BALANCED PROTOCOLS FOR SEQUENCING
DISTRIBUTED COMPUTATIONS!

Yeturu Aahlad and J. C. Browne

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1188

TR-87-39 October 1987

Abstract

A fundamental issue in the design of distributed sequencing protocols which greatly impacts performance
is the level of optimism at which they operate. "Optimistic" and “"pessimistic” protocols such as those
proposed by [Jefferson] and [Schneider] respectively, represent end-points of a spectrum of protocols
which we call "balanced." We illustrate with an example that the optimal balance between the extremes of
optimism and pessimism may lie anywhere in this spectrum. We then lay the ground-work for a study
dealing with the selection of an appropriate protocol from this spectrum and the impact of such a choice
upon performance. Towards this end, a general purpose protocol capable of executing any given dis-
tributed program at any specified level of optimism is presented.

1This research was supported by DARPA grant N00039-86-C-0617 and DOE grant DE-FG05-85ER25010.

Contents
Introduction......cc.ccoviiniiiiinaninne, e reenenans e ieeeerena———— e e er—eeeatae e e, 1
Sequencing a producer-consSUmMer iNtEractiON..........cceeemeuraeiieremmucseresrnnenssseanenns 3
NoOtation...c.veevuarennnann. e PPt 11
LT 111 1103 £ - PPN B POt 19
Modelling Other ProtoColSvivuiivirierieinensiasreierennerssressrosessnenscrasresersoiesssess B
LAteratUrE SUIVEY..iiuiiiiiiiiiiriieiiiatriacrrraneairaarensensrensenssnssanseessansensenssannns 32

Bibliography . e e e s 42

Chapter 1

lntroduction |

A distributed computing environment consists of a set of components which share and

~coordinate their efforts toward executin g a computation. Such sharin g' requires the
coordinated maintenance of an information base so that the sequencing decisions made by
‘the components are consistent with the specifications for the computation. To do so, these
components exchange information required to support the decision process involved in
coordinating their efforts. Such a decision process may be modeled as a function f which.
when applied to the state s of the computation, returns a decision d; ie, if S is the set of all
possible states and D is the set of all possible decisions, we have f:S->D.

It is intrinsic to a distributed computing environment that the set of components cannot

perfectly synchronize their clocks. Yet, if the components are to be mutually consistent in
their decision-making, they must maintain consistent views of the computation's state S.

The maintenance of consistent views of state information upon which decisions can be

made is the critical problem of the management of distributed computations. The choice of
decision function f and the exchange of information which leads to the establishment of its

domain S, we will refer to as the "protocol.”

There are two general classes of protocols to making any kind of decisions related to the
execution of a distributed computation. One class makes it possible to assert a priori that all
decisions are consistent with the specification of the computation. These are termed
pessimistic, since decisions are postponed until all relevant information is gathered. A
hypothetical global observer who can observe events as they occur may notice
inefficiencies such as those caused by the computing components having to wait because
they do not yet have the necessary information to enable them to go ahead. The other class
involves making favorable assumptions about unavailable information required to proceed
with the computation. These are termed optimistic since decisions are never postponed
because relevant information is unavailable. Instead, if such brash actions result in a
deviation from specifications, such a deviation is detected and compensating actions to

2

restore consistency with specifications are taken. Thus, when a decision needs to be made,
the pessimistic approaches incur an overhead (delay etc.) associable with determining S.
The optimistic approaches avoid this overhead, but are subject to the overhead of detection
of and recovery from inconsistencies.

It is fairly easy to come up with situations where either class of protocols works better than
the other. However, there is no reason to believe that either extreme is optimal in any
particular instance. A fundamental design decision is the choice of a balance between these
extremes,and it may significantly impact performance. This third class of protocols which
constitutes a spectx‘urri of strategies spanning the above extremes is the subject of this
article. Here, we lay the ground-work for a study dealing with the selection ‘of an
appropriate protocol and the impact of such a choice upon performance. |

3

Chapter 2
Sequencing a producer-consumer interaction
A case study

This example considers the sequencing of an asynchronous producer-consumer system
sharing a buffer of size 1. It is Illustrated that for this example, the optimum balance
between optimism and pessimism spans the entire spectrum of possibilitiés as one varies
the relative speeds of the producer and the consurner and the speed of writing and reading
shared memory. The producer-consumer system may be informally described as follows:

The producer repeatedly "produces” data and writes it to the shared buffer.

The consumer repeatedly reads data from the shared buffer and "consumes" it.
correctness: All produced data must be eventually consumed in the order in
which they are produced. -

optimality: maximize the average rate of progréss, where progress is measured as
the number of data correctly produced and consumed.

The following_ program is a conventional pessimistic protdc’Ol'for the Producer-Consumer
problem: ' ' '
System pessimistic;
Shared Var
sl, s2: 0..1 init 1;
buffer: item init Null

Process producer;

Yar

s1, buffer :=1i, x; " {Write to buffer and inform consumer}
produce (x);
Repeat

4
ji=s82
Untili=j; {Determine buffer is read}
i:=(+1)mod2
Forever
End

Process consumer;

Var
i: 0..1 init 0;
i+ 0..1;
X: item
Begin
- Repeat
Repeat -
j, X := 51, buffer
Untili=j; {Getnextitem}
§2 :=1; {Inform producer}
i=(+1)mod?2;
consume (X)
Forever
End

This is a pessimistic strategy because the producer ensures that a produced datum has been

fetched by a consumer before over-writing it.

A simple optimistic protocol employs a phased approach. In each phase, a producer
optimistically produces and writes several data to the buffer without waiting to ensure that
old data has been cdrrectly consumed. At the phase-boundary, the producer checks with
the consumer to see if all has gone well. If so, the next phase begins. Else, corrective

action is taken, and then the next phase begins.

The following program is an optimistic protocol for the Producer-Consumer probleni:

System optimistic;

Shared Var
s1, s2: 0..N-1 init 1; s3: 0..1 init 0;
buffer: item

Process producer;
Var
i: 0..N init 0; j: O.N; k: 0..1;
m: 0..1 init 0; x: Array [0..N-1] of item

Begin

5

Repeat
Fori:=0to N -1 Do Begin
produce (x[i]);
sl, buffer =1, x[i]; { Write to buffer and inform
consurner}
End {N productions without synchronization }
Repeat j, k := 52, s3 Until k # m;
Fori:=jtoN - 1 Do Begin
s1, buffer :=1, x[i];
Repeat j :=s2 Untili=
End; {Recover}
m:=m+1mod2
Forever
End

Process consumer;

Var
i: 0..N-1; j: 0..N init O; k: 0..1 init 1;
X: item _
Begin
Repeat {Forever}
Repeat {Cycle of N consumes}
Repeat
i, x :=s1, buffer
Untili2 j; {Get next item}
Ifi=jThen {Validfetch}
consume (x)
"Else Begin {Error Detected)
s2,83:=j, k; {Inform producer of error locauon}
Forj:=jto N -1 Do Begin
Repeat
i, x i=sl, buffer
Until i = j; {Get next item}
consume (x)
End; {Recover from error}
End
Untili=N-1;
s2,83:=N,k;j,k:=0,k+ 1 mod 2
Forever
End

The measure of optimism is the size of a phase; ie, the value of N in the above program.

Finally, to analyze transient behavior at start up, the issue of start up lag between the
mutually asynchronous producer and consumer must be addressed. The following start up
protocol ensures that the start up lag is < 2Ty, We hypothesize that for the assumptions lald
out below, this protocol minimizes the worst-case start up lag.

Procedure SynchStarts;
Shared Var sl, s2: boolean init false;
Process producer; |
Var flag: Boolean;
Begin
s] :=true;
Repeat flag := s2 Until flag;
Start_Producing
End;
Process consumer;
Var flag: Boolean;
Begin
§2 :=true;
Repeat flag := s1 Until flag;

Start_Consuming
End;

Analysis

What follows is a derivation of the optimum protocol for any given speeds of the

produce, consume, shared read and shared write operations.

Assumptions

All operations other than a read or write to a shared variable, produce and consume

take negligible time in comparison, and can be ignored in the analysis.

If a read and a write to a shared variable overlap, the write is not affected in any way. The

read fails, but takes the same amount of time as a successful read.

A concurrent read or write takes the same time as a read or write to a single variable.

