TDFL: A TASK-LEVEL DATA FLOW LANGUAGE
Paul A. Suhler*®, Jit Biswas, and Kim M. Xomer

Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712-1183

TR-87-44 November 1987

Abstract

The Task-Level Data Flow Language (TDFL) is a graphical programming language intended for the
writing of new programs and the adaptation of existing ones. A computation is represented as a directed
graph. As each node contains a subroutine-sized task, this is considered to be coarse-grained parallelism,
The task functions are written in standard sequential high-level languages. Two versions have been
unplemented one supporting static and one supporting dynamic computation graphs. This paper dis-
cusses previous data flow languages, presents the definition of TDFL, describes its implementations on

the Sequent Balance shared-memory multiprocessors, and presents several programs and their perfor—
mance figures.

Keywords: data flow, coarse-grain parallelism, graphical programming

*Department of Electrical and Computer Engineering.

TDFL:
A TASK-LEVEL DATA FLOW LANGUAGE

INTRODUCTION

Various data flow languages have been proposed for parallel programming. The languages
differ according to the designers' perceptions of the programmers‘ needs and of the target machine
architectures. The Task-Level Data Flow Language (TDFL) is a data-driven data flow language in
which each node contains a function written in C, Fortran, or Pascal. Tokens contain data |
organized as arbitrary structures. Because it is data-driven and has no central scheduling
mechanism, it is easy to implement on a variety of architectures.

The design and implementation of TDFL are intended to achieve several objectives:
architecture independence (i.e., the ability to transport a program among different systems without
modifying the source code); absence of programmer concern with synchronization,
communication, and resource control; ease of use both for writing new programs and for adapting
existing programs in conventional languages; aﬁd experimentation with different resource control |
mechanisms. We are pﬁrsuing these objectives through a graphical programming environment, in
which programs are represented as directed graphs. In this paper, we analyze previous parallel
programming languages in terms of these objectives, show _hoW the objectives led to th_e'current :
design and implementations of TDFL, and preseht some example progiams. '

The original version of TDFL was implemented by Nicolas Graner, now of IRIA, on a
dual CDC Cyber 170 in 1985 [Graner 86]. The static version of TDFL presented here was
implemented by Paul Suhler in 1986 and the dynamic version by Kim Komer in 1987, both on
Sequent Balance multiproéessors. A simpliﬁed version of static TDFL has been implemented by |
Rajeev Gulati on an Intel iPSC. | | o

" OTHER DATA FLOW LANGUAGES

Some purely textual data flow languages have been designed, some intended for data flow
macliirics (VAL and Id)' and some for more general architectures (SISAL [McGraw 83]). Others
have been adaptcd'from existing languages for parallel or distributed processing, such as CSP and
DP, by adding features to support parallel data-driven execution [Patnaik 86]. These languages all

1

2 Suhler, Biswas, and Korner

tend to be aimed at small-grained parallehsm and all require programmers to learn a wholly new
language. ‘

Other'languag'e designs have recognized the need to adapt existing sequential language
programs and have done so by adding special operations to functions written in standard
languages, such as Fortran. Some require the programmer to explicitly perform scheduling or
inter-node synchronization, which we regard as an unnecessary burden ([Gokhale 86] and -
DOMINO [Q'Leary 86]). Some, such as Large Grained Data Flow [Babb 86] and Loral Data
Graph Language [Kaplan 86] perrmt the programmer complete generality in deﬁmng each node s
firing rule (i.e., token consumption and production characteristics). The ease of programming
with programmer-defined firing rules versus programmi_ng with a fixed set of firing rules, as we
advocate, will need future study. Finaliy, some lahguages (e.g., LDGL) _do not permit nodes to
retain state from one firing to the next; this can greatly increase program efficiency and can be done
through the use of self-loop arcs, as we explain later. | '

TDFL DEFINITION

TDFL is a data flow language in whlch programs are graphs similar to those developed by
Karp and Miller [Karp 66] Each node is an encapsulated function written in a conventional
language (in pamcular, C, Fortran, or Pascal). The node functions contain no operations to -
perform commu_rﬁcations or scheduling, All data is passed to and from the functions as parameters -
and scheduling of ready-to-fire nodes is handled by the runtime system. There is a fixed set of

node categories, each of which operates differently upon its tokens. Each arc of the graph carries
tokens of a specified type. ' '

While TDFL is static in'that the structure of a graph cannot change at run time, the paths
taken by successive tokens ﬂowmg throu gh the graph can vary in a data-dependent manner.
Furthermore while all of the tokens on an arc are of the same structure, they may consist of
arrays, thus permitting the amount of data to vary between one token and the next, depending upon

‘the computation. This permits the implementation of al gorithms in which data sets are partitioned
into blocks containing varying numbers of elements.

