ON IMPLEMENTING A COST-EFFECTIVE
HYPERTEXT SYSTEM

Khe-Sing The
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-38 September 1987

On Implementing a Cost-effective
Hypertext System

KHE-SING THE

Dept. of Computer Sciences _
The University of Texas at Austin
Austin, TX 78712-1188

ABSTRACT. The current state of technology is still insufficient to support-the ideal futuristic hyper-
_ medium. lli_ can, however, support a hypertext for some specific applications, provided that the system is
h carefully designed to fit into the technorogical_advantages and usability considerations. In this paper we
first discuss the req'uiréments for a simple and yet practically usable hypgrtext system, then we identify
some feasible applications of the simple system in the current practices of software development. A feasible
prototype is proposed-as an example to illustrate the technical aspects of our hypertext specification.

KEY WORDS AND PHRASES: hypertext systems, software development tools, communication medium,
non-linear documents,

-1 Introduction

The recent advances in computer technology [8], in particular the availability of high reso-
lution workstations, have saved hypertext from being implemented as a pile of index cards
threaded with strings and stored in a shoe box. However, the current technology is not yet
sufficient to support the ideal hypermedium [11]. Some good hypertext systems (see [2]) are
available only on very expensive machines with sophisticated supporting software, in the
meantime the most desirable feature of hypertext, namely the ability to access-any node
and to traverse any link “virtually instantly,” is stil] an elusive dream to most hypertext
users.

Here we propose a hypertext system that is simple enough to run on widely available
machines and yet powerful enough to serve the needs of frequent activities in software
-~ development. While the hypertext concept itself is simple enough, we have to learn from
experience to understand its optimal specification for a particular application. As the
system evolves, the opinion of the end users is important to make the system usable,

_ Although many concepts of hypertext systems are proposed and'developed to ac-

complish complicated tasks.at the price of usability and response time, a hypertext system
does not need to be very sophisticated to satisfy the average users. In Section 2, we give
the requirements for a simple and yet useful hypertext system. Such a system can be uti-
lized to perform many simple tasks in the course of a.céomplishing a cdmpiica,ted task. To
demonstrate how the idea of simplicity can bring fruitful results, the feasible applications of
hypertext as a universal medium in software development process are discussed in Section
3. A UNIX implementation of the proposed system is presented in Section 4 to illustrate
the feasibility (and impossibility) aspects of designing a practically useful hypertext system.

On Implementing a Cost-effective Hypertext System 2

2 The Requirements for a Simple Hypertext System

A hypertext network is a document in which textual and graphics information is logically
organized as hypertext nodes, and the logical relation among the nodes is maintained by
the links configuration. In his survey report on hypertext systems, Conklin [2] classifies
hypertext systems into four categories of application: macro literary systems, problem ex-
ploration tools, browsing systems, and general hypertext technology. Our proposed system
will best fit into the last category of application, it is a non-linear document editing facility
designed especially for applications in software development technology.

As a system to manipulate interlinked documents, a good hypertext system should
_provide self-explanatory representation for each node and virtually instantaneous access to
- the links. Since it would be too costly to expect all the features to be present in'a hypertext
system implemented with the current hardware technology, we restrict ourselves to building
a simple hypertext system. The features of this system are minimal to perform the tasks
~ of assisting software developers. The only requirements for such a cost-effective system are
stipulated as follows:

(i) The interface to manipulate new and existing nodes on the screen, i.e., the way we
create, access, display, hide, and remove a node on the screen, is intelligible and fast.
This statement includes the requirement of compatibility between the hypertext nodes
and other information entjties in the environment (e.g., files).

(ii) The links in a network can be conveniently and instantly traversed.

(iii) Links can be defined from any node to any node in the hypertext network (such that
the system has the capability of representmg non-linear text systems as deﬁned by
Shasha [9]).

(iv) The links are capable of storing (typically small amount of) information, and quick
- response can be expected in answering the queries about the properties of (the infor-
mation augmented in) the links.
(v} A browsing utility to provide a clear picture about the position of the currently ac-
cessed node within the hypertext network configuration.

(vi) Operating system processes can be mvoked on demand to perform some operation to
- “the information contained in the nodes. ‘

In the following sections we demonstrate how a hypertext system satisfying‘the set
of minimum requirements as given above can help software developers in many aspects of
their work, and then we propose a low-cost prototype system to support the claims.