Notation

Tp The time to produce
Te The time to consume

7

Tr The time to read a shared variable
Tw The time to write to a shared variable
N The number of productions between two validations

For the timing diagrams:

Pp The producer in the act of producing
Pw The producer in the act of writing a shared variable
Pr The producer in the act of reading a shared variable

Cc The consumer in the act of consuming
Cw The consumer in the act of writing a shared variable
Cr The consumer in the act of reading a shared variable

Results

We first establish the domain over which any protocol employing optimism can not be :
guaranteed to perfbrm better than the pessimistic protocol. 'Intuitive':ly, if pfoduce '
operations are fast WRT read operations, optimistic approaches are unlikely to be suitable
because an optimistic producer would begin to overwrite the buffer before the consumer
had a reasonable chance to read it. This intuition is supported by figure 1, which is a
timing analysis of: | |

condition 1:- Tp < 2Ty (See figure 1)
P p- _ > >
Pw _— ' —_—
Cr > > >

Figure 1: Timing analysis for condition 1.

It follows from figure 1 that if any optimistic protocol is employed when condition 1 holds,
the consumer may miss the very first production, thereby necessitating the repetition of the
entire phase. It follows that condition 1 is sufficient for the optimality of the pessimistic
protocol. Later, it will be shown that this is also a necessary condition.

Figure 2 is a timing analysis of:

condition 2:- TpZZTrATw"'TpZTc'*‘ TI'
Case 1
Pp > >
Piv B — . —
Cr
Cc
Case 2
Pp > »
Pwr i ' —
Cr
Cc >

Figure 2: Timing analysis for condition 2

In case 1, Tp + Tw 2 T¢ + 2Tr. In case 2, Tc + 2Ty 2 Tp + Tw 2 Te + Tr. The timing
analysis illustrates that in either case, if an item is read by the consumer within time 2Tr .
after it is written to the buffer, it will be consumed no later than time Ty after the next item
is written to buffer. This in turn guarantees that the next item will be read within time 2Ty
after it is written to the buffer. Since the start up protocol ensures that the first item
produced will be read within time 2Ty after it is written to the buffer, a produced item will
not be missed regardless of the chosen level of opti_mism.. .There'fore, condition 2 is
sufficient for the optimality of unlimited optimism. | |

Figure 3 is a timing analysis of:)
condition 3:- Tp2 2T A Tw + Tp < T+ T

How the Lag Grows

Pp > - >
P —_— — —_—
cCr —»—>—p—p—p—>p C—
Cc N —.

The Point OT Failure

Pp ——ep

Pw—E B

Ccr k—b———-ﬁ:wb—b

Cc ——wmmmit This Ttem is

over-writtan
bofore it is read.

Figures 3 a and b: Timing analysis for condition 3.

As always, the start up protocol ensures that the consumer reads the first item within 2Ty
after it is written to buffer. Thus, the lag between the completion of Pw and the start of Cc
is initially at most 2Tr. It can be verified from figure 3a that this lag increases by the
amount Te+ Tr - Tw + Tp for each consume cycle. Figure 3b illustrates that the last
successful consume occurs when the lag exceeds 2Tp + Tw - Tr - Tc. Therefore, the
optimal level of optimism is obtained by choosing the largest N such that
2T +T_-T -3T

P W c T

T+T-T -~T_
c T P W

N<

From the fact that the conjunct of conditions 1, 2 and 3 is identically true, it follows that
these conditions are also necessary for the derived optimality results

Concluding remarks:-

The Producer-Consumer problem is a simple, yet important paradigm of distributed
computing. For this simple problem, we have demonstrated analytically that any one of an
infinite spectrum of protocols ranging from pessimistic to optimistic may be optimal
depending on the relative timing of the produce, consume, shared-read and shared-write
operations.

10

The balanced sequencing protocol underlying this analysis is specialized to the Producer-
consumer problem. In’subsequent chapters, a more general protocol capable of executing
any given program at any specified level of optimism will be presented. Inevitably, such a
- general protocol will be less efficient than its specialized counterparts such as the protocol
presented above. The anticipated application of this general approach is to investigate the
performance of programs under balanced sequencing before one undertakes the non-trivial
task of devising a specialized sequencing protocol for that program.

11

Chapter 3
Notation

This chapter estabhshes the notational standard to which the rest of this document
conforms. The following are some of the thoughts which guided the design of this '
notation:

The literature of distributed computing does not share any widely accepted "standard-
notation", and there is no consistent use of terminology. Further, terms are often
overloaded with semantic content. For example, the term "process” is often used to denote
an infinite totally ordered set of steps. The bold letters denote semantics not
commonly associated with this word outside the domain of dtstnbuted systems.

3.1 temporal relationships

A major source of confusion in distributed computing literature is the use of terms denoting
temporal relationships. The following is a list of temporal relatlonshlps relevant to this
discussion: '

3.1.1 Ordering

A set of steps in a program are ordered if it is required that they execute in a specific partial
sequence. o

A set of events in the history of a computatlon are ordered ifitis deterrmnable that they
occurred in a specific partial sequence.

3.1.2 Mutual exclusion
A set of steps (events) in a program (the history of a computation) are mutually exclusive if

they are constrained in the extent of the1r concurrency, but no subset of two Or more steps '
(events) is ordered. '

12

3.1.3 Concurrency

A set of steps in a program (events in the history of a computation) are concurrent if no
subset of two or more steps (events) is ordered or mutually exclusive.

Simultaneity may be mentioned for completeness, but it is an uninteresting temporal
relationship because it is-an unguarantccable requlrement on asynchronous computauons
and undetectable when it occurs in the h1story of such a computation.

The term sequencing will be used to denote the enforcement of temporal constraints.
3.2 The program

A program is the specification of a computation. This section discusses a standard for
representing and interpreting programs.

3.2.1 Representation

A program is denoted by a directed graph. Informally, _nodes represent the steps of the
computation and arcs represent dependences. Each node is labeled with a quadruplc <n,
s, I, O> where:

n is a unique identifier

s is a step (atomic action) in the program
1is the dependence of n on othe_r nodes and
O is the dependence of other nodes on n.

The attribute s is of the canonical form U := f(V) where U and V are sets of data objects
termed the modification domain and the invocation domain respectively. Iis a
predicate of the canonical form ene_of(a set of seits of dependences). O is a predicate of
the canonical form one_of(a set of pairs in which the first element of each pair is a
predicate on the state of the data and the other is a set of dependences). The boolean
function one_of is true iff precisely one of the elements of its argument set contains only
satisfied dependences, any satisfied dependence belonging to other sets of its argument also
beloﬁg to that set and the predicate if any associated with that set of dependences is true.

13

Thus, for example if p and q are predicates and d1..5 are dependences, the predicate

one_of (<p,‘ {d1, d2, d3}>, {d1, d4}, <q, {dl, d2, d5}>) is true under the B

following conditions:-

1) if d1 and d4 are satisfied and d2, d3 and d5 are not satisfied, regardless of the truth
ofpand q

OR

2) if pis true and d1, d2 and d3 are satisfied and d4 and dS are not satisfied regardless
of the truth ofcj

OR _

3) if qis true and d1, d2 and d5 are satisfied and d3 and d4 are not satisfied regardless
of the truth of p.

Each directed arc represents a dependence of its destination on its source and is labeled with
a triple <t, a, d> where:

t is the type of the dependence, one of:
MM, signifying that d is an element of U of the source and the destination
nodes.
M], signifying that d is an element of U of the source node and d is an element
of V of the destination node.
IM, signifying that d is an element of V of the source node and d is an element
of U of the destination node.

a is a unique identifier and |

d is a datum of the computation. -

A datum is defined as a triple <name, value, version number> where:

name is a unique identifier which does not change,

value is the state of the datum and can change and

version number is a counter of the changes undergone by value.

Alternately, a datum i$ an association of a value with its name for each version number
from some initial value (0 will do fine) up to its current value.

Thus, the d attributes of the arcs and the U and V attributes of the s attribute of the nodes .
are the objects with state. '

14

Figure 4 is a program implementing Euclid's algorithm for computing the Greatest
Common Denominator of two positive integers. '

15

The GCD
Program

n0: Begin

fIX>Y, 1,2},

{X=Y,0,5],{X<Y,3,4]}

[{6.21.16.121.{1.2},[11.12)

In: X=X-Y

{{X>Y6]},
{X=Y,7,8},(X<Y.9,10]}

MM, 6,X

© IM,10,Y

(£9,10},{3,41.(15,31,{15,5}}

n2:Y:=Y-X

{{X>Y, 11,12},
{X=Y,13,14},{X<¥,15}}

IM,I1,X

MM, 15,Y

IM13,X

MM,14,Y

Pee b

{{0,5},{7.8},{13,14}}

n3: End

Figure 4: Euclid's GCD algorithm

16
3.2.2 Interpretation

The program contains the steps of the computation and the temporal relationships required
‘among the steps. A step in the program may be executed when a node is enabled; ie, when
-the predicate I associated with the node is asserted. Initiation and termination of the

execution of a step affect the enablement of other steps by changing the satisfiability of

dependences. (details in section 3.1)

3.3 The history and the log

The history of a computation is the description of the events of that computation and the
dependences among them. The record of this history is termed the log. The process of
maintaining the log is called logging.

