PSYCHO: A GRAPHICAL LANGUAGE FOR
SUPPORTING SCHEMA EVOLUTIONIN
OBJECT-ORIENTED DATABASES

Hyoung-Joo Kim and Henry F. Korth
Department of Computer Sciences
The University of Texas at Austin .

Austin, Texas 78712-1188

TR-87-43 November 1987

PSYCHO: A GRAPHICAL LANGUAGE FOR SUPPORTING
SCHEMA EVOLUTION IN OBJECT-ORIENTED DATABASES

Hyoung-Joo Kim, Henry F. Korth

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

ABSTRACT

One of the important requirements of non-conventional applications such as CAD/CAM, AI,
and QIS (office information systems) with multimedia documents is schema evolution, that is,. _
the ability to make a wide variety of changes to the database schema dynamically. We provided a
framework of schema evolution in [BKKK86, BKKKS8T7] and tle framework was realized in an object-
oriented database system, ORION at MCC. Schema modifications using line-orienied interaction are
difficult for the user to manage if class lattices are complicated. The difficulty is even greater because
there are a large number of types of schema modifications. We have designed and implemented a
powerful, yet user-friendly graphical interface PSYCHO (Pictorial Schema-editor Yielding Class

" Hierarchies and Objects) for supporting schema modification in object-oriented databases. In this
paper, we give a brief overview of our schema evolutlon framework, and then discuss both the use
of PSYCHO and its implementation.

Key Words: Graphu:al Language, Graphical Interface Object—orlented Databa.ses Schema, Evo—
lutlon, Class Lattices, Objects

1. Introduction

The successful use of database mana.genient systems in data-processing applications has created a substan-
tial amount of interest in applying database techniques to such areas as knowledge bases and artificial
intelligence [STEF86], computer-aided design (CAD) [AFSA86], and office information systems [IEEES5,
AHLS84, WOELS6]. In order to provide the additional semantics necessary to model these new’ applica-
tions, many researchers, including those referenced above, have adapted the object-oriented programming
paradigm [GOLD81, GOLD83, BOBR83, CURR84, SYMB84] to serve a data model.

In order to use the object-oriented approach in a database system, it was necessary to add persistence and
sharability to the object-oriented programming paradigm. Several database systems based on this approach
are under implementation, including Geristone [MOP85] and Iris [FISH87]. In this paper, we focus our _
attention on the ORION system [BANS87], developed within the database program at MCC. ORION includes

several features to support CAD, artificial intelligence, and office information systems [KIM85, WOELS6):
Among its features is support for schema evolution, which allows users to modify the database schema
dynamically.

~ 'We established a taxonomy of 34 useful schema change operations under the ORION dé.ta.model. We
defined the semantics of each schema change. Our framework of schema evolution has been reported in
[BKKK86,BKKK87]. The entire set of schema cha.nge operatlons we defined in our ta.xonomy has been
implemented in ORION. :

1 Research partially supported by NSF Graﬁt DCR-8507724

1

Schema modifications using liné-oriented interaction are difficult for the user to manage if class lattices
are complicated. The difficulty is even greater because there are a large number of types of schema modifi-
cations. We have designed and implemented a graphical language PSYCHO for supporting user friendly and
powerful schema modification in object-oriented databases. In this paper, we present a brief overview of our
schema evolution framework and describe in detail the structure of PSYCHO. First we need to overview the
ORION data model briefly.

1.1 The ORION Data Model

The ORION data model supports the usual features. of object-oriented languages, including the notions of
classes, subclasses, and objects. Each entity in an ORION database is an object. Objects include instance
veriables that describe the state of the object. Instance vartables may themselves be objects with their own
internal state, or they may be primitive objects such as integers and strings which have no instance variables.
Objects also include instance methods which contain code used to manipulate the object or return part of its
state. These methods are invoked from outside the object by means of messages. Thus, the public interface
of an object is a collection of messages to which the object responds by returning an object.

Although each object has its own set of instance variables and methods, several objects may have the
same types of instance variables and the same methods. Such objects are grouped into a class and ‘are said
to be instances of the class. Instance variables and instance methods shared by all members of a class ma.y
be referred to as class veriables and class methods respectively.

Usually each instance of a class has its own instance variables. If, however, all instances must have the
same value for some instance variable, that variable is called a shared-value variable. A defanlt value can be
defined for a variable. This value is assigned to all instances for which a value is not specified. Such variables
are called defauli-valued variables.
~ The domain of an instance variable is a class. The ORION data model allow the domain of an instance
variable to be bound to a specific class and all subclasses of the class.

Each of instance variables and instance methods has a document that is a comment on itself. So do class
variables and class methods. '

Similar classes are grouped together into superclasses. The result is a directed acyclic graph (DAG)
containing an edge (C1, Cy) if class Cy is a superclass of Cy. A class inherits properties (instance variables
and methods) from its immediate superclasses, and thus, inductively, from every class C for which a pa.th
exits to it from C'. The cla.ss—su_perclass relationship (C1, Cz) is an “ISA” relationship in the sense that every
instance of a class is also in instance of the superclass. Using the terminology of the entity-relationship model
(see, e.g., [KS86]), we say that C} is a generalization of Cp and Cy is a specialization of C;. '

Because we allow use of a DAG to represent the ISA relationship among classes, it is possible for a class
to inherit properties from several superclasses. This is called multiple inheritance in [GOLD83, STEF86].
This Jeads to possible naming conflicts between properties inherited from superclasses. Another source of

conflict is the possibility that a locally-defined class variable or method has the same name as an inherited

property. These conflicts are resolved by giving the local definition precedence. Other conflicts are resolved -

based upon a user-supplied total ordermg of the superclasses. This ordermg can be changed at any time by
the user. Furthermore, the user may override the default conflict resolution scheme by either renaming or by
explicit choice of the property to be inherited. '

In the remainder of this paper, we refer to the class DAG as a lattice, so as to conform with accepted

"2

practice in the literature. These “lattices” do not necessarily have any of the properties associated with the
mathematical concept of a lattice.

2. An Overview of Schema Evolution

Our framework for schema evolution under the ORION data model consists of a set of properties of
the schema called invariants, and a set of rules that guide the selection of the most meaningful way of
preserving the invariants. The invariants must hold at every quiescent state of the schema, that is, before
and after a schema change operation. They guide the definition of the semantics of every meaningful schema
change, by ensuring that the change does not leave the schema in an inconsistent state {one that violates
an invariant). However, for some schema changes, the schema invariants can be preserved in more than one
way. The set of rules that we have guides the selection of one most meaningful way.

In our previous papers [BKKK86 BKKKS87], we showed that how schema evolution rules are applied to
maintain the schema evolution invariants to all types of schema changes in ORION. A more formal treatment
of schema evolution is in [KKBK86). As such, we omit the details of invariants and the schema transformation
rules here. ' '

We emphasize that, although our framework has been developed for the particular data model of ORION, -
we believe that our methodology for the development of the framework is applicable to most object-oriented
systems. This is because the ORION model has incorporated all the basic object concepts for which there is
a wide acceptance, and has enhanced the basic object-oriented model with the notion of composite objects,

2.1 Tazonomy of ORION Schema Change Operations :

In this subsection, we classify all schema changes that we support in ORION, and define the semantics of
schema changes, using our schema evolution invariants and rules. Changes to the class lattice can be broadly
categorized as (1) changes to the contents of a node, (2) changes to an edge, and (3) changes to a node. Our
schema change taxonomy is as follows: : | . ' '

(1) Changes to the contents of a node (a class)
(1.1) Changes to an instance variable

(1.
(1.
(1.
(1.
(1.

.1) Add a new instance variable to a class

.2) Drop an existing instance variable from a class

.3) Change the name of an instance variable of a class
.4) Change the domain of an instance variable of a class

P = S ¥

.B) Change the inheritance (parent) of an instance variable
(inherit another instance variable with the same name)

(1.1.6) Change the document of an instance variable

(1.1.7) Change the defanlt value of an instance variable

{1.1.8) Manipulate the shared value of an instance variable
(1.1.8.1) Add a shared value
{1.1.8.2) Change the shared value

(£.1.8.3) Drop the shared value
{(1.1.9) Drop the composite link property of an instance variable

(1.2) Changes to an- instance method

(1.2.1) Add a new instance method to a class

(1.2.2) Drop an existing instance method from a class

(1.2.3) Change the name of an instance method of a class

{1.2.4) Change the code of an instance method in a class

(1.2.5) Change the inheritance (parent) of an instance methed
{inherit another method with the same name)

(1.2.8) Change the document of an instance method
(1.3) Changes to a class variable

(1.3.1) Add a new class variable to a class

(1.3.2) Drop an existing class variable from a class

(1.3.3) Change the name of a class variable of a class

(1.3.4) Change the domain of a class variable of a class

(1.3.5) Change the inheritance {(parent) of a class variable
{(inherit another class variable with the same name)

(1.3.6) Change the document of an class variable

(1.3.7) Drop the composite link property of an class variable

(1.4) Changes to a class method

(1.4.1) Add a new class method to a class

(1.4.2) Drop an existing class method from a class

{1.4.3) Change the name of a class method of a class

{1.4.4) Change the code of a class method in a class

{1.4.5) Change the inheritance (parent) of a class method
{inherit another class method with the same name)

(1.4.8) Change the document of a class method

(2) Changes to an edge

{2.1) Make a class S a superclass of a class C

{2.2) Remove a class S from the superclass list of a class C
(2.3) Change the order of superclasses of a class C

(3) Changes to a node

(3.1) Add a new class

(3.2) Drop an existing class
(3.3) Change the name of a class

2.2 Semantics of ORION Schema Change Operations

Below we present the semantics of schema change operations mforma.lly See [BKKKSG BKKK&87] for further
details. .

