MANAGEMENT OF STRATIFIED DATABASES
Krzysztof R. Apt and Jean-Marc Pugin!
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188

TR-87-41 November 1987

1BULL Research Center, P.C 58 A 14-A 1. Division, 68 route de Versailles, 78430 Louveciennes, France.

Management of Stratified Databases -

- Krzysztof R. Apt
. Centre for Mathematics and Computer Science
- P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
. and
Department of Computer Sciences.
University of Texas at Austin
Ausrm Texas 78712-1188
v USA

S JeanfMarc Pugin
' o) . . BULL Research Center
" P.C58A 14-Al Division
- 68 route de Versailles, 78430 Louveciennes
France

We propose here a knowledge based management systern supporting immediate visualization and simula-
tion facilities in presence of non-menotonic reasoning. It is based on a special class of indefinite deductive
databases, called stratified databases, introduced in APT, BLAR and WaLker f[ABW] and VAN GELDER [VG] in
which recursion “through™ negation is disallowed. :

A stratified database has a natural: model assocaated with it which.is selected as its mtended meaning.
The main technical problem addressed here is the task of mamtammg this medel. To solve it we refine the
ideas present in the works of Dovie [D] and be KLEER [dK] on behef revusson systems We also discuss the
implementation issues and the trade-ofts involved.

Note: Work partially supported by the ESPRIT pro;ect 415, Preliminary version of this paper appeared as
APT and Pugin [AP].

1. INTRODUCTION

11 Objectzves ' o

The aim of this paper is to propose a know]edgc based managemcnt system (KBMS n short) whose
main characteristics are: use of incomplete information, immediate visualization of modifications, gen-
eration of explanations, simulation-and “undo” capabilities. Our proposal has a'clear semantics

aliowing us to account for the use of incomplete information in an interactive environment. We -

believe that due to the above features our proposal can be used as a system-for interactive problem
solving and decision making. The framework:in which we carry out our investigations is that of

deductive databases, or more generally rule based programnung W}nle proposmg such a system we -

have in mind the following objectives:
1. Use of incomplete information.

It is well understood by now that monotonic reasomng is not. suﬂiment to adequately descnbe
human style of. reasomng, mamly because the assumplmn that all needed information is avajlable is .

unrealistic.

So a major feature of a realistic KBMS should bc its ability to deal with zncomplete mformatwn In

particular, such a system should be able to draw conclusions in the absence of some informations,

and to withdraw them when some information contradictory with the assumptions becomes available. - - |

2

2. Permanent interaction between the system and the user. _
A dynamic character of the knowledge makes it desirable 10 provide an interactive KBMS whose

models are generated in an incremental fashion through an interaction with the user. Our definition

of "interaction” allows both additions and deletions of the clauses. This gives us a means to model

simulation.

3. Simulation facilities. '

An unportanl aspect of decision making systems is their ability to simulate some representation of
the world. It is possible in some advanced systems to use a WHAT —IF function in order to analyze
the consequences of a modification, and subsequently to return to the previous state with an “undo”
facility if needed. The use of the WHAT —IF function can be viewed as a look ahead facility allow-
ing us to analyze one of the next possible states of the system without commiting oneself 1o this state.

We provide this facility by offering a very general definition of interaction. In our proposal the
user can not only (hypothetically) modify the actual situation by changing the set of facts but also
temporarily change actual laws represented by the set of rules. When a given in advance condition
(an integrity constraint) does not hold, the system will refuse to perform the modification.” We think
that this new type of interaction with 2 KBMS helps in an incremental problem solving because it
allows the user to investigate consequences of some of the laws before deciding which ones to choose.
4. Generation of explanations.

Explanations are essential when one deals with interactive problem solving. When a desired fact is
generated, we would like to be able to provide the reasons for which this fact holds. In our proposal
such an explanation consists of the rules which triggered this fact.

The above considerations constitute a part of specifications of a new type of facility called
Logical Spreadsheet described in Cras, LECONTE and PuGIN [CLP]. These specifications form a basis
for an internal project at the BULL Research Center which aims at producing a prototype of the Log-
ical Spreadsheet. Logical Spreadsheets are intended to serve as an advanced interface in an environ-
ment in which rule based programming or object oriented programming is used. :

1.2. Means :
Our approach is based on logic programming. A natural representation for handhng mcomp]ete
information is the one in which negative hypotheses are allowed in rules. A negative hypothesis, say

—A, should then be interpreted as “if so far A cannot be confirmed” which models the non-monotonic -

character of reasoning. These and other aspects of negation were intensively studied in the framework
of logic programming, Use of negation increases the expressiveness of the syntax (see CHANDRA and
HareL [CH]) but leads to several fundamental difficulties (see e.g. SHEPHERDSON [S1,S2}. In particu-
lar, it is not clear what is the intended declarative meaning of the program. Recently, ApT, BLAIR and
WaLKER [ABW] and independently VaN GELDER [VG] proposed a simple solution to the latter prob-
lem obtained by imposing a restriction on the syntax, namely by disaowing recursion “through”

negation. This class of programs, called strarvified programs, forms a simple generalization of a class of-

database queries introduced in CHANDRA and HAReL [CH). It admits a simple declarative semantics
in the form of a particular minimal model, which enjoys several natural properties. (see APT, BLAIR
and WalKeR {[ABW] and VaN GELDER [VG], LirscHiTz [L] and PRZYMUSINSK! [Pr]).

Dynamic aspects of non-monotonic reasoning were studied by DoYLE [D); DE KLEER [dK] and oth-
ers in the form of Truth Maintenance or Belief Revision Systems - a class of A.l. programs which
maintain consistency by manipulating a set of supports used in conditional proofs. In Dovie [D]
when an inconsistency is detected a special mechanism is invoked to alter the supports associated with .
the conditionally derived facts. In DE KiEER [dK] in case of detection of inconsistency, the incon-

sistent part of the system (set of assumptions) is identified and associated contexts are removed.
In this paper we combine the declarative and dynamic aspects of non-monotonic reasoning by
studying the management of stratified databases, i.e. deductive databases which when seen as-a logic

program are stratified. As their intended meaning we choose the above mentioned model. :
This representation is powerful enough to meet our objectives. First, the interaction with the user

is modeled by means of updates, or more generally, by transactions. Secondly, the immediate visuali- -
zation is viewed as the task of generating the new model of the modified stratified database. Finally, - .
the simulation facility is embodied in. the possibility of issuing a transaction “converse” to the previ-
ous one which effectively “undoes” the previous transaction. The solution proposed automatically .«

embodies.a possibility of generating an explanation for the newly obtained facts.

Processing of updates and transactions results in the maintenance. of the intended model in . = .

absence of complete information. This requires the use of powerful capabilities to compute the “new”

model using the "old” one. It is precisely the main technical point addressed and solved in this paper.

1.3. Plan of the paper -

As stratified programs form a basis for our proposal, in section 2 we recall their definition and main

results concerning their semantics.

~

In section 3 we formulate the problem of maintenance in' terms of computing the “new” ‘model ..
from the "old” one. We-also introduce the notion of migration, which is a vseful parameter to-com- = .
pare solutions to this problem. The non-monotonicity s reflected in the fact that insertions can lead - -
to deletions and vice-versa. To handle this problem we track dependencies between the facts from the .
generated model and relations used in their derivations. ‘These dependencies are attached to the facts.

and called supports. ' :

In section 4 we analyze a spectrum of solutions to the maintenace problem resulting from a
different choice of supports. All these solutions consist of two phases, namely the removal and the

addition phase, S . : S L S
In section 5 we study a different type of solutions - those in which the stratification is used. to pro-
pagate modifications through the strata and in which the removal and:addition phases are interleaved.