3.3.1 Representation

The history of a computation is represented as a graph. The nodes of this graph are events
(executions of individual program steps) and the arcs represent temporal relationships
among them. ' ' '

Naturally, the log is also structured likewise. Each node of the graph is labeled with three
attributes, n, E and C. '
n identifies the step in the program which was executed. _

"E is the exit condition; ie, the dependence of other events on it. This is the set of all valid
combinations of out-going arcs from the node. 7
C is a checkpoint; ie, a record of the version of each datum used by the event. A datum
may be checkpointed either implicitly (by saving its version number) or explicitly (by
saving its version number and its value).
The logging of an event is complete if all of its logical predecessors are logged. A set of
completely logged events constitutes a complete segment of a log and the set of all
completely logged events is the log's maximal complete segment.

17

3.4 Data ahd resources

These are the two types of objects used in a computation. Temporal relationships among
the events of the history (steps of the program) may be established based on the way the
events (steps) use (require the use of) these objects.

3.4.1 Data

These are objects with an associated state (the value attribute). Events use these objects by
either referring to their value or altering it (or both). The data to whose value an event
refers is the invocation domain, V of that event. The data whose value is altered by an
event is the modification domain, U of that event. The union of the two is the Data
domain.

When a datum is an attribute of an arc, its use by the source node of that arc creates an
ordering among events. If the modification domain of one event intersects the dat_ei '
domain of another, then the two events are ordered in the sequence in which they used data
in that intersection. Otherwise, there is no temporal relationship imposed by their use of
data.

There are (at least) two instances when a datum of a program may not be attributed to any
of its arcs. One is where dependences caused by the use of that object are implied by
dependences caused by the use of another object. The other instance is when a datum
serves only one node of a program. Such use of data provides the means for implementing
internal states for nodes if desired.

3.4.2 Resources

Resources are modeled as objects with no state. The consequence of this statelessness is
that the order in which events use a resource is immaterial. This is why resource
dependences constitute mutual exclusion constraints. Since resources are simpler objects
than data and cause simpler dependences among events, the means to specify and
implement data dependences should suffice for resource dependences also. However, for
the same reason, such an approach may be more complex than necessary.

18
3.5 Sequencing

This is the task of keeping the history of the computation consistent with the program. We
classify a sequencing strategy as: ‘ ‘ ' '
- pessimistic if the protocol for initiating events guarantees that consistency is preserved by
every event in the history - -

optimistic if none of the overhead associated with the protocol for initiating an event is
attributable to the preservation of consistency (if the initiation of events is completely ad-
hoc)

balanced if some of the overhead associated with the protocol for initiating an event is
attributable to the preservation of consistency but there is no guarantee that consistency is
preserved by every event in the history. '

It may be desirable or necessary to specify that the optimistic determination of the -
satisfaction of some dependences is unacceptable; ie, that it must be determined that those
dependences are ‘satisfied and have a fault-free pedigree before the destination node is
executed. The set of such dependences is defined to be the boundary of optimism.. -

19

Chapter 4
Sequencing

The role of sequencing is to keep the history of a computation consistent with its program. -
In this chapter, a spectrum of balanced sequencing strategies (ranging from optimistic to
pessimistic) is discussed in terms of the four types of activity that such strategies involve.
(the protocol components). Note that the discussion is not restricted to deterministic flow
of control. This availability of nondeterministically choosable sequencing options makes
the task of formulating the strategy signi'ﬁcantly' harder. In particular, when
nondeterministic choice of dependences to bé enabled is resolved as soon as the choice is
available, two types of problems can occur: (see example) :

i) a fictitious non-progress state |

if) a fictitious incorrect execution under optimistic sequencing E

A PROGRAM FRAGMENT

n0: X:=5 nl: Yi=17
{10}.{1}} {{2}_,.{3}}

MM.0.X MIL1,X MI1.2,Y MIL.3.Y
{{0,2}} {{1,3}}

n2:X:=X+_Y 3 X=X*Y

figure 5: A program fragment _
Example: In the program fragment of figure 5, n0 and n1 may execute concurrently after
which either n2 or n3 (but not both) may execute. This choice is made by choosing
between arcs 0 and 1, only one of which can be chosen according to the O attribute of n0
and choosing between arcs 2 and 3, only one of which can be chosen according to the O

20

attribute of nl. If these choices were made indcpenderitly, without considering the I
attribute of n2 or n3 the choices (0 and 3) or (1 and 2) lead to the problems mentioned
above.

4.1 Triggering

This is the component which initiates events. The pessimistic aspect of a triggering
mechanism is the overhead that goes into reducing or eliminating the possibility of
triggering events out of sequence. The optimistic aspect is the triggering of events before

sequencing errors can be overruled.

The triggering mechamsm described below has the followm g characteristics:

1) - Every legal sequencing option is avaxlable Hence any legal computatlon can
OCCUr. _
2) Commitment to non—deterrmmstlc ch01ce is postponed as long as poss1blc _

This is in keeping with the philosophy of "Keep all options open”.

3) The worst case complexity of a decision on triggering an event is [T1.(A])
where L is the set of nodes in the log with unsatisfied output dependences and
4] is the number of non-deterministic choices available in enabling the output
dependences of 1, an element of L.

4) The decision mechanism models a spectrum of strategies ranging from
pessimistic to optimistic. ' '

4.1.1 QOutline

Fact1: The initiation of a step reduces available sequencing options.
Fact 2: The termination of a step increases or leaves unchanged available sequencing
options.

The basic strategy consists of maintaining a database of available sequencing options called
the sequencing options table (abbreviated SOT). The manner in which this database is
distributed and/or replicated is an independent issue.

The initiation.of an event results in the creation of an I_Entry in SOT. An I_Entry is
the I attribute of the initiated step with each dependence tagged with the initial version
number of the datum. The termination of an event results in the creation of an O_Entry in

21

SOT. An O_Entry is the set of dependence set components of the <predicate,
dependence set> pairs of the O attribute of the terminated step with:

i) <predicate, dependence set> pairs containing false predicates removed

ii) each dependence tagged with the final version number of the datum.

The interpretation of these entries is discussed in the section on the one_of canonical form
of chapter 3. Let q stand for the predicate conjunct (O_Entries) and not disjunct
(I_Entries). The decision to trigger an event is: -

i) correct if implies its I attribute
ii) : wrong if ¢ implies the negation of its I attribute
i) undecidable if none of the above.

It is in the treatment of case iii) that the issue of optimism enters the picture. A pessimistic
strategy will treat this as wrong and an optimistic strategy will treat this as correct. To
implement a balanced strategy, Ip is chosen for each step such that I implies Ip. (q
implies Ip) becomes the criterion for triggering the event. The spectrum of protocols
ranging from pessimistic to optimistic is achieved thru the choice of an appropriate Ip.
Pessimistic triggering is achieved by choosing Ip =1 while optimistic triggering is
achieved by choosing Ip = true. In general, weakening Ip increases optimism and
reduces pessimism and vise versa, thereby providing a full spectrum of protocols. Any Ip
may be strengthened in an arbitrary manner without jeopardizing any safety property,
although liveness (the ability to progress) can be jeopardized.

If the creation of I_ and Q_ entries are the only modifying operations on SOT, its
information content will be identical to that of the computation's log (discussed later). The
SOT grows monotonically with the progress of the computation, and hence, so does the
cost of using it in triggering decisions. Therefore, means for reducing the entries in SOT
without altering the available sequencing options are desired. Such a reduction is effected
by:

1) removing all dependences tagged with old version numbers

and then,

2) removing all entries which contain a null set of dependences.

22

4.1.2 Production System Formulation

Modelling the triggering of events as a concurrent production system (which we will call
trig) provides a uniform formalism for discussing the entire spectrum of triggering
protocols ranging from pessimistic to optimistic.

A production system consists of: _

1) A state; ie, a database of information relevant to the triggering of events,

2) A set of rules by which to modify its state. Each rule consists of a pre-
condition (a predicate on the state) and an action to be taken if the pre-
condition is true. (pre~condition—>action)

3) - A control strategy which selects the rules to be appliéd.

Each rule corresponds to a node of the program. For each node <n, S, I, O>, there is a
rule
q implies Ip ->

Begin _
Create the I_Entry in SOT;
Execute S; _
Create the O_Entry in SOT;
End.