» (1.1.1) Add a new instance variable t6 a class C: The new instance variable, in case of a conflict
with an already inherited instance variable, will override the inherited instance variable. In that case, the
inherited variable must be dropped from C, and replaced with the new instance variable; and existing
instances of C will take on the value nil or the user-specified default value for the new instance variable.
If C has subclasses, they will inherit the new instance variable of C. If there is a conflict with an
inherited variable they have already defined or inherited, the new instance variable is ignored. If there
is no conflict, the subclasses will inherit the new variable, together with a default value, if any.

s (1.1.2) Drop an instance variable V from a class C: The instance variable V is dropped from
the definition (and from the instances) of the class C. C may inherit V from another superclass, if there

" had been a name conflict involving V. All subclasses of C will also be affected if they had inherifed V.
In case V must be dropped from C or any of its subclasses without a replacement, existing instances of
these classes lose their valnes for V. _ '

e (1.1.3) Change the name of an instance variable V of a class C: We take the view that name
changes are made primarily to resolve conflicts, and as such they should not introduce new conflicts. -

" Therefore, if a name change causes any conflict within the class C, the change is rejected. If the name
change is accepted, it is propagated to subclasses of C that have inherited from V of C. The name change
is required to be propagated only if it does not give rise to new conflicts in the subclasses. Further,
pame change propagation is inhibited in the subclasses that have explicitly changed the name of their -
inherited instance variable V. . :

e (1.1.4) Change the domain of an instance variable V of a class C: The domain of an instance

- variable is itself a class. The domain, class D, of an instance variable V of a class C may be changed
only to a superclass of D. The values of existing instances of the class C are not affected in any way.
If the domain of an instance variable V must be changed in any other way, V must be dropped, and a
new instance variable must be added in its place.

¢ (1.1.5) Change the inheritance (parent) of an instance variable: (Inherit a.nother instance
variable with the same name) As discussed earlier, if two or more superclasses of a class C have an

 identically named variable (either through inheritance or local definition), the system selects only one

of them for inheritance by C, based on the order in which the superclasses have become associated with
C. The user can override this default explicitly. _ '
If C has instances, the present values of the conflicting instance variable V must be dropped, and
replaced by any default value under the new definition. If C has subclasses which had inherited V, they
will now inherit the new definition. Consequently, their instances will be subjected to the same changes
as those for the instances of C. : :

e (1.1.6) Change the document of an instance variable ¥ of a class C: Document change is
propagated to-subclasses of C that have inherited from V from C. However, document change propaga-

5

tion is inhibited in the subclasses that have explicitly changed the document of their inherited instance
variable V.

(1.1.7) Change the default value of an instance variable V of a class C: All instances of C,
for which no value has been supplied for the variable V, already have a default value or nil. They will
now get the new default value. If there exists any subclass of C which had inherited V from C, it must .
also inherit this new default value, unless that subclass has redefined the default value of V.

(1.1.8.1) Add the shared value of a variable V of a class C: This operation converts a non-
shared-value instance variable V to a shared-value instance variable. If V already had a shared value,
then all instances of the class C receive the new value. If V was not previously a shared-value variable,
it now becomes one, and all instances of C will take on this new value, dropping any existing values for
V in existing instances of C. '

If-C has subclasses which had inherited V, they will now inherit ‘the new shared value of V, un}ess they
have redefined the value.

' (1.1.8.2) Change the shared value of a variable V of a class C: This opera.t,idn réplaces the
shared value of V with a new one. If C has subclasses which had inherited V, they will now inherit the
new shared value of V, unless they have redefined the value. ,

(1.1.8.3) Drop the shared value of a variable V of a class C: This operation changes 2 shared-
value instance variable V to a non-shared one. V will now have a default value of nil. If C has subclasses
which had inherited V, they will now drop the shared value of V, unless they have redefined the shared
value.

(1. 2) Change an instance method The semantics for operations 1.2.1, 1.2.2, 1.2.3, 1. 2 4, 1.2.5 and
1.2.6 are easily inferred from 1.1.1, 1.1.2, 1.1.3, 1.1.4, 1.1.5, and 1.1.6 respectively.

(1.3) Change a class variable The semantics for operations 1.3.1, 1.3.2, 1.3.3, 1.34, 1.3.5 and 1.3.6
aré ¢asily inferred from 1.1.1, 1.1.2, 1.1.3, 1.1.4, 1.1.5, and 1.1.6 respectively. .

(1.4) Change a class method The semantics for operations 1.4.1,1.4.2, 1.4.3, 1.4.4, 1.4.5 and 1.4.6
are easily inferred from 1.1.1, 1.1.2, 1.1.3, 1.1.4, 1.1.5, and 1.1.6 respectively.

(2.1) Make a class S a superclass of a class C: § is made the last superclass in the list of superclasses
of C. C will now inherit the variables and methods from S. If this causes any name conflict, the system
will ignore the instance variable (or method) of S in conflict, because C must already have inherited the
conflicting variable {or method) from some of its current superclasses. The user may explicitly specify
alternate conflict resolution.

If C has subclasses, immediate or indirect, they also inherit instance variables and methods from S.
Such inheritance may cause new name conflicts, but they will also be ignored. (Once again, it is up to
the user to explicitly specify conflict resolutions that will override the default.)

C and its subclasses may have existing instances. Since the instance variables they inherit from S are
new to these instances, they appear in the instances with the value nil or any default value specified.
(2.2) Remove a class S as a superclass of the class C: The variables (or methods) inherited
from S are dropped from the definition of C. C may newly inherit the dropped instance variables (or
methods) from other superclasses, if there had been name conflicts involving them. The instances of C-
are also modified as discussed earlier for the dropping of a class. All subclasses of C will also be affected
similarly if they had inherited variables (or methods) from S via C. ‘

(2.3) Change the order of the superclasses of a class C: This alters the default conflict resolutlon
with respect to the class C. Conflicting variables and methods will now be inherited according to the

6

new permutation of superclasses. If the definition of a variable changes because of this new permutation,
existing instances of class C will be affected as well. The value that each variable takes on is the default
value under the new definition. Subclasses of C are affected similarly. .

e (3.1) Define a new class C: The new class C may be created as a specialization of an existing class

or classes. These latter classes can be specified as the superclasses of the new class. The variables (oi:
methods) specified for C will override any conflicting instance variables (or methods) inherited from the
superclasses. If there is a name conflict involving the variables (or methods) that C inherits from its -
superclasses, default conflict resolution is used, unless the user explicitly overrides it.
The class C may also be defined without any superclasses. In this case, C is made a subclass of Object
which is a system defined class. Conceptually the Object class is a root node of every class hxera.rchy The
user may, at a later time, add superclasses for C, in which case Object will no longer be an immediate
superclass of C. .

s (3.2) Drop aclass C: Whenever a class definition is dropped, all its instances are deleted automatlcally,
since instances cannot exist outside of a class. However, subclasses of C, if any, are not dropped.
Subclasses of C will lose C as their superclass; however, they will gain C’s superclasses as their immediate
superclasses. Further, when a class C is dropped, its subclasses will lose the instance variables and
methods they had previously inherited from C. If, in the process, a subclass of C loses a variable V (or
a method) which was selected over a conﬂlctmg variable in another superclass of that subclass, it will
now inherit the alternative definition of V. Consequently, the instances of any such subclass will 1ose
their present values for V, and inherit the default value (or nil) under the new definition of V.

When an instance of the class C is deleted all objects that reference it will now be referencmg a non-
existent. object. The user will need to modify those references when they are encountered. ODBS will
not automatically identify references to non-existent objects, because of the performance overhead.

If the class C being dropped is presently the domain of an instance variable V1 of some other class,
V1’s domain becomes the first superclass of the class C. Of course, the user has the choice of specifying :
a new domain for V1. '

e (3.3) Change the name of a class: If the new name is umque among a.ll class names in the class
lattice, the name change is allowed. This name change is not propagated.

3. System Structure of PSYCHO/ORION Environment

PSYCHOQ is a graphical schema manipulation language which is beiﬁg used in an object-oriented system
ORION. PSYCHO and ORION have been implemented within the ODBS project at MCC. ORION is
written in CommonLisp on a Symbolics 3640. PSYCHO is implemented (roughly, 3000 lines) with Flavors
and ZetaLisp on a Symbolics 3640. Figure 2 shows a diagram of the PSYCHO J/ORION environment.

_ The user can use ORION system directly or indirectly through the PSYCHO system. PSYCHO com-
municates with the schema manager and the transaction manager of ORION.

In the PSYCHO/ORION environment, class lattices are represented as DAGs (directed a.cychc graphs)
on the screen, and the user can manipulate DAGs directly using a mouse and pop-up menus. A schema
menipulation session of PSYCHO/ORION environment goes roughly as follows. First, the user chooses
“schema-load” option in the command menu, and the system draws a DAG representing the database
schema. The user enters schema-change commands by using mouse and pop-up menus to manipulate the
DAG. Transaction Mode is used to group several schema change operations into a single atomic action. If the

7

user reaches to his desired database schema, he terminates the session by clicking “Quit” in the command
menu.

We show several examples of PSYCHO sessions in following sections. These examples sessions of PSY-
CHO demecnstrate the power of graphics to provide a simple method stating schema changes that would be
complicated to express in the text-oriented command language of the ORION schema manager.

4, Overall Structure of PSYCHO

PSYCHO provides various facilities to help users in posing schema-change commands. In this section, we
briefly introduce the structure of PSYCHO system. Figure 3 shows a PSYCHO window which consists of §
subwindows: a directed acyclic graph window, a PSYCHO lisp window, a command menu window, a class
index window and a mouse documentation line window. Besides those subwindows, a method code ediior
window is provided for editing or modifying code of a method durihg the schema change session.