3 A Uhi_"vérséi'l_/!.edium for Software Deve_lopment. Tools

Basic software development activities consists of program text editing, source code compi-
lation, object code testing, documentation production, and design information communica-
tion. Although each of the tasks can be automated individually, the ultimate objective is

On Implementing a Cost-eflective Hypertext System : 3

‘the integration of the components in order to reduce the complexity of the user’s interface
to:the system, to achieve compatibility among different tools servmg different. purposes and
to maintain the consistency of the tools. ‘

Most of the industrial and academic research on automating the software design
process is focused on building a special tool to solve some specific problem in software design
-and coding. Many of the tools are difficult to use, and the user has to learn pa,msta,lungly
before the tool can offer any significant help. ' ,

'In the following subsections, we identify some possible applications of generel hyper-
text concepts as a universal medium in the approach towards ﬁndmg better solutions for
. the above- mentioned problems. - : '

3.1 Merging and Filtering of Specialists’ Views

Hypertext technology can serve as a common medium supporting “specialists representing
different viewpoints, working as a team.” The following two strategies are the possible
provinces of specialists [4] in performance, reliability, reusability, evolvability, and other
_ specialized viewpoints: - ' '

1. Fach of the specielists model the system iﬂdividually and then their views are rnerged.
In this strategy, the outcome of each specialist’s work should be completely reflected
and preserved in the resultmg common view.

2. A common view is formed and the spec1ahsts views are ma.pped from th1s common
. view. The model representing the common view encompasses all of the features of the
different models used by different specxahsts

In most modehng methods, the view is represented in some form of graphs (Petri
~ Nets, finite state machines, Pert charts, etc.) The merging and filtering transformations of
a modeling graph are generally accomphshed by controlling the graph’s. degree of elaboration
in reflecting the common view, i.e., how some parts of the graph are lumped to elaborate
~ only the parts of interest. The criteria of the transformations are: (1) preservmg correctness,
(2) maintaining consistency, and (3) avoiding redundancy.

A good medium to support the transformations requires the capability of intelligently
. stormg information in the nodes (representmg views) and links (representing relation be-
tween viéws) of the modeling graphs. Those features are prowded by our hypertext system.

_3.:? _.Or_g__a‘nizing _lCo:de and Documentaiion

" The hypertext system as descrlbed in Section 2 can support 2 scheme which allows an
artifact to develop both the demgn (in the sense of the e},planatlon of the system) and its
“implementation (as code in some automatically processable language) simultaneously and
intermixed, and both the code and the explanation can be extracted separately.

On Implementing a Cost-eflective Hypertext System 4

- Based on his research experience in software engineering, Shen [10] infers that pro-
gram documentation is 2 major burden of software developers working on government con-
tracts. It is desirable to enhance the existing languages and toels in order to provide
documentation meeting the government standards conveniently and consistently.

- The sensible way to document a design is to do the documentation concurrently with
- the design, and each design module in each design level should come with consistent, clear,
and concise documentation. The manageability of the design artifacts will be helpful in
. maintaining the consistency of the design even long after the system has been delivered.

The entire design artifact can be stored consistently and comprehensibly as a hy-
pertext network, with different link types connecting code and documentation, summary
and elaboration, and other relevant design issues. The idea of using a hypertext network
of code and documentation to represent a software system has been proposed by Goldstein
and Bobrow [5].

The hypertext system can also be used in cooperation with the existing design and
coding tools to enhance their features, for example, the code and documentation produced
by a hierarchical iconic design tool (e.g., [1]) can be captured in hypertext nodes (instead of
regular files) to enable non-hierarchical icon access, and the links and display facility of the
hypertext system have the side benefit of improving the user interface of code management
tools (such as the make utihty in UNIX)

3.3 Serving as an Interface for Object Of_iented Progra‘r.'nrhing Systems

Object oriented programming environment offers the advantage of working closer to the
conceptual problem domain. An object is some private data and a collection of public
procedures that can access that data. A message expression is a modularity mechanism
which tells an object to select and then perform a procedure as requested by the message.
Messaging, whichis ‘analogous to ordinary function call with one extra selection step to
prowde dynamlc binding, causes the encapsu]atmn of objects [3].