The encapsulation of standard language functions in data flow nodes si.mpli_fies. learning
TDFL and converting existing sequential programs. Placing inter-node communication and
resource control in the runtime system relieves the programmer of those problems and makes the "
program independent of the architecture of whatever machine it is executing on. The existence of

TDFL: A Task-Level Data Flow Language - 3

multiple node types and parameterized tokens allows for flexibility in programming. -
Execution

To illustrate the execution of a TDFL program, we use an adaptive quadrature program -
which applies Simpson's Rule to compute the definite integral of some function over an interval.
The computation involves repetitively halving the partitions of the interval and computing an
approximation of the integral until the approximations converge. This leads to a graph with an
input phasé, a repetitive calculation, each step of which has parallelism, and an output phase.

Figure 1. Adaptive Quadrature Program

The program consists of seven nodes of three different types (which will be explained
shortly). "In" reads in the interval and directs the next node, "Comp", to compute approximations
for partitions of the interval into one and two subintervals. These results are sent to the node
marked "Conv", which compares the two approximations for convergence. If the computation has
not converged, "Conv" sends the approximations and the interval to "Setup." "Setup" doubles the
last number of subintervals and sends an array with one element per subinterval, as well as the
number of subintervals, to a second node called "Comp". This "Comp" applies Simpson's rule to
each subinterval in parallel to generate a set of approximations and then passes the data to "Sum”.
"Sum" computes the new overall approximation from the separate approximations and passes it to -
"Conv", which tests for convergence again. “The cycle is repeated with increasingly fine partitions
until convergence is achieved, at which time "Conv" sends the results to "Out” for output and then

accepts a new interval from "In". '

This example illustrates three types of nodes. "In", "Setup”, "Sum", and "Out” are
General nodes — they are ready to execute when they have at least one token waiting on each input

4 Suhler, Biswas, and Korner

arc. A node with no input arcs, such as "In", is always ready to fire. "Conv" is a Loop node. It
is first ready to fire when there is a token on its main input — the arc from "Comp". If the user-
defined function in "Conv" returns a value of repeat to the runtime system, a token is written onto
the feedback output — the arc to "Setup” — and the Loop node will not fire again until a token is
received on the feedback input — the arc from "Sum". When convergence is achieved, the function
returns a value of finished and the next token must come from the main input. Finally, the N
"Comp_s;' are DoAll nodes, in which multiple processors execute the node's function in parallel,
corresponding to a Fortran DO-loop in which all of the iterates are independent. One of the inputs -
1o the DoAll contains the number of iterates to be executed. Like a General riode, a DoAll node is
ready to fire when it has a token on every input arc.

Multiple waves of data tokens flow through the graph until the first node in the graph
decides to terminate execution. As long as "In" has generated valid data, its function must retumn a
~value of alive to the runtime system, and the token will be given type "Regular”. However, when
there are no more intervals to process, "In" will return a value of dead, the token generated will be
of type "EOS" (end-of-sequence), and "In" will die. When other nodes receive EOS tokens, their
functions are not executed and they die, generating EOS tokens on all of their outputs. Because
each arc handles tokens in a FIFQ manner, all Regular tokens will have their data processed before
the EOS token is encountered. EOS tokens are handled by the runtime system and the programmer
is not involved with testing for them. All that the user code must do is ensure that all nodes with
no incoming arcs will return a value of dead when they have no more computation to do.

