]. For each program, we have collected the following three figures:

(i) the CPU time taken by the simulator; (ii) the number of PLM instructions executed; (iii) the

number of machine cycles executed. Of the three, only the number of machine cycles can give us
an accurate picture, as the CPU time consumed is greatly determined by the simulator overhead
(in addition to the overhead due to intelligent backtracking), and different machine instructions
can consume varying amount of CPU time. Hence, we can only provide a rough comparison of
our scheme with the schemes in [3], {2], as in [2] only t_lie CPU time taken by their interpreter
was reported, and in [3], only' the number of PLM instructions executed was reported.

These results and the results presented in [3], [2] are summarized in Table I. Columns II
and TII show CPU time taken, number of machine instructions, and number of machine cycles for
naive and our intelligent backtracking schemes. Column IV shows the % difference between
naive and our approach in terms of CPU time, machine instructions and machine cycles. Column
V shows the difference between naive backtracking and Chang & Despain’s semi-intelligent
backtracking scheme in terms of number of instructions as reported in [3]. Column VI shows the
difference between naive backtracking and Bruynooghe & Pereira’s scheme in terms of CPU time
as reported in [2].

As seen from Table I, the performance of our scheme in terms of CPU time is consistently
better than in terms of the number of machine cycles. This happens because the overhead of run-
ning the PLM simulator is quite large, and it tends to overshadow the overhead due to inteiligent
backtracking. In contrast, PLM is a high performance Prolog architecture; in terms of the number
of machine cycles executed, it is extremely efficient (see [1 1]) Hence even small overhead due
to intelligent backtrackmg 1mmedlately shows up. We can expect the same phenomenon to occur
in the expenments of Bruynooghe & Pere1ra, i.e., since their naive interpreter most likely has 4
large overhead (compared with the PLM compiler with naive backtracking), the overhead caused
by their intelligent backtracking scheme appears smaller than it really is.

Our scheme always performs better than Bruynooghe & Pereira’s scheme except for the
simple program for solving queens problem. For this program, generator/consumer analysis is
not precise enough to eliminate any backtracking. It is not possible to provide a direct
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comparison of our approach with Chang & Despain’s static backtracking scheme, as some
instructions in our modified PLM take more machine cycles (becausé of intelligent backtracking
overhead) than similar instructions in PLM. (Our scheme always does better in terms of .the
number of PLM insiructions executed.) But the overhead of Chang and Despain’s approaéh is
very small, as the data-dependency analysis is done at the compile time. As discussed in Section
4.2, the major problem with their approach is that it is very conservative. The performance
results for the query program clearly show that our scheme is much more precise than Chang &
Despain’s scheme and has much smaller overhead than Bruynooghe & Pereira’s scheme (see
Table I).

Overheads and Gains due to our Intelligent Backtracking Scheme
The overheads due to our scheme can be categorized into five parts.
1.  The overhead due to variable tagging.

2.  The overhead for traversing the variable bindings of the afguments of failed goals p to con-
struct modifying(p).

3.  The overhead for manipulating (inserting, merging, etc.) B-lists.

4. The overhead for creating and maintaining a choicepoint frame even if the goal has only
one altemative. (See Section 3).

5. Miscellaneous overhead. Part of this is the overhead due to extra checking done at each
failure. These checks are done to recognize whether the failure is shallow or deep, and
whether backtracking is being done into the scope of cut. The overhead due to CUT is also
included in this category. (See Section 3).

Of all these overheads the first two are specific to our scheme, and the last three will normally be
incurred by any approach that does some analysis to find culprits of the failure. The size of the
space searched by each approach (naive and intelligent) is computed by counting the number of
unifications between goals and clause heads. Since each unification can take different amount of
time, this only provides a rough figure. This information is summarized in Table 11 a-g.

The overhead due to tagging is consistently very small (Jess than 1.3%) in all the programs
we tried, as the machine cycles for tagging are usually overlapped with cycles for other activities.
This shows that the extra information necessary to find generator/consumer relationship in our
approach can be kept at a very small cost.