Each object has a private part and a shared part. The shared part describes what is
‘similar about the instances belonging to the same class {(comparable to the conventional no-
tion of types), while the private part describes what is different. Inheritance is a mechanism
for linking object concepts into higher level concepts It mmphﬁes the specification of ob-
' _]ects and preserves the consistency of object specification [3]. Encapsulatlon and 1nher1tance
are the distinguishing characteristics of objects.

It is often difficult to implement and prototype application programs due to the
lack of appropriate programming tools. Object oriented programming has shown a good'
prospect as a tool for rapid prototyping and implementation. The concepts of nodes and
links in hypertesxt naturally correspond with the concepts of encapsulation and mhentance
in object oriented systems; hence, hypertext would be a proper choice to serve as a user
interface for ob _}ect 0r1ented systems

On Implementing a Cost-effective Hypertext System : 5

3.4 Maintaining Library of Reusable Software Components

To exercise better control over the development of Iarge and complicated software systems,
there is a trend in software development methodologies towards reusability as applied in
other engineering disciplines where a large system consists of a hierarchy of building blocks,

-and the designer’s experience-is captured in an. artrfact such that srmrla,r components should
be reusable once mvented ' :

 In their recent paper, Katz, Richter and The [6] describe the PARIS system which
~is an 1mp1ementatron of the concept for reusing “PARtially Interpreted Schemas.” A par-
‘tially interpreted schema is a program that has some of its portions remaining abstract or
undefined. These abstract entrtres can be either program sectmns oT non-program entities
‘such as functions, domarns or variables. For different interpretations of abstract entities in
- the schema, the results will be dlﬁ‘erent programs performing different functlons

The PARIS system maintains a library of partially interpreted schemas, each of whrch
iS‘stored along with assertions about its applicability and results. When a user presents a
problem statement (i.e. description of requirements for a program), the system will search
through the library for a possible candidate schema and replace the abstract entities of
the suitable candidate by concrete entities. The search through the schema library can be
recursively initiated; when it becomes necessary to interpret an abstract program section
(2 “hole” in the schema), the system will automatically consider the requirements of the
_abstract program section as a Iower-level problem statement and recursively invokes the
mterpretat]on mechamsm

The philosophy adopted here is to.-be semi-interactive. This means that the user is
to be protected as much as possible from the innér workings, representations, and decision
procedures of the system; only when the automatic tools are inadequate the user is to be
consulted in as clear a manner as possible. To add more convenience for the user to spec-
ify his/her problem statement and to provide more interactive communication during the
process of matching and verification, the schemas and the problem statements.can be repre-

..sented as hypertext nodes, and their loglcal connections are strmghtforward interpretation
of the hypertext links.

The experience in burldmg the PARIS prototype indicates that it is quite difficult to
- construct a system that is able to provide a friendly interface to the user ‘and at the same
time produce correct and efficient input to the theorem proving mechanism. A hypertext
system together with a powerful logic deduction mechanism will provide the first step to-
wards automated reusability, since developing an application system with PARIS will then
guarantee (provably) correct programs.

3.5 Arbitrating System‘(atic Design vs. Haphazard Hacking

Although some ‘successful software pIOJeCtS originally emerged from unstructured hacking
activities, conservative system designers still consider hacking harmful To be reahstrc it
s often very drﬂicult to fully understand a dessgn 1ssue Wrthout any hackmg experience,

On Implementing a Cost-effective Hypertext System ' L 6

because some problems, especially the lower level ones, can only be discovered in (and
solved by) experience. Since it is typical for an organization to accommodate both types
of software developers, a hypertext system would be an ideal forum to let them meet each
other halfwa,y while they work concurrently

In thrs context, the most promlsmg apphcatlon for hypertext is its role as a common
medium in which artifacts of the “top-down” and “bottom-up” paradigms of design may
be concurrently created and uniformly represented. Specification documents, design issues,
source code, object code, reusable components, and documentation for a computer system
* can be created and stored coherently using a hypertéxt as the common ‘medium to connect
the pieces together. The links can effectively represent the connections between portions of
the specification ‘documents and the code sections implementing the specification, capture
the relevance among system parts, and provide annotations for improvement suggestions
and bug fixes. This approach will enable the whole ¢rganization to benefit from the artifacts
- developed by both the systematic designers and the hackers: Consistént conventions can

be adopted for using hypertext as the code and conﬁguratlon management tool descrlbed
above, :