~Thus, there are three kinds of information communicated between the node functions and -
the TDFL runtime system: values in data tokens, special information for the function, and
instructions to the system on token handling. The first two kinds are received as function -
arguments — pointers to the data tokens, pointers to space to be used for the output tokens, and the
value of special information, such as the particular iterate number for a DoAll node or the source of
a token for a Loop node. Token handling instructions are returned to the system as function
-values, such as the alive or dead indication from a General node or the repeat or finished 7
indication from a Loop node. As the scope of the information available to and the control exerted .
by a node's function is restricted to the state of that node only, inter-node synchronization and
communication remain within the data flow paradigm. | |

TDFL: A Task-Level Data Flow Language

Other Node Types

There are three other types of nodes. The first is
the Merge, which fires when there is a token on any
input ar¢. If multiple arcs have tokens, one is selected

nondeterministically. This nondeterminism facilitates

programming of operating systems and real-time
applications.

-

| Merge

vy

Figure 2. Merge Node |

The Case and EndCase nodes are used to obtain parallelism when processing successive
tokens in a different manner. In the following example, tokens A, B, and C arrive in order at the
Case node. Applying the node’s func_tion'_ to A reveals that it requirés processing in the second
branch from the node. The function copies the token to the second output and returns the value no
to the runtime system, which writes a token with that value to the special output arc. Similarly,

token B goes to the third output and C to the first.

The EndCase node, seeing a token containing a 2
on the control input, will not fire until a token is present
on the second input. The EndCase node's function is

then applied to that token and the resulting token written

to the output. Similarly, tokens B and C will follow A,
with the original order preserved by the ordering of the
tokens on the control arc. One alternative to the Case-
EndCase construct would be a single general node
whose function contains a case statement. However,
this would not permit the simultaneous processing
shown here.

00, ...

Figure 3. Case-EndCase Node Usage

6 Suhler, Biswas, and Korner

State Retention

It is frequently useful for a node to retain state from one firing to the next, such as to
accumulate information across several ﬁﬁngs. As functions' variables do not retain their values
from one execution to the next, it must be accomplished with a self loop, an arc going from one
node to itself. This is consistent with the data flow paradigm, in which the state of the program
resides entirely upon its arcs. At initialization, one token with a null value is automatically placed
on every self loop; |

Determinacy

With the exclusion of the merge operator, Which deliberately introduces nondeterminism,
TDFL program graphs are purely deterministic. In other words, every time a program is given the
same set of inputs on each input arc of a program graph, irrespective of the order of scheduling or
the relative speeds of execution of the tasks, the outpﬁts will be the same. This observation

directly follows a theorem of Kahn [Kahn 74}, which states that as long as each task in a o

computation graph behaves as a function on streams, the computatiqn_' graph in its totality behaves
as a function on streams, This property of the language is very convenient for the task sched_ulef,
since all it must do is ensure that tokens on an arc are delivered in the proper order (i.e., as a
streain). As we shall see, the schedule: is quite simple. o

Dynamiec TDFL _. _

In the course of developing TDFL programs, it became obvious that some programs are -
inefficient when forced into the mold of fixed-size tokens and fixed graphs. Simulation, logic
programming, and recursive algorithms are examples of areas better implemented with graphs that
can change at runtime. As an alternative, we have developed and implemented a dynamic version -
of the language which permits creation and destruction of nodes and arcs.

From the user's perspective, Dynamic TDFL (DTDFL) is static TDFL extended by the
provision of runtime routines to determine the current topology of the computation graph,.
determine arc and task characteristics (arc token size, tokens currenily buffered by an arc, node
. type, user code body, etc.), and create new task nodes and arcs. Care has been taken not to
involve the user in scheduling and synchronization abstractions — only the topology and structural -
characteristics of the computation graph are accessible through the runtime routines.

In order to preserve this abstraction, users are not allowed to explicitly destroy nodes and

TDFL: A Task-Level Data Flow Language 7

arcs (to do so would require involvement in synchronization, i.e., one node's being aware of the
status of another). Instead, the EOS token (previously described) is used to kill nodes. An
enhancement has been made in that nodes no longer only return only an alive or dead status —a
node may now return a Killing status in which it remains alive while propagating EOS tokens on
all its output arcs. Dynamic TDFL has remained upward compatible with static TDFL; existing
static TDFL programs will execute under DTDFL. Furthermore, the property of determinacy
continues to hold for programs not using Merge nodes. |

Dyﬁamic TDFL is expected to prove useful in parallel simulation and dynamic functional
and logic programming applications. Wave front approaches also lend themselves to parallelization
of matrix computations [O' Leary 85]. In such approaches, a matrix of task nodes is created and
wavefronts of calculations and data propagate through the matrix. In static TDFL, a different
computation graph would have to be compiled for each uniquely sized data matrix. In dynamlc
TDFL, a root node can initiate creation of an appropnately sized matrix, flow initial data values into
the matrix, propagate the calculation wave fronts, and at their completion, destroy the matrix (with |
EOS iokens). This can be repeated as often as desired in the same computatlon sequence for new
data sets. This is illustrated in Figure 4.