.4.1 Directed Acyclic Graph Window

The directed acyclic graph window is for the graphical manipulation of the DAG representation of a database
schema. The schema of the “University Person” database is shown in Figure 3: the class UNIVERSITY
PERSON has two subclasses, UNIV-EMPLOYED and STUDENT, and in turn UNIV-EMPLOYED has two
superclasses GRADUATE-STUDENT and UNDERGRADUATE-STUDENT, and so‘on. We shall use the
“University Person” database for illustrating facilities of PSYCHO through sample sessions in section 5.

4.2 PSYCHO Lisp Window

During a schema-change session, the user may have to pose ORION commands or queries directly on the lisp
top level. The PSYCHO lisp window is a symbolics lisp window whose size is altered to fit inside PSYCHQ
system. The user can enter any lisp expressions and any ORION commands in this window.

4.8 Command Menu Window

The command menu consists of 15 commands, which govern schema navigation and mode changes. The 15
cormmands are solely for PSYCHO, and are not transmitted to ORION.

¢ Schema-Load: PSYCHO reads the database schema definition from ORION into internal data structures,

"and PSYCHO draws a DAG in accordance with the schema definition. :

o Tutorials: PSYCHO provides the user with a brief introduction to PSYCHOQ, some example sessions of
schema change, and -explains the functions of mouse buttons, pop-up menus and commands.

e Notification-On: Various types of system error/warning messages are provided from ORION or PSY-
CHO. By choosing this command, the user can receive error and warning messages with a beeping
sound. . _

e Notification-Off: The user is protected from the error and warning messages.

Including the schema-change mode {default mode), PSYCHO supports 5 different modes. Three of them
are implemented and the remaining two are planned to be implemented. A number of pop-up menus are
provided in accordance with the modeés. The following 4 commands are for changing the modes of PSYCHO.

8

‘Query-Mode: This mode is not implemented currently. We are planning to support a graphical query
language facility within PSYCHO. We shall discuss this mode in section 6.

‘e Transaction-Mode: In this mode, the user can pose a series of schema change operations as an atomic
action (i.e., schema-change transaction). PSYCHO requests transaction service to PSYCHO by sending-
a message “Begin Transaction” to ORION. In the middle of a transaction, the user can abort. Then
ORION undoes the operations performed between abort point and begin-transaction point. If the user
commits a transaction, PSYCHO sends a message “End Transaction”. We shall discuss this mode in
section 5.5. -

¢ Composite-Object-Mode: This mode is not implemented. We shall discuss this mode in section 6.

o Sketch-Mode: In this mode, PSYCHO does not communicate with OQRION. The user can mampulate

" " the database schema experimentally. We shall discuss this mode in section 5.5.

. Move—Screen-Up/Move—Screen—Down/Move—Screen-Left/Move—Screen—Right. The DAG window is
scrolled up, down, left, or right, respectively. These commands are used for a DAG that is too large to
fit on the screen.

o Reset-Top: The window is adjusted to show the top of the DAG (1 e, the root appears at the top of the
window).

e Screen-Dump: Print a hard copy of the screen at a laser printer.

o Quit: Terminates a session.

4.4 Class Index Window

The small window Jocated in the left bottom of the screen is the class')index window. The class index window

shows a list of class names in alphabetical order. The user can scroll the class index window up and down’
by cliéking the top and botiom labels in the screen respectively. If the user clicks on a particular class name,

the system draws the sub-DAG whose root is the chosen class. We shall discuss this window in section 5.2.

4.5 Mouse Documentation Line Window

The mouse documentation line window contains information about what different mouse clicks mean. As the
user moves the mouse across different mouse-sensitive items or areas of the screen, the mouse documentation
line shows the corresponding documentation to reflect the changing commands available.

4.6 Method Code Editor

In ORION, a method is a CommonLisp form. As such, the method definition process is similar to a .
lisp function programming session. Therefore the user needs an zmacs®-like editor window. In the method
code editor, the user can test a new method, modify the method and save the definition of the method into
ORION.. o

5. PSYCHO Facilities

In this section we will illustrates PSYCHO facilities by showmg example schema-change sessions on the
“University Person” database. Before we proceed, we have to clarify the mouse function i in PSYCHO. The

" % Zmacs is Symbolics version of emacs

Symbolics mouse has three buttons. We use only the left and right button, not the middle button. The
left button is used for clicking mouse-sensitive iters such as nodes in a DAG, commands in the command
menu, and class names in the class index window. A mouse sensitive item has its associated action which is
supposed to be performed after being clicked by the left button. The right button is used for invoking an
pop-up mode which is designed for a particular mode. !

The Symbolics supports a system command menu. We retain the system coramand menu because the
user may want to do various things such as inspecting directories, files, etc., during a schema-change session.
The system menu can be invoked by clicking the right button twice as shown in Figure 4.

We also intentionally provide some redundancy in the contents of pop-menus and the command menu,
i.e., some commands are supported in different menus. That is purely for the user’s convenience. Consider
the pop-up menu in Figure 5. The pop-up menu is invoked when the user clicks the right button on an area
that is not a mouse-sensitive item. The contents of the pop-up menu is exactly same as the contents of the
command menu window.

Now we are ready to consider the details of PSYCHO.

5.1 Schema Manipulation

All schema-change operations in the taxonomy in section 2.3 are embedded in the pop-up menu in Figure
6. The pop-up menu (from now on, we call this menu the “basic operation menu”) is invoked by clicking
the right button upon nodes of DAG which are mouse sensitive items. The first seven items in the basic
operation pop-up menu corresponds to (3.1), (3.2), (3.3), (1), (2.1), (2.2), and (2.3) in the taxonomy of
ORION schema-change operations, respectively. In this section we will explain the behavior of the seven

items by showing examples. The other three items are for schema browsing and user navigation, and are
covered in the next section.

Suppose the user clicks the following items on a node of a DAG.

o Create a New Subclass: The system will highlight the selected node and display a small box in which
the user types a class name as shown in Figure 7. After the user types a class name, the system redraws
a DAG including the newly created node as shown in Figure 8.

e Delete This Class: The systern will drop this class definition and redraws the resulting DAG. F}gure 9
shows the resulting DAG after deleting “TENURED-PROF” class. We note that “ASSO-PROF” and
“FULL-PROF” now become subclasses of “PROFESSOR” in accordance with the semantics of the
ORION schema-change operation (3.2).

¢ Rename a class: The system will highlight the selected node and display a small box in which the user
types a new name for the selected node. After the user types a class name, the system redraws a DAG
including the renamed node '

o Change the contents of this class: The system will highlight the selected node and display another pop-
up menu showing operation choices for changing the definition of the selected node as shown in Figure.
10. Within this pop-up menu, the user can add, delete, or modify instance variables, instance methods,
class variables, and class methods. '

Addition: When the user clicks the item “add a new instance variable”, the template in Figure
11 is displayed. The user fills the slots in the template menu and creates a new instance variable
by clicking “Yes” option in the “** Create It! **” item. Class variables are dealt with the same
manner. If the user clicks “add a new instance method”, a method code editor window is created

-10

as shown in Figure 12. The user can create a new instance method, test the new instance method,
or modify the new instance method in the method code editor. Class methods are dealt with the
same manner. ,

Modification: When the user clicks the item “add a new instance variable”, the pop-up menu having
the instance variables of the selected class is displayed as shown in Figure 13. The user may choose
a particular instance variable in the pop-up menu, say “TACOURSE”. Then a template describing
the current status of “TACOURSE” pops up as shown in Figure 14. The user can modify the
contents of an instance variable by changing the values in slots of the template of Figure 14. Class
variables, instance methods, and class methods are dealt with the same way.

Deletion: As shown Figure 14, the template having the contents of an instance variable has the
“Drop It!” item. By choosing “Yes” option in the template, the user can delete the instance vanable
from the selected node. However, if the variable is an inherited one, the request is rejected and an
warning message will be displayed. Class variables, instance methods, and class . methods are dealt
with the same way.

o Make Another Class as a New Superc]ass of the Class: The system highlights the selected node and waits
for the user to click on another node as shown in Figure 15. The system provides graphical feedback
helping the user to choose a valid node. The second selected node will become a new superclass of the
first selected node. After the user chooses the second nodé, the system redraws the DAG to include _
the new edge. Figure 16 shows the class lattice having the new edge between “HIGHLY-PAID” and
“RA-SHIP”,

- ® Delete SuperSub Class Relationship: The system hlghhghts the seiected node and waits for the user to
click on ‘another node as shown in Figure 17. The edge between the first selected node and the second
selected node is dropped from the DAG. After the user chooses the second node, the system rédraws

- the DAG to exclude the deleted edge. Figure 18 shows the class lattice after dropping the edge between
“HIGHLY-PAID” and “RA-SHIP”.

e Change Superclass Ordering: The system hlghhghts the selected node and waits for the user to click on
two more nodes as shown in Figure 19. The edge between the first selected node and the second selected
node and the edge between the first selected node and the third node will be exchanged in the DAG.
After the user chooses the third node, the system redraws the DAG resulting from exchanging the two
edges. Figure 20 shows the class lattice resulting from edge replacement. ' '

5.2 Schema Browsing and User Navigation

Consider the basic operation menu in Figure 5 again. The bottom three items in the menu are for navigation. .

o Make This Class Top: The system places the selected node in the top center of the screen and. draws
all the subclasses of the selected node. The display that results when the user selects “Make This Class
Top” on the node “STAFF”, is shown in Figure 21. The purpose of this command is to allow the user
to concentrate on the selected node and its subclasses. '

e Make The First Parent Top: The system locates the first superclass P of the selected node in the top

- center of the screen and draws all the subclasses of P. The display that results when the user selects
“Make The First Parent Top” on the node “STAFF”, is shown in Figure 22. “UNIV-EMPLOYED” is
the first superclass of “STAFF”. '

o Make This Class Bottom: The system locates the selected node in the bottom center of the screen and” -

- 11

draws all the superclasses of the selected node. The display that results when the user selects “Make

This Class Bottom” on the node “TA-SHIP”, is shown in Figure 23. The purpose of this command is

to allow the user to concentrate on the selected node and its superclasses.