In section: 6 we extend one of the solutions proposed in section 5. to the case of transactions, i.e.

sequences-of updates. - - :

In section 7 we-show how the solution given in section 6 can be modified so that integrity con- -,

straints can be checked during the construction of the new model. - ' -

In section 8 we propose an efficient implementation of the algorithms given in sections 5, 6 and 7. .

We also indicate there that this implementation automatically takes care of the problem of generating
the explanations for the newly derived facts. .

Finally, in section 9 we briefly discuss related work in the area of deductive databases and Artificial
Intefligence. .

s

2. STRATIFIED PROGRAMS - AN OVERVIEW

We recall here briefly the results of APT, BLAIR and WALKER [ABW] which form a basis for this work.

2.1. Definitions

Throughout this paper we assume a fixed first order language L. An atom is a formula of L which is _
of the form p () where p'is a relation symbol of arity » and 1 is a sequence of terms of L of the length

n. If all terms in are ground (i.e. variable free) then we call p(r) a facr. A literal is an atom (also
called a positive literal) or its negation (called a negative literal).
A clause is a formula of L of the form

A(-Ll,...,L,,

where n=0, A is an atom and L,,..,I, are literals. A is called the conclusion of the clause and

4

Ly.....L, its body. If the body of the clause is not empty (i.e. » >0) then we call the clause a rule.

A relation symbol occurs positively in a clause if 1t appears in its positive literal. In particular the -

relation appearing in the conclusion of the clause occurs in it posnwely A relation symbol oceurs
negatively in a clause if it-appears in-its negative literal.
Finally, a logic program (or just a program}) is a finite, non-empty set of clauses of L. Gwen a pro-
gram, a definition of a relation symbol is the set of clauses of the program using it in its conclusion.
Given a program P, we denote by Bp the set of facts of L whose relation symbol appears in P. B,
is called the Herbrand base associated with P. A Herbrand interpretation of P is a subset of Bp. Given

a relation p and a Herbrand 1nterprelauon M, |p)y stands for the meamng of pin M, ie. the set of -

facts of the form p (1) true in M.
Given a logic program P we define its dependency graph D, by putting:

(rq) be]ongs to D iff there is a clause in P using r in 1ts conclusion and g in its body

We then say that r refers to g. H g occurs posmvely in the body, then we call the arc (r,q) positive. If q
occurs negatively in the body, then we. call the arc (r,q) negarive. Note that an arc can be both posi-

tive and negative.because ¢ can appear both positively and neganvely in a (not necessanly the same)

rule using r in its conclusion.

Now, following APT, BLAIR and WALKER [ABW] a loglc program is called srranﬁed if no cycle in

its dependency graph contains a negative arc (intuitively: there is no recursion “passing through” a
negation). Equwalently, a program P is stratified if there is a pamuon {(where P, can be empty)
P = P,U -+~ UP,, called a stratification of P, such thatfor i = 1,..,n

a) ifa relauon symbol occurs positively in a clause in P; then its definition is contaxned n Uje. P
b) if a relation symbol occurs negauvely in a clause in P; then its deﬁmtnon is contamed in U J,{,P
Each P; is called a stratum.”

This-definition implies that a stratum R of a strauﬁed program is-a union of the definitions of some
relation symbols such that if a relation symbol occurs negatively in a clause from R then its definition
is disjoint with R. In general there is more than one way to stratify a program. A stratification
PyU...UP, of P is maximal if no stratum in it can be further decomposed into: different strata. -

Given a stratum P and a set of facts M from L, we denote by SAT(P,M) - the saturation of M by P
- the set of facts obtained by closing the set M under the clauses of P. Given a stratification P,

+ UP, of P.we put: : : : :

M, = SAT(P,,2),

M, = SAT(P,.M,_;),
S Mp =M,

and call Mp the standard model of the program P.
In general, SAT(P,M) can depend on the order of rule apphcanon but this is not the case when P
is a stratum. The actual implementation of the saturation process is discussed in detail in section 8.

Let M be a Herbrand model of a program P. M is called minimal if no proper subset of it is a

model of P. M is called supported if for every element A of it there exists an explanation for it in the |

form of an instance of a clause of P whose body is true in M and whose oonclus:on isA.

2.2. Results
Using some general results on fixpoints of non-monotonic operators on complete lattices the fol]owmg
properues of the model Mp were proved in APT, BLAIR and WALKER [ABW] :

THEOREM Let P be a strauﬁcd prog;ram Then

1) Mp does not depend.on the stratification of P,

i) Mp is a minimal model of P,

iii) Mp is a supported model of P, ‘
iv) there is an equivalent definition of Mp which makes use iteratively smallest models as fo]]ows

M, = N{M:M is a supported model of P, }, .
M; = N{M:M is a supported model of P, and Mth, =M}

i -

M,, = ﬂ{M':MisasupportedmodelofP and MNBp y...up,_, = M,_1},

V) Mp is a model of comp(P), Clark’s [C] completion of P,
vi) there is an (ineffective) backchaining interpreter for P using the negation as failure rule and loop

checking (but working only with fully instantiated clauses) which tests for the membersmp in '

Mp. This interpreter becomes effective when P is function-free. [

Other properties of Mp were proved independently by vAN GELDER [vG] Lirscrrrz [L] showed that
Mp can also be defined using the cu'cumscnpuon method of McCarTHY [MC]. PrzymusINSKI [Pr]
generalized the above results by introducing an (ineffective) form of resolution that allows to test for

membership in Mp. He also introduced a notion of a perfect model and showed that every stratified

program has exactly one perfect model, namely Mp. This provldes in our opinion an ample evidence
that Mp is a natural model for a stratified _program P. ‘
The choice of a Herbrand model as the semantics of P'can be wewed asa compact representation

of the intended meaning of P. In the model only (atomic) facts are explicitly recorded. This allows us

to answer directly a query about vahdlty of a particular fact. However, a query about validity of a
first order formula has to be oomputed using the standard definition of truth. :

3. S'I'RATIFIED DATABASES AND ma MAINTENANCE PROBLEM

3.1 Dgﬁmt:on
From now on we assume that the first order language L has no function symbols and only ﬁmtcly
many, but at least one constant.

Following GALLAIRE, MINKER and NicoLas [GMN]) we define a deductive database as a function-
free logic program in the above language L augmented by the usual parmulanmhon axioms defining
uniquely its domain and the equality predicate. P is divided into
i) aset of facts defining extensional relations (Extensional Database),

ii) a set of clauses defining intentional relations, all of them dlﬁ"erent from extensmna] relations
(Intentional: Database)
Moreover, each clause in P is range restricted wh.lch means that every variable which appears in a

“conclusion of the clause also appears in its body. Note that this implies' that clauses of a deductwe g

database can be divided into facts and rules.

In addition a deductive database contains a finite set of integrity constraints. These are first order

formulas which are required to be continuously true in the sense described in the next subsection.
Now, by a stratified database we mean a deductive database builtfrom a stratified logic program.
A stratified database P has as its intended meaning the standard model Mp. When maintaining P

6

two representation possibilities arise:
1) explicit representation consisting of P and M,
i) implicit representation con51st1ng Justof P.

Which alternative is more attractive depends on the application. Alternative i) is more appropnate' o

when trying to support immediate visualization and simulation facxlmes Also 1) is more mlerestmg
when dealing with frequent queries and infrequent updates.

Consequently. we choose, similarly as NiCOLAS and YAZDANIAN [NY] for the case of definite -
deductive databases (i.e. those in which use of negation in the clauses is dlsallowed), the explicit:
representation.

As we shall soon see, we shall actually maintain an enrichment of Mp in which each fact from M,
is tagged with some additional information.