In a fully deterministic program (such as the program for binary tree), the overheads for
constructing modifying(p) and for manipulating B-lists are nil, as there is no deep failure in such



(a) Database Problem
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Table IT

l Naijve J Intelligent [ Change f

Machine Cyele | 14174 | .:, 7249 -48.86%
Search Space 356 o128 -64.04%
Overheads (in machine cycles) o
Tagging " 85 0.76%
Creating Special CP 174 2.40%
Manipulating B-list 554 7.64%
Traversing Arguments 226 3.12%
Misc. Cost 780 10.76%

{c) 6-queen Problem (clever program)

] Naive J Intelligent | Change |

Machine Cycle | 240044 457511 90.59%
Search Space 5174 5009 -3.19%
Overheads (in machine cycles) :
Tagging 1150 0.25%
Creating Special CP 3957 0.86%
Manipulating B-list 142567 31.16%"
Traversing Arguments 49272 10.77%
Misc. Cost 27320 5.97%

{e) Map Coloring Problem (clever) -

_ I Naijve | Intelligent l Change |

(b) Binary Tree Problem

L

Naive | Intelligent] Change]

Machine Cycle | 11047 12041 9.00% .
Search Space 217 217 0.00%
Overheads (in machine cycles)

Tagging 37 0.31%
Creating Special CP - 471 3.91%
Manipulating B-list 0 0.00%
Traversing Arguments 0 0.00%
Misc. Cost 486 4.04%

(d) 6-queen Problem (simple program)

] Naive |Intelli‘ge‘nt I Change |

Machine Cycle § 465081 1222326 162.82%
Search Space 9208 9134 -0.80%
} Overheads (in machine cycles)
Tagging 5489 0.45%
Creating Special CP 43379 3.55%
Manipulating B-list 477940 38.75%
Traversing Arguments 173123 14.04%
Misc. Cost 52188 4.27%

{f) Map Coloring Problem (bad)

Naive I Intelligent i Change

Machine Cycle | 10467 11283 7.80% Machine Cycle | 32656404 26016 -99.92%
Search Space 257 242 -5.84% Search Space 804059 505 -99.94%
Overheads (in machine cycles) Overheads {in machine cycles)
Tagging 28 0.25% Tagging 66 0.25%
Creating Special CP 14 0.12% Creating Special CP 280 1.08%
Manipulating B-list 84 6.74% Manipulating B-list 483 1.86%
Traversing Arguments 54 0.48% “Traversing Arguments 164 0.63%
Misc. Cost -1230 10.90% | Misc. Cost 2396 9.21%

(g) Circuit Design Problem

oo ! Naive | Intelligent Chi’ﬂ'

Machine Cycle | 503877 199924 | -60.32% | -

Search Space 7342 2609 -72.64%_ .

Overheads {in machine cycles) ]

Tagging ' 2574 1.29%

Creating Special CP 1560 0.78%

Manipulating B-list 32291 16.15%

Traversing Arguments 15257 7.63%

Misc. Cost 11157 5.58%
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programs. In nondeterministic programs (such as map coloring, n-queens, database query, circuit
design), theée overheads vary depending upon how fréquently deep failures occur and how large
the structures bound to the variables in the arguments of the failed literals are. Clearly, our
scheme incurs substantial overhead in these two categories if the structures bound to variables are
large. Furthermore, in such cases, the analysis of failure becomes less precise. This explains the
poor performance (both in terms of reduction in search space and in terms of overhead) of our

scheme on the 6-queen programs. For the other nondetennilﬁstic. programs, our scheme is able to

reduce the search space and (with the exceptioﬁ of the clever program for map colloring)'the'
number of machine cycles required. For the clever program for map colorihg, the reduction in

search space is not big enough to overcome the overheads.

The overhead for creating extra choice point is very small for all the programs except for.
the binary tree program and the simple program for the 6-gqueen problem. For these two pro-
grams, the intelligent backtracking scheme creaies (special) choice points for many goals that
have only c;nc alternative. Miscellaneous overhead is in the range of 4-11% depending upon how -
frequently failures occur and how many times CUT is encountered.

The machine cycle count provides an accurate picture of the overhead of the current imple- -
mentation of our backtracking scheme. It should be possible to tune this implementation to
reduce the overhead. Appropriate modification to the PLM machine architecture to support cer-
tain activities needed by the intelligent backtracking scheme (such as a separate area for main-
taining B-list, and specialized instructions to construct and nianipulate the new choice points)
would further reduce the overhead. Hence, the overhead of our intelligent backtracking scheme |
in terms of machine cycles should only be looked as an upper bound.

Is Intelligent Backtracking Really Needed?

In many programs, if the ordeﬁhg of literals is changed, then naive backtracking does little
redundant search and becomes just as good as inteltigent backtracking. This effect is clearly seen
in the map coloring programs used in our experiments. The simple and clever programs for map
coloring differ only in the ordering of literals, and for the clever program, naive and intelligent
backtracking have comparable performance. Even in the query progrém and the circuit design
program, a change in the ordering of literals makes intelligent backtracking unnecessary. This
makes one wonder whether intelligent backt:acking is really needed.