We note that PSYCHO support three types of user navigation facility.

1. The above three commands in the basic operation menun

2. The 5 pavigation commands in the command menu window

3. The class index window _

In general the commands in category 1 are used when the user wants to reorganize DAG which is already
partially visible on the screen. The commands in the category 2 and 3 are useful when the user wants to
jump to a class which is located far from the current screen position. If the user knows the exact location of
a particular class, he can access the class using the 5 navigation commands in the command menu window.

"Even if the user does not know the exact location of a class on the screen, he can access the class by searching
for the class and clicking it in the class index window. Figure 24 illustrates the display that results when the
user clicks the class “GRADUATE-STUDENT” from the class index window. Figures 25-29 demonstrate
the scrolling capability of PSYCHO.

5.8 Graphical Feedback

If the system uses lengthy dialogues to interact with the user, an experienced user may fee} frustrated. Rather
than tedious dialogues, PSYCHO provides several types of graphical feedback.

In Figure 15, the blinking nodes are candidates of new superclasses for the highlighted (selected) node.
In Figure 17, the blinking nodes indicate that incoming edges from the highlighted (selécted) node can be
dropped. Also in Figure 19, the blinking nodes indicate that incoming edges from the highlighted (selected)
node can be exchanged. Besides those, if the user tries to create an edge (i.e., IS-A relationship) and the
resultmg DAG happens to have a cycle, PSYCHO rejects his request with graphlca.l feedback showing the
cycle.

5.4 Integrity Checking

The ORION system does not allow schema-changes which violate the invariants of the framework [BKKX87].
In case of unacceptable operations, rather than receiving error messages from ORION directly, PSYCIHO
explains why such requests are not acceptable. PSYCHQ eliminates erroneous schema-change requests by
checking the validity of requests before submitting them to ORION.
The result of validity checking is represented in the form of graphical feedback or pop-up messages.

‘For example, as we mentioned earlier, if the user tries to create an edge and the resulting DAG happens to
have a cycle, PSYCHO draws a bold cycle to show the cyclicity resulting from the request. Again in Figure
15, if the user clicks on the node “PROCTOR?” as a second node, PSYCHO explains that the second node
“PROCTOR? is already a superclass of the first selected node “HIGHLY-PAID”. ,

" Name conflicts are also checked by PSYCHO. In Figure 6, suppose the user is trying to rename the
node “PROCTOR” into “UNIV-EMPLOYED” which already exists, PSYCHO explains the situation of
name conflicts. The same is applied to rename operations such as (1.1.3) (1.2.3) (1.3.3) (1.4.3).

5.5 Sketch Mode and Transaction Mode

12

Besides schema-change mode, PSYCHO supports two other useful modes: skeich mode and transaction
mode. In the schema-change mode, every graphical action is immediately submitted to ORION and ORION
performs the corresponding command. However, in the sketch mode, PSYCHO does not communicate with
ORION in the middle of a session. The purpose of this mode is improved performance. Since some of
schema-change operations are expensive, undoing the previous schema-change causes high system overhead.
The problem is even greater when the user undoes several previous changes to a schema. In the sketch mode,
the user can freely manipulate a schema through trial and error because schema-changes are virtual. The
user can give a command “go-ahead-and-de-it” at the end of the session. This sketch mode is also useful in
the stage of initial database design when the user does not have a complete understanding of applications.
The motivation of transaction mode is similar to that of sketch mode. In transaction mode, one schema-
change transaction consists of one more schema-change operations. Each graphical action is submitted to the
ORION schema manager and to the ORION transaction manager and ORION updates the schema definition .
with corresponding operations. In case of system failures, the system guarantees recovery. Also the user can
"abort the schema-change transaction any time in the middle of a transaction. '

6. Towards An Integrated .Database Environment

We are planning to extend PSYCHO to produce an integrated graphical database environment. In this
section we describe briefly some of the extensions we are considering.

6.1 Gmpﬁical Query Interface

ORION queries are predicate-based lisp expressions and support relational algebra-like operations. Since
" the ORION model has the notions of composite object and multiple inheritance, ORION queries should
be able to express complex predicates to navigate DAG structure of the class lattice and tree structure
of composite objects; Hence the ORION query language subsumes the power of existing query languages
such as SQL or CODASYL/DML. Since however ORION queries navigate underlying complex structures
such as the class lattice, composite objects, etc., the user may find it difficult to pose complicated queries.
Consider a query asking instances of hundreds of classes or a query to a composite object having thousands
of subcomponents. We believe that a graphical query interface and graphical representation of objects will

enhance the friendliness of object-oriented query languages.

6.2 Graphical Version Controller

There is a general consensus that version control is one of the most important functions in application
domains, such as integrated CAD/CAM systems and Office Information Systems. Users in such environments
often need to generate and experiment with multiple versions of an object, before selecting'one that satisfies
their requirements. So far we have considered two types of graph structures, class hierarchies and composite
object hierarchies. The another graph structure to be considered is “version derivation hierarchy"’. A unit
of version may be a CAD object, a software module, or multimedia document which are all considered as
composite objects in the ORION model. It is difficult to support version management in a user-friendly
manner. We believe that a graphical representation of versions and the relationships among them can assist
users with version management. ' '

13

6.8 Composite Object Browser

This tool will be embedded in the previocus two tools. Restructuring or querying composite objects will
be performed graphically in this environment.

7. Object-Oriented Implementation

In this section, we present how PSYCHO is implemented. PSYCHQO is implemented in an object-oriented

fashion using Flavors, which is an object-oriented programming feature of ZetaLisp.

7.1 Flavors and ZetaLisp

The flavor system is the Symbolics machine’s mechanism for defining objects. An object can receive messages
and act on them. A flavor is a class of active objects, one of which is called an instance of that flavor. A
set of instance variables and a set of messages are associated with a flavor. As such, Flavors are similar to
ORION classes in several senses. The following example illustrates a sample flavor “automobile”, a sample -
method “old-model-years” which computes the number of years during which a car is used, and instantiation

of automobile flavor.

(defflavor automobile
(yea.r-model
price
manufacturer
mass)

(vehicle)

:gettable-instance-variables

:settable-instance-variables)

(defmethod {automobile :old-model-years) (currentyear)
(— currentyear year-model))

(setq mycar (make-instance *automobile
:year-model 83
:price 3000
:manufacturer *hyundai
:mass 2500))

The Symbolics Flavors system supports hundreds of built-in flavors which are useful in building graphical
interfaces. Static menus, dynamic menus, windows, lisp windows, and command menus are all built in flavers.
In PSYCHO, we define a flavor for nodes of DAGSs, which is an internal data structure for drawing
figures: R o :
~ (defflavor node
' (children
parents

Lnaine

14

x-coord
y-coord))
0 |

:gettable-instance-variable

- :settable-instance-variable .

) .

The instance variables children and parents have a list of immediate subclasses and superclasses respec-
tively. The instance variable name has the name of a class. (x-coord, y-coord) will represent a position where
a node is located on the screen. A number of methods are defined on the flavor node, such as add-child,
add-parent, and so on. '

Besides the node flavors, PSYCHO has over 10 flavors and associated methods, which are used for
managing PSYCHO architecture. Methods are written in ZetaLisp. Since PSYCHO is implemented in an
object-oriented fashion, it is fairly easy to modify the funttionality of PSYCHO or to extend features of
PSYCHO.

7.2 Interfacmg with ORION Schema Manage'r

The ORION schema manger is written in CommonLisp because of the portability issue. Whereas PSYCHO
is written in ZetaLisp because graphic functions are only avaliable through Flavors of ZetaLisp in Symbolics;
Fortuneately, functions in CommonLisp and functions in ZetaLisp can call each other within Symbolics. By
attaching “zl:” to ZetaLisp functions and “cl:” to CommonLisp functions, the lisp interpreter can tell whether
a function is borrowed from CommonLisp or ZetaLisp. The concept is called package concept. When the
user tepresent schema-changes graphically on PSYCHO, correponding ORION functions should be invoked
‘When PSYCHO calls ORION function, say delete-class, the corresponding syntax is “orion::delete-class ..

“orion” is the package name.

8. Discussion

In this section, we discuss several issues related to PSYCHO. First, we introduce systems similar to that
of PSYCHO. Second, we criticize PSYCHO and finally we make some observations on graph representation
theory and its relation to graphical schema manipulation.

i

8.1 Related Works

In recent years, many Al tools have based on object oriented programming. They also provide visual aids
for browsing class lattices. PSYCHO is different from the class browsers of Al tools because PSYCHO is
designed from a database perspective: transaction mode, sketch mode, query mode, etc. In the visual aids
- of Al tools, the user can- modify the structure of class lattice, but only a few operations are allowed. User -
navigation on DAG in the visual fools is not as dynamic as PSYCHO. In general the existing AT tools
disallow run-time ¢lass modification. :
Another motivation behind this type of visual tools is that much time is spent learning the large library
that is an in'tegra,l part of most object-oriented language systems. Thousands of built-in classes and methods
can not be easily mastered without a powerful visual tool.

15

KEE knowledge base browser: KEE is an Al tool for knowledge engineering, from Intellicorp [IN-
TEL84]. KEE consists of a set of software tools to assist users in building their own knowledge-based systems.
KEE supports various programning paradigms including rule-based programming and object-oriented pfo—
gramming. The object-oriented nature of KEE is based on the Frame data structure which can have a number
of slots and rules and associated procedures. Slots, rules, and pfocedures all can be inherited or defined locally.
Figures 29 and 30 show the KEE knowledge base browser and sample frame structures respectively.

LOOPS class browser: LOOPS is a knowledge programming language from Xerox PARC [STEF83].
LOOPS class browser is conceptually similar to KEE knowledge base browser. Figure 31 shows an example
of a class hierarchy in the LOOPS class browser.