In addition, there is the garbage collection rule
true -> '
reduce SOT.
The safety properties of this production system do not depend on the choice of a control
strategy. - '

4.2 Logging

Logging is the recording of all the history of a computation relevant to its fault-tolerance
requirements. ' |

23

4.2. 1‘ M-aintehancé

All components of the sequencing mechanism play a role in maintaining the log. Th.c'
creation of nodes occurs along with the execution of the events they represent. Attributes |
n, E and C are available upon completion of the event. However, if any optimism is
involved in the triggering of events, the situation could arise wherein the log contains an
event but not all of its logical predecessors (The event is not completely logged). In sucha '
situation,_informatibn necessary to cbmpute the set of incoming arcs may not be available at
the time of Ioggihg ag'cvcnt_. Since the incoming arcs can be derived from the C attributes B
of a complete segment of the log, the task of filling in the incoming arcs must be postponed
until the node achieves completeness. Nodes may be removed from the log either as a part
of the process of recovering from a fault or via garbage collection. A node s a candidate

for garbage collection if

i) all its predecessors are candidates for garbage collection and

i) it represents a correctly sequenced event and

i) all the data it explicitly checkpoints are explicitly checkpointed by one or more

of its successors.
4.3 Validation

This is the protocol for dcterminingi- the consistency of a computaﬁon's history and
identifying any events that may be inconsistently séquenccd. Aneventnina compiete'
segment of a log ("complete segment” as defined in chapter 3) is in sequence if its set of |
incoming arcs satisfies the I attribute of node n of the program and its set of outgoing arcs |
satisfies its E attribute. The first step in the validation procedure is to compute the arcs
among the nodes to be validated from the C attributes of the logged events. (For each
datum modified by n, an in-coming arc either from each event that invoked the initial
version of that datum, or, if there are none, an in-coming arc from the event that created the
initial version. For each datum invoked by n, an in-coming arc from the event that created
that version of that datum.) Then, for each of the nodes, the n attribute identifies fhc
corresponding step of the program, and consistency in sequencing can be verified. (1.
The set of in-coming arcs must be consistent with the I attribute of node n of the program
and 2. the set of out-going arcs must be consistent with the E attribute of the event.) The
nodes which don't meet condition 1 represent events executed out of sequence. For nodes
‘which don't meet condition 2, the successors whose removal restores condition 2 repr'esent'

24

events executed out of sequence. The set of events determined to have executed out of
sequence is the fault. The domain of a fault is the data whose state is affected by the fault;
ie, the modification domain of the fault and its successor events.

4.4 Recovery

This is the componcht of the sequencing strategy which ne gates the effect of the detected
fault. Approaches to recovery are classified as forward if they involve including

additional events in the execution to compensate for fdulty events and backward if they |
involve state restoration and rcsumption of compuiation at or prior to the ori gih of the fault.
This.research reétricts itself to backward stra:tcgics. sinc_e they are indepcndent of the._ '
semantics of the program's steps. | o

Backward recovery can be treated as a sequence of three steps, restoration,
reconstruction and resumption. ' o

4.4.1 State restoration

The first step for either of the backward recovery strategies is the restoration of a state of
the domain of the fault which existed prior to the fault. This is done by a backward search
of the log starting from the fault until an explicit check-point for each element of the fault
domain is encountered. (Note that SOT should also be restored. This is easily achieved
by tr_eating the entries in SOT as data objects for the purposes of checkpointing and '
TECOVETY.) Let's call this set of explicit checkpoints the anchor. o "

4.4.2 State recohstruction

This step is optional. By recomputing thé_ segment of the log between the anchor and the
fault, the state of the fault's domain just prior to the fault is rccqnstructe_d. '

4.4.3 Resumption
The computation may resume either from the restored state or from the reconstructed state.

The primary advantage of incorporating the reconstruction step is that it is possible to
guarantee progress of the computation. o '

25

4.5 Example: Executing the GCD program

Consider the execution of the GCD program under an optirhistic protocol. Figure 6 (a)
shows the log of an incorrectly sequenced execution of this program. In this case, n2:2's
dependence on nl:2 is inconsistent with the exit condition of n1:2. For this specific fault,
there is an obvious forward recovery fix; ie, extend the execution with the event
Y :=Y +X. Clearly, this fix is based on the semantics of the event which is out of
sequence. This is in general true of any forward recovery scheme and hence there is no
such thing as a general purpose forward recovery scheme for any computation based on
any program.

4.5.1 Backward Recovery Illustrated

The first step is to restore the values of X and Y to a previous consistent state. The most
recent explicit checkpoints are X:V1 at event nl:1 and Y:V0 at event n0:1. If there were
any intervening events between n0:1 and n1:1 which modified Y, it would be necessary to
find an earlier checkpoint of X. This in turn could necessitate finding an earlier checkpoint
of Y an so on. This is the Cascading Rollback or Domino Effect discussed in [Russell] and
[Jefferson]. In this case, there is no cascading rollback, and the log after state restoration
looks like figure 6(b).

4.5.2 State Reconstruction Itlustrated

One may return to the computation after State Restoration, but this approach has one
serious problem, There is no reason why the same problem can not recur. Hence,
conceivably, the computation could thrash indefinitely. State reconstruction avoids this
problem regardless of the frequency of explicit checkpoints.

State reconstruction consists of re-executing the log between the anchor (fig. 6(b)) and the
fault; ie, the events n2:1 and nl:2, thereby reconstructing the state just prior to the fault
before returning to the computation. At this point, there is at least enough information to
sequence the next event correctly, and hence a finite (if slow) rate of progress is guaranteed
regardléss of the amount of optimism and regardless of the checkpointing
intervals.

26

Finally, figure 6(d) shows the log of a correct and complete execution.

27

Logging The GCD Program

figure 6:

n0;1 | X:Vo=7 n0:l 1 X:Vo=17 n0:1 [X:vg=7 nd:l | X:V0=7
- YV0=4 Y:Vo=4 Y:V0=4 |. Y:V0=4
({1,2}} {{1,2}} {{1,2}} {{1,2}}
1.X I'z,Y L,X1 k,Y 1,X f,Y 1,X E,Y
A 4
ni:l | X:V1=3 nl:l1 {X:V1=3 ni:xl IX:V1i=3 nl:l | X:Vi=3
Y:V0 YV Y:VO Y:V0
{{9.,10}} {{9,10}} ({9,10}} {{9,10}}
9,X llO,Y b)Thelogafier ¢ x ko,y 9,X llo',Y'
state restoration. - ¥
‘ X and Y assume - y
n2:1 1 X:Vi " the most recent n2:1 {X:V1~ n2:1 | XVl
YVl explicitly check- YVl YVl
pointed
({11,12}} valvues,X:V1 and {{11,12}} {{11,12})
Y: V0 respectively. '
12,Y
11,X llZ,Y 11,X kZ,Y 11, X 2y
v ¥>r
nl:2 | X:V2 ni:2 1X:v2 nl:2 | X:vV2
Y:V1 YVl YVi
{{6}} ({6}} {{6}}
¢) The log after '
2,X 10,Y state 6,X I
Y reconstruction :
n2:2 | X:v2 acheived by re- nl:3 (X:V3
Y:vV2 executing the Y:V1
evenis n2:1 and
{{11,12}} nl:2 which lie (17,81}
between the fault
) : and the anchor. i
a) The log a
reflecting an X | f’Y
inconsistent
history of the n3:1
computation.
Note how n2:2
depends on n1:2,
d) The Correct
Execution

28

Chapter 5
 Modelling Other Protocols

This chapter describes a inethodology for modelling distributed computing environments
and the consistency management protocols they employ in the form described in the
previous chapters.

5.1 General Strategy
Step 1: Identify the synchronous components of the environment. Examples are

processes of a system of communicating processes, transactions of a transaction based
system, the individual programs of a multi-programming environment, actors of a dataflow

computation etc.

Step 2: Represent the role of each synchronous component as a fragment of a _
program. y |

Step 3: Determine (from the integrity constraints) the manner in which these
components may correctly interact. | -

Step 4: Integrate the program fragments using information determined in step 3.

Step 5: Mimic the behavior of the consistency management protocol governing the

computation by determining the appropriate Ip for each production rule of trig, the control
mechanism for choosing among production rules, the basis (or heuristic) by which the
validation procedure determines inconsistencies etc.

5.2 Example:

The computing environment is a distributed DBMS, the computation is a set of
concurrent transactions and the integrity constraint is serializability.

5.2.1 Specifics:

There are two transactions, T1 and T2 executing concurrently and between them, they
access three data, P, Q and R. Fig. 7 represents their concurrent execution as a program

29

(ie, it represents the set of all valid behaviors of thé concurrent execution of T1 and T2.).