Graph Construction Execution _ Graph Removal
in Progress : in Progress

Figure 4. Wave Front Pro gré'm
IMPLEMENTATION

There were a number of objectives of the irnplementation which guided the choices made in
developing the TDFL runtime system. In approximate order of importaﬁce they were: ease of use
by application programmers, speed of execution, minimal memory usage, use of different work
managers (processor allocation mechanisms), and production of useful performance information.
In this section, we describe the target system and tell how TDFL programs are specified. We then-

8 : Suhler, Biswas, and Komer

discuss our task execution mechanism (microscheduling) and show how the data flow ﬁnng rules
are implemented by our communication and node schedulin g mechanisms.

Targét System

The Balance is a shared memory muluprocessor using NS§32032 mlcroprocessors with
ﬂoatmg point coprocessors. All memory is shared among all processors and is accessed via a 32-
bit wide bus. Each processor has a write-through cache with inter-cache consistency maintained
through bus watching. The system has two hardware synchronization mechanisms. The System-
Link and Interrupt Control bus is used to distribute interrupts to processors and to enforce mutual
exclusion dn certain operating system operstionS' such a synchronization operation réquires about .
fifty microseconds. ngher—speed synchronization for the user is obtained through a set of
hardware locks implementing an atomic test-and-set operation. System calls use these locks to
implement spinlocks, semaphores and barriers. The Dynix™ operating system is an

1mplementat10n of 4, 2BSD and AT&T System V UmxTM and obtalns concurrency at the process |
level.

Program Specification

Eventually, users will program in TDFL using a graphical interface. Arcs and nodes will
be drawn on a workstation screen and windows opened to type in specifications for tokens and
-high level language code for task bodies. At the moment, however, the user must prepare several -

text files usmg an editor. These specify node behavior, graph connect1v1ty, token structures, files
to be accessed, and task body code. '

Task Execution

We considered two different approaches for the Balance implementatidn of TDFL. The
first was to create one Dynix process for each node in a TDFL program graph and to perform
communication using sockets. While this would have permitted Dynix to completely handle
- resource allocation and would have made transporting TDFL to other Unix-based systems easier, -
there were several disadvantages, such as the high overhead in process switching, the complexity

~of connecting an arbitrary graph with sockets, and the dlfficulty of experimenting w1th dlfferent
scheduling mechamsrns -

We chose a different technique, known as microscheduling, in which a fixed set of
identical processes are used, with one process per processor. The functions representing task

TDFEL: A Task-Level Data Flow Lan guage 9

bodies are linked with the runtime system code and a single copy of the resulting code text is used
by all processes. The Dynix operating system then places each process on a different processor,
where it_ean remain for the duration of the program's execution. Task state and scheduling
information (such as a ready queue) are saved in shared memory and are available to all processes,
with mutyal exclusion for conéistency enforced using locks. Processes not executing tasks

perform busy waits on the ready task queue; caching ensures that this generates main memory
references only when the queue changes

The following ﬁgure shows microscheduling schematically with a set of seven processors
executing a ten-node program. Processors A, B, and C have acquired and are executing one task
each. Processor D has obtained exclusive access to the ready task queue and is about to remove
the first task for execution. The remaining processors are waiting to access the queue. Four tasks
are neither on the queue nor in execution because they are waiting for their firing rules to be
satisfied. The single queue is a point of serialization and reduces the parallelism which might
otherwise be obtained. We are experimenting with other work management structures which allow

concurrent access by multiple processors; the runtime system was designed to permit easy
substitution of different work managers.

