DISTRIBUTED PROCESSING
OF LOGIC PROGRAMS

Ouri Wolfson and Avi Silberschatz
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-40 October 15987

DISTRIBUTED PROCESSING OF LOGIC PROGRAMS

Ouri Wolfson

Computer Science Department
The Technion - Israel Institute of Technology
Haifa 32000, Israel

Avi Silberschatz 1

Computer Science Department
University of Texas at Austin |
Austin, TX 78712 ;

ABSTRACT

This paper is concerned with the issue of parallel evaluation of logic
programs. To address this issue we define a new concept of predicate
decomposability . If a predicate is decomposable, it means that:

+ its evaluation can be conducted in parallel by several processors,
without communication among them,

+ the computation-time by & processors is roughly equal to 1/k of the
time required by one processor.

On both accounts decomposability is a stronger notion of amenability to
parallel evaluation than the widely accepted membership-in-the-NC-
complexity-class. The reason is that the latter notion may necessitate
communication among the processors, and may not reduce computation
time as drastically. - -

We completely characterize three classes of single rule programs (sirups)
with respect to decomposability: nonrecursive, linear, and simple chain
programs. All three classes were studied previously in various contexts.
We establish that nonrecursive programs are decomposable, whereas for
the other two classes we determine which ones are, and which ones are
not decomposable. We also establish two sufficient conditions for sirup
decomposability. : _ -

+ This research was partially supported by ONR contract N0OO14-86-K-0161 and NSF Research Grant DCR-8507224.

1. Introduction

We propose a new method of evaluating logic programs in parallel. The method is
suitable for sharing the computation load among an arbitrary number of processors,
which have common memory or communicate by message passing. This makes it appli-
cable to a large class of hardware architectures. Let us demonstrate the method using the
classical example of the program computing the transitive closure of a graph. The arcs of
the graph are given by the tuples of a database relation A. The program is written in
DATALOG (see [MW]):

T(xsy):— T(x ,Z),A (Z 2y)
Tx,yyr—AQ,y).

If the relation A is replicated at two different processors, pl and p2, we can partition the
work of computing (the relation for) the predicate T as follows. Processor pl executes
the program:

Ty —Tx,z)A@z.y).
T(o,y)—Ax,y)even(x).

while processor p2 executes the program:
C Tay)-Ta2)ACY).
Tx,y)—Ax.)y)odd(x).

In other words, pl computes the tuples (x,y) of the transitive closure, in which x is even,
and p2 computes those tuples in which x is odd. A moment of reflection will reveal that
this partitioning of the work has several nice properties. First, no processor computes a
tuple which is also computed by the other processor. Second, if the relation computed by
each processor is output to the same device, or stored in the same file, the result is always
the complete transitive closure, regardless of the input graph. Third, no communication
between the two processors is required during the computation. Therefore, for an "aver-
age" graph, the evaluation is completed in approximately half the time it takes one pro-
cessor to do so. The last nice property we want to emphasize is that the work-
partitioning was obtained only by adding evaluable predicates to the body of some rules
of the original program. '

If the parallelization method described above can be applied to the evaluation of a
predicate in a program, then we say that the predicate is decomposable. The above
example has demonstrated the advantages of decomposability for sharing the load
between two processors. However, we shall argue in section 2 that in most cases if the
computation load can be shared between two processors, then using the same method, it
can be shared among an arbitrary number of processors, k. Moreover, similar considera-
tions will indicate that the computation time is approximately 1/k of the time required by
one Processor.

-3.