If T1 and T2 had to be denoted as sequential programs, they may be written:

Tl: read Q; read R; write P as f1(Q,R).
T2: read P; write Q as f2(P). '

MI28,Q
270
(: Begin
-
{10,1,2,3.4,5,7.8], MM9.P
- {0.2,3,4,6,7,8,91}
MM,0,T1_Q
i é__% masQ [8T2_P
h 4 MLLO: ITLT MYAE h 4
{{0.1},{0,271) ' {341} ' V1 t{sonis28p}
1: T1. Q:=0Q 2:TI_ R:=R ./ 3: T2 P:=P
{{11,28},{10,11}} {{12,13}} {{15.25}.{14,15}}
_I MI11,T1_Q an,n_n L1 MIEs5,T2 P
v MM,7,T2_Q
f{2.1,12}) . {7.15}}
4:T1_P:=FI(I1_Q, 5:12_Q:=F2(12_P)
Ti_R) .
[{16,17,18}} {{19,20}}
lMI.lG,Tl_,P i ! / IM.19,12_ P MIF0TZ Q
{15,16},{16,25}} {{6,20},{20,27}}
6:P:=TI_P 7:.Q:=T2_Q
M,10,Q {21,22},(22,26)} l{23.24].l24.28]]
MM,23,Q
[_MIZ6r I |_|___h _ _ I
i Ly L
({10,13,17,18.19.21,22,24], Figure 7
MM2LP & 113,14,17,18,19,22,23,24}} _
IM22,TI_P & The program for the

IMI17,7T1 Q & IMISTIR &

9: End
- IM,13R _

concurrent execution of T1
and T2

30

The following sections show how four conventional sirategies to sequence the events of T1
and T2 are special cases of our proposed strategy. Remember that T1 and T2 are the two
synchronous components. For the purpose of this éxample, a dcpendcnée is called-
external if it derives from the use of a shared objéct (hcré, P, Qand R) and internal
otherwise. |

5.2.2 Schneider's Protocol Extended for Non-deterministic“
Decisions

This is a sn'ictly pessimistic strategy. The production rules are formed with Ip =1. Any
control strategy will suffice. An extension of Schneider's protocol is used by the
control mechanism to resolve non-deterministic choice. (for example, initially, either nodes
land?2 or_node'3 can be triggered. TI will broadcast a request to initiate nodes 1 and 2 |
and T2 will broadcast a request to initiate node 3. The request with the earlier time-stamp
will win.) | -

5.2.3 Two-phase Locking

This is frequently called a (sometimes, the) pessimistic protocol; but in our framework it
must be classified as pessimistic WRT internal dependences and balanced (neither strictly
optimistic nor strictly pessimistic) WRT external dependences (and hence is an instance of a
balanced protocol with the internal dependences constituting the boundary of optimism),
The production system employs-a variable for each shared (lockable) object (P_lock,
Q_lock and R_lock) which can take on the values T1, T2 or UNLOCKED. The production
rules are formulated with Ip = (I with external dependences removed) AND (the
transaction to which the step belongs has locked all objects represented by its external
dependences). For example, Ip = (one_of {{0]}) AND (Q_lock = T1). The control
strategy for the production system is: | ' '

i Initially, all locks are UNLOCKED. i

i When a step requires only one or more locks to satisfy its Ip, a lock request is
broadcast by that transaction. For example, when one_of {{0}} is true, "Request
Q_lock" is broadcast by T1. . | . '
iii Locks are granted in time-stamp order of their requests using Schneider's protocol.
The granting of a lock need not be broadcast since Schneider's protocol guarantees that all
transactions see the same picture. o

31

iv Locks are relinquished when a terminated step has an external output dependence
and the transaction will not subsequently request locks. For example, because of arcs 10
and 28 of step 1, T1 broadcasts "Relinquish Q lock" any time after broadcasting
"request P_lock" when node 6 comes up for execution. - |

5.2.4 Commit protocol (Kung & Robinson)

This is frequently called a (sometimes, the) optimistic protocol, but in our framework it |
must be classified as pessimistic WRT internal dependences and external dependences |
representing variables in the modification domain and optimistic WRT external.
dependences in the invocation domain (and hence is.an instance of an optimistic protocol
with the internal dependences and external dependences representing variables in the
modification domain constituting the boundary of 0ptiinism. The production rules are
formulated with Ip = (I with external dependences not representing variables in the
modification domain removed). Any control strategy will suffice.

5.2.5 Jefferson's "virtual time" protocol

This is another approach to "optimistic" sequencing. The production rules are the same as

in -5.2.2. This approach contrasts with that of Schneider in that transactions |
"optimistically” presume that protocol related messages are received in time-stamp order
and hence, the set of all received messages and the assumption that there are none in transit
with intermediate time-stamps form the basis for determining the truth of the pre-conditions
of the producﬁon rules. The receipt of a protocol-related message oui__of turn is the
heuristic basis for determining the occurrence of a fault and its location. .

32

‘Chapter 6
Literature Survey

This research rests heavily on a large body of literature spanning several domains. The
purpose of this chapter is to relate this research to the work of others.

The chapter is organized in two sections. The "concepts survey" section discusses the
relevance of some concepts from literature to this research. The "literature survey" section
summarizes the contribution of prominent articles to the development and establishment of -
the concepts discussed in the "concepts survey". ' ' '

6.1 Concepts Survey

[Kuck] contains a categorization of dependences among steps of a program. Dependences
in a program are treated as implicit properties of its semantics and the paper deals with
determining dependences at compile time for the purpose of realizing the pbtential for
concurrency in a sequentially formulated program. In contrast, dependences are explicitly
(and syntactically) specified in our program notation. Further, in contrast to [Kuck]'s five -
classes of dependences, we need to distinguish between only three classes of dependences.

Protocols for the preserving of dependences among steps of a program employ some form
of séquencin’g primitive. Examples of such proposed protocols are those based on
"atomic memory fetch"”, "test and set" [Habermann], time-stamps, event-counts and
sequence numbers [Reed?], semaphores [Dijkstra] and extended semaphores [Agarwal],
several based on "lock" and "unlock” [Eswaran, Gray, Silberschatz, Ahuja] and "commit"
[Kung, Reed1] mechanisms (from Data Base literature), the protocol based on time-
stamping and broadcasts due to [Schneider], the "time-warp mechanism" of [Jefferson],
semantics based protocols [Molina, Jensen] etc. This research models protocols as
belonging to a spectrum ranging from pessimistic to optimistic. It is demonstrated in
chapter 5 that the proposed protocol can model other protocols in extremely intuitive ways
in addition to providing a simple paradigm to model spectra of protocols ranging from
pessimistic to optimistic. Concepts borrowed from this literature are discussed in sections
6.2.3.2 thru 6.2.3.4. |

33

The proposed protocol employs logging and checkpointing to support the detection of
inconsistencies arising from the optimism in the triggering of events and the subsequent
recovery from those inconsistencies. This use of the log bears a strong semblance to the
use of logs in the Gypsy environment [Good1, 2, 3] for run-time verification of programs.
The goals are different but the approaches are comparable.

State restoration and recovery have been extensively studied in the context of crash
tolerance, but the techniques and some of the results on performance are relevant in the
context of recovering from computational inconsistencies. [Lampson, Shapiro, Kim,
Wood] discuss implementation techniques, [Russell] treats the problem of avoiding
cascading rollback and [Chandyl, Chandy2, Gelenbe] derive analytical results for
performance. |

[Agrawal] discusses the common overhead of consistency management and crash recovery

mechanisms and presents a case for integrating them. This proposed approach is
conducive to such inte gration since the log ging and recovery mechanisms serve both needs. _ |
Consequently, where crash recovery is a requirement, the overhead associated with the
implementation and execution of the logging mechanism and the implementation of the
recovery mechanism need no longer be attributed to the potential for optimism in this
approach to consistency management, thus strengthening the case for permitting optimism.,

The notion of a "production rule system" defined in chapter 4 proved to be an effective.
paradigm for modelling the triggering component of the sequencing mechanism.
[Brownston] is a-good reference text on this subject. '

6.2 Literature Survey

This section will discuss those articles from literature dealing with concurrent program
schemata, dependence graphs, sequencing primitives and protocols, state restoration and -
recovery, production systems and related performance issues which contributed directly to
_ the conceptual basis of this research.

6.2.1 Concurrent Program schemata

Of the numerous models of concurrent programs the proposed model closely matches that
of [Karp2] with two important differences:

34
i The Schema of [Karp2] models data as a set M of shared memory locations,

each of which contains a value. In its stead, we have data, a set of <name, value, version
number> associations. In effect, this approach- ' '

a) abstracts away the issues of data organization such as shared access vs. replication
' and
b) makes it convenient to discuss state restoration.