It is worthwhile to note that alternative ii) Jeads to difficult prob]ems concerning an efficient xmple-
mentation of queries which only recently have been solved in a satisfactory way - see BALBIN, PORT
and RAMAMOHANARAC [BPR] and KERisIT, LESCOEUR, ROHMER and Roucalrol [KLRR].

3.2. Maintenance
The maintenance problem can be viewed as a task of processing supplementary information. To thzs
purpose we first define the notion of an update. By an update of a stratified database P we mean a
clause deletion or insertion. We require that in the case of the insertions
i) no constant outside of L is introduced, '
it) the inserted clause is range restricted ,
ii) the resulting database P’ remains stratified.

Updates can be divided into fact insertions and de]euons and rule msemons and deletlons because
all clauses are assumed to be range restricted. = :

The malmenance problem can now be formulated as follows: -

gwen an update of a stratified database P yielding P’ compute the intended meanmg Mp. of P’ mak-
ing use of the already existing ‘model Mp of P..1f this update leads to a model which does not satisfy
the integrity constramts then a failure should be reported

Thus we require that the integrity constraints conunuously hold in the intended model of the
stratified database. Until section 7 we ignore the issue of the integrity constraints checking and con-
centrate on the problem of processing the updates. The computation of Mp: using Mp is closely
related to the issue of dependency-directed backiracking discussed in STALIMAN and SussMaN [SS]. In
general, Mp- will be neither a superset or subset of Mp.

Consider for example the stratiﬁed database

PODS = {submitted(1),...,submitted (f), accepted(nl), ,accepred(nk)
' {re_,tected(x)e—-—waccepted(x)}
where k, (21 and fori = 1,...,k 1<n,=.=;.2holds

Its model MPODS consists of all facts already present in PODS togelher wnh the set of facts
rejected(i) for ie Failure = {1,...0}\ {ny:...,m }: :

Now an-insertion of the fact accepted(m) where m e Failure leads to a new database PODS’ with
the following associated model : :

Mpops = Mpops \ {rejected(m)} U {accepted(m)).

Similarly, a deletion of the fact accepted(n) wherc I< _; <k lcads to a new database. PODS” wnh
the following associated model : :

Mpops = Mpops \ {accepled(nj)} U {re_]cctcd(nj)}

Thus to compute the new model Mp. , it is in genera] necessary 1o remove some facts from M P
and also add some other facts.

In the next two sections we study the. maintenance problem in the case of updates. Then we stud}
this prob]em for the more general case of transactions which are finite sequences of updates

3.3. The STRATIFEY procedure
Let now P be a stratified database. Assume a gwen maxxma] stratification of P w1th the correspondmg
sequence of models M,,...,M,, = Mp. Note that in case of insertions a new stratum can be created

and in case of deletions a stratum can "disappear”. However, the resulting maximal stratlﬁcatlon)

PyU -+~ UP, of P’ is such that one of the following conditions holds
i) ;-,exactly one stratum of P’ differs from a stratum of P, .
i) this stratification is obtained by removing one stratum from. the 1mt1a1 strauﬁcatlon of P

iit) this stratification is obtained by adding one stratum to the mmal stratification of P, say as the_'

last one.

In one case the solution to the maintenance problem is trivial. Consnder an update con51st1ng of a -
deletion of a clause which results in removing the highest stratum P, .| from P. Then the model Mp
simply consists of Mp with the last "layer” Mp \ Mp removed. Therefore, in the subsequent con- -

siderations we do not consider this case. This allows us to introduce the following definition.

If an update results in a deletion of an “intermediate” stratum from P, we say that it refers to the
next stratum in the stratification of P’. Otherwise, we say that an update refers to a stratum R from
the stratification P’ if the definition of the relation appearing in the conclusion of its. clause is con-.
tained in R.

We assume that the maximal stratification P{U -+ UP, of P’ is computed in the procedur_e- _
STRATIFY(P, u, P’,i) where P is the original stratified database, u is an updat'e, P’ is the resulting
stratified database, and i such that u. refers to P;. Note that then Pl, - P for < i are 1mt1al strata.

in the original stratification of P.
We can assume that the conditions i) - iii) from the previous subsection 3.2 are checked in this pro-
cedure and a failure is reported if one of them is not met.

To compare solutions to the mainténance problem we concentrate on the issue of a mrgranon of
facts - a phenomenon consisting of an erroneous removal of a fact from the model. In such case, this-

fact has to be added back to the model. Different solutions to the maintenance problem can be com-
pared in terms of the amount of migration caused.

While searching for good solutions to the maintenance problem it makes sense to strike a balance
between the minimization of migration and the cost of bookkeeping involved. We think that the solu-
tion proposed in section 5 achieves this compromise because of an efficient implementation proposed
in section 8. The bookkeeping consists of a maintenance of supports attached to the facts present in
the model. These supports will allow us to detect ‘which facts should be removcd from the mode] after
an insertion or deletion.

4, TWO PHASE SOLUTIONS

In this section we present various solutions to the maintenance problem in the.case of updates. They
differ in the form of supports chosen. For pedagogical reasons we order these solutions in such a way
that each of them builds upon deficiences found in the previous one. No attempt is made at propos-
ing efficient implementations of these solutions. Throughout this section P is a given strauﬁod data-
base.

8

4.1. Static solution using the dependency graph
This is perhaps the simplest solution and usually the most inefficient one. In this solution no supports

are attached to the facts in the model. Instead, the dependency graph is used. For each relation p of
P, let Pos(p) stand for the set of relations of P from which p depends through an even number of -
negations and Neg(p) stand for the set of relauons of P from which p depends lhroug,h an ‘odd:

number of negations. Thus
Pos(p) = {q: there exist relations p; = p... wPn = 4, such that for all i<n (p,,p,.,.n belongs 10 D
and the number of negative arcs among them is even },
Neg(p) = {q¢: there exist relations p; = p,...p, = ¢, such thal for all r<n(p,,p,+,) be}ongs to D!
and the number of negative arcs among them is odd }.

Note that Pos(p) and Neg(p) need not be disjoint; Pos (p)U Neg(p) is the set of all relatlons in P S

from which p-depends.

We use here the notations Pos and Neg’ to indicate the fiature of dependenc1es between the mean;ng

of relations in the model. If depends on p then a modification of p through an update can influence
the meaning of r in the new model. The form of this influence implies the type of dependency of on

p. Suppose that an increase of p leads to some decrease of 7. Then p belongs to Neg(r). Suppose that :

a decrease of p leads to some decrease of r. Then p belongs to Pos(r).
The following lemma formalizes this observation.
Let [py stands hcre for the meamng of the relauon pin the Herbrand model M

Lemma 1.

Suppose that p(1) is a facr

i) Let P = PU{p(D)}. 1
If not ([r'ly, Clirly,) thenp be!ongs to Neg(r) '
i) Let P = P\ {p(1)}.

If not ([r]M Clrlu,) then p belongs 1. Pos {r).