Not every predicate is decomposable. Even for the same problem of computing the
transitive closure, we will prove that the predicate 7° in the program:

T ®y)-T (2.2),T (z,y).
T(xyy-AQxy).

is not decomposable. The proof of this fact will be given in section 5. Therefore, we feel
that it is practically and. theoretically important to first formally define decomposability
and then characterize the decomposable predicates. : ‘

In this paper we completely characterize three subclasses of single rule programs
(sirups) with respect to decomposability: nonrecursive, linear programs, and simple chain
programs. Sirups were first studied as a syntactically restricted class of programs by
Cosmeodakis and Kanellakis ({CK]). They have only one output predicate, therefore we -
interchangeably use the term decomposability of a predicate or of a program. We also
provide two sufficient conditions for any sirup to be decomposable. Linear programs and
simple chain programs are important subclasses of sirups from the practical point of
view. Simple chain programs were completely characterized with respect to membership
in the complexity class NC by Afrati and Papadimitriou ([AP]). Linear sirups were stu-
died as a distinct subclass in the context of bounded recursion (1], [N1], [NST) and one
sided recursion ([N2]).

This work is related to the general subject of parallel evaluation of logic programs.
The subject has recently emerged as a very important and active area of research ([K],
[UD). However, as far as we know, existing research is concerned with membership in
the complexity class NC. This class is a mathematical tool for analyzing parallel algo-
rithms in general. Here we show that for analyzing parallel evaluation of logic programs,
a different, and stronger tool can be used. Loosely speaking, if a logic program is in NC
it does not guarantee that it has all the nice properties of a decomposable predicate. In
particular, the processors executing an NC type algorithm usually have to communicate
extensively, and therefore communication is assumed to take place through common
memory. Also, the speedup achieved by such an algorithm is not always as good as
achieved by decomposability (k processors complete the computation in 1/ the time).
The technique of program modification that we discuss here is also related to the magic
sets technique ([BMSU]). Magic sets and decomposability, both aim at increasing the
efficiency of query evaluation. However, the means of magic sets is selection propaga-
tion, whereas the means of decomposability is parallel evaluation.

In the next section we introduce the necessary definitions and notations, and prove
that any nonrecursive sirup is decomposable. In section 3 we provide two sufficient con- -
ditions for a general sirup to be decomposable, and in section 4 we show that one of these
conditions, called pivoting, is also necessary for decomposability of a linear sirup. In
section 5 it is proven that a simple chain program is decomposable if and only if it is reg-
ular. In section 6 we discuss future work. -

2. Preliminaries

An atom is a predicate symbol with a constant or & variable in each argument posi-
tion. We assume that the constants are the natural numbers. An R -atom is an atom hav-
ing R as the predicate symbol. A rule consists of an atom, {0, designated as the head,
~ and a conjunction of one or more atoms, denoted Q1 ...,0%, designated as the body.
Such a rule is denoted Q:—Q?,...,QF, which should be read "Qif Q! and Q2 and,
...and Q%" A rule or an atom is an entity. If an entity has a constant in each argument
position, then it is a ground entity. For a predicate R, a finite set of R -ground-atoms is a
relation forR. '

A DATALOG program, or a program for short, is a finite set of rules whose predi-
cate symbols are divided into two disjoint subsets: the base predicates, and the derived
predicates. The base predicates are distinguished by the fact that they do not appear in
any head of a rule. An input to P is a relation for each base predicate. An output of P
is a relation for each derived predicate of P. A substitution applied to an entity, or a
sequence of entities, is the replacement of each variable in the entity by a variable or a
constant. It is denoted x 1/y 1,x2/y2, . ..,xn/yn indicating that xi is replaced by yi. A
substitution is ground if the replacement of each variable is by a constant. A ground
substitution applied to a rule is an instantiation of the rule.

A database for P is a relation for each predicate of P. The output of P given an

arbitrary input /, is the set of relations for the derived predicates in the database obtained
by the following procedure, called bottom up evaluation .