A B
Executing 6 a) a) - |D

Waiting for processor : O——O—O @ <4 F
- | g
Waiting for tokens O O O O

- Figure 5. Microscheduling

Microscheduling has the advantages of reducing the amount of memory consumed,
reducing the overall task switch time, permitting us to have nearly complete control over processor
allocation, and avoiding the problem of performing socket connections in general graphis with large
numbers of arcs and a small number of available sockets. It also permits easy changing of the

number of processors, as the number can simply be an argument to the command invoking the
runtime system. ' ' ' '

10 : Suhler, Biswas, and Korer

Scheduling

A node is placed on the ready queue when its firing rule is satisfied — all of its required 1'
input tokens are avaﬂable, each output arc has room to receive at least one token, and the node is
not already on the queue. To ensure correctness, nodes are checked for readmess to run by any -
processor modifying their tokens. Whenever a token is written to an arc, the receiving 1 node is
checked by the writer. Similarly, whenever a token is removed from an arc, the reader checks the
sending node. Finally, whenever a node completes execution, the processor that executed it
checks to see if it can run again. By testing upon every potential change to a node's state, the
system ensures that aready task will altways be scheduled for execution,

Data Structures

In static TDFL, all butfers for arcs and control blocks for tasks are allocated at initialization
and remain until program termination, whether in use or not. Implementing dynamic' TDFL
involved conversion of most of the data structures to dynamically modifiable forms. All dead
nodes and their input arcs are removed from system data structures and garbage collected.

EXAMPLE PROGRAMS _

As a means of testing the usefulness of coarse-grained data flow as a programming
paradigm, we have converted a number of existing application programs into TDFL and have
completely reprogrammed other applications. Some of this has been done by students in a parallel
programming class. We are interested in determining how dependencies in computations affect
partitioning their data sets into sequences of tokens, how intuitive the data flow paradigm is, and
whether significant sections of existing codes can be reused or whether programs must be
completely rewritten. These programs can then become test cases for experiments in resource
allocation and performance tuning. The static TDFL examples shown in Figure 6 and described
below are not intended to represent a complete spectrufn of possible application programs.

| Particle Orbit Code

The particle orbit code (POC), is a Fortran program that has been run extensively on
supercomputers (e.g., Cray and CDC). It solves a system of differential equations giving the
position of particles in a tokamak containing fluctuations. " At the heart of the program is a
differential equation solver that computes the final coordinates of a particle given initial conditions
and system parameters. A large sample of particles is integrated for many oscillation periods. The

TDFL: A Task-Level Data Flow Language 11

calculations for individual particles are independent and thus can proceed in parallel. In analyzing
the POC, we observed that the program breaks up naturally into three independent modules: a
control module that generates the initial and final values for each time step of the integration, a

module that performs the integration over a vector of particle coordinates, and a module that
computes the final statistics.

A* Heuristic Search

This program follows the same form of the adaptive quadrature program — repeated parallel
processing of a data set until a goal is achieved. In this case, the 'paralle_l proces-sing is the
computation of all successors of the current node in a search of a graph. The graph used in this
example had thirty nodes.

Minimal Spanning Tree

This is an implementation of the Prim-Dijkstra MST algorithm. The computation inside the
loop has three phases: a parallel generation of prospective next arcs, a serial selection of one arc

for addition to the tree, and a parallel updating of the tree. The tree processed in this example had
eighty nodes.

Odd-Even Transposition Sort

This program begins with a partition of an array of numbers. The first DoAll node
performs the odd-even phase of the sort and the second performs the even-odd phase. Each time
around the loop, adjacent partitions are merged pairwise and the size of each block doubles. We
will present performance figures for sorting 1000 integers.

Triangular Matrix Solver

This program solves a system Ax = b of linear equations by back substitution (A is a lower
triangular matrix — all superdiagonal elements are zero). The matrix is broken into a three-by-three -
grid of blocks of size #n/3 x n/3. One node reads in the blocks of matrix A and distributes them to
the appropriate arcs; a second node does similarly for constant vector b. Another node writes out
the resulting blocks of vector x. The actual solution uses two different task bodies, one for the

blocks on the diagonal and another for the subdiagonal blocks. Performance is described for a _128
x 128 matrix of 64-bit reals.