To see that there are programs for which inteiligen; backtracking helps irrespective of ord-
ering, consider the program in Figure 2. We tried all p_ossible (two) orderings of the main clause.
(The ordering in the other clauses does not matter muc'h.). For each ordering, intelligent back-
tracking searches a smaller space than the naive backtracking. Note that in the map-coloring
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Figure 2

This program checks whether a move generated by predicate move isa good move. move({X,Y,Z) is good if
both X and Z movement w.r.t. Y are legal, and the number of steps in checking X w.r.t. Y is greater than
that in checking Z w.r.t. Y.

A legal movement legal(X,Y,N ') is defined as follows:

1. The movement in X is at least three steps more than that in Y; and

2. Either the movement in X is at least five steps more than that in Y, or the movement in X is twice of -
that in Y after moving in both X and Y simultaneously no more than ten times (one step at a time).

legal{X,Y,N) returns N as the number of steps needed to become true.

goal - move(X,Y,Z), legal(X,Y,A), legal(Z,Y,B), A > B, write([X,Y,Z,A,B]).
legal(X,Y.N) - legall{X)Y), legal2(X,Y,N).
legal (X,Y) - =X >=(Y+3).

legal2(X.Y,1) = X > (Y+45).
legal2(X,Y,N) = check(X,Y,1K), N is K+1.

check(X,Y,N,N) - X is Y+Y, L. ' |
check(X.Y,NK) - N < 10, X1 is X+1, Y1 is Y+1, NI is N+1, check(X1,Y1,N1,K).

move(3,1,7). move(3,3,9). move(15,3,5). move(11,54). move(1,3,9).
move(20,7,8). = move(30,9,6). move(12,6,2). move(5,4,10). move(8,2,3).
move(2,8,18). move(12,4,4). ‘move(5,7,15). move(8,4,10). move(3,9,19).

Ordering 1:

goal - move(A,B,C), legal(A B,X), legal(C,B,Y), X > Y, write([A,B,C.X,Y]).
Ordering 2:

goal :- move(A,B,C), legal{C,B,Y), legal(A,B,X), X > Y, write([A,B,C,X,Y]).

1 Ordering Matches Tried Machine Cycles
Naive | Intelligent | Change | Naive | Intelligent | Change
1 382 104 | -72:77% | 12222 5606 | -54.13%
2 253 99 | -60.87% | 8199 5421 | -33.88%
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program, variation in the number of machine cycles due to different ordering is much less for
intelligent backtracking (1:2.4) than for naive backtracking (1:3120) (see Table I). Since in more
complex constraint satisfaction programs, a good ordering may not be obvious, a low overhead
intelligent backtracking (such as ours) can be very valuable. In generate & test type progfa:_ns
(such as the program in Figure 2}, reordering may not help at all unless the program is completely
rewritten.

6. A Simpler Backtracking Scheme

It is possible to simpﬁfy our intelligent backtracking scheme and reduce the overheads even
further (at the risk of making the backtracking scheme less accurate). Let’s classify failures into
two classes: Type I and Type II. A failure is Type 1 if the literal fails to return a solution for the
first time it is called. A failure is Type II if the literal had succeeded earlier but fails to find
another solution. These definitions are very similar to the definitions of Type 1 & II backtrackings
given in [3].

A simple version of our scheme is obtained if we only perform Type I backtrackings intelli-
-gently (and Type II backtrackings naively). In this case, we no longer need to keep track of B-
lists - once a backtracking literal is chosen, the other candidates can be discarded. Another
significant advantage is that now we can choose to perform Type I intelligent backtracking only
for selected goals (that are suspected to benefit from it) and avoid paying overheads for creating a
special choice point for the remaining (naivc) literals. We found that for many problems (map
coloring, circuit design), intelligent Type I backtracking is nearly as effective as Type I and II
combined.® For the circuit design problem, selective Type I backiracking performs better than
Type 1 & 11, even though Type I backtracking results in more search (see Table 11I(a)). But in

general, intelligent Type I backtracking alone can perform much worse than Type I & II com-
bined (Table I1I(b)).