If it were necessary to explicitly deal with issues of data organization, one may always do
so by employing appropriate naming conventions. For example, to explicitly represent a
technique for updating a replicated datum, the name of the datum may be extended to
generate a unique name for each replica, and the extended names used in the program.

it The [Karp2] schema employs a function G which determines the "outcome” of an
event. This "outcome” corresponds to the O_Entry created in SOT at the termination of
an event. The difference is that the domain of G is the invocation domain of the step in
[Karp2] as opposed to the total domain of the step in the proposed model. The two .
approaches can be proven equivalent. However, the approach employed in the ﬁroposed -
model seems to better reflect conventional thinking in programming in that conditional
branches are based on the state at the termination of the previous step rather than on the
state just prior to it. | '

6.2.2 Dependence Graphs

The first part of [Kuck] defines five classes of dependence relations (loop, output, anti,
flow and input) which have an interesting relationship to the three classes (MM, Ml and IM .-
for Modifier-Modifier, Modifier-invoker and Invoker-Modifier) employed in the proposed
model. [Kuck] models "Fortran” programs consisting exclusively of assignment
statements, For loops and While loops as dependence graphs and discusses compile time
optimizations on such graphs. The interesting section in the context of this research is
section 2.2 which defines the classes of dependences.

The loop dependence relates a statement to a loop within which it is nested. For this
purpose, each loop is identified by a "header”, an "increment counter”' statement for For
loops and a "compute predicate” statement for a While loop. Directed arcs from each
header to each statement in the loop (including headers of other loops) represent the loop
dependences. Since, in the context of the proposed research, there is no occasion to
subject loops to any speciai treatment, this dependence relation seems unnecessary for the
purpose of this research. '

35

The output dependence is a dependence between statements (not necessarily successive)
which modify the same datum. Output dependences can be derived from MM, MI and IM
dependences as follows: :

An output dependence is a path in the dependence graph defined by the regular expressmn
(MM + ML. IM) (MM +ML IM)* where all arcs represent the same datum.

The antidependence is a dependence from statements which invoke a datum to those which
subse(iuently modify it. antidependences can be derived from MM, MI and IM
dependences as follows: . :
An antidependence is a path in the dependence graph defined by the regular expression
IM.(output dependence)* where all arcs represent the same datum. |

The flow dependence is a dependence from a statement which modifies a datum to the next
one to invoke it. This is the MI dependence.

The input dependence is a depen'denc'e between two statements which invoke the same
datum. Since it does not represent a sequencmg constraint, it is not of relevance to this
proposed research.

6.2.3 Sequencing Primitives and Protocols

Dlstrlbuted sequencing belongs to the more general class of distributed decision

makmg problems. Central to any de01s1on mechanism are:

i) Asetof rules to map the knowledge of state onto decisions

ii) In a distributed system, a protocol for the dissemination of such knowledge.

ii) If the decisions involve any optimism, validation and recovery mechanisms to
determine and recover from consequences of incorrect decisions.

"State" in the context of sequencing decisions i commonly termed "control state”.

6.2.3.1 Time and State in Distributed Systems

Several techniques applied to distributed computing employ time-stamps in some capacity.
[Lamport] discusses an artificial notion of time in the context of distributed computation -
which preserves causal relationships. For sequential processes communicating via FIFO
channels, events within each process are totally ordered in the sequence in which they

36

occur. The only ordering relation between events of different processes is that the sending
of a message occurs before its receipt. To ensure this, a process advances its clock if
necessary upon receiving a message. Any nthcr_ orderings are those derivable from the.
above. Further, by making time values at each process unique without changing the
relative order of events as described above (for example, by appending a unique “processl
id" to the "time" at each process), a total order consistent with the partial order defined
above can be derived. The [Lamport] ordering corresponds to the ordering defined in this
proposal as follows:

i) The proposed partial order of events of -each synchronous component of
computation based on the events' use of data is consistent with (and weaker than)
Lamport's total ordering of events of the same process. _
ii) If channels are viewed as (the only) data _shared_by processes with "send"' and
"receive” as modifying operations on them, the proposed ordering relationships between
events of different synchronous components of computatlon correspond cxacﬂy to
Lamport's ordering relationships between events of dlfferent Pprocesses.

[Chandy3] presents a notion of global state in the context of distributed computing. The
paper presents an algorithm for determining a global state of the computation. By using

distributed snapshots which represent such global states as checkpoints, an upper bound of

two checkpoints at each process during validation and one during other times can be

achieved. A snapshot is initiated by any process which records its state and sends a marker

on each of its output channels. The receiver of a marker, if it has not previously

participated in the snapshot records its state, records the state of the channel as empty and.
propagates the marker on its output channels. If the receiver has prev1ously participated in

the snapshot, it records the state of the channel as the list of messages received on that

channel since the process recorded its state. The set of process and channel states thus

recorded constitute a distributed snapshot which can serve as a check-point.

6.2.3.2 General purpose Distributed Decision Protocols

[Schneider]'s protocol is a general purpose pessimistic solution for any deterministic
distributed decision making problem. For a discussion of extensions for non-deterministic
distributed decision making problems, please refer the appendix. The protocol works as
follows:— | - -

37

i) All relevant information is broadcast on time-stamped messages. All messages -
broadcast from a site are received at other sites in the order in which they are
broadcast. Time-stamps are based on a Lamport-clock [L.amport] mechanism. -

ii) The recipient of a broadcast broadcasts acknowledgement of its receipt.

iii) The sequence of fully acknowledged messages at a process with no intervening
partially acknowledged messages represent the process’ knowledge of the state. All
the process' decisions are based on that knowledge.

The basic idea is that the fully acknowledged message sequence develops identically at each

process. A state transition corresponds to an inclusion of a message in this sequence.

Since each process has an identical view of state transition, this appreach is in effect -

equivalent (in behavior, not in performance) to centralization of decision making.

[Jefferson]'s protocol is a general purpose optimistic solution for any deterministic
distributed decision making problem. Adapting the protocol to [Schneider]'s model of
computation, the differences between the two are:—
i) No acknowledgement of messages
if) When a message is received with a larger time-stamp than that of previous -
messages, it is optimistically assumed that no messages with intervening time-stamps are
assumed. The receipt of each such message represents a state transition.
iii) When a message with a smaller time-stamp than that of the previous message is -
received, rollback is initiated to the state prior to the receipt of the earliest message with a .
time-stamp larger than that of the message just received. Anti messages are sent to negate -
the messages sent since that state. _
iv) = When an anti message is received, if the corresponding message has not yet been ..
received, the two annihilate each other. If the corresponding message has been received, -
the receiver rolls back to the state prior to the receipt of the negated messages and in turn, -
sends out anti-messages as described above.

[Reed1] formulates an abstraction of data which is central to the discussion of rollback in
the context of this research. In addition to the common name and value attributes, a third
create-time attribute is associated with each datum. Thus, each datum is named and has -
a sequence of values ordered by their create-time. Other attributes of data employed in
[Reed1] -viz. read-time and commit-record are not relevant in the context of this research.
The attribute corresponding to create-time associated with data in this research is the -
version number. The protocol consists of having each step of the computation choose
an appropriate versions of the data needed based on the "pseudotime” time-stamp of the

38

transaction, the create and read times of the sequence of versions and the state of the
commit record. The failure to find the appropriate version of any required datum is the
heuristic to determine the existence of a sequencing fault and recovery consists of marking
the commit records of all versions created by the-transaction as "failed" and restarting the
transaction.

6.2.3.3 Database and Multi-programming Protocols

A lot of research into sequencing concurrent computation has been done in the context of
sequencing concurrent transactions on databases. Several strategies were discussed in the
context of centralized databases. (Chapter 5 discusses casting-the synchronization of
transactions as a sequencing problem.) To employ these strategies in a distributed system,
one merely needs to come up with a suitable knowledge dissemination protocol.

The earliest proposed primitives applicable to the solution of sequencing problems were
proposed as synchronization primitives in the context of multi-programming. Examples of
these are the atomic memory fetch and the atomic Test-and-Set [Habermann].

[Eswaran] proposed two phased locking for synchronizing transactions in a database to
achieve serializability. The protocol calls for transactions to "lock" data as needed and -
"unlock” them when a) they are not needed and b) no further data is needed. Data locked
by a transaction can not be used by any other transaction until it is unlocked. This
approach is subject to deadlock since it is possible to reach a state in which several
transactions wait for each other to unlock data, Two approaches to improving on this
protocol are 1) improving data availability via shared locks [Gray] and 2) avoiding
deadlock by pre-ordering entities [Silberschatz, Kedem1,2, Ahuja]. Shared locks permit
concurrent non-modifying access to data and hence increase the range of valid execution
schedules. Pre-ordering increases the range of valid schedules by permitting the relaxation |
of constraints on unlocking objects, but restricts schedules by either prohibiting
[Silberschatz] or restricting [Ahuja] the overtaking of transactions while locking data
thereby making some unlocked data unavailable at some times to some transactions.