GEV: GEV [NOV82] is a tool which allows the user to dlsplay, 1nspect and edit structured data
written in GLISP [NOV83] which is used for knowledge description. GLISP is a lisp dialect that includes
abstract data types. We note that GEV allows changes to actual data as well as changes to data types. DAG
representation is not supported in GEV. GEV is initiated by giving it a pointer to an object and its type.
GEYV interprets the data and displays the contents of data on the screen as shown in Figure 32.

Flavor Examiner: This Symbolics utility helps users examine the structure of flavors [SYMB84]. The
flavor examiner consists of six panes as shown in Figure 33. The top left pane is the flavor history. The top
right pane is the method history. The user enters a flavor name or method name into the bottom pane. The
three middle panes are examiner panes that list the answer to a query (i.e., interesting flavors or methods).
When the user selects “Edit” in the right end of a pane, the system puts the contents of the pane into a
zmacs-like buffer. When the user selects “Lock™ in the right end of a pane, the contents in the pane can
not be updated. In Figure 33, the user is browsing the system built-in flavor, “tv:essential-window”. The

definition of “tv:essential-window” is displayed. This tool is rather text-oriented because the user has to type
what he wants. DAG representation is not supporied in the flavor examiner.

8.2 Self Criticism

We recognize that PSYCHO has several defects. First PSYCHO is not machine independent, but runs
only on top of Symbolics because PSYCHQO uses many built-in flavors. Second the DAG representation
algorithm of PSYCHO is so primitive that sornetimes PSYCHO does not use empty space of the screen
properly. However, intelligent DAG representation is computationally hard and may benefit some heuristic
techniques. Most existing graph browsing systems have trivial layout algorithms [ROWES6]. Third, the user
can not see a total map of the DAG, i.e., a map having all classes of a database. A zooming facility would

allow the user to view the overall DAG structure, but we have not yet incorporated such a feature into
PSYCHQ.

8.8 Graph Representation Theory

Our experience from PSYCHO and our previous experience from PICASSO [KXS$86}, which is a graphical
query interface, emphasize the need for further work in graph representation theory..In particular planarity
and colorability problems are important in graph representation. ,

Planar graphs are easier to deal with than non-planar ones. Planar DAGs generally represent a clearer
picture of the database than an equivalent non-planar DAGs. Of course, not all DAGs-are planar, so we must
~ ‘concern ourselves with minimizing an appropriate measure of non-planarity, such as the number of crossing
edges.

16

Another useful measure is colorability. We note that it is practical to think in terms of color since color
displays are becoming increasingly popular. For black-and-while displays, the number of colors would be
restricted to the number of gray tones that are conveniently distinguishable. For example, classes (nodes)
and relationships among classes (edges) can be represented in a particular color. A graph representation .
is k-colorable if using k colors, no intersecting edges have the same color and no crossing edges have the
same color. We note that the colorability problem is NP-complete. Thus, heuristic solutions need to be
investigated.

9. Summary

In this paper, we presented a graphical language PSYCHOQ which is designed as a friendly interface for
schema design in the ORION object~oriented database system. 1t is providing us with the opportunity to
evaluate the ORION schema evolution framework. After introducing the ORION data model and system, we
presented a framework of schema evolution in ob jéct—oriented databases. We provided a detailed description
of PSYCHO using numerous sample sessions. Finally we discussed the implementation of PSYCHO and
several other related issues. '

‘We summarize the technical merits of PSYCHO below:

e Full support of over 34 schema modification operations.

. Easy browsing and navigation on class lattices.

o Representation of complex schema: Since PSYCHO provides the ability to reorganize class lattices on
the screen and to scroll the screen, schemas which are too blg to be displayed on the screen can be
manipulated. '

e Graphical feedback: PSYCHO provides various types of useful visual response during operations.

o Integrity Checking: PSYCHO checks the validity of requested operations by domg assocmted computa-
tions, such as cycle detection, name conflict detection, ete. :

‘s Object-Oriented’ Implementation: Since PSYCHO was 1mp1emented using an object-oriented langua.ge '
the architecture of PSYCHO is extensible.

Acknowledgements and Credits: We would like to thank Won Kim and Jay Banerjee at MCC for '
providing technical assistance in support of PSYCHO development. We also thank Nat Ballou at AT program -
at MCC and Wan Lik Lee at the University of Texas at Austin. Wan Lik Lee implemented the first version of
schemna manager of ORION and Nat Ballou improved the first version and interfaced the improved schema
manager and PSYCHO., '

10. References

[AFSA86] Afsarmanesh, H., Knapp, D., McLeod, D., and Parker, A. “An Object-Oriented Approach to
VLSI/CAD,” in Proc. Intl Conf. on Very Large Data Bases, August 1985, Stockholm, Sweden.

[AHLS84] Ahlsen M., Bjornerstedt, A.,Britts, S.,Hulten, C., and Soderiund, L. “An Architecture for Object
Management in OIS,” ACM Trans. on Office Information Systems, vol. 2, no. 3, July 1984, pp.
173-196. _ ' '

[BOBR83] Bobrow, D.G.. and Stefik, M. “The LOOPS Manual”, Xerox PARC, Palo Alto, CA., 1083.

17

' [BANST]
[BKKK86]

[BKKK87]

[CURRS4]

[GOLDSI]
[GOLDS3)]

[FISHS7]
[IEEES5]
[INTES4]

[KIM85]
[KKBKS6]

[KKS85]

Banerjee, J., et al., “Data Model Issues in Object-Oriented Appplications” ACM Transactions on
Office Information Systems, March, 1987, .
Banerjee, J., Kim, H.J., Kimn, W., and H.F. Korth, “Schema Evolution in Object-oriented Persistent
Databases”, Proc. 6th Advanced Database Symposium, Tokyo, Japan, 1987.

Banerjee, J., Kim, W., Kim, H.J., and H.F. Korth, “Semantics and Implementation of Schema
Evolution in Object-oriented Databases”, in Proc. ACM SIGMOD Conf. on the Management of
Data, San Francisco, CA, May 1987.

Curry, G.A. and Ayers, R.M. “Experience with Traits in the Xerox Star Workstation,” IEEE Trans.
on Software Engineering, vol. SE-10, no. 5, September 1984, pp. 519-5627.

'Goldberg, A. “Introducing the Smalltalk-80 System,” Byte, vol. 6, no. 8, August 1981, pp. 14-26. '
Goldberg, A. and Robson, D. “Smalltalk-80: The Language and its Implementation”, A&dison—.
Wesley, Reading, MA 1983. : '
Fishman, D.H. and et al., “Iris: An ObJect Oriented Da.taba,se Management System” ACM Trans—
actions on Office Information Systems, Vol. 5., No. 1, 1987,

“Natabase Engineering”, IEEE Computer Society, vol. 8, no. 4, December 1985 special issue on
Object-Oriented Systems (edited by F. Lochovsky). ’ .

“The Knowledge Engineering Environment” KEE manuals, IntelliCorp, 1984.

Kim, W. “CAD Database Requirements,” MCC Technical Report, July 1985.

Kim, H.J., Korth, H., Banerjee, J. and Kim, W. “Property Inheritance Graph: A Formal Model
of Multiple Inheritance in Object-oriented Databases,” Unpublished memo, Dept. of Computer
Science, University of Texas at Austin, Texas, Dec. 1986.

Kim, H.J., Korth, H. and Silberschatz, A., “PICASS0: A Graphical Query La.nguage” TR-85-30,

- Dept. of Computer Science, University of Texas at Austin, (also to appear in Software Practice

[KS86]
[NOV82]

[NOV83]
[MOPS85)
[ROWES6]

[STEF83]
- [STEF86]

[SYMB84]
[WOELS6]

and Experience, 1988), Texas, 1985.

Korth, H. and Silberschatz, A. “Database System Concepts”, McGraW-HﬂI Book Company, 1986.
Novak, G. “The GEV Display Inspector/Editor”, Heuristic Programming Project, HPP-82-32,
Computer Science Department, Stanford University, 1982,

Novak, G. “GLISP: A Lisp-based Programming System with Data Abstractlon” The AT Magazme
Fall 1983, pp. 37-47. :

Maier, D., Otis, A., and Purdy, A. “Object-oriented database development at Servio Logic”, Data-
base Eng., Vol. 8, No. 4, 1985. '

ROWE, L., et al., “A Browser for Directed Graphs”, UCB/CSD 86/292, University of Ca,hforma.,

Berkeley, Apnl 1986.

Stefik, M. and et al. “Knowledge Programming in LOOPS” The AI Magazine, Fall 1983, pp. 3-13.
Stefik, M. and Bobrow, D.G. “Object-Oriented Programming: Themes and Variations,” The Al
Magazine, Winter 1986, pp. 40-62. '

“FLAV Objects, Message Passing, and Flavors”, Symbolics, Inc., Cambridge, MA, 1984.

Woelk, D. Kim, W., and Luther, W. “An Object-Oriented Approach to Multimedia Databases,”
in Proc. ACM SIGMOD Conf. on the Management of Data, Washington D.C., May 1986.