Proof idea. By an mducllon on the index of the stratum which contains the definition of the relation -

r. O

Thus in the case of an insertion of a fact about p, only relations r, for which p belongs to Neg(rj
can decrease and in the case of a deletion of a fact about p only relations », for which p belongs to
Pos(r), can decrease. We use these observanons in the procedures below

Fact insertion:

INSERT (p(t)) _
1) STRATIFY(P,INSERT(p O)P0);
2) remove from M; all facts r(5) such that p belongs to Neg (r)
(these facts all belong to Mp\ M;_;)
3) add p(7) and call the resulting set of facts M;
4) compute the sequence

M, = SAT(R. M),

My = SAT(PM'yoy) 7
and put Mp. = M. '

Rule insertion:

INSERT (p (X)L ,,...,Ly):
1) STRATIFY(P,INSERT(p(X)—L,,....L\),P",i); ‘
2) recompute the sets Pos{(r) and Neg(r) for r=p and all relanons whxch depend on P
“3) perform step (2) of the fact insertion. Call the resuh M,
4) perform step (4) of the fact msernon

Fact delenon

DELETE(p (t)) :
1) STRATIFY(P DELETE (p(t)) P’ :) ' T
2) remove from Mp all facts r (3) such that p belongs to Pos(r);
(these facts all belong to Mp\ M;_y)
3) ‘remove p(r)'and call the resulting set of facts. M;
4) perform step (4) of the fact’ msertlon

Rule deletion:

DELETE (p(X)eLy,...,. Ly): .
1) STRATIFY(P,DELETE(p(X)«Ly,..Li,P'i);
2) recompute the sets Pos(r) and Neg(r) for r=p and all relations r which depend on p;
3) perform step (2) of the fact deletion and call the resulting set of facts M;
4) - perform step (4) of the fact insertion. - . :

In all four procedures during the removal phase we take a ”pessimistic” view and delete facts tak-
ing into account exclusively the dependencies recorded in the dependency graph. Clearly certain facts.

will then be subject to migration.

ExaMpLE 1. Let

CONF = {submitted(}1),...,submitted (f),late ({+ 1),
accepted (x)—submitted (x),wqrejected(x),
acc‘epled(e-'l— 1)}

where { >1

Then MCoNF consists of al] facts a]ready present in CONF together with the fact: "

accepted (1),...,accepted ().

However, after the insertion of the fact re_;ected(Hl) in CONF we should not remove the fact
accepted (t+1) from the model. In this case the static solution leads to a migration of the fact
accepted ((+1). L

Thus the static ané]ys:s usmg the dependency graph can provide dependenc:cs which are not used
durmg the construction of the model. This problem can be overcome by construcung the dependen-

cies in a dynamic fashion.

NOTE. The presence of facts in a given program like accepted(i+1) in CONF above cannot be
discovered through the analysis of the dependency graph of the program but it still can be viewed as
a part of a static analysis. This idea might "save” certain facts like accepted(i+ 1) from migration.

However, this solution falls down when some trivial derivations for certain facts are used instead of

10

asserting them,

4.2. Dynamic solution using Pos and Neg sets '
We now maintain Mp by computing the Pos and Neg seis dynamically dunng the construction of the

model, i.e. during the saturation process iterated through the strata. This leads 10 a better sojution

because the Pos and Neg sets are computed taking into account the dependencies actually used and

not the potenrial ones. However, as we shall soon see, the use of negative literals complicates the issue.

Each fact in the model M has a support in the form of Pos and Neg sets attached to it. Their actual
form depends on the way the saturation process is implemented.

We are interested in keeping the Pos and Neg sets small. In such a way less facts will be deleted'

during the removal phase in each of the above four procedures. To this purpose for each fact we just
record the dependencies found during a deduction of this fact. These Pos and ‘Neg sets should not be
changed unless a smaller pair of them is found during another: deduction of the fact. This idea leads
to the foliowing construction.

Suppose that during the model construction a fact p(7) is deduced by an apphcatlon of a clause -
p(&)=L,,..,L; with some substitution making every literal L, ground. Among . those ground literals.

let gi(s1)....q/(s;) be the positive ones and —ry(r)),..,—r;(1;) the negative ones. As the positive
ground literals q,(s, b gi(s) already belong to the constructed part of Mp, they have the eorrespond-
ing sets Pos,...,Pos; and Neg,...,Neg attached to them.

We form the Pos and Neg sets attached to p(t) as follows:

Pos := Pos,U --- UPos;U {q,,....q;},
Neg := Neg\ U -~ - UNeg;U {ry,..,1;}.- _ - ,
If p(t) is already present in the model; we keep its old pair of Pos and Neg sets unless the new pair

is pairwise smaller than the old one. In that case the new pair is preferable. As before, the Pos and

Neg sets need not be disjoint.
Insertions and deletions are performed analogously as in 4.1 but now usmg the above Pos and Neg

sets attached to-all facts of the model. For example, in step (1) of the fact insertion concerning p(r)

we now remove from Mp all facts r(s) whose Neg set contains the relation p and then add p(r) with a
support consisting of empty Pos and Neg sets.
Unfortunately this solution is incorrect.

EXAMPLE 2. Let P = {plé——pg,pz(——pl,p:g(——pz}.
Then Mp = {p),ps}.

After an insertion of the fact po we get a new database P’ with a model Mp- = {pg,p2}. However,
the removal of the fact p; from Mp is not captured by the solution proposed above.

Indeed, the Neg set attached to p; in the model Mp equals {p,} and the crucial (negative) depen- B
dency of p; from pgy is not recorded. Similarly, a2 deletion of the fact po leads to the model
Mp = {p1,p3}. However, the removal of the fact p, from Mp- is not captured by the proposed -

solution. In this example, all constructed Pos sets are empty. D

To resolve these difficulties in the case of negative hypotheses we keep track of their static depen-

dencies, as well. The actual construction and form of these supports remains almost the same. What
changes is their use during the’ updates Given the above mentioned deduction of p(z) we form the
Pos and Neg sets attached to it by putting

Pos := Pos; VU - UPOS;U{‘II’ ’QJ}U{_’I'*"'*_’?}’
Neg _Neg]U UNeg,U{+rls s+rj}

During the updates we compute the actual form of the supports by interpreting lhe signed relations = -

1

as follows: ’
Pos' = {q.q € Pos}UNeg(rl)U UNeg(rj)
where for k = I,...,j —r; €Pos,
| g’ = {q:q € Neg}UPos(rl)U UPos(rj)U{rl,..'.,rj}

where for k = 1, o) +rkENeg :
Neg(r) and Pos(r) refer here of course to the sets defined in section 4.1, i.e. to the static dependen-
cies.
Intultlvely, Pos’ is the set of relation symbols used positively in the found derivation of p(7) and Neg'
is the set of relation symbols used negatively in the found derivation of p (). Each derivation of p(r)
provides a different pair of Pos’ and Neg” sets. Only one of such pairs is kept in this solution. |
The details of the insert and delete procedures are the same as before. The above modification
restores correctness of this solution. The following lemma states the relevant property of the Pos and_
Neg' sets. '

LEMMA 2.
Suppose rhar p(t) isa fact
i) Let P = PU{p(D)}. '
Suppose that r(s) belongs 10 [r]M, \[r]M, , Le. that r(3) was removed from the model Mp Then p'
belongs to the Neg' set associated with r(5) in the model Mp... -
ii) Let ' = P\ (p()). R - |
Suppose that r(s) belongs to [r]p, \Irly,, i.e. that r(E) was removed from the model Mp. Then p
belongs to the Pos’ set associated with r(s} in the model Mp.

Proof idea. By an induetion on the index of the stratum which ‘contains the deﬁm'tion of the relation
r. O

In contrast to lemma 1 lemma 2 refers to sets Pos’ and Neg -whose forrn depends on the actual o

form of the saturation procedure computing the sets SAT (P, M).

In the case of the database P from example 2 the facts of the model are generated only in one pos-
sible sequence. The resulting Pos’ and Neg’ sets coincide with their static counterparts. The followmg
example shows an interest in keeping a pair of smaller supports if a ch01ce arises. .

ExaMPLE 3. Let
. CONGRESS= = {submitted (1),.. ,submlttea' (E),
. - accepted (x)«-submrtted (x Y—rejected (x),
< accepted ()—submitted (§)}.

Suppose now that the fact aocepted(f) 15 first deduced by the first rule Then the’ assomaled Pos and
Neg sets have the fo]lowmg form: - -

Pos = {submztted —re]ected} and Neg = {+re]ected}

If the second m]e 1s apphed we obtain another pa1r of Pos and Neg sets associated w1th the fact K

accepted(!)
Pos = {subm!tted} and Neg = .