(1) Start with an initial database consisting of the input relations.
- (2) If there is an instantiation of a rule such that all the ground atoms in the body are in

the database generated so far, and the one in the head is not, then: add to the data-
base the ground atom in the head of the rule, and reexecute step (2).
(3) Stop. |
This procedure is guaranteed to terminate ([VEK]). For simplicity we assume that the
- the rules of a program do not have constants, and are range restricted, i.e. every variable
in the head also appears in the body. :

An evaluable predicate is an arithmetic predicate (see [BR]). Examples of evaluable
predicates are sum, greater than, modulo, etc. A rule re is a restricted version of some
rule r, if r and re have exactly the same variables, and r can be obtained by omitting
zero or more evaluable predicates from the body of re. In other words, re is r with
some evaluable predicates added to the body, and the arguments of these evaluable predi-
cates are variables of r. For example, if r is:

Sxy.z)y—Swx.y)Aw,z)
then one possible rule re 1s

Sx.y.z)- S(w,x,y) A(w,z), x—y~5

-5-

A program P; is a restricted version of program P if each one of its rules is a restricted
version of some rule of 7. Note that P; may have more than one restricted version of a
rule » of P. To continue the above example, if P has the rule r, then P; may have the
rule re as well as the rule re’: '

Sxy,z)-S(wax,y) A w,z), x—y=6

Throughout this paper, only restricted versions of a program may have. evaluable predi- -
cates. The input of a program with evaluable predicates, i.e. a restricted version, is

defined as before. The output is also defined as before, except that step (2) also verifies

that the substitution satisfies the evaluable predicates in the ground rule; only then the

atom in the head is added to the database and step (2) is reexecuted. For example, the

substitution x/14,y/8 satisfies the evaluable predicate x-y=6, whereas the substitution

x/13,y/9 does not. A predicate Q in a program P derives a predicate R if it occurs in the

body of a rule whose head is.a R -atom. Q is recursive if (Q,Q) is in the nonrefiexive

transitive closure of the "derives" relation. A program is recursive if it has a recursive

predicate. A rule is recursive if the predicate in its head transitivély derives some predi-
cate in its body.

Let P be a program, T a derived predicate in P, and Py, . .., P, restricted copies of P.
For a derived predicate T of P, denote by T; the relation output by P; for T; the relation
output by P is denoted T. Observe that this is a somewhat unconventional notation, since
for P; the relation name is different than the predicate name. Predicate T is decompos-
able in P with respectto Py, .. ., P, if the following two conditions hold:

1. ForeachinputIto P.P;,...P,
i. \UT;=T (completeness)
i

ii. T; and T; are disjoint for each i#j; furthermore, if some derived predicate Q
derives T in P, then Q; and Q ; are disjoint (lack-of-duplication).

2. For some input I to P 1:--+F, each T; is nonempty (nontriviality).
The above definition is central to this paper, and we shall discuss it next. _

Requirement 1(j) states that no output is lost by evaluating the relation for T in each
P; rather than the relation for T in P; the fact that no additional output is generated is
explicit here, but also implied by the fact that each P; is a restricted version of P.
Requirement 1(ii) states that no ground atom in the output is computed by two different
processors. Therefore, loosely speaking, requirement 1 says the following: For every
input (i.e. set of base relations replicated at each processor), computing the relation for T
by r processors using the P;’s is equivalent to computing it by one processor using P;
furthermore, the sum of all computation times at the r processors is not higher than the
computation time at one processor using P (up to some initialization and termination
constant). -

-6-

The strength of requirement 1 enables the relaxed form of requirement 2. It is
enough that for "some" inputs each T; is nonempty, since for those inputs completing the
computation of T happens sooner in the distributed case. In other words, since there is
nothing to lose by distributing the computation, it is enough that we gain only in some
cases to make the scheme worthwhile. However, for the decomposable predicates that
we discuss in this paper, nontriviality holds for more than an isolated case input.

For instance, in the transitive closure example nontriviality holds for any input
graph in which arcs exit both, even and odd nodes. Specifically, for the class of predi-
cates that we prove decomposable in this paper, decomposability is shown using the
odd—even predicates alone. This has two implications. First, the work performed by
each processor for an arbitrary input, is roughly equal (e.g. for an arbitrary graph, the
number of odd and even nodes is roughly equal). Second, note that the odd and even :
predicates are a special case of the { mod r predicates for r=2. When we show that T is
decomposable in P with respect to P and P 5, then it will be easy for the reader to con-
vince itself that for any r there are restricted copies Py, . . ., P, such that T is decompos-
able in P with respect to Py, ..., P,. This means that the work can be divided among
any number of processors. For instance, in the transitive closure example, in order to do
$0 processor i evaluates T; where: '

Py Th,y)—Tx.z)A(z)).
T(x.y)—A,y), x=imodr.
These facts stress the robustness of the decomposability definition.
We say that predicate T is decomposable in P if it is decomposable with respect to some
restricted copies P 1,...,P, such thatr > 1.