3.6 Communication among People Involved in Information Systems Design

People Working with information systems can be divided into four categories: managers,
users, operators, and developers. Mills, Linger, and Hevner write in their book [7] that
the deepest and most persistent problems of information systems development are people
problems, not logic problems. However, to avoid unnecessary people problems, the solutions
to logic problems and the usability of the system have to be designed to embody the inherent
rationality of its users and operators. The rationality must be discovered and built into the
system from the very beginning of the development ' : :

To make the users be aware of their options and the developers realize the exact
needs of the users, hypertext is an ideal common medium for people to communicate with
each other and’ exchange their ideas right from the earliest stages of system development.
The users can put their ideas into the hypertext network any time they feel convenient, and
the designers can gradually adapt the system to the needs of the user. In this situation the
users can utilize the system to best advantage and the developers are always clear about
- the right direction to proceed. A more concrete function of hypertext in this apphcatmn is
to be the organizer of electronic mail and news messages.

4 A UNIX based hypertext system

As an example to describe the technical aspects of implementing the hypertext system whose
Tequirements are discussed in Section 2, we present the concepts of a UNIX based hypertext
system called EI-I'I‘ (Easy HyperText). Unlike the recent trend in hypertext research, we
adopt a different ‘approach by designing a simple and yet flexible system. We chose UNIX
as our working environment, because the UNIX philosophy encourages building a system

. On Implementing a Cost-effective Hypertext System - - ' 7

(or a tool) as an integrated set of tools (or subtools} with uniform mterface and UNIX
supports interprocess communication needed in an information network.

Contrary to the popular misconception that UNIX is a “user—unfriendly” operating
system, it has gained more acceptance in the commercial software market, because the
- power and. flexibility of UNIX (which ean be appreciated by expert users) have attracted
many software developers to build user-friendly a,pphca,tron systems on top of it..

"To have a better understandmg oi the feasublhty and d}fﬁculty of developing a hyper—
text system running on UNIX machines (such as bltma,pped graphics workstation or lower
resolution personal computers), in the rest. of this sectron we d1scuss EHT’s very high level
functional specification. : s

Name space for the nodes Although EHT nodes are physrca,lly stored in UNIh files,
we should provide a different name space for EHT nodes. To be more concrete, EHT nodes
should not be identified by their UNIX file namies, because many unpredictable a.nomahes
will happen when a Iogrcal information unit is allowed to belong to two independent logical
structures. The followmg two cases show the apparent difficulty if an EHT node is always
identical to a UNIX file: (1) when we try to copy an EHT network involving files (nodes)
residing in two different directories and the working directory is a third directory, it is very

~- complicated to prevent naming iriconsistency; (2) if a file (node) is unintentionally deleted

from the UNIX file system, the EHT network will contain dangling links.

Storage allocation for the nodes. An EHT node can be physically stored as a whole
UNIX file, as a partition of a UNIX file, or as parts across UNIX file boundaries connected
with software pointers. There will be a node storage management scheme which- consists
- mainly of a symbol table to identify the physical storage locations for EHT node names. The
extra overhead introduced by this scheme will be justified by the consistent and convenient
naming procedure of EHT nodes. To ensure compatibility, we a,lso provrde utrhty tools for
; copymg and convertmg EHT nodes into UNIX files and vice versa.

‘ Screen manager. An EHT node can be in erther one of the. fo]lowrng three states of
screen visibility: invisible, open (as a window display), or shrunken (as an icon). Pop-up
menus are used to change the state of a node and to access invisible nodes via its links.
: Menu selectlon can be done by the keyboard and also by the mouse

_ Muftlple buffer text editor. The screen manager can be consrdered as an extended
‘multi-buffer text editor (such as Emacs), and not as a general purpose window manager
used for a special purpose. It is a multi-buffer editor capable of displaying many buffers
at the same time, without requiring to have a process running for every buffer. Each node
has a node type, and a window can display a node correctly by referring to the node type,
for example, textual nodes and graphics nodes are handled in different ways to have them
displayed as a window on the screen.

Process control. Running too many processes simultaneously will considerably de-
grade the performance of a UNIX graphics workstation. A workstation running 25 processes
concurrently (even if it is supported by a very fast file server) will degrade its response un-
bearably, therefore EHT should keep the number of running processes as low as possible.