Clearly, the latter pair is preferable because an insertion.of a fact rejected(r) will not lead then to a
migration of the fact accepred(f). [

Though this solution leads to smaller migration sets than the previous one it can still lead to some

12

inaccuracies. The major reason is that only one support is kept for each deduced fact. Thus the main- -

tained information can be incomplete. Consider the following example.

EXAMPLE 4. Let
MEET = {submitted(1),.. ,subm:rted o, _
in —program — commmee(namel), .,in —program — committee (namey),
-author(my,1),...,author (m,0,
accepted(x)«submitted(x), ﬁrejected(x)
accepted(y)@author(x,y), in —program committee (x)}

where £ 21 and {name,, ,nameg}C{m;, My}, '

Then Myrer consists of . all facts a]ready present in P together with the facts
accepted(l), accepted(D. '

Suppose now that the fact author(name,,a) is in MEET. Then after the insertion of the fact
rejected(a) we should not remove the fact accepted(a) from the model. However, if for the fact

accepted(a) the support Pos = {submitted,— rejected}, Neg = {+ rejected} is initially produced, it '

will lead to its migration. Here the second possible support Pos = {author, in -program-commttee}
Neg = @ is preferable with respect to this update but this support is not kept. O

To take care of this type of situations we should maintain supports in the form of Pos and Neg sets
Jor each derivation of a fact, and thus maintain supports not in the form of sets but rather sets of sets.

This observanon lcads us to the following soluuon

4.3. Dynamic solution using Pos and Neg sets of sets

The sets Pos and Neg will now be sets of sets of relations.. Intuitively, when a fact p(r) has a set . .
Pos = {4,,..,A;} associated with it, it means that for each set A; a derivation of p(r) has been:
found in which exactly all relations-from 4; are negated an even: number of nmes Sumlarly with the

Neg set.
Let By,...,B; be non-empty sets of sets. We put:

]$ @Bk = {A]U UAk AEB fori = , ,k}

Durmg the model construction in the case discussed in the beginning of the prewous subsecuon Pos
and Neg sets are now updated as follows:

" Pos := PosU(Pos; ® ---eBPos,-)e{{q,, oGis=Tisens=1;}}
" Neg := NegU(Neg,® $Neg,)®{{+r1, ,+r,}}

with Pos and Neg initialised to the empty set.
Thus each time a new deduction of a fact has been found, its Pos and Neg sets are updated as
stated above. If a fact has a trivial deduction, i.e. it is asserted, its Pos and Neg sets will both have the

empty set as an element. Su:m]arly as in the previous subsection we might be interested in keeping |

only "small” supports. That is, we might remove an element A from Pos (or Neg) each time a proper
subset of it has been added to Pos (or Neg).

Because the supports have -now a different structure, the removal phase in each of the four pro-
cedures will be different. Intuitively, a fact should now be removed from the model only if al/ ele-

ments of its support "fail”. More precisely, in accordance wnh the pre\nous solutmn we first put for

an element A which belongs to Pos
A’ = {q:qeA}UNeg(r))V - - - UNeg(ry)
where for k = 1,...,f —r; €4, and for an element A which belongs to Neg |

13

A" = {g:geA}UPos(r))u - - - U Pos({r;}

where for k = 1,....j +r.€A. - _ L : S
Then in the case of an insertion of a fact p(r) we proceed as follows during the removal phase: .

for each element r () of the model do _ _ N
1 remove from its Neg set all elements 4 such that p belongs to 4’;

2 if the Neg set becomes empty remove r(¥) from the model.

Thus a “failure” of an element of a support means here that p belongs to it.

An analogous action is taken during the removal phase in other three procedures.

To see an improvement over the previous solution reconsider the program from example 4. During
the construction of the model My epr both supports of the fact accepted(a) will be kept. Thus the Pos
and Neg sets associated with accepted(a) will have the following form:

Pos = {{submitted, —rejected }, {author,in — program — committee}}
Neg = {{+rejected}, @}. i

Now, after the insertion of the fact rejected(a) we see that rejected bclongs' to

{+rejected)’ = {rejected}, so the Neg set associated with accepted(a) becomes { @). Since it is not
empty, the fact rejected(a) is not removed from the model, as desired.

5. INCREMENTAL SOLUTIONS .
So far we discussed solutions to the maintenance problem which consisted of two phases: the removal

phase during which some facts were deleted, followed by the addition phase during which some facts -

were inseried. We now present another type of solutions in which the removal and the addition

phases are alternated. This will lead to solutions with smaller migration and among others will obvi- -

ate the need for the static information in the supports. :

Informally, this form of solutions can be described as follows. Consider an update u of P resulting
in a stratified database P’ with a maxima! stratification P,U - - - UP,. The original model Mp of P
can be decomposed into a sequence of layers Ny = M|, N; = M, \Mi,., Ny = M\ M, _,

where |m —n [<1, with each M; corresponding to a stratum in the original maximal stratification of =

Suppose that u refers to P;. Then to construct Mp we first consider the modification of the layer
N;. This leads to deletions and insertions inside N, ; which in turn leads to deletions and insertions
inside N; ;,, etc. This form of solutions thus produces a cascade effect.’ - '

3.1. Auxiliary procedures. . . : o o : :
To describe this process we shall introduce three procedures. We describe them for the form of sup-
ports used in the second dynamic solution i.e. in subsection 4.3. It is clear how to modify them for
the case of supports used in the first dynamic solution. _

Assume a given maximal stratification P, U... UP, of a stratified database P’

1) The SATURATE procedure

The purpose of the procedure SATURATE (Stratumn, B) is 16 compute the saturation of the current

version of the model using all clauses the Strarum, and update during this computation the Pos and
Neg sets of sets attached to every derived fact. The result of this saturation becomes a new version of
the model. B is the set of relations which increased.

14

SATURATE(Stratum,B):

a) Compute the set SAT(S1ratum, M) where M is the current version of the model and during this _

computation update the Pos and Neg sets attached to the derived facts. This time these sets are
constructed as foliows.

Suppose that a fact p(t) is deduced by means of a clause such that gy,...,q; are all relations

which appear positively in its body and ry,...,7; are all relations which appear negatively in its
body. Then the sets Pos and Neg associated with p(r) are updated as follows:

Pos :=PosU{{q),...,q}}
Neg '=NegU{{f1, . J}}

with Pos and Neg initialised to the empty set.
b) B is the set of relations 1o which new facts where added in stcp (a)

2) The REMOVEPOS procedure

Let B be the set of relations defined in the strata below the current one, which decreased during the
construction of the new model carried out so far. Their decrease can affect the supports of the facts

from the layer correspondmg with the current stratum and, in particular, can lead to a decrease of -
some of the relations defined in the current stratum. The purpose of the REMOVEPOS (Stratum,B,C)
procedure is to compute this modification using the Pos part of the supports. C is the set of relations

defined in the current stratum which get decreased.

REMOVEPOS(Stratum,B,C):

Consider the elements of M =M, \ M, ., where Stratum = ‘P-.
C:=g; . :

for each element p(t) of M do

remove from its Pos set all sets 4 such that A DB#Q

if the Pos set becomes empty then remove p (1) from Mp and set C: C U{p} ﬁ
od. .