A single rule program (see [CK}]) is a DATALOG program which has a single derived
predicate, denoted S in our paper, a nonrecursive rule,

S1,.xn)—B(x1,..xn).
where the xi’s are distinct variables, and one other, possibly recursive, rule in which the
predicate symbol B does not appear.
Theorem 1: If a sirup P is nonrecursive, then its derived predicate is decomposable..
Proof: Assume that P is:

S Lemn)= Q1. ..., 0%

Sx1,..xn)-B(xl,..xn).

where B and each O ! are base predicates. Consider the following restricted copies of P:
Py SGl.an)—0% ., ...,0%..), even (x1),
Sx1,..xn)—B(x1,..xn),even(x1).

-7-

Py SEluxn)=0.), ..., 0%.), odd (x 1);
S L..xn)=B(x1,.xn), odd (x1).

It is easy to see that §' is decomposable in P with respectto £ and P . []

3. Sufficient Conditions for Decomposability

In this section we provide two sufficient conditions for decomposability of a general
sirup. The first one is motivated by the next example, which also merits attention for the
following reason. From the preceding discussion one might suspect that our notion of
decomposability is equivalent to "naive" propagation of variable bindings (see introduc-
tion of [BKBR]). The latter notion means simply substituting a constant for a variable in
some rules. The constant is usually taken from a query. For example, in order to find all
the arcs exiting the node 2 in the transitive closure of a graph, the constant can be naively
propagated into the program as follows: '

TRy)-T2z2)A(z.y).
TEyy-AQy).

It is quite clear that if a sirup is amenable to naive propagation of variable bindings, then
it is decomposable. However, the reverse is not true. For example, consider the program:

Sx.y)y-Sx).
S.y)r—Ay).
which outputs an arc in both directions for every arc of an input graph. It is easy to see
that a binding cannot be naively propagated into this program, but the sirup is decompos-
-able; one restricted copy has the nonrecursive rule: '
S(.y)—Ax,y)even(x+y).
and the other:
SGy)y—-Ax.y)odd(x+y),

Our first sufficient condition for decomposability is based on the preceding observation.

Next we formally define it. Assume that R is a set of atoms with each atom having a

variable in each argument position. The set R is pivoting if there is a subset d of argu-

ment positions, such that in the positions of 4; '

1. the same variables appear (possibly in a different order) in all atoms of R, and

2. each variable appears the same number of times in all atoms of R. A member of d
is called a pivor .

The recursive rule of a sirup is pivoting if all the occurrences of the recursive predicate
in the rule constitute a pivoting set. For example, the rule:

Swxx.yz) =Sy xxw),Sx,yxw),Awy,.z)

-8-

is pivoting, with argument positions 2, 3 and 4 of S being the pivots.

Theorem 2: If the recursive rule of a sirup is pivoting, then the sirup is decomposable.

Proof Sketch: Assume that argument positions i y,...,i; of S are the pivots. Consider res-
tricted copy P | of P which has the same recursive rule as P, and a nonrecursive rule:

Sx1,..xn) :—B(x1,..xn), even (xi +xi y+,....+xiy)
Restricted copy P, of P is the same, except that the nonrecursive rule is:
| S(x1,..xn) =B (x1,...xn), odd (xi y4xi o+,....+xiy)