Commit based strategies for synchronizing database transactions employ the comparison of
time-stamps as the synchronization primitive [Kung]. The basic theme is to associate a
"commit phase” with each transaction. During the commit phase, there is no interaction
with other transactions. . Prior to the commit phase, the execution of the transaction is

39

unrestricted. The successful end of the commit phase marks the termination of the
transaction. If the commit phase is unsuccessful, the transaction has no effect on the
database and can be re-started. [Kung] discusses a commit protocol with the following key

features:

i) All transactions go thru a read phase un-hindered.

i) Upon completion of the read phase, each transaction acquires a unique "transaction
number”. '

ii) A transaction Tj with transaction number t(j) is "validated” if for all T; with
transaction number t(i')'<t(j), either of the following conditions are satisfied: (from
the paper) - '

(1) Ticompletes before Tj begins.

(2) Ti does not write anything read by Tj and completes before Tj begins its
write phase.

(3) Ti does not write anything read or written by Tj and completes its read
phase before Tj completes its read phase. _

iv) A validated transaction (by the above rules) executes a write phase which serves as
the protocol's commit phase. 'When condition 3 holds, write phases of those
transactions may progress concurrently. A transaction which fails to validate is
aborted and re-tried.

This protocol's position on the optimistic...pessimistic spectrum is discussed in chapter 5.

6.2.3.4 Semantics-based sequencing

The notation for programs proposed for this research is capable of representing semantics-
based consistency criteria since arbitrary predicates on the state of the computation can
guide the sequencing of events. The theme of [Molina] is that for transaction-based
systems, insight into the semantics of concurrently executing transactions can make it
possible to permit some non-serializable schedules. To make it possible to abort one of
several interfering transactions without undoing the work of the others, counter-actions are
defined for each action of a transaction. The validity of counter-actions is also based on
insight into the action's semantics. Thus, transaction aborts involve semantics based
forward recovery. ' '

[Jensen] proposes an alternative to serializability as a consistency constraint. The proposed
approach assurmes that data can be partitioned into disjoint "atomic data sets” such that data
belonging to different sets are unrelated and hence can be accessed by transactions in any

40

order. Data of the same set must be accessed in serializable order. Thus, transactions are
serializable WRT their use of any given atomic data set, but the serial order may vary from
set to set.

6.3.1 Validation

When any optimism is involved in sequencing, some means of validating the execution
sequence is required. Most proposed techniques involve comparison of time-stamps -
associated with events. Representative examples are [Jefferson], [Kung] and [Reedl1]
described above. In all of these cases, all faulty sequences are detected but some correct
sequences may be determined to be faulty. This is the price paid for the low computing
overhead associated with validation.

A close relative of the proposed validation scheme is the approach to run-time validation of
programs employed in the Gypsy project [Goodl, 2, 3]. Programs that are difficult to
verify at compile-time are executed and logged and the execution validated by matching the
log against the specification of the program. In this context:

i the role of the program in the sequencing protocol is that of the specification of a
program in Gypsy.

i - The role of the triggering mechanism of the sequencing protocol is that of the
program in Gypsy.

6.3.2 Rollback and Recovery

This subject has been studied extensively in the context of tolerance to “crashes".. Since a
crash is conceptually a compromise of a computation's state, and sequencing faults also
have such an effect, crash-recovery techniques are applicable to recovery from sequencing
faults.

[Wood] discusses an implementation of a recovery mechanism. Each process establishes
checkpoints at arbitrary points of the computation. The issue of checkpointing intervals is
not addressed. Associated with each checkpoint, a process maintains a list (The "prop-
list") of processes to which rollback will be propagated if that process has to roll back to
that checkpoint and a list (the "PRI-list") of processes which could initiate recovery to that
checkpoint. Prop-lists are used to propagate a roll-back to other processes to which

41

messages were sent since establishing the checkpoint. PRI lists are used to determine
checkpoints which are candidates for garbage collection.

[Russell] addresses the problem of detemlining the checkpointing interval required to
ensure that the "domino effect” can not take place. The domino effect is the phenomenon
of cascading roll-back feeding back to a process causing it to undo even more of its work.
[Russell]'s model of communication employs message-lists which are a generalization of
the conventional channels in that several processes can send or receive from any one
message-list. For the case where the topology of the communication graph is not restricted
but each message-list serves only one sender and one receiver, it is proven that establishing :
a checkpoint before each receive that was preceded by a send ensures freedom from the
domino effect. ' '

6.3.2.1 Performance considerations

[Chandy1] derives analytical results for optimal checkpointing intervals under three sets of
assumptions. For the most general case analyzed, the assumptions are:.

i Poisson distributed fault-detections

it Reprocessing time is proportional to the number of transactions in the recovery
region :

iii Time to process transactions which arrive durmg establishment of checkpomts or

during recovery is negligible in comparison with the MTBF.
iv System availability given optimal checkpointing intervals is high.
For the simplest case analyzed, it is also assumed that no errors occur during recovery and
that transactions arrive at a constant rate. The intermediate case does not assume the
absence of errors during recovery. | '

The optimum checkpointing interval problem was also discussed in [young]. [Chandy2]
contains a survey of analytical models of rollback and recovery. ' '

[Gelenbe] determines the maximum transaction load, response time for a given transaction
load and time-overhead of recovery as a function of failure rate. The main difference from -
[Chandy1] is that transaction arrivals during establishment of checkpoints or during -
recovery are not ignored. ' EE '

42

Bibliography

Data Flow Languages
William B. Ackerman -
Computer _ February 1982

[Agerwala]

Some Extended Semaphore Primitives
Tilak Agerwala’ '

Acta Informatica 8, 201-220 1977

[Agrawal]

Integrated concurrency control and recovery mechamsms design and performance
evaluation

Rakesh Agrawal, David J. Dewitt

ACM Trans. DataBase Systems December '85

Communication Structure of Decentralized Commit Protocols'
A. K. Agrawala, T. V. Lakshman
IC Distributed Computing Systems,1986

[Ahuja]

Concurrency and Consistency in D1str1buted Database Systems
Mohan Ahuja : .
Ph.D Dissertation, UT Austin 1984

A Framework for Software Fault Tolerance in Real-Time Systems
Thomas Anderson, John C. Knight o
IEEE Trans. S. E., Vol. SE-9,No.3 May 1983

The vulnerability of vote assignment
Daniel Barbara, Hector Garcia-Molina
Prinston Univ. TR 321 July 1984

A model for concurrency in nested transactions systems
C. Beeri, P. A. Bernstein, N. Goodman
TR 86-03 Wang Instt. Grad. Studies =~ March '86

Formulation and Programmmg of Para]lcl Computations: A Unified Approach
J. C. Browne ‘ _

ICPP 1984

[Brownston]

Programming Expert Systems in OPS5

Lee Brownston, Robert Farrell, Elaine Kant, Nancy Martin

Addison Wesley Publishing Co., Inc. ISBN 0-201-10647-7 1985

43

A formal model of distributed decision making and its application to Distributed
Load Balancing

Thomas L. Casavant, Jon G. Kuhl :

IC Distributed Computing Systems,1986

[Chandy1]

Analytical Models for Rollback and Recovery Strategies in Data Base Systems
K. Mani Chandy, James C. Browne, Charles W. Dissly, Werner R. Uhrtg
IEEE Trans. S. E, Vol. SE-1,No.1 March 1975

[Chandy3]

Distributed Snapshots: Dctenmmng Global States of Dlsmbuted Systcms
K. Mani Chandy, Leslie Lamport

ACM Trans. Computer Systems February 1985

How processes learn
K. M. Chandy, Jayadev Misra
Distributed Computing, Springer Verlag, 1986

[Chandy?2]

Rollback and recovery strategies for computcr programs
K. M. Chandy and C. V. Ramamoorthy

IEEE Trans. Computers Vol. C21 #6 June 1972

The Drinking Philosophers Problem
K. M. Chandy, J. Misra
TOPLAS October 1984

Estimation of mtermodule communication (IMC) and its apphcatlons in dlstnbuted
processing systems :

Wesley W. Chu, Min-Tsung Lan, Joseph Hellerstem

IEEE Trans on Computers, Vol. c-33 August 1984

[Dijkstra]

Co-operating Sequential Processes

Edsger W. Dijkstra

Programming Lang.s: NATO Advanced Study Insntute 1968

On-the-fly garbage collection: an excercise in cooperation

Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten E.F. M
Steffens

CACM Vol. 21, No. It November 1978

Subjective Bayesian methods for rule-based inference systems
Richard O. Duda, Peter E. Hart, Nils J. Nilsson
National Computer Conference 1976