18

Vehicleld
Vehicle Manufacturen
Weight
MotorizedVehi aterVehicle
Horsepower MinWaterLevel
FuelCapacity Size
FuelCategory
Size

NuclearP red Vehicle
Fuel

ReactorTypp

Submarine | MaxDeptl
Weight

Figure 1: Resolution of name conflicts among instance variables

USER-1] SER-2 USER-3

PSYCHO

ORION \

m ansaction
Manae Manager
Con >
© @ Mana

Vehicle Image

Database

Figure 2: System diagram of PSYCHO/ORION environment

19

Directed
acyclic graph
window ====- >

Command menu
window

PSYCHO lisp
window =———m=>

Mouse
documentation
line window

{Directed Rcyelic Graph Pane 1

RADUATE-STUDEN

Schema-Load Tutorials Notification-On Notification-Dff * x
Query-Mode Transaction-Mode Composiie-Object-Hode Scratch-Mode tlas s,—,,} ndex
Move-Screen-Up Move-Screen-Down Move-Streen-teft Move-Screen-Right |asS)1-PROF
Resel-Top Screen-Gump © Quit ASSO-PROF
Comnand: CLASS
FULL-PROF
GRAADER -
GAADUATE-STUDENT
Pawcho Lisp Pane 1 More delow

Figure 3: PSYCHO window

t:print~3pooler’dulcineasrequeat-5.4 12

INIVERSITY-PERSQ

TUDEN

FADUATE -STUDEN

1
The System Menu
Create ALtributes Lisp
Select Refresh Edit
Split Screen Bury Inspect
Layouts Kill Mail
Edic Screen Reset Fomt Edit
Set Mouse Screen Arrest Trace
Un-Arrest Emergency Break
Nemeapace
Flavor Examiner
x Docurnent, Examinerl'
Hardcogy
File System
Directed Reyelic Graph Pane 1
Schema-Load Tutoriata Natification-On Nevifieation-Dff ** Class Index ==
Query-Mode Trensaction-Mode Composite-Object-Mode Scratch-Mode Top
Meve-Screen-Up Hove-Screen-Down Move-Screen-Left Move-Sereen-Right | ASSI-PROF
Reset-Top Sereen-Dump Quit. ASSO-PROF
[Eonnenar CLASS
. FULL-PROF
GRADER
GRADUATE-STUDENT
{Paycho Lisp Pane 1 More daiow
12712766 18:13:35 KIH USER : Tyi = LONLSIHR: Yprint-spoater>dulcinearrequents 98d32

Figure 4: Symolics system menu

20

<---- Class
index windov

Schema-Load
Tutorials
Netification-On
Motification-Dff
Query-Mode
Transaction-Mode
[Composite-Object-Mode
Scratch-Mode

Move-Screen-Up -
Move-Screen-Down
Move-Seveen—Left
Move-Screen-Right

Reset-Top
Screen=Oump

iy

X

Directed Reyelic Graph Pane 1
Schema-Load

Soe Bpel Gee You Later.
. 12+127B6 18:14:10 K1H

Jutorials Notification-On Motification-Off ** Class Index *x
Cuery-Mode Transaction-Mede Composite-05ject-Mode Scratch-Mode - Fop
Move-Screen=Up Move-5Screen-Oown Move-5creen-Left HMove=Screen—Right YASSt-PROF
Reset-Top Screen-Dump Quit, ASSO-PROF
Connand: CLASS
. "IFULL-PROF
GRADER
GRADUATE~STUDENTY
Paycha Lisp Pane } Mors below

¢ LOHESTAHR: yprint-spooler rdulcineatrequest-br 4337

Figure 5: Pop-up menu for non mouse-sensitive items in the DAG window

INIVERSITY-FERSO

Ereate a New Subclass]
: ete This Llass

Rename This Class
Chamoe Contents of This Class
Make Anather Class as a New Superclass of This Class
| Defete SuperSub Class Kelationship

Change Superciass Ordering

Make This Class Top

Make The First Parent Top

Make This Class Botiom

Directed Acyclic Graph Pene 1)
Scherma-ioed Tutorials

Notification-Cn

244 5 chala
12712786 1B:14:48 KIH

USER:

Fotificetion-0tT ** Class Index *x
Query-Mode Transaction-Mode Composite-Object-Mode Scratch-Mode - Top -
Move-Screen-Up Move-5creen-Down Move-Screen-Left Move-Screen-Right |ASSI-PROF
Reset-Top Screen-Durmp Quit :‘,sso- PROF
H . LASS
Cornend: FULL-PROF
GRADER
GRADUATE-STUDENT
Mots batew

Tyi

+ LONESTAR: ?print-spooleridulcineairequests 29419

Figﬁre 6: Pop-up menu for mouse-sensitive items in the DAG window

21

INIVERSITY-PERSOD

AADUATE -S TUDEN

nter & name for & new clazs:
[HIGHLY-PAID

X
Directed Acyclic Graph Pane 1
chema-Loa Tutorials Naqficat.wn-On Notification-0FF #®» Class Index »x
Query-Mode Transaction-Mode Composite-Object-Mode Scratch-Mode Top
Move~Sereen-Up Move-Screen-Down Move-Screen-Left Move-Sereen-Right |assI-PROF
Reset-Top Screen-Cump Quit ASSO-PROF
Conmand: § CLASS
. FULL~PROF
GRADER
GRADUATE-STUDENT
|Payche Lisp Pene 1) . . Mora below .
1271286 21:07:49 LIA UstF: iyi S TE——

Figure 7: Pop-up window for providing the name of a new class

NI -EMPLOYED)

[SRADUATE-STUDENT]

Directed Acyclic Graph Pane 1
Schema-Load Tutorials Netification-On Noufication-0FF - ax Y
Query-Mode Transaction-Mode Composite-Dbject-Mode Seratch-Mode L ass,—,,I ndex
Move-Sereen-Up Move-Screen-Down Move-Screen—Left Move-Screen-Right |aSSI-PROF
Reset-Top Screen-Dump Quit ASS0-PROF
Commend: I R . CLASS
. FULL-PROF
GRADER .
GRADUATE=-STUDENT
|Paycho Lisp Pane 1 More below

Figure 8: Class lattice resulting from creating a new class “HIGHLY-PAID”

22

NIVERSITY-PERSCH

NI -EMPLOYED

BADUATE-STUDEN

X R
Jﬂirgcted fAcyclic Graph Pane 1 .
Schema-Load Tutorials Notificatipn-Un Notaficstion-UFf ** Ciass Index *»
Query-Mode - Transaction-Mode Composite-Object~Mode . Scratch-Mode Top -
Move-Screen-Up Mave-Screen-Uown Move-Screen-Left Move-Screen-Right |ASSI-PROF
Reset-Top . Screen-Dump Quit ASS0-PROF
T CLASS
L : FuLL-FROF
Commend : GRADER
GRADUATE-STUDENT
Morg befow

Psycho Lisp- Pane 1
lerlz2/B6 21:15:15 k1A LSER: Tyi “ .

‘

Figure 9: Class lattice resulting from deleting the class “TENURED-PROF”

INIVERSITY-PERSQ

INIV-EMPLOYED

FACUATE-STUDEN

[Opezationsy for Changing Detiniilon
updste or delete an existing class variabie
ackd & new clase variable
N update or delete an existing class method -
add & rew class method
update or delete an existing instance varlable
BIGHL - X
update or gelete an existing instance method
add & new instance method

Directed Recyclic Gr‘anh Pane 1

Schema—Load Tutorials Notification-iin * Notification-0ff =% C1 %

Query-Mode - Trensaction-Mede Composite-Object-HMode Scratch=-Mode as sr,,l ndex

Move-Screen-thp Move-Screen-Down - Move-Screen-Left - Move-Sceeen-Right |ASSt=-PROF
Reset-Top Screen-Dump Buit ASSO-PROF '
[Connara: - CLASS
HIL : FULL-PROF
Cormand: GAADER
GRADUATE-STUDENT

Paycho Lisp Pane .1 More dtlow

12,12786 21:16:€1 KIN USEK: Tyi -+ LONESTAR:>print-3pooler?dulcinearrequess 1397¢B

Figure 10: Pop-up menu displaying operations for changing a class definition

23

UNIVERSIT Y-PERSOM

RADUATE -STUDEN

1
CLASS:: FROCTOR
N iR RBLE-HANE : 5 HIL
DOMAIN:: HIL
DEFAULT-VALLE:: MIL
GHLY-PAN [EHARED-URLUE:: MIL X
IRHERITED-FROM: : HIL
COMOSITE-LIMK:: Yas Mo
Put dOCUMENTATT Ye1No
a3 Creste It| Z3:: Vei Mo
Exit D
e
Directed Acyclic Graph Fane 1 7 . .
Scheme-Load Tuterials Notification-Un Notification-0ff x% (lass Index ==
Query-Hode Transaction-Mode ~ Cemposite-Ubject-Made Scratch-Mode Top
Move-Screen-Up Move=-Screen-Down Move-Screen-Left Move-Screen-Right 1aSSI-PROF
Reset-Top Screen-Dump Quit QEE&—;PROF
ﬁ;:ﬂw: . FLULL-PROF
Comnmand ! GRADER
GRADUATE-STUDENT
More delow

Paycha Lisp Pane .l

12/02/Bb ZE:16:52 Kik Ustk: Lhoase + LOHLS1AR: *print=spooler >dulcinearrequest~1,+* K%

Figure 11: Template for a new instance variable

0y can create a new nethod of the FEOCIDR class.
he Gyntax of def-nethod: (def-nethod {method-neme)
{tobject-var> 4clasad Loptional <classpd)
{ &rest <arguments?) bbody tbody>}}
lenedda *{editor=gquit)" {f you sre fintshed with eresting a new nethod.
onmand:

Method Code Editor 1

12712786 21:19:39 KIN : USE‘_!: - Ty - + LUHESTRK:>print-spooler*Culcinearrequeat-ir 927

Figure 12: Method code editor

24

a

NIVERSITY-PERSO

RADUATE -STUDEN'

saLaRY
TAKINGCOURSES
Gra
TACOURASH x

Directed ficyclic Graph Pane I

Sehema-Loa tutorials Notification-On Noiification-Dff % Liass Index *x
Query-Mode Transaction-Mode Composite-Dbject-Mode Scratch-Mode Tor
Move-Screen-Up Move-Sereen-Down Move-Screen-Left Move-Screen-Right |assi-pRros
Reset~Top Screen-Dump Quiy ASS0-PROE
. Done. . . : . CLASS
S FULL-PROF
Connand: GRADER
GRADUATE-STUDENT
Fsycho Lisp Pane 1 More delow
m ally LUt Bl LY S
lz7slesBb 23198531 kIR USEX: Tyr

*+ LutiLbImkE 2pr 1nt-2pon 1 er 20U1C INeaZrequasteys Sei

Figure 13: Pop-up menu displaying instance variables of the class, “PROCTQOR?”