Assume that for input /, the ground atom a=S(c |,....c,,) is in the relation § output by P. ~
Assume further that c=c; Hotc;, is even. Denote by ¢ the necessary and sufficient
- number of iterations of step (2) of bottom-up-ev'aluation. for adding a to the database, in
evaluating P. It can be shown by induction on ¢, that ¢ iterations are necessary and
sufficient to add a to §;. It is also quite easy to prove that a is not in S,. Therefore
completeness and lack-of-duplication hold. Finally, note that for an input consisting of
two atoms, B (cy,...,c;) and B (d,...,d,), for which the sum of constants in the pivots is
even dand odd respectively, nontriviality holds. []

Theorem 2 can be extended to general programs, not necessarily sirups, provided
that we extend the pivoting definition properly. Since in this paper we concentrate on sir-
ups, we shall be informal about general programs. A rule in a program is pivoting, if all
its derived-predicate-atoms (in the head or the body) constitute a pivoting set. A pro-
gram is pivoting if each one of its rules is pivoting, with the same argument positions
being the pivots in all the rules; additionally it is required that the heads of rule do not
have repeated variables. For example, the program:

Sxy.zyp—-R@yx,w),Aw,z).
Rixy.z)-R{x,yw),B(w,).
R(x ,)7,2):_ C(x,y ,Z).

is pivoting, with positions 1 and 2 being the pivots. It can be shown that a predicate in a
general program is decomposable if the rules which derive the predicate constitute a
pivoting program. For example, predicate S in the program above is decomposable (add
odd—even (x+y) to the body of the third rule). _

The condition of theorem 2 is not necessary for decomposability. For example, the
sirup: '

S(XJ):_SO’J),A(IJ’)-
S(x aY):_B (x sy)°

is obviously not pivoting, but it is decomposable. Again, odd—even (x+y) is added to the
body of the nonrecursive rule. The intuition indicates that in this example the

-9.

computation load for an arbitrary input is not evenly divided between the processors exe-
cuting the two restricted versions of the program (because only the processor executing
the copy with the even evaluable predicate can output an atom as a result of instantiation
of the recursive rule). The example is imique (throughout the paper) in this respect.
Expectedly, the last example motivates our next sufficient condition for decomposability
of a sirup. It is defined as follows. Assume that R is a set of atoms with each atom hav-
ing the same predicate symbol, O, and a variable in each argument position. The set R is
repeating if there are at least two argu’rhént positions of @, i and j, such that the same
variable appears in position i and position j, and this is true for each member of R (note
that the variable of one member of R may be different than the variable of another). The
recursive rule of a sirup is repeating if all the occurrences of the recursive predicate in
the rule constitute a repeating set. For example, the rule:

Sx,zx):=S(z,2,2), S (x x x).

is repeating becanse of argument positions 1 and 3.

Theorem 3: If the recursive rule of a sirup is repeating, then the sirup is decomposable.

4. Linear Sirups

In this section we completely characterize the class of linear sirups with respect to
decomposability. A sirup is linear if it is recursive, and in the body of the recursive rule
there is exactly one occurrence of the recursive predicate. We also require that a linear
sirup does not have repeated variables in an occurrence of the recursive predicate. The
characterization of linear sirups with respect to decomposability is done by proving that
the sufficient condition of theorem 2 is also necessary. We assume that the recursive rule
is:

where the A;’s are base predicates. Observe the notation used in this section to distin-
guish between two types of variables. The ones starting with a lowercase letter are logic
program variables, or variables for short, as before. The ones starting with an upper case
letter, e.g. Y 1, are notation-variables . They denote program variables. For example, ¥ 1
may denote the variable xn. If the predicate § (x l,...xn) in sirup P is decomposable
with respect to P,,...,P,, then we define the home-site of a sequence of n constants,
€ =C 1oy It is the S; to which the output atom § (¢) belongs, if each P; is given the
input consisting of a unique atom, B (¢). Note that the home-site of a sequence is unique
(lack-of-duplication), every sequence of n constants has a home-site (completeness), and
each §;, 1<i<r, has a sequence of constants for which S; is the home-site. Let
C=Cppetyandd =d 1>+, b€ two sequences of constants. The ordered pair of ground
atoms <S (c?), S (¢)> is a one-step-derivation if there is an instantiation of the recursive
rule of P, in which the first atom is in the head and the second is in the body.