12 : Suhler, Biswas, and Korner

Form4P

Form4P is a quantum dynamics program for computing the motions of diatomic molecules.
While the TDFL version is still in development, it is included here to illustrate the language's utility
in programming applications with irregular structure. ' '

O—[1—+O

' QJQ'Q B

Panjcle Orbit Code _ A* Heuristic Search

O.\O Q20— O
IR ®

Minimal Spanning Tree Odd-Even Transposition Sort
(Prim-Dijkstra) '

- TDFL: A Task-Level Data Flow Language 13

Triangular Matrix Solver _' | Form4P

Figure 6. Static TDFL Prdgram_s

Performance

Table 1 shows the execution times obtained for each program by varying the numbers of
processors used. These execution times yield the speedups shown in Figure 7. In no case did the
source code require recompilatioh when the number of processors changed. The most successful
program was the particle orbit code, which did a great deal of computation in each iterate of its
DoAll node. The steps in its speedup curve reflect the granularity of the computation. A sequential
Fortran version of the POC took 152 seconds, 1 second longer than the TDFL version using one
processor. This counterintuitive result is due to the Fortran runtime system's taking longer to start
up than does the C language system under which TDFL runs. This difference is slightly greater
than the TDFL initialization and internode communication overhead. The total times spent
executing the Fortran functions were equal to within a fraction of a second.

The other programs had smaller granularity, resulting in a higher proportion of overhead to
useful computation. In particular, the programs using Looop nodes were not constructed to
minimize the transmission of data around the loop, resulting in copying of whole data sets with
each firing. Finally, the dependencies in the matrix solver's graph never allowed more than two.
nodes (the subdiagonal ones) to execute at the same time; decomposing the array into more nodes
would increase the parallelism. In many cases these programs were the first attempts of students at
parallel programming, and the inefficiencies are not surprising. Typiéally, the most parallelisrri _
was obtained through the use of DoAll nodes.

14

Suhler, Biswas, and Korner.

Processors 1 2 3 4 5 8 7 8
Program . :
Particle orbit code 151. 77. 57. 40. 39. 30. 30. 21.
Adaptive quadrature 0.95 0.53 0.41 0.34 0.31 0.29 0.27 0.27
Transposition sort 3.39 2.04 1.60 1.38 1.24 1.18 1.13 1.08
Minimal spanning tree | 129. 1086. 98. 94, 93. 93. 93. 0.
A" heuristic search 1.91 1.51 1.40 1.36 1.35 1.36 1.38 1.39
Triangular matrix solver 7.24 6.25 6.25 6.25 6.25 6.25 6.25 6.25
Table 1
Program Execution Times
77 Particle Orbit Code
Adaptive Quadrature\
] Transposition Sort
6 Minimal Spanning Tree
A* Heuristic Search
5 Triangular Matrix Solver,
Speedup |
4 -
3 —
2 —

Program Conversion

Processors

Figure 7. Program Speedups

In converting the particle orbit code to TDFL we demonstrated the feasibility of converting

an existing program from standard Fortran to TDFL. The conversion took more than three weeks;
however, most of this time was spent in learning the application program and debugging errors in
the TDFL runtime system. It is expected that a programmer more familiar with his/her particular

code would be able to do the conversion faster. The portion of the code that was doing the control
had to be modified considerably in order to fit it into the data flow framework. However, the
smaller subroutines that did the actual integratior_l were left virmally untouched.

TDFL: A Task-Level Data Flow Language 15

SUMMARY

TDFL presents the programmer with a complete language in which he must cast his
algorithm in a data flow paradigm, with the data set broken into sequences of tokens. He can then
write the computation node task bodies in a standard sequential langrage without worrying about
special scheduling, synchronization, or communication operations. The language provides a fixed
set of node types with different firing rules. The static version of TDFL requires that a program

be expressed as a fixed graph, while dynamic TDFL permits the programmer to create and destroy
new sections of the graph at runtime.

The Sequent Balance multiprocessor implementations of TDFL and DTDFL use one
identical Unix-style process per processor to execute the nodes. Node states and data tokens are
kept in shared memory. To support program development and experimentation, the TDFL system
includes an execution monitor and a single-step execution mode.. ' |

A number of programs have been written in static TDFL; some are adaptations of existing
programs and some are new implementations of well-known algorithms. The speedups achieved
with these prog'reims depend upon the ability of the programmer to structure the code and data to
keep the amount of overhead low relative to the amount of useful computation. '