3) The REMOVENEG Procedure

Let B be the set of relations defined in the strata below the current one, which increased during the -

construction of the new model carried out so far.. Their increase can affect the supports of the facts
from the layer corresponding with the current stratum and, in particular, can lead to a decrease of
some of the relations defined in the current stratum. The purpose of the
REMOQVENEG (Stratum,B,C) procedure is to compute this modification using the Neg part of the
supports C is the set of relanons defined in the currcnt stratum which get decreased

REMOVENEG (Stratum B,C):

Consider the elements of M =M, \ M;_,, where Stratum = P,

C:=g,;

for each element p() of M do

remove from its Neg set all sets 4 such that 4 NB#o;

if the Neg set becomes empty then remove p(f) from Mp and set C :=CU{p} fi

15

3.2. Algorithms
We now present the update algorithms in the case of incremental solutions. They use the procedures
SATURATE, REMOVEPOS and REMOVENEG defined above.

Fact insertion:

INSERT (p(1)):

Initialize:

DEC := &, INC := @;
STRATIFY(P INSERT(p(1)), P, i);
er(t)EMP then .
- modify the support of p(r) as follows:
Pos := PosU{D};
Neg := NegU {2}
else continue : = true
fi;
Propagate:

if continue then
while izAn +1 do
Stratum : = P;;
REMOVEPOS{Stratum, DEC,DECPOS):
REMOVENEG(Stratum,INC,DECNEG);
SATURATE(Stratum,ADD);
DEC := DEC U DECPOS U DECNEG;
INC := INC U ADD;
ir=i+1
od
fi.

Note that when the fact p(7) is already in the model its support is modified and no further action is
taken. Note also that the Propagate part is executed exactly when the control passes through the else -

part of the Initialize part. We preferred here to isolate the: Propagate part in order to use it in other
algorithms,

In the above a]gonthm, DEC(INC) is thc set of relations which were decremented (incremented) so -

far during the construction of the model. Maintaining the sets DEC and INC allows us to use the
current form of supports. Note that these supports are now “one level deep” as opposed to the previ-
ous form in which practically whole proof trees were maintained. This difference can be also found in

the approaches of Doyle [D] and De Kleer [dK]. In Doyle [D] the latter type of supports is used-

whereas De Kleer [dK] uses the previous form which allows him to maintain several contexts at the
same time.

An improvement of the above algorithm can be obtained by taking into account the structure of
each stratum. When proceeding through the while loop one can skip the strata in which no relation
depends from a relation in the set DEC U INC.

To see how this version of fact insertion leads to a smaller migration than the algorithm given in
subsection 4.3, consider the database P={rep, g«r, ge~—p}. Then Mp={gq}. INSERT (p) when
computed using the previous version leads to the removal of g, followed by the insertion of p and r
and finally the insertion of ¢. In the above version the removal of g does not take place.

16
Rule insertion:
INSERT (p(X)«=L1,....Li):

Initialize:

DEC := @, INC := @;
STRATIFY(P INSERT (p(_ Xye—Lj,...Ly), P, i);
continue := true,

Propagate.
Note that contrary to the case of fact insertion at least one iteration of the loop in the Propagate
part is performed. An improvement of the above algorithm can be obtained by terminating this loop-

when after the first iteration the SATURATE procedure produces no new facts, that is when both
DEC and INC remain empty. .

Fact deletion:

DELETE(p ()):
Initialize:
DEC:= @;INC:=

STRATIFY(P, DELETE(p (1)), P, i);
modzfy the support of p (1) as follows:
Pos .= Pos \ {@}; Neg := Neg \ {2}
if both Pos and Neg sets become empty then
. remove p(t) from Mp;
DEC := DEC U {p};
continue := true
fi;

Propagate.

Note that when the fact .p) remains in the model, its supports are modified and no further action
is taken. Indeed, the model remains then the same and other supports do not change.

Rule deletion'

.

DELETE (p(‘“)<—L1, ,Lk) .
Let ¢;,...,4; be all relations which appear positively in the body L., ,Lk and let ry,...,r; be-all rela-
tions which appear negatlvely in this body. ‘

17

Initialize:

DEC := &; INC:= &, removed :— false;
STRATIFY(P, DELETE (p(X)«-Ly,....Lg), P', i),
for each element p(t) of M;\ M, ., do
- remove from its Pos set the set {g1,...,4;}
and from its Neg set the set {ry,..,r;} if
both sets are effectively present;
if both Pos and Neg sets become empty then
remove p () from Mp;
removed : = true
i .
w.
if removed then DEC = DEC U {p}; continue := true fi;

Propagate

Note that in the Initialize part an attempt is made to identify the facts of the form p () which were

deduced in only one way, namely by means of the rule p (x)«Ly,...,L;-

6. TRANSACTION PROCESSING X '
So far we have dealt with the processing of updates. In this section we consnier a more general situa-
tion, namely that of transactions.

Following LLoYD, SONENBERG and TOPOR [LST] by a transacuon we mean a finite sequence of '
updates. We can assume without loss of generality that in any transaction we do not have insertions

and deletions of the same clause. We can niow order a sequence of updates formmg a transaction in
such a way that those refering to Jower strata appear first.

More precisely, we can order these updates in such a way that the values i returned by the pro-- '

cedure STRATIFY from section 3 when apphed to these updates form a wcakly increasing sequence.

In order to be able to reuse th1s procedure we now add at the end of ‘its’ body the asmgnment_""'

P:=P,

We now propose an algorithm showing how to process a transaction. It builds upon’ the incremen-
tal solution to the update processing proposed in the previous section. We assume that a transaction

is ordered in the way explained above. Given a stratified database P with the model M and a tran-
saction let P’ be the resulting stratified database with the maximal stratification Py U...UP,. a

Cofisider a stratum P; and the corresponding part M = M, \ M;_, of the'model. We first infro- -
duce the-MODIFY procedu:e whose purpose is to process the changes within M resultmg from- -

updates refernng to stratum P;. These changes consist in general of
i) removal of some facts,
ii) addition of some facts,
iii) resulting modification of the sets DEC and INC,
iv) modification of some supports.
This procedure has the following form.

MODIFY (Stratum,DECINC); ' S ' '
Consider the updates referring to the stratum Stratum Perform their Initialize parts in any order but -
with the initial assignments DEC := @; INC := . and’ the asmgnment oontmue = true every- S
where deleted. _

Now, the following algorithm is used to process a transaction, where ip is the smallest value
returned by the procedure STRATIFY applied to the updates formmg the transacuon

18

DEC:= &;INC:= &;i:= iy;

while istn +1 do
Stratum := P;;
MODIFY(Stratum,DEC,INC);

- REMOVEPOS(Stratum,DEC,DECPOS);
REMOVENEG(Stratum,INC,DECNEG);
SATURATE(Stratum,ADD);

DEC := DEC U DECPOS U DECNEG;
INC := INC U ADD;
i:=i+l1

od

This algorithm is more efficient than the one resulting from a one by one processing of the updatés
forming the transaction. Indeed, only one pass through the strata is made in it and all modifications
are treated in a cumulative fashion.

7. INTEGRITY CONSTRAINTS CHECKING
Similarly as in LLOYD, SONENBERG and TOPOR [LST], by an interity constraint we mean a first order
formula in the language of the considered stratified database. Assume a stratified database P with a
finite set of integrity constraints Fy,...,F;. _ S :
Our intention is to check whether after processing a transaction leading from P to a new stratified
database P’, the new model Mp- satisfies all formulas F;,...,Fy. The simplest solution is to evaluate
each of these formulas in Mp. This however, does not take into account the fact that all Fiy Fy
were satisfied in the old model Mp. ~ 0 o ' o
We propose now & solution which allows us to identify a subset of Fy,..,F; which needs to be
checked. Moreover, in this solution it is not necessary to wait until the construction of the new model

is completed to evaluate each of the “suspected” integrity constraints, = _ _ :

Thus the construction of the new model will be aborted as soon as an’integrity constraint is
identified which does not evaluate to true, _ .