-10 -

Theorem 4: A linear sirup is decomposable if and only if its recursive rule is pivoting.

Proof Sketch: (if) Special case of Theorem 2. _
(only if) The proof is based on four lemmas which we will state without proof.

Lemma 1: If the derived predicate, S, of a linear sirup P is decomposable, and there are
two sequences of constants d = dl, .4, and ¢ =cy,...,c, such that <S (d 3S8(c)> is a
one-step-derivation, then the home-site of d and ¢ is identical. (1

We now present a procedure, called Derive ~New —Variables (P) which it is used to

state the next three lemmas.
Derive -New -Variables (P).

1.

6.

Last—Rec —Rule := The recursive rule of P with all the variables given the subscript
of one. _

Last—Deriv =8 (x 1g,...,xnq)

Do until none of the variables of the atom in Last—Deriv is equal to one of the vari-
ables x 1g,....xn .

Assume that Last—-Rec—Rule =S (x 1;,....xn;) -S(Y Lo Yn)A () o0 Al
and Last~Deriv =S (Z1,....Zn).

Let Last—Deriv := The atom in the head of the rule obtained by applying the substi- -
tution Y 1/Z1,...,Yn/Zn to Last—Rec—Rule .

Let Last—Rec —Rule := Last —Rec —Rule with the subscnpt of the variables 1ncrcased
by one.

END;

Derive—New~Variables takes as a parameter a linear sirup P, and iteratively substitutes
for the variables in the recursive rule of P. It starts by subscripting all variables by 1,
and then at each iteration it increases the subscript of the variables and unifies the S -atom
in the body with the atom in the head of the previous iteration.

Iteration Last-Rec-Rule | | Last-Deriv
Lo | SGuyuz)=Swiay DALz | SEoyozo)
2| G2 DSy A | SEuz0r)
3. S(xs,y3.2 3).;—3 (w.3,x3,y 3),A (Ws.23) | S(zg21.29)
4, S(x4.y4.2 4);—S Wax Y4 AW az4) | S(z1,29,23)

Figure 1: Example of an execution of the procedure Derive-New-Variables

-11-

In Figure 1 we demonstrate the procedure Derive —New —Variables for the recursive
rule: S(x,y,z) = S(w.x,y).4 (w,z).
Lemma 2: Let P be a linear sirup, and assume that S ¥1,...,¥Yn)and S(Z1,...,Zn)
are two consecutive values of Last—Deriv in the execution of the procedurc
Derive —New —Variables (P). Furthermore, assume that there is a ground substitution p
of the program variables in the sequence S(¥ 1, . -, ¥Yn), §(Z1,...,Zn), resulting in the
sequence of ground atoms S(c 15y ,,), Sd,,. ,d,,). Then the pair
<8, ...,d,), Sy, ... ,€p)> 18 a one-step-derivation. []
Lemma 3: If for a linear sirup, P, the procedure Derive —~New —Variables (P) halts (see
step 3), then P is not decomposable. [] :
Lemma 4: If the recursive rule of a linear sirup P is not plvotmg, then
Derive -New —Variables (P) halts. []

5. Simple Chain Programs
A simple chain program is a recursive sirup in which the following three conditions
must hold: '
(a) allthe predicates are binary. _
(b) the argument positions in the left hand side of the recursive rule have distinct vari-

ables, and these variables appear in the first argument position of the first atom in
the body, and in the last argument position of the last atom, respectively.

(c) all the argument positions in the body of the recursive rule have distinct variables,
except that the first argument position of the second atom has the same variable as
the last argument position of the first atom, the first argument position of the third
atom has the same variable as the last argument position of the second atom, etc.

For example, the following is a simple chain program:
S (x ,)’_):— A (x »Z 1)’S (Z]_az 2):S (22:23)30 (Z 3324),0 (z4sy)
S(x.y)—Bx.y).

where the A ,B,C D are base relations. A simple chain program is regular if in its recur-
sive rule there is one occurrence of the predicate S and this occurrence is the first or the
last in the body of the recursive rule. Note that a snnplc chain program is pivoting if and
only if it is regular. :

Theorem 5 : A simple chain program P is decomposable if and only if it is regular.