INIVERSITY-PERSQ)

RADUATE-STUDEN

g CLASS: : PROCT (R
i s
M WEFAULT-VHLUE:: HIL
SHARED-VALUE: = MEL
TNHER] TED-FR 1A-5HIP X
COMOSITE-LIHK:: a3 Ne
Uptate DOCUHENTATION:: ves No
't Drop this Instance Varishlel 2x:: Yos Mo
E<it D)
e ——
Directed ficyclic Braph Pane 1 . R
hema-Load Tutorials Notification-On Notification-Off ** Class Index **
Query-Mode Transaction-Mode Composite=0Object-Mode Scratch-Mode
Move~Sereen-Up Move-Screen~Down Move-Gereen-Left Move-Screen-Right |assi-PROF
Reset=Top Screen—Dump Buit i ASS0-PROF
Conmand: . CLASS
Connand: J FULL=-PROF
) GRADER
) GRADUATE-STUDENT
Psycho Lisp Pane 1 More below
12712786 2t:21:16 kIR USER:

Choose * LOMESTAR: 3 print-spooierrdulcincatrequest-1r 762

Figure 14: Templa.te déscribing the selected instance variable, “TACOURSE”

25

NI -EMPLOYED

birected Acyclic Braph Pane 1
Zchema-Load Tutorials

s

==3_—=q
[ERTVERSITY-FERSCN)

Nozification=0On

Notification-Dff

T i ** Class Index s=*
Query-Mode Transaction-Mode Cemposite—-Object—Mode lode Top
Move-5¢creen-Up Hove-Screen-Down Move-Screen-Left Move-Screen-Right |ASSI1-PROF
Reset-Top Screen-Dump Cuit . ASS0-PROF
Cantend: CLASS
Connand: FULL-PROF
GRADER
. GAADUATE~STUDENT
Payeho Lisp Pane 1 Morn balow
= £e the GLher node fo P - S
Te/lgrtb 2E:21:95 RIft USER: Tys « LONESIHK:)pr tnt-spao ler >duicineal request-1v 892

Figure 15: Graphical feedback in the middle of adding a new edge

FADUATE-STUDEN

Directed Rcyclic Graph FPane 1
Schema-Load Tutorials

Notification-Un Notification-0OFf T
Query-Mode Transaction-Mode Lomposite-Object-Mede Scratch-Mode Llas s:-,,l nde_’.(s
Move-Screen-Up Move-Sereen-Down Move-Gereen-Left Move-Screen-Right |assSI-PROF
Resetr-Top Screen-Dump Quit - ASSO-PROF
annand 2 CLASS
Conmand: " FULL-PROF
GRADER
GRADUATE=-STUDENT
Psycho Lisp Pane 1 More dlow

USER: Ty + LONESYHR: >print-spooleriduleineadrequest-1+

Figure 16: Class lattice resulting from adding a new edge

26

Iirected ficyclic Graph Pane 1
Gchema-Load Tutorials Notification-On Rotificetion-01TF ** (lass Index *x
Query-Mode Transaction-Mode Composite-Object-Mode Scratch-Mode Top
Move-Screen-Up Move-Screen-Down Mave-Screen-Left . Move-Screen-Right |ASS1-PROF ’
Reset-Top Sereen-Dump Quit ASSO-PROF
Conmaord: . E CLASS
Command: | . . FULL=-FROF
GRADER)
GRADUATE-STUDENT
Mrors balow

Paycho Lisp Pane 1
impu the other nods
12712086 21:22:42 Kl

be deleted,

USER: - LDNLSIHR::‘prmt-pooler‘dulcin:a!reuueat.-‘.!- 7B

Figure 17: Graphical feedback in the middle of dropbing an edge

NIVERSITY-PERSC

RADUATE-STUDEN,

Directed Acyclic Graph Pane 1
Schema-l.oad Tutorials Notification=Un Kotification-(fF *x Class Index *=
Query-Mode . Transactiom-Mode Composite-Object-Mode Scratch-Mode Tor
Move-5creen-Up Move-Screen-Down . Move-Screen-Left Move-Screen-Right JASSI-PROF o
Reset-Top Screen-Dump Quit ASS0-PROF
Connand: [. CLASS
. M . FULL~PROF
GRADER
GRADUATE-STUDENT
Mors below

¢ LONESIHR:>pr int-spoe lerddulcinea)request-1s _2‘1?:

USER: iyl

Figure 18: Class lattice resulting from dropping an edge

27

[Directed Acyelic Graph Pane 1

NIVERSITY-PERSO

bigry-pad

Paycho Lisp Pane 1

12712786 21: 7 KL

purae nade Fom bhe neu first Superclass

Schema-Load Tularials Notification-On Notification-Dff +* LlasE Indey »s
Query-Made Trensaction~Mode Cempesite-Dbject-Mode Scratch-Mode Top
Move-5creen-Uip Move-Screen-Down Move-Screen-Left Howe-5Screen-Right |ass)i-PROF
Reset-Top Sereen-Dump Quit. gfsgépnor
: A
Fornand: B FULL-PROF
GRADER
GRADUATE=STUDENT

MMora batow

* LUHESTHR D print-spapler ddu Icineadrequest-2.+ B3

Figure 19: Graphical feedback in the middle of exchanging two existing edges

Hrected Acyclic Grash Fane 1

NIVERSITY=PERSOY

E.’GHL Y—PA!E

ma-Lead Tutorials Notificalion=0n _ Notification-0Off X xx
Query-Mode Transaction-Mode Composite-Object-Mode Scratch-Mode £l assn,,l ndex
Move-Screen=Up Move-Sereen-Down Hove=-Screen-Left, Move-Screen—Right [ASSI-FROF
Reset-Top Screen-Dump Quit ASSO=-FROF
Comnand: § B CLASS
. FULL-PROF
GRADER

GRADUATE~STUDENT

fPavcha Lisp Pane 1 i More bjow
1212786 21:26:55 KIN USER: Tyi * LONESTAR:>print-spoaler rdulcinca’request -2+ bag

Figure 20: Class lattice resulting from exchanging two edges

28

Directed Acyclic Graph Pane 1

12732786 21:27:121 KIM UsSER:

Schema-Load Tutorials Notification-Un Notification-Uff xx Llagss Indey ==
Query-Mode Transaction-Mode Composite—Object-Mode Seratch-Mode - Top
Move-Screen-Up Move-5creen-Down Move-Screen-Left, Move-Secreen-Right jASSI-PROF
Reset-Top Screen-Oump Quit SESD-FBOF
: AS5
Cornand: FULL-PROF
’ GRADER
GRADUATE=STUDENT

More daiow

Psycho Lisp Fane 1 .

Tyi » LUNESTHK: >print-spooiersdulcineaireguest~2- 697

Figure 21: Making the node “STAFF” top

Directed Reyelic Graph Pane 1 -

INIV-EMPLOYED

EI'GHLY-PAIQ

Notification=0Ff

Schema-Load Futorials Notification-On *
Query=-Mode Trensaction-Mode Composite-Object-Mode Scratch-Mode flas s-;.,,] ndex *»
Move-Screen-Up Move-Screen-Down Move-Screen-Left Move-Sereen—Right - - |ASSI-PROF
Reset-Top Screen-Dump Quit :) ASSO-PROF
Command: “ CLASS
. F ULL-PROF
GRADER
GRADUATE-STUDENT
Paycho Lisp Pane 1 More miow
1Z712vB6 21:27:32 KIH USER: Tyi + LUNESTHK: >urinr.—apool:r{dulcinea)requeu-z‘- 737

Figure 22: Making the first superclass of the node “STAFF” top -

29

Directed Acyciic Grsph Pane 1
Scherne—Load

Tutarials
Query-Mode Transaction=-Hode
Move-Screen-tp - Move-Sereen-Down
Resel-Top Screen-Oump

Notification—Un
Composite-Object-Hode
Move-Screen-Left
Quit

Notification-0ff
Seratch-Mode
Hove-Screen-Right

*% Class Index »»

Connend: B

Payche Lisp Pane 1

Top
ASSI-PROF
ASSO-PROF
CLASS
FULL-PROF
GRADER
GRADUATE=-STUDERT

Mote dklow

1zs12+86 21:28:11 KIN

USER:

Tyy

« LOHESTHE: >print-spooierddulcinesdrequest-2+ 857

Figure 23: Making the node “TA-SHIP” bottem

{Directed Acyelic Graph Pane 1

RADUATE-STUDEN

EJGHL ¥Y-PA/

Schema—toad Tuterials Notification-On Notification-07
Query-Mode Transaction-Mode Composite-Object-Mode. Scratch-Hode 22t assn Lndex **
Move-5creen-Up Move-5creen-Down Move-Screen-Lefi Move-Sereen-Right {assi-pPROF 4
Reset-Top Screen-Dump : Quit, ASS0-PROF
Commnand: B CLASS
N FULL-PROF
GRADER
{Paycho Li=p Pane 1 Mora dalow
12012786 21:29:69 KIN USER:. - S Ay

30

+ LONESIiHR:>print=apoolerddulcinearrequests J0672

Figure 24: Clicking the class “GRADUATE-STUDENT” from the class index window

NIV-EMALOYELD

ll_}te:ted Acyclic Graph Pane 1
Schema-Load Tutortals Notification-On Notification-OFF ** [lass Index **
Query-Mode Transaction-Mode Composite-Object -Mode Scratch-Mode Top
Move-Sereen-Up Move-Screen-Down " Move~Screen-Left Move-Screen-Right | aSSI-PROE
Reset-Top Screen-Dump ‘Quit ASS0=-PROF
[Eonnand: CLASS
- FULL-PROF
GHADEF
GRADUATE=-STUDENT
Payche Lisp Pane 1 More Miow
12712706 ¥1:36:06 KIR . USER: K Tyi * LONESTAR :2print-spooler *duicinealrequest=d,+ B2