Consider a first order formula F and its conjunctive normal form W. We say that a relation sym-
bol occurs positively in F if it occurs in a positive literal in W. We say that a relation symbol occurs
negatively in F if it occurs in a negative literal in W. Note that a relation symbol can occur both
positively and negatively in a formula. ‘ - o o '

Consider now a stratifed database P and a transaction, and let P’ be the resulting stratifed data-

base with the maximal stratification P; U - - - U P,. We say that a formula F in the language of P’ =

refers to a stratum P; if the definitions of all relation symbols appearing in F are contained in -
U ,'P i ' : .
J,Con.sider now a formula F refering to a stratum P;. We can evaluate truth of F in the new model
Mp. once in the construction of this model, using the algorithm given in section 6, stratum P; ., has
been reached. _ ') o
Moreover, such an evaluation of F is unnecessary if none of the relations appearing positively in F
appears in the set DEC, and none of the relations appearing negatively in F appears in the set POS.
Indeed, in that case F is true in Mp- because it is true in Mp. This follows from the fact that truth of
a formula in a Herbrand model is uniquely determined by the meaning of the relations appearing in
this formula and from the following straightforward lemma. = I

LEMMA 3. _ _ . _
Let M and M’ be two Herbrand models and F a formula. Suppose that o
1) for all relations r appearing positively in F , [rly Clrhy, -

19

ii) for all relations r appearing negatively in F , [rlyy C[rly.
Then Fistruein M iffitistruein M’. [

We can apply this lemma here because orice in' the algorithm given in section 6 a new stratum has
been reached, DEC (INC) includes the set of relations defined in the previous strata Wthh were
decremented (incremented) so far during the construction of the model.

Once ‘a constraint does not evaluate to true, ‘the construction of the new model is aborted. To-
reconstruct the old model it is enough to process a transaction “reverse” to the previous one (that is’

the one in which deletions are replaced by insertions and vice versa) and stop once the stratum has
been reached at which the construction of the new mode! had been aborted. Indeed, the effect of both
construction on the layers; which were taken care of, is nil, because both transacuons caneel each
other.

Finally, we offer the following improvement upon the previous method of 1denufymg when an
integrity constraint does not need to be verified. When cvaluating an integrity constraint F in a (com-
puted fragment of a) new model, we attach to it a support containing the information which relation
symbols from each conjunct of the conjunctive normal form were used during this evaluation.

Similarly as in section 4.2 such a support comsists of a set Pos of relations which appear posmvely

in F and were used in this evaluation, and a set Neg of relations which appear ‘negatively in Fand - -
were used in the evaluation. Then a constraint.does not need to be evalvated if Pos is disjoint with =
DEC and Neg is disjoint w1th INC. Each tlme a constramt is evaluated anew, the sets Pos and Neg :

are computed anew, - -

8. IMPLEMENTAT]ON ISSUES - '
In this section we study the problem of an eﬂiment mplementatlon of the algonthms proposed in the

previous sections. 'We concentrate on the meremental soluuons in thch supports consist’ of Pos and -

Neg sets of sets of relations.

81 Implementanon of supports

There is an obvious dependence between the support of a fact from the model and the set of clauses-.

which triggered this fact during the construction of the model. This suggests an efficient implementa-

tion in which the support of a fact consists of the set of pointers to the clauses which triggered this:

fact. Note that this implementation of supports automatically takes care of the problem of generating
explanations for the newly derived facts. Indeed, the clauses derived from the support can be viewed
as an explanation for the presence of the fact in the model.

We now explain how supports are maintained and used under this representation. To this purpose
we explain their use in the algorithms proposed.

1) The SATURATE procedure.
Each time a fact is deduced during the construction of the model, a pointer to the last clause applied
is added to the support of this fact.

2) The REMOVEPOS procedure.

Consider a set B of relations and an element p(7) of M. A]l clauses in whose body a relation from B -

appears positively are removed from the support of p(t) If the support becomes empty, p(1) is
removed from the model. -

3) The REMOVENEG procedure.
Consider a set B of relations and an element p(t) of M. Al clauses in whose body a relation from B
appears negatively are removed from the support of p(t) If the support becomes empty, p(®) is

20
removed from the model.

4) Fact insertion - the Initialize part.
I p@)isin Mp, then a pointer to itself is added to the suppon of p(t)

5) Fact deletion - the Inivialize part. -
A pointer to itself is removed from thc support of p(r) if Lhe support becomes empty, p(t) is
removed from the model. _ . _ ‘ :

6) Rule delenon the Imnahze part

Consider an element.p(f) from M, \M, _1. The deleted. rule is removed from its support If the sup
port becomes empty, (:) is removed from the model.

8.2 Implementation of the SA TURA TE procedure -

As stated in section 2 the set SAT(P, M) for a stratum P of a stratlﬁed program and a set of facts M '

does not depend on the order of rule application. To see this, first note that relations negated in the
hypotheses do not- appear in the conclusions of rules from P. Thus their meaning remains fixed -

throughout the saturation process, This implies. that the rules of P.form a monotonic production sys- e

tem and the desired independency follows by a general result proved in Cousor [Co]. FEE
We exploit this independency by making use of an efficient implementation of the saturation pro—

cess proposed in ROHMER, LescOEUR and KerisiT [RLK] for the case of definite deductive databases.

This algorithm is called there the delta driven mechanism, and was first lmp]emcnted in the framework

of a relational production system in PuGIN [Pu), It was also mtroduced in BANCILHON [B], where it'is =~

called semi-naive evaluation. :
Informally, each rule when fired produces an increase (delta) of the relauon in the concluswn of the ,

rule. When this increase is non-empty all rules using this relation in a body can be fired. The process - -

stops when all increases are empty.

More formally, this algorithm has the following form. Let 0 ..,0y be the predicates correspond-
ing to the meanings of the relations p,,...,p; occuring in P and M. Each rule ; in P induces a map--
ping f; from Q),...0: to Conc(i), where Conc(i) is the predicate associated with the relation:used in -

the conclusion of the rule 7, This-mapping is obtained by translating the rule into an expression-of . -

the relaﬂona] a.lgebra. Let Sirofin be the mappmgs obtained. The algonth.m has the fol]owzng form

» add to M all facts from from P;
Jor j:=1 tokdoQ := [plu:

AQ; := 0
AAQ,’ =0
repeat

- for j—lmkhﬂﬁgaéﬁmen)
for :—ltomdo

BA Cone(@) := £; Qo - - /A, - .-, 4) U AA Conei)
od
for j:=ltokdo AQ; :=AAQ\Q;;

21
019U 20

AAQJ

e
- wtl (J AQ; = @
‘ =

The above algorithm computes SAT(P,M). However, in our setting we also need to maintain sup-
ports attached to the facts produced. These facts are generated in chunks of the form AA Conc(i).

Each of them is produced by one rule. Adding now to the support of each fact in AA Conc(i) a

pointer to this rule ;, we obtain a refinement we need to implement the SATURATE procedure

83 Dzscussron

The supports constructed in subsection 4.2 and 4.3 use the supports a]rcady attached to individual :
facts derived from the body of the rule applied. To maintain them, each newly derived fact has to be

handled individually. Thus the delta driven mechanism which produces new facts in chunks cannot be
applied. This shows that from the implementation pomt of view the solution proposed in socnon 5 is
clearly preferable.

Note however that in general there is a trade-off between an efficient choice of the supports and the"'
minimization of the migration. Indeed, to maintain supports efficiently they should be kept small.

But then each fact will be more often subject to migration.

One miight consider a different form of supports in which not re]atrons (or pomters to the clauses)
but facts used in the deductions are recorded. This would be clearly preferable from the point of view
of minimization of migration. In fact, this form of supports combined with an appropriate type of 2
saturation procedure keeping all possible ongmal deductions would lead to a solution with no m1gra- _

tion.
This solution could be of interest in the case of Artificial Intelligence apphcatrons where typically
few facts and many rules are used.