Proof: (if) Immediate, based-on Theorem 2. :
(only if) Assume that P is decomposable with respect to restricted copies P 1 Pa ., P,
of P, for r>1. Denote the recursive rule of P by:

SEy)-0Mx.zy),...,0%z 1)

-12.

where some of the Q’s are S’s, and >1. Using the regular notation, the nonrecursive
rule is:

S(x,y)—B(xy).

By nontriviality there are two sequences of constants, j 1,k and j 5,k with home sites S,
and S, respectively. Since the recursive rule of P-is not regular, there are two cases to
analyze: o
Case 1: There is a subsequence in the body of the recursive rule, of the followmg form:
0722 108 (241,200 1 2121.1).

Let 72 consist of the set of ground atoms:

0'(c1,c Qe 23) - ., Q Ny DB G k),

O Mk 1,63410,Q FHeia1sCind)s - -, Q7 ()
where:
1) each predicate S (m,n) in the list is a notation for B (m ,n);
2) each pair of different ¢ ’s represents different constants;
3) none of the ¢ ’sis in the set {j 1,k 1,7 2.k5}.

For the input /2 the ground atom S(c,¢;) is'in the output S of P. By completeness, for
this input, S(c ,¢,) is in some S§;. We will show that S(c,¢,) isin §;. Assume other-
wise, i.e. S(cq.c,) isin S, for b=#1. The atom B (c,,¢,) is not in /% because #>1, there-
fore S(cy,c,) must be added to the database by instantiating a recursive rule of P, in
step 2. Consider the first such instantiation, Note that the sequence s of ground atoms
constituting the body of the instantiated rule cannot have the same atom twice; if it does,
then there is at least one ground atom in s, for which both argument positions have the
same constant. However, it is easy to realize from the definition of I 2, that in the data-
base generated by bortom —up ~evaluation so far, all atoms must have different constants
in the two argument positions. (Note that even though j, may be equal to & ;, the ground
atom S (f 1,k ;) is not in Sy, since Sp#S ;). Therefore, in the first instantiation of a recur-
sive rule, the body of the instantiated rule has ¢ distinct atoms, each of which is not a B -
ground-atom (because by sirup definition the predicate symbol B is not in the recursive
rule). However, it is easy to realize that in the database generated so far there can be at
most 7—1 such atoms. The contradiction results from our assumption that S (¢ 1,¢,) is in
S,. Therefore, for input I2 to P 1o+ sPrs 8(cy1,6;) is in S |. Now consider the input I3,
which is defined identically to 72, except that the constants J 1, k1 are replaced by j,, k5
respectively. Similar arguments as before will reveal that $ (¢ 1,¢,) is in §5. The proof.of
this case is completed by noticing that for the input / 2uI 3 the ground atom S (¢ 1,¢;) is
in both, S ; and S ,, contradicting lack-of-duplication. -

-13 -

Case 2: The body of the recursive rule of P is of the following form:
| Sx.z).8@z.y)

Consider the input /* consisting of the ground atom B (j3,k3), where j; and k4 are dis-
tinct, and none of them is in the set {j,,f4.k1,k,}. Assume without loss of generality
that the home site of j3,k3 is Sy, for d#1 (otherwise the analysis below can be carried
out by replacing j .k ; by j,.k, respectively).

Subcase 2.1: Assume that j #k;. Letinput/° = { B (1K), B(kq,j3), B(j3.k3)). This
input relation can be regarded as a graph consisting of a path, therefore S(j,,j3) and
S(k.k3)arein S. Assume that the home site of & ;,j 318 §; for 1. But then it is easy to
see that S(j1,/3) is not in any S;; contradicting completeness. If the home site of & 1J 318
S 1> then it is easy to see that for input /> the atom S (k 1,k 3) is not in any S;; again con-
tradicting completeness.