Figure 25: Moving the screen to the left

|birected Royelic Graph Pane 1

{Paycho Lisp Pane 1

. 12/12786 21:38:54 KIH

UBEK:

Twi

hema-{oad Tuzorials Hotification—On Notiﬁ:r,aum—Off
ry—Mode Transaction-Mode Compostte-Dbject-Mode Scratch-Mode ** Clas sn Index 33
Move-Sereen-Up Move-Screen=-Down Move-Screen-Left Move-Screen-Right |assi-pror *
Reset-Top Screen-Durmp Quit ASS0-PROF
Cormnand : . CLASS
FULL-PROF

GRADER
GRADUATE-STUDENT
More bafove

* LUHESTAR:>print-sposler sdultineadregyestds

Figure 26: Moving the screen to the right

31

172

INIVERSIT Y-PERSO)

NIV-EMPLOVED

RADUATE -STUDEN

Directed Aeyclic Graph Pane 1

hema-Load Tutorials Notification-On Notifrcattan-0FF ** ([lass Index **

Query-Mode Transaction-Mode Composite—Object-Mode Scratch-Mode Tob
Move-Screen-Up Move-Screen-Down Move-Screen-Left Move-Screen-Right |assi-PROF
Reset-Top Screen-0ump Quit gfigépnop
¢ nd.: FULL-PROF

GRADER
- GRADUATE=STUDENT
Fswcho Lisp Pane 1 Mora betew

12/12/60 21:31:27 K1IN USER: Tyi LUNESIHR 2 print-spooler rduleinearrequeast-14« 07

Figure 27: Moving the screen upward

[Directed Reyelic Graph Pane 1 i"_ .
Tchema-Load Tutoripls Notification-On Roufication-BFF x% B
Query-Mode . Transaction-Mod Lomposite-Dbject-Mode Scratch-Mode £l ass]‘opx ndex
Move-Screen-Up Flove-Sereen-Dan] Move-Screen-Left Move-Screen-Right |assi-PRoF
F Reset-Top creen-Dump ~ Quit ASS0-PROF
Connand: . CLASS
- FULL=-PROF
GRADER
GRADUATE-STUDENT
Paycho Lisp Pane 1 ' Mora dtlow
“me seeesn u1ll move to the doun to
12712086 21:31:54 KIH USER: Tyi + LUNESTAHK:Yprint-spenler>dulcineadrequest«ds JUZ

Figure 28: Moving the screen downward

32

CHEMICAL CONSTITUENTS .

CONSTITUENTS .
CONSUMABLE-RESOURCES~ _;. .
: - " & LL~PROCESS.HEAT
IOELTEVACULM

25 CHILLED.BRINE
“» SELECTRICITY
........... T HIGH PRESSURE NITROGEN
GASES-- 27833220 naa Ll e LOW PRESSURE.AIR
‘uw NEUTEAL.SOLVENT
'RAW FEED STOCK
CID
17T ~- 4 ALKALL .

" ===+ FERMENTED.PRODUCT

ENERGY SOURCES -+ 1

LIQUIDS-=e1}

REACTORS------- REACTOR.1

 CRYSTALLIZERS--=--~ - CRYSTALLIZER.]
_-BIN.
2IL-MING
PROCESS.DEVICES FEEDSTOCKBINS-FZi--- BIN.D
) SIITEING
: “PIN.S
HEATERS-=----- HEATER.1
. - STORING :
-2+ CRYSTALLIZING
PROCESSES #3110 pryming
*~ MIXING
. NEEDS.ACID
.7« NEEDS.ALXKAL]
570 TEEDL
L2 - FEED.3
P T RULEHIGH
S * U RULELOW
. “FEED.2

.-+ RULEMOVE.ALL.CONSTITUENT

.
RULEMETHODSS - o

Figure 29: KEE knowledge browser

COMMODITY INHERITANCE LATTICE

CommodityTransportability
~—r

FragileCornmodity

PerishableCommodity
Appliances

Groceries

DwnSlot - CONSTITUENT fros BIN.J

Inher 11ance: OVERRIDE

valueClats: (CHEMICAL.CONSTITUENTS)
AVUNITS: (STRIPPED-SWITCHORI])
CaRDINALITY: 1% 13

value: ALKALL

GunSiot: CONSUMARLE RESOURCES from PROCESS.DEVICES
Inkeritence - APPEND .

vaivellazs. (CONSUMABLE RESOURCES)

CARDINALITY; |[@ +INFINITY]

COMMENT: Value assighed by user

¥alue: Unknown

DbwnSlot: FLUID.LEVEL from BIN.3
Inhertance: OVERRIDE
vpluellass - (NUMBER)
carDINALITY: [[1 1]

COMMENT : Value assigned by user
BLAPM,LIMITS: (& 2@ 38 6® 7@ i®e)
UNITS: Cm

R&NGE . (P 180)

Value: 88

gunSlot: INFUT fronm PROCESS.DEVICES
inheri1tance: AFPPEND

valueClass: [(PROCESS.DEVICES)
CARDINALITY: f[1 ~TWFINITY}
COWMENT: Value assigned by uter
value: Unknbwn

fwnSiot: INFUT.PIPE fros PROCESS.DEVICES
Inneritance: APPEND

valuetiass: (PIPES)

Carginalaty: [{1 <INFINITY]

valye: Unknown

Dwr:Slot: OUTPUT from BIN.J

Inheratance: APPEND

valueClazs: (PROCESS.DEVICES)

CARDINALITY: [{1 «INFINTTY]

LOMMENT: Value pssigned by rules 1n Class C2
vatue: (REACTOR.I)

ownSlot: OUTPUT.PIFE fros BIN.D
Inheritance: APPEND
valueClass: (PIPES) g
CARDINALITY: |[1 +INFINITY)
COMMENT: value assigned by user
vaiue: {PIFE.3}

Figure 30: Sample frame definitions in KEE

Refrigerator
Television

Strawberry
Apple
Grape

Commodity

Tomato

Carrot

Hardware

Gasoline

ArtSupplies
OfficeSupplies éﬂook

SportingGoods .cz::lhseBall

Clothing _<—.\—\—:—Pants
_ Shirt

LuxuryGoods SterecoSystem
Dishes Gold
H
arnmer Diamond
Saw

Xerox1100

Bicycle

Figure 31: LOOPS class browser

33

Ure-EAItOFW [ndow W Fadnar -

SEWSIruet GEYASTruetur e 1t 0raW indo v ikt s il

wep . ~ HPP ') HPP ~ HPP :

CONTRACTS ~ (Advanced &.1, Archit- s) cadn Path .

:zanen :gss.:lsp TITLE ~ Heuristitc Prograwnming Proj-
ABBREVIATI- HPP

NANE Gordon 5. Wovak Jr. ADMINISTRA- ~ TCR

ﬂ}ﬂ;'l’s 5?2110]& stored Dats CONTRACTS ~ (Advanced A.1. Archit- ...}

PROJECT - HPP EXECUTIVEE ~ (EAF WRE 8SM TCR)

el 252827677

R BUDBET £43487.2

- , 1947 e

BIRTHOATE 7 Juiky ab7 s802 TOTAL LABOR z6@901.4

OFFICE ~ MJH 244

HOME-ADDRE- = Palc Alto, Ca

HOME-PHONE ~ (915) 493-5887

CONTRACTS -

(BLISP)
36

aGE Computed Data
MOHTHLY=SA~ 2580.8

S ——
[T} POP EDIT PROGRAM
PROP ADJ ISA MsG

TOTAL BUDGEY LABOR OF HPP CONITRACTS = 260001.4 -

Figure 32: GEV

Top Teap

TV:ESSENT IR ~HINDOW

Bottom Botiom

Top
TY:ESSENTIAL-WINDOW

. Edit
all :om onents '[' a
M'H ESS HFEAL-HINDOW

TU:SHEET . Lock
511 0UTPUI-GTREAN
SI:5TREAM

Bottom
Tep

TV:ESSENTIAL-WINDOW Edit
al?! handlars (123) . .
:RCTEIVATE conbined dagnon TY: ESSENTIHL—HINDO'I.I Lock
:ADJUEI-SCREEN-ARRRY prinory doemon TV:EHEET .
Al JAS-FOR-SELECTED-HINDOWS primary daemcn TV:SHEET
:BEEP primary daemon TUiSHEEY
+BITBLF prinery deenon TV:SHEET
¢BITBLF-FROM-SHEET primery deenon TV:SHEET
:BITBLI-FRON-SHEET-TD-SHEET prinary daenen TV:SHEEY
:BITBLT~MITHIH~EHEET primars daemon TU:SHEEY
:CHAYMGE~OF -DEFAULT=FOHT primary dasmon TY:SHEET

Moze balow
Top

TV:ESSENT IAL-WINDOW ’ Edit
iocal mathede (5)
:IH1T before daemon TV:ESSENYIAL-HINDOMW B . Lock
:LIEP-LISTENER-P prinary deemon TVW:ESSENTIAL-RINDOW
:MOUSE-SELECT prirsry deaenon TU:ESSENTIAL-WINDOW
:MOUGE-SELECT before ddemon TU:ESSENTIAL-WINDOR
sPANE-E12E primery daemon TU:ESSENTIRL-WINTOH

Botiorm

-) - Llear
X Help

tuieasential=windou

i « LONESTRR 3 print-apoolerddulcinearrequest-1+ 977

Figure 33: Flavor examiner

34

	tr87-40-46_001