Future directions. A graphical front-end for TDFL is being devcioped for the Sun workstation,
to permit programmers to make more direct use of the graphical nature of the language. TDFL has
been implemented on the Intel iPSC and studies of program portability have begun. The langﬁage
is also serving as a testbed for experiments with parallel data structures for work managemént and
with program performance tuning through coordinated scheduling and program-to-architecture
mapping. . | '

Acknowledgements. A number of the language's features of have been Su-ggested by our

associates and visitors, such as Greg Pfister of IBM (DoAll nodes), Randall Dow, formerly of
Sequent, (microtasking), and Clement Leung. Chris Erickson of Sequent has been very helpful in -
explaining the workings of Dynix. The particle orbit code was provided by and adapted with the -
assistance of Wendell Horton and Lee Leonard of the University of Texas Department of Physics.
Other programs were written by Ashok Adiga, David Roch, J ames Knight, Kiran Somalwar, and

V. N. Rao. ' '

We are grateful to J. C. Browne and Geoffrey Brown for their éomments on this papcr.

16 Suhler, Biswas, and Korner

This work was supported by the Cockrell Centennial Chair in Engineering and by grants
from Control Data Corporation (4502-0012585), Department of Energy (DE-FG05-85ER25010),
Office of Naval Research (N00014-86-K-0763), and DARPA (N00038-86-C-0167).

Balance and Dynix are trademarks of Sequent Computer Systems, Inc. Unix .is a
trademark of AT&T.

 REFERENCES

- [Babb 86] Babb, R. G,, L. Storc, and W. C. Ragsdale, "A Large-Grain Data Flow Scheduler for
Parallel Processing on CYBERPLUS," Proceedings of the 1986 International Conference on
Parallel Programming, 19 - 22 August 1986, pp. 845 - 848.

[Browne 85] Browne, J. C., "Formulation and Programming of Parallel Computations: A
Unified Approach," Proceedings of the 1985 International Conference on Parallel Programmmg,
20 - 23 August 1985, pp. 624 - 631.

[Edler 85] Edler 1., A Gottlieb, C P. Kruskal, K. P. McAuhffe, L. Rudolph M. Smr P]
Teller, and J. Wﬂson "Issues Related to MIMD Shared-memory Computers the NYU

Ultracomputer Approach,” Proceedings of the 12th Annual International Symposium on Computer
Architecture, 17 - 19 June 1985, pp. 126 - 135.

[Gokhale 86] Gokhale, M.B., "Macro vs. Micro Data Flow: A Programming Example,"

Proceedings of the 1986 International Conference on Parallel Progra.mmmg, 19 - 22 August 1986
pp. 849 - 852.

[Graner 86] Graner, N. and J. Biswas, "User Reference Manual for Task Level Data Flow
Language: Version 1," TR 86-05, Department of Computer Sciences, University of Texas at
Austin, January 1986. '

- [Kahn 74] Kahn, G., "The Semantics of a Simple Language for Parallel Prograinming,")
Proceedings of IFIP Congress 74, North-Holland Publishing Co., 1974, pp. 471 - 475.

[Kaplan 86] Kaplan, Ian, "The LDF 100 Data Graph Language," Loral Instrumentation, 11
December 1986, San Diego, CA.

[Karp 66] Karp, R. M., and R. E. Miller, "Properties of a Model for Parallel Computations:
Determinacy, Termination, Queuning,” SIAM Journal of Applied Mathematics, Vol. 14, No. 6,

TDFL: A Task-Level Data Flow Language ' 17

November 1966.

[McGraw 83] McGraw, et al., "SISAL: Streams and Iteration in a Single-Assignment Language.
Language Reference Manual Version 1.1," 20 July 1983, Lawrence Livermore National
Laboratory Technical Report M-146.

[O'Leary 85] O'Leary, D. P., and G.W. Stewart, "Data-Flow Algorithms for Parallel Matrix
Computations,” Communications of the ACM, August 1985, Vol. 28, No. 8, pp. 840-853.

[O'Leary 86] OlLeary, D. P., G. W. Stewart, and R. van de Geijn, "DOMINO: A Message
Passing Environment for Paralle]l Computation,” TR-1648, University of Maryland, April 1986.

[Patnaik 86] Patnaik, L. M., and J. Basu, "Two Tools for Interprocess Communication in
Distributed Data-Flow Systems,"” The Computer Journal, Vol. 29, No. 6, 1986, pp. 506 - 521.

	tr87-40-46_001