Subease 2.2: Assume that j;=k,. In other words, the home site of J1.71.18 8 1. Let input
I1°=(B (J1:J3) B(j3,k3), B (k3,j,)}. This input relation can be regarded as a graph con-
sisting of a cycle, therefore S (j1,7;) isin S. Since S (j5, k3) is in S, only, for the input 7§,
S§(j 1./1) cannot be in any S; other than S,. But then, for the input 16U {B(j1.j 1)) the
ground atom S (f 1,/ 1) is in both, S'; and S; this contradicts lack of duplication. []

6. Future Work

We shall continue the work on decomposability in several directions. One of them
is to extend the characterization of decomposable predicates to other sirups first, e.g.
typed (see {K]), and then to general logic programs. Another direction is to determine
whether decomposition implies that the work can be evenly divided among the proces-
sors, as we have seen that can be done using the mod predicate. For this purpose a
notion of fair decomposition shonld be defined. Another topic which merits attention is
minimizing communication when evaluating nondecomposable predicates in a distri-
buted environment. We feel that the work on decomposability should also be helpful in
this area. More spemﬁcally, observe that the method proposed in this paper to partition
the load in evaluating decomposablc predicates, can be applied to nondecomposable ones
as well; however in that case communication among the processors is necessary. The
question is, how does the amount of necessary communication compare in different parti-
tioning schemes. Finally, we shall' mention that we inténd to study the relationship
between the class of decomposable programs and the programs in the complexity class
NC. o S

7. References

[AP] F. Afrati and C. H. Papadimitriou "The Parallel Complexity of Simple Chain
Queries", Proc. 6th ACM Symp. on PODS, pp. 210-213, 1987.

[BKBR]

[BMSU]

[BR]

[CK]

1]

K]

MW}

[N1}

[N2]

[NS]

[U]

[VEK]

-14 -

C. Beeri, P. Kanellakis, F. Bancilhon, R. Ramakrishnan "Bounds on the Pro-
pagation of Selection into Logic Programs", Proc. 6th ACM Symp. on
PODS, pp. 214-226, 1987.

F. Bancilhon, D. Maier, Y. Sagiv, J. Ullman "Magic Sets and Other Strange

Ways t o Implement Logic Programs", Proc. 5th ACM Symp. on PODS, pp.

1-15, 1986.

F. Bancilhon and R. Ramakrishnan "An Amateur’s Introduction to Recursive
Query Processing", Proc. SIGMOD Conf. pp. 16-52, 1986.

S. S. Cosmodakis and P. C. .Kancllakis "Parallel Evaluation of Recursive
Rule Queries”, Proc. 5th ACM Symp. on PODS, pp. 280-293, 1986.

Y. E. Ioannidis "Bounded Recursion in Deductive Databases”, TR
UCB/ERL MB85/6, UC Berkeley, Feb. 1985,

P. C. Kanellakis "Logic Programming and Parallel Complexity", Proc. ICDT
'86, International Conference on Database Theory , Springer-Verlag Lecture
Notes in CS Series, no. 243, pp. 1-30, 1986.

D. Maier and D. S. Warren "Introduction to Logic Programming", unpub-

lished memorandum, Oregon Graduate Center, 1985.

J. F. Naughton "Data Independent Recursion in Deductive Databases" Proc.
5th ACM Symp. on PODS, pp. 267-279, 1986.

I F Naughton "One-Sided Recursions”, Proc. 6th ACM Symp. on PODS
pp- 340-348, 1987.

J. F. Naughton and Y. Sagiv "A Decidable Class of Bounded Recursions”,
Proc. 6th ACM Symp. on PODS, pp. 227-236, 1987.

J. D. Ullman "Database Theory: Past and Future", Proc. 6th ACM Symp. on
PODS, pp. 1-10, 1987.

M. H. Van Emden and R. A. Kowalski "The Semantics of Predicate Logic as
a Programming Language”, JACM 23(4) pp. 733-742, 1976.

L

	tr87-40-46_001