However, this choice is less attractive in the case of database applications. First, use in the sup-
ports of pointers to the rules instead of facts, allows us to use the delta driven mechanism based on_
relational algebra operators to implement the saturation process. Secondly, the computation costs‘. :
incurred in the task of analyzing all possible deductrons 18 clearly too prohrbmve to be of practmal '

mterest when many facts are present.

9. RELATED WORK =
Deductive databases:

Nicolas and Yazdanian [NY] consider the maintenance prob]em for definite deductive databases.

Absence of negatron consrderably simplifies the issue. Lassez, McAloon and Port [LMP] address the
problem of interactive construction of the intended model of a stratified database in case of proposi-

tional programs, concentrating on the complexity issues. Their definition of interaction does not allow |
deletions of clauses and does. not include the- integrity constraints checking, Lloyd, Sonenberg and
Topor [LST] study the problem of integrity constraint checking in stratified databases using construc-.

tions somewhat related to-our formation of Pos and Neg sets. In their approach Clark’s [C] comple-

tion is used as the intended semantics of the database. Topor and Sonenberg [TS] consider the prob- =

lem of domam mdependent queries in strauﬁed databases

22

Non-monotonic Reasoning: :

Doyle [D] introduces the class of justification-based Truth Maintenance Systems and studies them
both from a theoretical and practical point of view. De Kleer {dK} and Martins and Shapiro [MS]
introduce (we use here the original term of De Kleer) the class of Assumption:based Thruth Mainte-
nance Systems. De Kleer gives a new, elegant notion of consistency by introducing the multiple con-
text framework instead of using the classical scheme in which only one consistent context is selected
and used by the maintenance system. In both papers the notion of selective backtracking in case of.
detection of inconsistency is studied. These issues were subsequently studied in other frameworks, for
example in Shmueli et al. [STZE] for the case of PROLOG.,

REFERENCES - LT __ o .

[ABWIK.R. Art, H. BLAIR, and A. WALKER, Towards a Theory of Declarative Knowledge, in: Proc. -
Workshop on Foundations of Deductive Daiabases and Logic Programming, Washington D.C. |
pp. 546-629, 1986. I ' '

[APIK.A. Art and J.M. PuGIN, Maintenance of Stratified Databases viewed as a Belief Revision Sys-

tem, in: Proc. 6th ACM SIGMOD-SIGACT Symposium on Principles of Database Systems, . -

1987. : . ~ . :
{BPR]L. BALBIN, G.S. PORT and K. RAMAMOHANARAO, Magic set computation for stratified databases,
Department of Computer Science, The University of Melbourne, Technical Report No. 87-3,
1987. R . L - -
[B] F. BANCILHON, Naive Evaluation of Recursively Defined Relations, MCC Technical Report No.
DB-4-85,1985. . | L o e _
[CHJA. CHANDRA, and D. HaREL, Horn Clause Queries and Generalizations,” Journal of Logic Pro-
gramming, vol. 1, pp. 1-15, 1985. : o o
[C] K. CLARK, Negation as failure, in: Logic and Databases, H. Gallaire and J. Minker (Eds.), Ple-
num Press, New York, pp. 293-322, 1978, ' ' o

[Co} P. CousoT, Asynchronous Iterative Methods fbr'Sblving a Fixed .Point Sjstem of Monotone Eéua— ‘

tions in a Complete Lattice, Technical Report No. 88, L.A. 7, Univ. Scientifique et Medicale de

Grenoble, 1977. _ .
[CLPP.Y. Cras, M. LECONTE and J.M. PUGIN, Specifications du tableur logique, Bull Research Center,
Louveciennes, France, Technical Report, 1987. ' o) . '
[D] J. DoYLe, A Truth Maintenance System, Artificial Intelligence 12, pp. 231-272, 1979.
[GMN]H. GALLAIRE, J. MINKER, and J.M. NicoLas, Logic and Databases: A- Deductive Approach,
ACM Computing Surveys, pp. 153-185. . o . L
[VGJA. VAN GELDER, Negation as Failure Using Tight Derivations for General Logic Programs, in:
Proc. Third IEEE Symposium don Logic Programming, Salt Lake City, Utah, 1986.
[KLRRJJ.M. KerisiT, R. LESCOEUR, J. ROHMER and G. ROUCAIROL, The Alexander Method - an
Efficient Way for Handling Deduction on Databases, Bull Research Center, Louveciennes, France,
Technical Report no. 87-015, 1987. o
{dK)J. DE KYEER, An Assumption-Based Truth Maintenance System, Artificial Intelligence 28, pp. 127-
162, 1986. . . R e : : -
[LMPIC. Lassez, K. MCALOON and G.S. PORT, Stratification as a Tool for Interactive Knowledge Base
Management, in: Proc. 4th International Conference on Logic Programming, The MIT Press,
Cambridge, Mass., 1987. . = . S . o
(L} V. Lirsciirz, On the Declarative Semantics of Logic Programs with Negation, in: Proc.. Workshop
on Foundations of Deductive Databases and Logic Programming, Washington D.C. pp. 420432,
[LST] J.W. LiovD, E.A. SONENBERG, and R. ToPOR, Integrity Constraint Checking in Stratified Data-
bases, Technical Report 86/5, Dept. of Computer Science, Univ. of Melbourne, 1986, =
[MCP. McCarTHY, Circumscription - A Form of Non-monotonic Reasoning, Artificial Intelligence 13,
pp- 295-323, 1980. '

23

[MS)J.P. MARTINS, and S.C. SHAPIRO, Reasoning in Multiple Belief Spaces, in: Proc. 1IJCAI-83, pp.
370-373, 1983.

[NYJ.M. Nicoras, and K. YAZDANIAN, An Outline of BDGEN: A Deductive DBMS, in Proc. IFIP-
83, pp. 711-717, 1983. '

[Pu] JM. PUGIN, Boum: Manual de reference et d'utilisation, Bull Research Center, Louveciennes,
France, Technical Report, 1984,

[Pr] T. PRzYMUSINSKI, On the Semantics of Stratified Deductive Databases, in: Proc. Workshop on
Foundations of deductive Databases and Logic Programming, Washington D.C. pp. 433-443,
1986.

[RLK). RouMeR, R. LEsCOEUR and J.M. KerisiT, The Alexander Method, a Technique for the Pro-
cessing of Recursive Axioms in Deductive Databases, New Generation Computing vol. 4, No.3,
pp-273-285,1986.

[S1] J.C. SHEPHERDSON, Negation as Failure: A Comparison of Clark’s Completed Database and Reiter’s
C.W.A., Journal of Logic Programming N 1, pp. 51-81, 1984.

{82] J.C. SI{E.P]-IERDSON ‘Negation as Failure. 11, Journal of Logic Programming, N 3, pp. 185- 202
1985.

[SS] R.M. STALLMAN, and G.J. SussMaN, Forward Reasoning and Dependency-Directed backtracking in
a System for Computer-Aided Circuit Analysis, Artificial Intelligence 9, pp. 135-196, 1977.

[TS] R. Toror, E.A. SONENBERG, On Domain Independent Databases, in: Proc. Workshop on Founda-
tions of deductive Databases and Logic Programming, Washington D.C. pp. 403-419, 1986.

[STZE]O. SuMuELlL, S. Tsur, H. ZFiRa, and R. EVER-HADANI, Dynamic Rule Support in Prolog, in:
Expert Databases Systems (L. Kerchberg, ed.), The Benjamin/Cummings Publishing Co., Menlo
 Park, pp.247-270, 1986.

	tr87-40-46_001