Data Base Contamination and Recovery
Murray Edelburg
Sigmod Wddac May 1-3 1974

[Eswaran] -
The Notion of Consistency and Predicate Locks in a Database System
K. P. Eswaran, J. N. Gray, R. A. Lorie, L. L. Traiger

44
CACM November 1976

Coordinated Computing: Tools and Techniques for Distributed Software
Robert E. Filman, Daniel P. Friedman
McGraw Hill ISBN 0-07-022439-0 1984

A lower bound for the time to assure interactive consistency
Michael J. Fischer, Nancy A. Lynch
Information processing letters 13 June 1982

Sacrificing Serializability To Attain High Availability of Data in an Unreliable Network
Michael J. Fischer, Alan Michael _ ,
ACM SIGACT-SIGMOD March 1982

Limitations of concurrency in transaction prdcessing
Peter Franaszek, John T. Robinson
ACM Trans. on Database Systems March "85

A second opinion on data flow machines and languages
D. D. Gajski, D. A. Padua, D. J. Kuck, R. H. Kuhn
Computer February 1982 -

Existence and uniqueness of stationary distributions in a model of roll-back recovery
Erol Gelenbe
No. 212, RIA Labs, France, . January 1977

[Gelenbe]

- Maximum Load and Service Delays in a Data-Base System with Recovery from Failures
E. Gelenbe, D. Derochette

Modelling and Performance Evaluation of Computer Systems, N.

Holland Pub. Co., New York. H. Beilner & E. Gelenbe, ed., 1976

[Good1]

Principles of Proving Concurrent Programs

Donald I. Good, Richard M. Cohen, James Keeton-Williams
Instt. for CS, UT Austin ICSCA-CMP-15 January 1979

[Good2]

The Proof of a Distributed System in Gypsy

Donald 1. Good

Instt. for CS, UT Austin Tech. Rprt 30 September 1982

[Good3] _

Verifiable Communications Processing in Gypsy
Donald 1. Good, Richard M. Cohen

Instt. for CS, UT Austin, ICSCA-CMP-11 June 1978

Mediators: A Synchronization Mechanism
J. E. Grass, R. H. Campbell
IC Distributed Computing Systems,1986

[Gray]

45

Granularity of Locks and Degrees of Consistency in a Shared Data Base
J. N. Gray, R. A. Lorie, G. R. Putzolu, L L. Traiger
Modcllmg in DBMS, G. M, Nilssen,ed. 1976

Locking in a Decentralized Computing System
Jim Gray
IBM Research RJ 1346 February 8, 1974

The Transaction Concept: Virtues and Limitations
Jim Gray
IEEE 7th ICVDBL, SeptemberlQSl

[Habcrmann]

Introduction to Operating System Design

A. N. Habermann

Science Research Associates, Palo Alto 1976

Observations on optimistic concurrency control schemes
Theo Haerder
RJ 3645 (42501) IBM 10-15-'82

Knowiedge and Common Knowledge in a Distributed Environment
Joseph Y. Halipern, Yoram Moses
PODC - 1984

Fault-tolerant clock synchronization
Joseph Y. Halipern, Barbara Simons, Ray Strong, Danny Dolev
PODC 1984

A lang for the Spec. and Rep. of Prog.s in a Data Flow Model of Computation
Sang Yong Han
Dlssertatton TR-230 UT Austin, Dept. C§ May 1983

Operating System Principles
Per Brinch Hansen
Prentice-Hall, ISBN-0-87692-135-7 1973

Communicating Sequential Processes
C. A. R. Hoare
CACM Vol. 21, No. 8 August 1978

* Parallelism in Production Rule Systems
Ying T. Hung
Term Paper, CS 395T Parallel Comp.s 5-7-1986

A Protocol For Optimistic Transactions on Abstract Data Types
David M. Jacobson
Dept. CS, U Wash., Tech. Rprt 83-12-04 1-29-1984

{Jefferson]

Virtual Time

David Jefferson

Transactions on Programming Languages July 1985

46

Properties of a model for parallel computations:
Determinacy, Termination, Queueing

Richard M. Karp, Raymond E. Miller _
SIAM J. Appl. Math. Vol. 14, No. 6 = November 1966

[Karp2]

Parallel Program Schemata

Richard M. Karp, Raymond E. Miller

Journal of Computer and Sys. Sciences 1969

[Kim]

An Approach To Programmer-Transparent Coordination of Recovering Parallel Processes
and its Efficient implementation

K. H. Kim

Parallel Proc. Conf. 1978

[Kuck]

Dependence graphs and compiler optimizations

D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, M. Wolfe
POPL January 1981

[Kung]

On optimistic methods for concurrency control -

H. T. Kung, John T. Robinson

ACM Transactions on Database Systems June 1981

The Byzantine Generals Problem
Leslie Lamport, Robert Shostak, Marshall Pease
ACM Trans. Prog. Lang. and Sys Vol 4, July, 1982

[Lamport]

Time, clocks, and the ordering of events
Leslie Lamport

CACM July, 1978
[Lampson]

Crash Recovery in a Distributed Data Storage System
Butler Lampson, Howard Sturgis
Computer Science Lab, Xerox PARC, 1979

Knowledge, Common Knowledge and Related Puzzles
(Extended Summary)

Daniel Lehman

PODC 1984

Adequate proof principles for invariance and liveness properties of concurrent programs
Zohar Manna, Amir Pnuelli
Science of computer programming 4 1984

Proofs of Networks of Processes
Jayadev Misra, K. Mani Chandy
IEEE Trans. SE, Vol. SE7,No.4 - July, 1981

52,‘-

47

[Molina]

Using semantic knowledge for transachon processm g in a distributed database
Hector Molina-Garcia

TODS, 8, 2, pp. 186-213 June 1983

Also pubhshed Tech. Report 285, Prinston Univ. Dept. EE & CS, Apnl 1981.

Nested Transactions and Reliable Distributed computing
J. Eliot B. Moss
Symposium on Reliability in Distributed Software and Database Systems, 1982

Verifying properties of parallel programs: An axiomatic approach :
Susan Owiki, David Gries
CACM Vol. 19,No. 5 May, 1976

Proving Liveness Properties of Concurrent Programs -
Susan Owicki, Leslie Lamport .
ACM Trans. Prog. Lang. and Sys., Vol 4 July 1982

Operating System Concepts
. Peterson, A, Silberschatz _
Addison Wesley ISBN 0-201-06097-3 1983

[Reedl]

Implementing Atomic Actions on Decentralized Data

David P. Reed

Sigops S 1979

[Reed2]

Synchronization with eventcounts and sequencers

David P. Reed, Rajendra K. Kanodia

CACM No.22 Vol. 2 pp. 115-123 February 1979

An optimal algorithm for mutual exclusion in computer networks
Glenn Ricart, Ashok K. Agarwala
CACM Vol.24,No.1 =~ January 1981

Separating policy from correctness in conc.uxre.ncy control design |
John T. Robinson
Software-Practice and Experience September '84

Pontryagin maximum principle in the theory of optimum systems I, I and I
L. 1. Rozonoér
Automation & Remote Control (Moscow), 1959

[Russell]

State Restoration in Systems of Communicating Processes
David L. Russell

IEEE Trans. SE, Vol. SE-6, No. 2 March 1980

Restart and recovery in a transaction-oriented information procéssin g system
Hasan H. Sayani
SIGMOD WDDAC May 1-3,'74

48

{Schneider]

Synchronization in Distributed Programs

Fred B. Schneider C
ACM. Trans. Prog. Lang. and Systems, April, 1982

Integrating Locking and Optimistic Concurrency Control in Distributed Database Systems

Amit P. Seth, Ming T. Liu
1C Distributed Computing Systems,1986

Distributed co-operating processes and transactions
Lui Sha, E. Douglas Jensen, Richard F. Rashid, J. Duane Northcutt
Sigcomm, 7 1983

[Shapiro]

Reliability and Fault Recovery in Distributed Processing
Robert M. Shapiro, Robert E. Millstein

OCEANS 1977

[Silberschatz]

Consistency in Hierarchical Database Systems
A, Silberschatz, Z. Kedem

JLACM 27:1, pp. 72-80 1980

- A Majority Consensus Approach to Concurrency Control for Multiple Copy Databases
Robert H. Thomas
ACM Trans. DB Systems, Vol. 4, No. 2 June 1979

Recoverable Actions in Gutenberg '
Stephen Vinter, Krithi Ramamritham, David Stemple
IC Distributed Computing Systems,1986

[Wood] ,

Recovery Control of Communicating Processes in a Distributed System

William Graham Wood

Tech Rprt 158, University of Newcastle Upon Tyne, Computing Laboratory, Clarcmont
Tower, Claremont Road, Newcastle Upon Tyne, NE1 7RU November
1980 : -

	tr87-37