On Implementing a Cost-effective Hypertext System - 8

Since most of the time EHT users will do browsing and readmg, it is wise to treat a node
as a display buffer without having any process associated with it.

_ Screen display and process creation. Currently available window managers support
only active windows, i.e., windows that need one process or two associated with each of
them, so we need to develop our own screen manager for EHT. Since our windows are
passive, if we want to invoke a process to manipulate a node, say to compile the C source
~ code contained in the node, we have to select a menu button to invoke the compiling process.
The same thing goes when we edit a node, the ed1t111g session is done in the buffer and the
results are not saved until the user issues a “save” command.

Links processmg and database support. To manipulate the links between nodes of
EHT, we rely on a powerful database system. Each EHT link is represented as a record in
_the database system. "The data,ba,se is also expected to speed up access and navigation in
the network and to maintain consistent links. For view filtering, the database system can
perform keyword search in the (link) records. The fields of a record in the database (ie.,
‘the types of information stored in each hnk) are defined when a new hypertext network is
"bemg set up.

. I the descnpt]on above gives an impression that EHT is not rea]ly a hypermedmm of
the future, it is intentionally designed this way with a hope that the EHT concepts will lead
to an optimal hypertext system (m terms of usablhty /cost) in the present state of hardware
_ technology :

5 Concluding Remarks

The challenge of software development technology is in the integration of automated pro-
gramming tools. We have shown how hypertext as a tool can provide some solutiohs' to the
problems in creating an optimal programming environment. With the availability of pow-
erful personal computers and sophisticated microcomputer systems, approprlately de51gned
hypertext systems can become more tangible to the average end-users.

The lesson we have learned from the evolution of operating system technology over the
past two decades strongly indicates that the usablhty of a system does not entirely depend on
how powerful the system is. A user-friendly and cost-effective hypertext system can be useful
to attract more users to explore the wonder world of hypertext. The acquired experience will
contribute to the understanding about hypertext developments and applications in general.

On Implementing a Cost-effective Hypertext System 9

ACKNOWLEDGMENTS. The author would like to thank Jeff Conklin of MCC Software Technology
Program for his guidance into the delight of the hypertext world, and also Eric Gullichsen, Dilip D'Souza,
and Pat Lincoln for sharing tie joy of developing a hypertext system. Chung-Kuo Chang reviewed an eariier
manuscript and provided many useful suggestions,

UNIX is a registered trademark of AT&T,

References

(1] R. J. A. BUHR, System Design with ADA. Englewood Cliffs, NJ: Prentice-Hall, 1984.

{2] J. ConkLIN, “Hypertext: An Introduction and Survey,” IEEE Computer, vol. 20, no. §, Sep.
1987, pp. 17-41.

(3] B. J. Cox, Object Oriented Programming: An Evolutionary Approach. Reading, MA: Addison-
Wesley, 1086.

(4} S. L. GERHART, “Requirements for Environments for Analysts,” MCC Tech. Rep. STP-229-86,
July 1986.

[5] I. P. GOLDSTEIN aAND D. G. BoBROW, “Descriptions for A Programming Environment,” Proc.
AAAL 1st Annual National Conf. Al, Stanford, CA, Aug. 1980, pp. 187-189.

[6] S. KaTz, C. A. RICHTER, aAND K. THE, “PARIS: A System for Reusing Partially Interpreted
Schemas,” Proc. 9th Annual International Conf, Software Eng., Monterey, CA, Mar. 1987,
pp. 377-385.

[7] H. D. Mits, R. C. LINGER, AND A. R. HEVNER, Frinciples of Information Systems Analysis
and Design. Orlando, FL: Academic Press, 1986.

[8] N. NEGROPONTE, “Books without Pages,” Proc. JEEE Int. Conf. Communications IV, July
1979, pp. 1-8.

[9] D. SHaSHA, “When Does Non-linear Text Help?” Tech. Rep. 178, Dept. Comp. Sci., New York
Univ., Sep. 1985,

[106] V. Y. SnEN, MCC Software Tech. Prog., Mar. 1986, private communication.
f11] J. S. Youne, “Hypermedia,” MacWorld, Mar. 1986, pp. 116-121.

	tr87-37