> For some constraint satisfaction problems, Dechter found that simple Type I intelligent
backiracking (she calls it BACKJUMP) is nearly as effective as many other complicated
schemes) [9]. = : ' '
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Tahble ITI

Type 1l & Type I1 | Type I only Type I only
(for all goals) | (for selected goals) |
Machine Cycle 199924 206378 187600 |
Search Space 2009 2406 2406 |
Overheads (in machine cycles)

Tagging . 257 3145 2894
Creating Special CP 1560 5189 3422
Manipulating B-list 32291 12255 3131

Traversing Arguments 15257 8122 2042
Misc. Cost 11157 12373 12166

(a) Performance results of Type I vs Type I & I1 backtracking scheme on Circuit Design program.

Type I & Type II | Type I only Type I only
(for all goals) | (for selected goals)

Machine Cycle 7249 12686 12259
Search Space 128 231 231

Overheads {in machine cycles) }
Tagging 55 103 103
Creating Special CP 174 697 573
Manipulating B-list 554 327 160
Traversing Arguments 226 238 80
Misc. Cost 780 1402 : 1424

(b) Performance results of Type T vs Type I & I1 b'ackt.racking scheme on query program.
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7. Concluding Remarks

We have presented a scheme for intelligent backtracking in logic programs. This scheme
uses data-dependency relationships between literals to perform backtracking intelligently. Our
implementation of this scheme has shown that intelligent backtracking can be incorporated in
Warren's abstract machine without causirig excessive overnead. Some of the problems that
appear suitable for our intelligent backtracking scheme are Constraint satisfaction problems and
the problems solved by the generate-and-test paradl gm,

Since the overhead of our scheme is still non-trivial (at least for some programs), it should
only be used if it appears that the program may beneﬁt from intelligent backtrackmg. Since there
should also be problems for which the added power of unification based backtracking schemes is
able to compensate for their overhead, it would be desirable to have many compilers incorporat-
ing different intelligent backtracking schemes available at the user’s discretion.

Our intelligent backtracking scheme can be used if the AND-parallelism is exploited in the
generator/consumer framework [7], [4], (171, [10], {14]. In the generator/consumer framework, a
goal is allowed to execute only if it shares no unbound variable with any other executing goal.
‘This guarantees the consistency of the dependency graph even if it is concurrently manipulated
by many processors. The scheme can also be used if OR-parallelism is exploited in the context
the AND/OR process model (7], [21]. If full OR-parallelism is exploited (as in [15], [5]) then all
possible paths are exploréd, and none of the intelligent backtracking schemes are needed.
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Appendix A: The program for Circuit- Design

The program designs a combinatorial circuit with three inputs (S, A, B) and one output (out). Input list
is the truth table for the function to be synthesized. For example, input list [0,0,1,1,0,1,0,1] means SAB =
000, out = 0, SAB = 001, out = 0, etc..

main - run{0, {0,0,1,1,0,1,0,1], L), write([ circuit,=,L]), nl.

run{Depth, Table, Circuit) :- t(Depth, Circuit, Table).
run(Depth, Table, Circuit) :- D is Depth + 1, run(D, Table, Circuit).

t(., 0,[0,1,0,1,0,1,0,1]).

t(, 1,[0,0,1,1,0,0,1,1]).

t(. 2 ,[0,0,0,0,1,1,1,1]).

t(_, i0, [1,0,1,0,1,0,1,0]).

£, i1, [1,1,0,0,1,1,0,0]).

4., i2 , [1,1,1,1,0,0,0,0]).

t(Depth, [i,Z], Table}  :- Depth > 0, D is Depth -1, sint(Table, Itable), t(D, Z, Itable).
t{Depth, [n,Y,Z], Table) :- Depth > 0, D is Depth -1, ngate{Table, A, B), t(D,Y,A), t(D,Z,B).

sint{[},[]}.

sint([X|T1],[-|T2]) - var(X), sint(T1, T2),..
sint{[0{T1],[1]T2]) :- sint(T1, T2).
sint([1{T1],[0|T2]) :- sint(T1, T2).

ngate([], 1, ).

ngate([X|T0}, [-|T1], [-|T2]) - var(X), !, ngate(T0, T1, T2).
ngate([X|T0], [1|T1], [1|T2]) = X==0, ngate(T0, T1, T2).
ngate([X{T0], [-|T1], [0]T2)) - X==1, tgate(T0, T1, T2).

tgate([}, [], ).

tgate([X|T0], [-|T1], [[|T2]) = var(X), !, tgate(TO, T1, T2).
tgate([X|T0], [1|T1], [1]T2]) - X==0, tgate(T0, T1, T2).
tgate([X|T0], [-IT1], [0|T2]) - X==1, tgate(T0, T1, T2).

tgate([X|T0]. [0|T1], [L]T2]) - X==1, tgate(T0, T1, T2).
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